Impact of range shifter material on proton pencil beam spot characteristics.
Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin
2015-03-01
To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-01-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp–166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules. PMID:24918865
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
NASA Astrophysics Data System (ADS)
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-06-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.
Method For Manufacturing Articles For High Temperature Use, And Articles Made Therewith
Wang, Hongyu; Mitchell, David Joseph; Lau, Yuk-Chiu; Henry, Arnold Thomas
2006-02-28
A method for manufacturing an article for use in a high-temperature environment, and an article for use in such an environment, are presented. The method comprises providing a substrate; selecting a desired vertical crack density for a protective coating to be deposited on the substrate; providing a powder, wherein the powder has a size range selected to provide a coating having the desired vertical crack density; and applying a thermal-sprayed coating to the substrate, the coating having the desired vertical crack density, wherein the powder is used as a raw material for the coating.
Method For Manufacturing Articles For High Temperature Use, And Articles Made Therewith
Wang, Hongyu; Mitchell, David Joseph; Lau, Yuk-Chiu; Henry, Arnold Thomas
2005-03-15
A method for manufacturing an article for use in a high-temperature environment, and an article for use in such an environment, are presented. The method comprises providing a substrate; selecting a desired vertical crack density for a protective coating to be deposited on the substrate; providing a powder, wherein the powder has a size range selected to provide a coating having the desired vertical crack density; and applying a thermal-sprayed coating to the substrate, the coating having the desired vertical crack density, wherein the powder is used as a raw material for the coating.
Astronomical near-infrared echelle gratings
NASA Astrophysics Data System (ADS)
Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming
2014-07-01
High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.
Faraday instability-based micro droplet ejection for inhalation drug delivery
Tsai, C.S.; Mao, R.W.; Lin, S.K.; Zhu, Y.; Tsai, S.C.
2014-01-01
We report here the technology and the underlying science of a new device for inhalation (pulmonary) drug delivery which is capable of fulfilling needs unmet by current commercial devices. The core of the new device is a centimeter-size clog-free silicon-based ultrasonic nozzle with multiple Fourier horns in resonance at megahertz (MHz) frequency. The dramatic resonance effect among the multiple horns and high growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range (2–5 µm) at low electrical drive power (<1.0 W). The small nozzle requiring low drive power has enabled realization of a pocket-size (8.6 × 5.6 × 1.5 cm3) ultrasonic nebulizer. A variety of common pulmonary drugs have been nebulized using the pocket-size unit with desirable aerosol sizes and output rate. These results clearly provide proof-of-principle for the new device and confirm its potential for commercialization. PMID:25045720
The Impact of Desired Family Size Upon Family Planning Practices in Rural East Pakistan
ERIC Educational Resources Information Center
Mosena, Patricia Wimberley
1971-01-01
Results indicated that women whose desired family size is equal to or less than their actual family size have significantly greater frequencies practicing family planning than women whose desired size exceeds their actual size. (Author)
Process R&D for Particle Size Control of Molybdenum Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Sujat; Dzwiniel, Trevor; Pupek, Krzysztof
The primary goal of this study was to produce MoO 3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO 3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO 3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study,more » effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.« less
METHOD FOR PREPARATION OF UO$sub 2$ PARTICLES
Johnson, J.R.; Taylor, A.J.
1959-09-22
A method is described for the preparation of highdensity UO/sub 2/ particles within the size range of 40 to 100 microns. In accordance with the invention UO/sub 2/ particles are autoclaved with an aqueous solution of uranyl ions. The resulting crystals are reduced to UO/sub 2/ and the UO/sub 2/ is heated to at least 1000 deg C to effect densification. The resulting UO/sub 2/ particles are screened, and oversize particles are crushed and screened to recover the particles within the desired size range.
Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik
1992-01-01
Nursery soils should be managed to maintain desirable ranges in essential plant nutrients, organic matter, and available water for the species being produced.In many cases, however, soil fertility and available water far exceed the amounts needed to produce loblolly pine seedlings of the size range required for artificial regeneration. Top clipping and root pruning or...
Ronald E. McRoberts; Geoffrey R. Holden; Mark D. Nelson; Greg C. Liknes; Dale D. Gormanson
2006-01-01
Forest inventory programs report estimates of forest variables for areas of interest ranging in size from municipalities, to counties, to states or provinces. Because of numerous factors, sample sizes are often insufficient to estimate attributes as precisely as is desired, unless the estimation process is enhanced using ancillary data. Classified satellite imagery has...
Spray Gun With Constant Mixing Ratio
NASA Technical Reports Server (NTRS)
Simpson, William G.
1987-01-01
Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.
Etchepareborde, S; Mills, J; Busoni, V; Brunel, L; Balligand, M
2011-01-01
To calculate the difference between the desired tibial tuberosity advancement (TTA) along the tibial plateau axis and the advancement truly achieved in that direction when cage size has been determined using the method of Montavon and colleagues. To measure the effect of this difference on the final patellar tendon-tibial plateau angle (PTA) in relation to the ideal 90°. Trigonometry was used to calculate the theoretical actual advancement of the tibial tuberosity in a direction parallel to the tibial plateau that would be achieved by the placement of a cage at the level of the tibial tuberosity in the osteotomy plane of the tibial crest. The same principle was used to calculate the size of the cage that would have been required to achieve the desired advancement. The effect of the difference between the desired advancement and the actual advancement achieved on the final PTA was calculated. For a given desired advancement, the greater the tibial plateau angle (TPA), the greater the difference between the desired advancement and the actual advancement achieved. The maximum discrepancy calculated was 5.8 mm for a 12 mm advancement in a case of extreme TPA (59°). When the TPA was less than 31°, the PTA was in the range of 90° to 95°. A discrepancy does exist between the desired tibial tuberosity advancement and the actual advancement in a direction parallel to the TPA, when the tibial tuberosity is not translated proximally. Although this has an influence on the final PTA, further studies are warranted to evaluate whether this is clinically significant.
Ulissi, Zachary W; Govind Rajan, Ananth; Strano, Michael S
2016-08-23
Entropic surfaces represented by fluctuating two-dimensional (2D) membranes are predicted to have desirable mechanical properties when unstressed, including a negative Poisson's ratio ("auxetic" behavior). Herein, we present calculations of the strain-dependent Poisson ratio of self-avoiding 2D membranes demonstrating desirable auxetic properties over a range of mechanical strain. Finite-size membranes with unclamped boundary conditions have positive Poisson's ratio due to spontaneous non-zero mean curvature, which can be suppressed with an explicit bending rigidity in agreement with prior findings. Applying longitudinal strain along a singular axis to this system suppresses this mean curvature and the entropic out-of-plane fluctuations, resulting in a molecular-scale mechanism for realizing a negative Poisson's ratio above a critical strain, with values significantly more negative than the previously observed zero-strain limit for infinite sheets. We find that auxetic behavior persists over surprisingly high strains of more than 20% for the smallest surfaces, with desirable finite-size scaling producing surfaces with negative Poisson's ratio over a wide range of strains. These results promise the design of surfaces and composite materials with tunable Poisson's ratio by prestressing platelet inclusions or controlling the surface rigidity of a matrix of 2D materials.
Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
2010-01-01
Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132
Fungal synthesis of size-defined nanoparticles
NASA Astrophysics Data System (ADS)
Zielonka, Aleksandra; Klimek-Ochab, Magdalena
2017-12-01
Fungi with metabolic capacities can efficiently synthesize a wide range of nanoparticles (NPs). This biotransformation process and its product have extensive applications especially for industry, agriculture and medicine, where NPs size and shape is essential and can be defined by specific analytical methods. Fungi cultivation and further bioconversion can be fully controlled to obtain the desired nanoparticles. Additionally, this review provides information about the fungus F. oxysporum, which is able to synthesize the largest amount of different types of NPs.
Fertility desires and fertility outcomes.
Bracher, M; Santow, G
1991-05-01
An Australian 1-in-1000 national probability sample conducted in 1986 yielded 2547 women aged 20-59 who provided detailed life histories on marital unions, childbearing, and contraception. Age specific fertility rates, desired family size, differentials in desired family size, desired fertility and achieved fertility, and sequential family building are examined. The results indicate that the desired family size at 1st marriage has declined only slightly over the past 30 years. 3 children are generally desired, and ver few desire 2. The constance of fertility desires in contrasted with the fertilitydecline to below replacement levels. Several reasons are suggested for the desired family size: the desire is for a family size within the family tradition and modified by the desire to have 1 of each sex, the desire reflects less on intentions but more on normative pressure to become a parent. Marrying is self selecting on the desire for a traditional family of at least 2 children. There is a rising age at marriage as well as a decline in marriages. Desired family size exceeds completed fertility. Period factors and personal circumstances affect fertility intentions. Future inquires should explore the multiple factors relating to fertility, rather than in comparing fertility desires and actual fertility. The data collected on age specific fertility were comparable to official estimates. The fertility decline was evidenced in all groups except teenagers. The decline was nearly 50% for those 20-24 years between the 1050's-80's, 33% for ages 25-29. Marriage patterns explain this decline in part. Between 1971-76, women aged 20-25 were married 37 months out of 60 months in 1971-76 versus 25 out of 60 months in 1981-86. Within the 25 year age group, marital fertility has declined and unmarried fertility, which is low, has risen, Women in a marital union of any kind has remained stable. Fertility within de facto unions, which is lower than within marriage, is higher than fertility outside a marital union, and highest in the teens. Distributions of desired children were strongly bimodel with concentrations of 2 and 4 children.
Metal-organic frameworks for Xe/Kr separation
Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang
2014-07-22
Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.
Metal-organic frameworks for Xe/Kr separation
Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang
2013-08-27
Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.
A planar near-field scanning technique for bistatic radar cross section measurements
NASA Technical Reports Server (NTRS)
Tuhela-Reuning, S.; Walton, E. K.
1990-01-01
A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.
Effect of seedbed preparation on natural reproduction of spruce and hemlock under dense shade
Grant Davis; Arthur C. Hart
1961-01-01
The cutting practices commonly recommended for spruce-fir stands in the Northeast involve uneven-aged management. The success of this type of management is predicated upon stand structures that have a range of size classes from seedlings to mature trees in intimate mixture. This kind of stand structure requires a continuous supply of reproduction of desirable species....
Jablonski, Paul D.; Larbalestier, David C.
1993-01-01
Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.
Obesity and Body Size Preferences of Jordanian Women
ERIC Educational Resources Information Center
Madanat, Hala; Hawks, Steven R.; Angeles, Heidi N.
2011-01-01
The nutrition transition is associated with increased obesity rates and increased desire to be thin. This study evaluates the relationship between actual body size and desired body size among a representative sample of 800 Jordanian women. Using Stunkard's body silhouettes, women were asked to identify their current and ideal body sizes, healthy…
System for beaming power from earth to a high altitude platform
Friedman, Herbert W.; Porter, Terry J.
2002-01-01
Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.
Ghanma, M A; Rider, R V; Sirageldin, I
1984-01-01
The Lorenz Curve, originally developed to measure the concentration of wealth in a population, was used to describe the distribution of contraceptive practice in Jordan. Data from the 1976 Jordan Fertility Study, carried out as part of the World Fertility Survey program, was used in the analysis. The application of the Automatic Interaction Detector program to the survey's sample population of 3611 women of reproductive age divided the sample into 6 mutually exclusive groups on the basis of residence, education, and whether desired family size was attained or not attained. These 3 characteristics accounted for a major portion of the variation in contraceptive practice. These subgroups, in ascending order by the proportion practicing contraception, were: 1) rural women with unattained desired family size; 2) urban, illiterate women with unattained desired family size; 3) rural women with attained desired family size; 4) urban, literate women with unattained desired family size; 5) urban, illiterate women with attained desired family size; and 6) urban, literate women with attained desired family size. The cumulative proportion of the sample in each ordered subdivision was plotted on the X axis of a graph, and the cumulative proportion of those practicing contraception was plotted on the Y axis of the graph. A line connecting the intersection of the points on the X and Y axis was then drawn. The resultant line was a concave ascending line. If contraceptive practice was evenly distributed in the population, the line would be a straight diagonal line. The plotted curved line indicated that contraceptive practice was unevenly distributed in the population. 2 indexes for measuring the area between the diagonal and the line resulting from plotting the observed distribution for each subgroup was used to assess the degree of concentration of contraceptive practice in the population. The indexes also indicated that contraceptive practice was unequally distributed. When separate curves were plotted for the subgroups with attained desired family size and the subgroups without attained desired family size, it was apparent that the distribution of contraceptive practice was more uniform among those with attained desired family size than among the other 3 subgroups. A curve for the distribution of births was then plotted on the same graph. This curve was not a true application of the Lorenz Curve since it was based on the order of the subdivisions by birth rates. The resultant line approached the straight diagonal line and indicated that the distribution of births was fairly evenly distributed in the population. The uneven distribution of contraceptive practice and the uniform distribution of births suggests that contraceptive practice in this population is ineffective. This may be a characteristic of populations in the early stages of fertility control.
Application of spring tabs to elevator controls
NASA Technical Reports Server (NTRS)
Phillips, William H
1944-01-01
Equations are presented for calculating the stick-force characteristics obtained with a spring-tab type of elevator control. The main problems encountered in the design of a satisfactory elevator spring tab are to provide stick forces in the desired range, to maintain the force per g sufficiently constant throughout the speed range, to avoid undesirable "feel" of the control in ground handling or in flight at low airspeeds, and to prevent flutter. Examples are presented to show the design features of spring tabs required to solve these problems for airplanes of various sizes.
Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation
NASA Astrophysics Data System (ADS)
Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup
2018-02-01
Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.
Iranian Adolescents' Intended Age of Marriage and Desired Family Size.
ERIC Educational Resources Information Center
Tashakkori, Abbas; And Others
1987-01-01
Examined questionnaire data pertaining to intended age of marriage and desired family size from Iranian 12th graders. Proximal factors (individual level variables such as self-concept and school success) were stronger predictors on both dependent measures than were distal factors (parental education, sibling size, and family modernity). Proximal…
A comparison of certain methods of measuring ranges of small mammals
Stickel, L.F.
1954-01-01
SUMMARY: A comparison is made of different methods of determining size of home range from grid trapping data. Studies of artificial populations show that a boundary strip method of measuring area and an adjusted range length give sizes closer to the true range than do minimum area or observed range length methods. In simulated trapping of artificial populations, the known range size increases with successive captures until a level is reached that approximates the true range. The same general pattern is followed whether traps are visited at random or traps nearer the center of the range are favored; but when central traps are favored the curve levels more slowly. Range size is revealed with fewer captures when traps are far apart than when they are close together. The curve levels more slowly for oblong ranges than for circular ranges of the same area. Fewer captures are required to determine range length than to determine range area. Other examples of simulated trapping in artificial populations are used to provide measurements of distances from the center of activity and distances between successive captures. These are compared with similar measurements taken from Peromyscus trapping data. The similarity of range sizes found in certain field comparisons of area trapping, colored scat collections, and trailing is cited. A comparison of home range data obtained by area trapping and nest box studies is discussed. It is shown that when traps are set too far apart to include two or more in the range of each animal, calculation of average range size gives biased results. The smaller ranges are not expressed and cannot be included in the averages. The result is that range estimates are smaller at closer spacings and greater at wider spacings, purely as a result of these erroneous calculations and not reflecting any varying behavior of the animals. The problem of variation in apparent home range with variation in trap spacing is considered further by trapping in an artificial population. It is found that trap spacing can alter the apparent size of range even when biological factors are excluded and trap visiting is random. The desirability of excluding travels outside the normal range from home range calculations is discussed. Effects of varying the trapping plan by setting alternate rows of traps, or setting two traps per site, are discussed briefly.
Navigating aerial transects with a laptop computer
Anthony, R. Michael; Stehn, R.A.
1994-01-01
SUMMARY: A comparison is made of different methods of determining size of home range from grid trapping data. Studies of artificial populations show that a boundary strip method of measuring area and an adjusted range length give sizes closer to the true range than do minimum area or observed range length methods. In simulated trapping of artificial populations, the known range size increases with successive captures until a level is reached that approximates the true range. The same general pattern is followed whether traps are visited at random or traps nearer the center of the range are favored; but when central traps are favored the curve levels more slowly. Range size is revealed with fewer captures when traps are far apart than when they are close together. The curve levels more slowly for oblong ranges than for circular ranges of the same area. Fewer captures are required to determine range length than to determine range area. Other examples of simulated trapping in artificial populations are used to provide measurements of distances from the center of activity and distances between successive captures. These are compared with similar measurements taken from Peromyscus trapping data. The similarity of range sizes found in certain field comparisons of area trapping, colored scat collections, and trailing is cited. A comparison of home range data obtained by area trapping and nest box studies is discussed. It is shown that when traps are set too far apart to include two or more in the range of each animal, calculation of average range size gives biased results. The smaller ranges are not expressed and cannot be included in the averages. The result is that range estimates are smaller at closer spacings and greater at wider spacings, purely as a result of these erroneous calculations and not reflecting any varying behavior of the animals. The problem of variation in apparent home range with variation in trap spacing is considered further by trapping in an artificial population. It is found that trap spacing can alter the apparent size of range even when biological factors are excluded and trap visiting is random. The desirability of excluding travels outside the normal range from home range calculations is discussed. Effects of varying the trapping plan by setting alternate rows of traps, or setting two traps per site, are discussed briefly.
Method of making bonded or sintered permanent magnets
McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.
1993-08-31
An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
Method of making bonded or sintered permanent magnets
McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.
1995-11-28
An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.
Method of making bonded or sintered permanent magnets
McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.
1995-11-28
An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
1958-01-01
the surface-finish range desired, differ- cessary in order to establish optimum conditions ent grades of grinding wheels were used on the cen- for...FATIGUEHESULTS 05 MT O AT VARIO0 QRIAIN U- ZES HABLESSES , AND SURFACE INISHE.. TEbT BEOLTJ OF 010 LOBE IN DE1CEtDIh, (’D,6 Hard- Gr-in Sur(...(e Wiebull Ha
Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications
Cottler, Patrick S.; Karpen, Whitney R.; Morrow, Duane A.; Kaufman, Kenton R.
2009-01-01
A next generation fiber-optic microsensor based on the extrinsic Fabry–Perot interferometric (EFPI) technique has been developed for pressure measurements. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. This pressure microsensor represents a significant improvement in size and performance over previous generation sensors. To achieve the desired overall size and sensitivity, numerical modeling of diaphragm deflection was incorporated in the design, with the desired dimensions and calculated material properties. With an outer diameter of approximately 250 µm, a dynamic operating range of over 250 mmHg, and a sampling frequency of 960 Hz, this sensor is ideal for the minimally invasive measurement of physiologic pressures and incorporation in catheter-based instrumentation. Nine individual sensors were calibrated and characterized by comparing the output to a U.S. National Institute of Standards and Technology (NIST) Traceable reference pressure over the range of 0–250 mmHg. The microsensor performance demonstrated accuracy of better than 2% full-scale output, and repeatability, and hysteresis of better than 1% full-scale output. Additionally, fatigue effects on five additional sensors were 0.25% full-scale output after over 10,000 pressure cycles. PMID:19495983
A review on recent technologies for the manufacture of pulmonary drugs.
Hadiwinoto, Gabriela Daisy; Lip Kwok, Philip Chi; Lakerveld, Richard
2018-01-01
This review discusses recent developments in the manufacture of inhalable dry powder formulations. Pulmonary drugs have distinct advantages compared with other drug administration routes. However, requirements of drugs properties complicate the manufacture. Control over crystallization to make particles with the desired properties in a single step is often infeasible, which calls for micronization techniques. Although spray drying produces particles in the desired size range, a stable solid state may not be attainable. Supercritical fluids may be used as a solvent or antisolvent, which significantly reduces solvent waste. Future directions include application areas such as biopharmaceuticals for dry powder inhalers and new processing strategies to improve the control over particle formation such as continuous manufacturing with in-line process analytical technologies.
Formulation of a dry powder influenza vaccine for nasal delivery.
Garmise, Robert J; Mar, Kevin; Crowder, Timothy M; Hwang, C Robin; Ferriter, Matthew; Huang, Juan; Mikszta, John A; Sullivan, Vincent J; Hickey, Anthony J
2006-03-10
The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (WIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 microm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of approximately 21 microm and a yield of approximately 37% of particles in the 45 to 125 microm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation.
Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section
1983-02-01
experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are
ERIC Educational Resources Information Center
Tatner, Mary; Tierney, Anne
2016-01-01
The development and evaluation of a two-week laboratory class, based on the diagnosis of human infectious diseases, is described. It can be easily scaled up or down, to suit class sizes from 50 to 600 and completed in a shorter time scale, and to different audiences as desired. Students employ a range of techniques to solve a real-life and…
Merrimack River Basin, Leominster Local Protection, Monoosnoc Brook, Leominster, Massachusetts.
1978-08-01
Objectives 9 Previous Water Resource Evaluations 10 Improvements Desired 11 FORMULATING A PLAN 12 Base Condition 12 Formuation and Evaluation Cilteria 13...2, "Pertinent Corresponden’e.") 12 FORMULATION AND EVALUATION CRITERIA The formulation portion of the study involved the investigation of a range of...straight alignment was selected for various size underground diversion tunnels. A listing of design discharges for 8, 10 and 12 foot diameter tunnels
Pneumatic System for Concentration of Micrometer-Size Lunar Soil
NASA Technical Reports Server (NTRS)
McKay, David; Cooper, Bonnie
2012-01-01
A report describes a size-sorting method to separate and concentrate micrometer- size dust from a broad size range of particles without using sieves, fluids, or other processes that may modify the composition or the surface properties of the dust. The system consists of four processing units connected in series by tubing. Samples of dry particulates such as lunar soil are introduced into the first unit, a fluidized bed. The flow of introduced nitrogen fluidizes the particulates and preferentially moves the finer grain sizes on to the next unit, a flat plate impactor, followed by a cyclone separator, followed by a Nuclepore polycarbonate filter to collect the dust. By varying the gas flow rate and the sizes of various orifices in the system, the size of the final and intermediate particles can be varied to provide the desired products. The dust can be collected from the filter. In addition, electron microscope grids can be placed on the Nuclepore filter for direct sampling followed by electron microscope characterization of the dust without further handling.
Matovu, Joseph K B; Makumbi, Fredrick; Wanyenze, Rhoda K; Serwadda, David
2017-01-10
Recent trends in fertility rates indicate declines in total fertility rate (TFR) in some sub-Saharan African countries. However, countries such as Uganda continue to have a persistently high TFR partly attributed to strong preferences for large family sizes. We explored the factors that influence fertility desire among married or cohabiting individuals in Rakai, a rural district in southwestern Uganda. This cross-sectional study of fertility desire (desire to have another child) was nested in a cluster-randomized demand-creation intervention trial for the promotion of couples' HIV counseling and testing uptake among married or cohabiting individuals that was conducted in Rakai district between March 1 and April 30, 2015. A total of 1490 married or cohabiting individuals, resident in three study regions with differing background HIV prevalence, were enrolled into the study. Data were collected on socio-demographic, behavioral and fertility-related characteristics. We used a modified Poisson regression model to generate prevalence ratio (PR) as a measure of association for factors that were independently associated with fertility desire. We adjusted for clustering at community level and used STATA version 14.0 for all analyses. Overall, fertility desire was high (63.1%, n = 940); higher in men (69.9%, n = 489) than women (57.1%, n = 451). More than three-quarters (78.8%, n = 1174) had 3+ biological children while slightly more than two-thirds (68.5%, n = 1020) reported an ideal family size of 5+ children. Only 30% (n = 452) reported that they had attained their desired family size. After adjusting for potential and suspected confounders, the factors that were negatively associated with fertility desire were: age 30-39 (adjusted prevalence ratio [aPR] = 0.82, 95% CI: 0.78, 0.86) and 40+ years (aPR = 0.65, 95% CI: 0.60, 0.71); having six or more biological children (aPR = 0.88, 95% CI: 0.80, 0.97); being HIV-positive (aPR = 0.86, 95% CI: 0.78, 0.95) and ever use of any family planning methods (aPR = 0.93, 95% CI: 0.87, 0.99). Being male (aPR = 1.19, 95% CI: 1.07, 1.33); having primary education (aPR = 1.21, 95% CI: 1.01, 1.44) and having not yet attained the desired family size (aPR = 4.34, 95% CI: 3.50, 5.38) were positively associated with fertility desire. Having not yet attained one's desired family size, being male and having primary education were positively associated with fertility desire in this population. Targeting individuals who have not yet attained their desired family size, men and less educated individuals with fertility regulation interventions may help to reduce fertility desire in this population.
Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.
2012-01-01
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822
Teixeira, André Luiz S; Dias, Marcelo Ricardo C; Damasceno, Vinícius O; Lamounier, Joel A; Gardner, Rick M
2013-12-01
The association between phases of the menstrual cycle and body image was investigated. 44 university women (M age = 23.3 yr., SD = 4.7) judged their perceived and ideal body size, and body dissatisfaction was calculated at each phase of the menstrual cycle, including premenstrual, menstrual, and intermenstrual. Participants selected one of nine figural drawings ranging from very thin to obese that represented their perceived size and ideal size. Body dissatisfaction was measured as the absolute difference between scores on perceived and ideal figural drawings. During each menstrual phase, anthropometric measures of weight, height, body mass index, circumference of waist and abdomen, and body composition were taken. There were no significant differences in any anthropometric measures between the three menstrual cycle phases. Perceived body size and body dissatisfaction were significantly different between menstrual phases, with the largest perceived body size and highest body dissatisfaction occurring during the menstrual phase. Ideal body size did not differ between menstrual phases, although participants desired a significantly smaller ideal size as compared to the perceived size.
Kumar, Abhishek; Bordone, Valeria; Muttarak, Raya
This paper investigates the associations between preferred family size of women in rural Bihar, India and the fertility behaviours of their mother and mother-in-law. Scheduled interviews of 440 pairs of married women aged 16-34 years and their mothers-in-law were conducted in 2011. Preferred family size is first measured by Coombs scale, allowing us to capture latent desired number of children and then categorized into three categories (low, medium and high). Women's preferred family size is estimated using ordered logistic regression. We find that the family size preferences are not associated with mother's fertility but with mother's education. Mother-in-law's desired number of grandchildren is positively associated with women's preferred family size. However, when the woman has higher education than her mother-in-law, her preferred family size gets smaller, suggesting that education provides women with greater autonomy in their decision-making on childbearing.
Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning.
Boas, F Edward; Srimathveeravalli, Govindarajan; Durack, Jeremy C; Kaye, Elena A; Erinjeri, Joseph P; Ziv, Etay; Maybody, Majid; Yarmohammadi, Hooman; Solomon, Stephen B
2017-05-01
To create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated. Ice ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1-6 cryoablation probes and 1-2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements were obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions. Average absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm. Cryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.
Association between body image dissatisfaction and obesity among schoolchildren aged 7-10years.
Costa, Larissa da Cunha Feio; Silva, Diego Augusto Santos; Alvarenga, Marle Dos Santos; de Vasconcelos, Francisco de Assis Guedes
2016-06-01
The aim of this study is to evaluate the association between body image dissatisfaction and measurements of obesity - body mass index, waist circumference and body fat percentage - in students aged 7 to 10years in Florianopolis, Santa Catarina. Body image dissatisfaction was assessed by the Figure Rating Scale for Brazilian children. Association analyses were performed using multinomial logistic regression. Body dissatisfaction was prevalent in 82.9% of the students, of whom 59.9% desired a smaller body size and 23.0% desired a larger body size, with a significant difference between the sexes. In boys, overweight, obesity and central obesity remained associated with the desire for a smaller body size, whereas for girls overweight and excess body fat were associated with the desire for a smaller body size. The results point to a normative discontent and indicate the need to include the topic of body image in the school curriculum. Copyright © 2016 Elsevier Inc. All rights reserved.
Determination of material distribution in heading process of small bimetallic bar
NASA Astrophysics Data System (ADS)
Presz, Wojciech; Cacko, Robert
2018-05-01
The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.
Reproductive preferences in Matlab, Bangladesh: levels, motivation and differentials.
Razzaque, A
1996-03-01
This study provides evidence that aspirations for a smaller family and poverty both determined the reduction in family size preferences in the Matlab area of Bangladesh. Data are obtained from a variety of data sets: the 1990 Knowledge, Attitude, and Practice Survey; the 1982 Socioeconomic Survey; and the 1991 Qualitative Survey. Both treatment and nontreatment areas of Matlab experienced a fertility decline during 1976-90, from 6.9 to 3.6 children/woman in the treatment area and from 7.2 to 5.2 in the control area. In this study, multiple classification analysis and logistic regression analysis were conducted. Findings indicate that mean desired family sizes were similar in both areas and slightly higher in the treatment area. Desired family size declined during 1975-90. Most of the decline probably occurred prior to 1985. Findings from qualitative interviews indicate that most women reported that the smaller desired family size was related to the direct economic cost of children. Women also reported that family planning was now available and that in the past there were more resources for caring for large families. Mothers-in-law were open to informing their daughters-in-law about the desire for small families. This motivation for a small family among older and younger women was not present 10 years ago. Findings reveal that desired family size did not vary by age, family size, socioeconomic group, or existence of the Family Planning and Health Services Program.
Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.
Su, Yanyan; Lundholm, Nina; Ellegaard, Marianne
2018-05-26
The intricate patterning of diatom silica frustules at nanometer-to-micrometer scales makes them of interest for a wide range of industrial applications. For some of these applications, a specific size range in nanostructure is required and may be achieved by selecting species with the desired properties. However, as all biological materials, diatom frustules exhibit variability in their morphological parameters and this variability can to some extent be affected and controlled by environmental conditions. In this review, we explore the effects of different environmental factors including salinity, heavy metals, temperature, pH, extracellular Si(OH) 4 or Ge(OH) 4 concentration, light regime, UV irradiance, long-term cultivation, and biotic factors on the nanostructure of diatom frustules. This compilation of studies illustrates that it is possible to affect the nanostructure of diatom frustules in vivo by controlling different environmental factors as well as by direct chemical modification of frustules. We compare these methods and present examples of how these changes affect the range of variability as well as comparing the magnitude of size changes of the most promising methods.
Normative influence and desired family size among young people in rural Egypt.
Harbour, Catherine
2011-06-01
Research has identified the lack of acceptance of a two-child-family norm as the biggest obstacle to achieving replacement-level fertility in Egypt. This analysis examines norms about desired family size for 1,366 males and 1,367 females aged 15-24 in 2004 in rural Minya governorate. Two-level random-effects multivariate logistic regression models, stratified by sex and grouped by neighborhood, are used to assess normative influence at the household and neighborhood levels, controlling for individual- and household-level covariates. In the final model, young males in neighborhoods where more people desire a small family are 33 percent more likely to desire a small family than are young males in other neighborhoods. Young females in households with one or more adults preferring a small family are 78 percent more likely to desire a small family, and young females in households with one or more young people who prefer a small family are 37 percent more likely to desire a small family themselves, compared with those living with adults or with young people, respectively, who do not prefer a small family. Programs aiming to reduce fertility should be aware of gender differences in the sources of normative influence on desired family size.
Development of a Multiple-Stage Differential Mobility Analyzer (MDMA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Da-Ren; Cheng, Mengdawn
2007-01-01
A new DMA column has been designed with the capability of simultaneously extracting monodisperse particles of different sizes in multiple stages. We call this design a multistage DMA, or MDMA. A prototype MDMA has been constructed and experimentally evaluated in this study. The new column enables the fast measurement of particles in a wide size range, while preserving the powerful particle classification function of a DMA. The prototype MDMA has three sampling stages, capable of classifying monodisperse particles of three different sizes simultaneously. The scanning voltage operation of a DMA can be applied to this new column. Each stage ofmore » MDMA column covers a fraction of the entire particle size range to be measured. The covered size fractions of two adjacent stages of the MDMA are designed somewhat overlapped. The arrangement leads to the reduction of scanning voltage range and thus the cycling time of the measurement. The modular sampling stage design of the MDMA allows the flexible configuration of desired particle classification lengths and variable number of stages in the MDMA. The design of our MDMA also permits operation at high sheath flow, enabling high-resolution particle size measurement and/or reduction of the lower sizing limit. Using the tandem DMA technique, the performance of the MDMA, i.e., sizing accuracy, resolution, and transmission efficiency, was evaluated at different ratios of aerosol and sheath flowrates. Two aerosol sampling schemes were investigated. One was to extract aerosol flows at an evenly partitioned flowrate at each stage, and the other was to extract aerosol at a rate the same as the polydisperse aerosol flowrate at each stage. We detail the prototype design of the MDMA and the evaluation result on the transfer functions of the MDMA at different particle sizes and operational conditions.« less
NASA Astrophysics Data System (ADS)
Liu, Hui; Li, Wenchao; Cao, Yang; Guo, Yuan; Kang, Yuejun
2018-03-01
Development of effective theranostic nanoplatforms against malignant tumor is still a challenge. With desirable near-infrared (NIR) light-responsive properties, polypyrrole nanoparticles (PPy NPs) are one of the promising theranostic candidates for cancer photoacoustic imaging and photothermal therapy. Here, PPy NPs with distinct sizes were prepared using a facile aqueous dispersion polymerization method. The formed PPy NPs are uniform in size with narrow size distribution. Characterization data show that PPy NPs with a diameter around 50 nm (P50) display stronger absorption in the NIR range compared to 40 and 60 nm PPy NPs, which further influences their photo-responsive properties. Due to their higher NIR absorption, P50 NPs have better photoacoustic imaging property and photothermal conversion ability than the other two kinds of PPy NPs. The photothermal stability of P50 NPs was proved to be excellent. The CCK-8 assays show that PPy NPs have obvious acute cytotoxicity within 6 h and desirable cytocompatibility for longer incubation time (12 and 24 h). After 6-h incubation, P50 NPs could be internalized by HeLa cells. Their photothermal tumor ablation effect was demonstrated under 808-nm laser irradiation. These findings may provide in-depth understanding of the PPy-based multifunctional nanomaterials for the development of theranostic systems against cancer.
NASA Technical Reports Server (NTRS)
Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.
1979-01-01
The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.
Inferring global network properties from egocentric data with applications to epidemics.
Britton, Tom; Trapman, Pieter
2015-03-01
Social networks are often only partly observed, and it is sometimes desirable to infer global properties of the network from 'egocentric' data. In the current paper, we study different types of egocentric data, and show which global network properties are consistent with data. Two global network properties are considered: the size of the largest connected component (the giant) and the size of an epidemic outbreak taking place on the network. The main conclusion is that, in most cases, egocentric data allow for a large range of possible sizes of the giant and the outbreak, implying that egocentric data carry very little information about these global properties. The asymptotic size of the giant and the outbreak is also characterized, assuming the network is selected uniformly among networks with prescribed egocentric data. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Rinde, James A.
1982-01-01
Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.
Improved Small-Particle Powders for Plasma Spraying
NASA Technical Reports Server (NTRS)
Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.
2005-01-01
Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.
Beam Splitter For Welding-Torch Vision System
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.
1991-01-01
Compact welding torch equipped with along-the-torch vision system includes cubic beam splitter to direct preview light on weldment and to reflect light coming from welding scene for imaging. Beam splitter integral with torch; requires no external mounting brackets. Rugged and withstands vibrations and wide range of temperatures. Commercially available, reasonably priced, comes in variety of sizes and optical qualities with antireflection and interference-filter coatings on desired faces. Can provide 50 percent transmission and 50 percent reflection of incident light to exhibit minimal ghosting of image.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
2016-01-01
Availability of on-site food waste-processing technologies suitable for small- to medium- sized generators is often desirable; several manufactur - ers...waste digestors varies according to manufacturer , but typically range from 0.5 to 2 cu yd/day. Food pulpers operate somewhat similarly to food ...and food courts. Based on an analysis of the volumes, potential for cross- contamination , and ease of collection, it was agreed that the primary
Comparing two books and establishing probably efficacious treatment for low sexual desire.
Balzer, Alexandra M; Mintz, Laurie B
2015-04-01
Using a sample of 45 women, this study compared the effectiveness of a previously studied (Mintz, Balzer, Zhao, & Bush, 2012) bibliotherapy intervention (Mintz, 2009), a similar self-help book (Hall, 2004), and a wait-list control (WLC) group. To examine intervention effectiveness, between and within group standardized effect sizes (interpreted with Cohen's, 1988 benchmarks .20 = small, .50 = medium, .80+ = large) and their confidence limits are used. In comparison to the WLC group, both interventions yielded large between-group posttest effect sizes on a measure of sexual desire. Additionally, large between-group posttest effect sizes were found for sexual satisfaction and lubrication among those reading the Mintz book. When examining within-group pretest to posttest effect sizes, medium to large effects were found for desire, lubrication, and orgasm for both books and for satisfaction and arousal for those reading the Mintz book. When directly comparing the books, all between-group posttest effect sizes were likely obtained by chance. It is concluded that both books are equally effective in terms of the outcome of desire, but whether or not there is differential efficacy in terms of other domains of sexual functioning is equivocal. Tentative evidence is provided for the longer term effectiveness of both books in enhancing desire. Arguing for applying criteria for empirically supported treatments to self-help, results are purported to establish the Mintz book as probably efficacious and to comprise a first step in this designation for the Hall book. (c) 2015 APA, all rights reserved).
Is my kid out of size? Indian mothers' desirability bias in evaluation of their children's weight.
Hochdorn, Alexander; Baldi, Ileana; Paramesh, Elizabeth Cherian; Kumar, Malathi; Gulati, Achal; Gregori, Dario
2014-09-01
To quantify mothers' social desirability bias with respect to their children's weight in a cross-regional Indian setting. The OBEY-AD was a cross-sectional study which has been realized in 7 Indian cities (Bengaluru, Mumbai, Chennai, Hyderabad, Kolkata, New Delhi and Surat), enroling 1,680 children aged 3-11 y of which 50% were females. Children's BMI scores were computed, standardized according to WHO growth charts and categorized as Normal, Overweight, Obese and Underweight. Mothers were asked to judge the weight status of their children through an iconographic test, indicating the shape, which better mirrors the size of their kids. Socio-demographic data, especially employment, income and education, was accessed by administrating a cross-sectional questionnaire to the mothers, involved for the study. Overall, 369 children resulted as obese or overweight (23.5%). Out of them, 75% (278) were not recognized as such by their mothers. Such figures range from up to 76% in Chennai and Surat down to 72% in Hyderabad, Kolkata, New Delhi and Mumbai. Overall agreement between perceived and desired weight status of children was very poor (p < 0.001). Surprisingly, overall 10% of overweight/obese children were considered as even too lean by their mothers. Misperception of children's weight status seemed to be significantly related to urban differences and socio-economic status. This study quantifies the extent of the so-called social desirability bias, namely mother's unconscious attitude to adapt empirical evidence to more culturally legitimized ideal-types of what their children's weight status is expected to be. Its association with westernized representations of leanness as evaluation criteria for beauty has important policy implications.
Diedrichs, Phillippa C; Lee, Christina; Kelly, Marguerite
2011-06-01
While governments have called for greater body size diversity in media imagery to promote positive body image and prevent disordered eating, the fashion and advertising industries often argue that average-size models do not appeal to consumers. Focus groups were conducted with 76 young Australian women and men to provide a previously neglected consumer perspective on this debate. Thematic analysis identified dissatisfaction with the restricted range of body sizes, and the objectification of women, in media imagery. Participants indicated a desire for change and positive reactions to average-size models in advertising, but also suggested barriers to their increased use, including concerns about the promotion of obesity. The results suggest that there is some consumer support for increased body size diversity in media imagery. Consumer and industry barriers, however, will need to be addressed in the future if this is to be an effective public health intervention to promote positive body image. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dickmann, Robin S; Strasburg, Gale M; Romsos, Dale R; Wilson, Lori A; Lai, Grace H; Huang, Hsimin
2016-03-01
Ferric orthophosphate (FePO₄) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO₄ has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO₄ have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO₄ bioavailability. Five commercial FePO₄ sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05), which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R² = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R² = 0.91; p = 0.0002) than surface area (R² = 0.83; p = 0.002) and median particle size (R² = 0.59; p = 0.12). The results indicate that while solubility of FePO₄ is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO₄ with the desired RBV.
Dickmann, Robin S.; Strasburg, Gale M.; Romsos, Dale R.; Wilson, Lori A.; Lai, Grace H.; Huang, Hsimin
2016-01-01
Ferric orthophosphate (FePO4) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO4 has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO4 have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO4 bioavailability. Five commercial FePO4 sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05), which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R2 = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R2 = 0.91; p = 0.0002) than surface area (R2 = 0.83; p = 0.002) and median particle size (R2 = 0.59; p = 0.12). The results indicate that while solubility of FePO4 is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO4 with the desired RBV. PMID:26938556
Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boas, F. Edward, E-mail: boasf@mskcc.org; Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org; Durack, Jeremy C., E-mail: durackj@mskcc.org
PurposeTo create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated.Materials and MethodsIce ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1–6 cryoablation probes and 1–2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements weremore » obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions.ResultsAverage absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm.ConclusionCryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.« less
Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.
Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia
2015-01-01
Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications
NASA Astrophysics Data System (ADS)
Mudachathi, Renilkumar; Tanaka, Takuo
2018-03-01
The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.
Optimizing probability of detection point estimate demonstration
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2017-04-01
The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.
NASA Astrophysics Data System (ADS)
Gali, Adam; Zólyomi, Viktor; Somogyi, Bálint
2013-03-01
Small molecule-sized fluorescent emitters are needed as probes to image and track the locations of targeted nano-sized objects with minimal perturbation, and are much sought-after to probe biomolecules in living cells. For in vivo biological imaging, fluorescent biomarkers have to meet the following stringent requirements: (i) they should be non-toxic and bioinert, (ii) their hydrodynamical size should be sufficiently small for clearance, (iii) they should be photo-stable. Furthermore, it is highly desirable that (iv) they have intense, stable emission in the near-infrared range, and (v) they can be produced in relatively large amount for biological studies. Here we report time-density functional calculations on SiC-based QDs in the aspect of in vivo biological imaging applications. We find that Si-vacancy, divacancy, as well as single metal dopants such as Vanadium (V), Molybdenum (Mo) and Tungsten (W) in molecule-sized (1-2 nm) SiC QDs emit light efficiently in the near-infrared range. Furthermore, their emission wavelength varies on the size of host SiC QDs at less extent than that of pristine SiC QDs, thus sharper emission spectrum is expected even in a disperse size distribution of these QDs. These fluorescent SiC QDs are paramagnetic in the ground state. EU FP7 DIAMANT (Grant No. 270197)
A Role for M-Matrices in Modelling Population Growth
ERIC Educational Resources Information Center
James, Glyn; Rumchev, Ventsi
2006-01-01
Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…
Metal-doped organic foam and method of making same. [Patent application
Rinde, J.A.
Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.
Method of making metal-doped organic foam products
Rinde, James A.
1981-01-01
Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.
Lin, Jing; Yuan, Xiaohai; Li, Gen; Huang, Yang; Wang, Weijia; He, Xin; Yu, Chao; Fang, Yi; Liu, Zhenya; Tang, Chengchun
2017-12-27
As a kind of macroscopic boron nitride (BN) architectures, ultralight BN cellular materials with high porosity and great resilience would have a broad range of applications in energy and environment areas. However, creating such BN cellular materials in large sizes has still been proven challenging. Here, we report on the unique self-assembly of one-dimensional porous BN microfibers into an integral three-dimensional BN foam with open-cell cellular architectures. An ultrasonic-assisted self-assembly, freeze-drying, and high-temperature pyrolysis process has been developed for the preparation of cellular BN foam with a large size and desired shape. The developed BN foam has low density, high porosity (∼99.3%), great resilience, and excellent hydrophobic-lipophilic nature. The foam also exhibits excellent absorption capacities for a wide range of organic solvents and oils (wt % of ∼5130-7820%), as well as a high recovery efficiency (∼94%). Moreover, the unique hierarchical porous structure enables the foam to demonstrate a very low thermal conductivity (∼0.035 W/K/m). The excellent thermal insulation performance, superior mechanical property, and superb chemical and thermal stability enable the developed BN foam as an integrating multifunctional material in a broad range of high-end applications.
Desired Precision in Multi-Objective Optimization: Epsilon Archiving or Rounding Objectives?
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Sahraei, S.
2016-12-01
Multi-objective optimization (MO) aids in supporting the decision making process in water resources engineering and design problems. One of the main goals of solving a MO problem is to archive a set of solutions that is well-distributed across a wide range of all the design objectives. Modern MO algorithms use the epsilon dominance concept to define a mesh with pre-defined grid-cell size (often called epsilon) in the objective space and archive at most one solution at each grid-cell. Epsilon can be set to the desired precision level of each objective function to make sure that the difference between each pair of archived solutions is meaningful. This epsilon archiving process is computationally expensive in problems that have quick-to-evaluate objective functions. This research explores the applicability of a similar but computationally more efficient approach to respect the desired precision level of all objectives in the solution archiving process. In this alternative approach each objective function is rounded to the desired precision level before comparing any new solution to the set of archived solutions that already have rounded objective function values. This alternative solution archiving approach is compared to the epsilon archiving approach in terms of efficiency and quality of archived solutions for solving mathematical test problems and hydrologic model calibration problems.
Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles
NASA Astrophysics Data System (ADS)
Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi
2018-05-01
The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.
A self-adapting herding model: The agent judge-abilities influence the dynamic behaviors
NASA Astrophysics Data System (ADS)
Dong, Linrong
2008-10-01
We propose a self-adapting herding model, in which the financial markets consist of agent clusters with different sizes and market desires. The ratio of successful exchange and merger depends on the volatility of the market and the market desires of the agent clusters. The desires are assigned in term of the wealth of the agent clusters when they merge. After an exchange, the beneficial cluster’s desire keeps on the same, the losing one’s desire is altered which is correlative with the agent judge-ability. A parameter R is given to all agents to denote the judge-ability. The numerical calculation shows that the dynamic behaviors of the market are influenced distinctly by R, which includes the exponential magnitudes of the probability distribution of sizes of the agent clusters and the volatility autocorrelation of the returns, the intensity and frequency of the volatility.
Effect Size in Efficacy Trials of Women With Decreased Sexual Desire.
Pyke, Robert E; Clayton, Anita H
2018-03-22
Regarding hypoactive sexual desire disorder (HSDD) in women, some reviewers judge the effect size small for medications vs placebo, but substantial for cognitive behavior therapy (CBT) or mindfulness meditation training (MMT) vs wait list. However, we lack comparisons of the effect sizes for the active intervention itself, for the control treatment, and for the differential between the two. For efficacy trials of HSDD in women, compare effect sizes for medications (testosterone/testosterone transdermal system, flibanserin, and bremelanotide) and placebo vs effect sizes for psychotherapy and wait-list control. We conducted a literature search for mean changes and SD on main measures of sexual desire and associated distress in trials of medications, CBT, or MMT. Effect size was used as it measures the magnitude of the intervention without confounding by sample size. Cohen d was used to determine effect sizes. For medications, mean (SD) effect size was 1.0 (0.34); for CBT and MMT, 1.0 (0.36); for placebo, 0.55 (0.16); and for wait list, 0.05 (0.26). Recommendations of psychotherapy over medication for treatment of HSDD are premature and not supported by data on effect sizes. Active participation in treatment conveys considerable non-specific benefits. Caregivers should attend to biological and psychosocial elements, and patient preference, to optimize response. Few clinical trials of psychotherapies were substantial in size or utilized adequate control paradigms. Medications and psychotherapies had similar, large effect sizes. Effect size of placebo was moderate. Effect size of wait-list control was very small, about one quarter that of placebo. Thus, a substantial non-specific therapeutic effect is associated with receiving placebo plus active care and evaluation. The difference in effect size between placebo and wait-list controls distorts the value of the subtraction of effect of the control paradigms to estimate intervention effectiveness. Pyke RE, Clayton AH. Effect Size in Efficacy Trials of Women With Decreased Sexual Desire. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gürel, Hikmet Hakan, E-mail: hhakan.gurel@kocaeli.edu.tr; Salmankurt, Bahadır
2016-03-25
Nanometer-sized graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. It is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. The interactions of biomolecules and graphene are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles calculations within density functional theory to calculate effects of charging on nucleobases on graphene. Itmore » is shown that how modify structural and electronic properties of nucleobases on graphene by applied charging.« less
Yantcheva, B; Brindal, E
2013-08-01
This study examined how the amount and type of food that a person eats affects perceptions of their personal desirability, femininity/masculinity, and body size while accounting for any assumed similarity biases. Female students (18 to 59 years old) were recruited through the School of Psychology at the University of Adelaide. Participants (n = 191) rated the characteristics of a fictional person based on information in a personal profile. Profiles were identical aside from experimental manipulations of gender (male/female), meal size (small/large) and meal type (regular fat/high fat) with meal manipulations calculated using nutrient recommendations. Ratings of desirability and body size were affected primarily by meal type with targets described as eating a regular fat meal seen as more desirable (M = 5.40, SD = 0.56) and thinner (M = 3.93, SD = 1.05) than those having a high fat meal (M = 5.09, SD = 0.66; M = 4.29, SD = 1.04) (p = .001). Meal size manipulations affected only ratings of body size with larger meals (M = 4.25, SD = 0.88) resulting in higher ratings relative to smaller meals (M = 3.96, SD = 1.20) (p = .036). Despite a suggestion of interactions between target gender and both meal characteristics for ratings of femininity/masculinity in our results, post-hoc analyses largely failed to reveal any pairwise differences. Perceived similarity to the target did relate to levels of desirability (p = .006), and self-esteem positively associated with ratings of target body size (p = .010). Even though men's perceptions of eating behaviours were not reported in this paper, these findings have implications for a better understanding of social pressures faced not only by women, but also for men, as potentially both genders may be affected by eating norms regarding the healthiness of a meal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roberts, Vaughan; Maddison, Ralph; Simpson, Caroline; Bullen, Chris; Prapavessis, Harry
2012-07-01
Smoking cessation is associated with cigarette cravings and tobacco withdrawal symptoms (TWS), and exercise appears to ameliorate many of these negative effects. A number of studies have examined the relationships between exercise, cigarette cravings, and TWS. The objectives of this study were (a) to review and update the literature examining the effects of short bouts of exercise on cigarette cravings, TWS, affect, and smoking behaviour and (b) to conduct meta-analyses of the effect of exercise on cigarette cravings. A systematic review of all studies published between January 2006 and June 2011 was conducted. Fifteen new studies were identified, 12 of which found a positive effect of exercise on cigarette cravings. The magnitude of statistically significant effect sizes for 'desire to smoke' and 'strength of desire to smoke' ranged from 0.4 to 1.98 in favour of exercise compared to passive control conditions, and peaked either during or soon after treatment. Effects were found up to 30 min post-exercise. Cigarette cravings were reduced following exercise with a wide range of intensities from isometric exercise and yoga to activity as high as 80-85 % heart rate reserve. Meta-analyses revealed weighted mean differences of -1.90 and -2.41 in 'desire to smoke' and 'strength of desire to smoke' outcomes, respectively. Measures of TWS and negative affect were reduced following light-moderate intensity exercise, but increased during vigorous exercise. Exercise can have a positive effect on cigarette cravings and TWS. However, the most effective exercise intensity to reduce cravings and the underlying mechanisms associated with this effect remain unclear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd
2016-07-12
In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less
Chan, Ka Man Carmen; Li, Randolph H.; Chapman, Joseph W.; Trac, Eric M.; Kobler, James B.; Zeitels, Steven M.; Langer, Robert; Karajanagi, Sandeep S.
2014-01-01
Particle size, stiffness and surface functionality are important in determining the injection site, safety and efficacy of injectable soft-tissue fillers. Methods to produce soft injectable biomaterials with controlled particle characteristics are therefore desirable. Here we report a method based on suspension photopolymerization and semi-interpenetrating network (semi-IPN) to synthesize soft, functionalizable, spherical hydrogel microparticles (MP) of independently tunable size and stiffness. MP were prepared using acrylated forms of polyethylene glycol (PEG), gelatin and hyaluronic acid. Semi-IPN MP of PEG-diacrylate and PEG were used to study the effect of process parameters on particle characteristics. The process parameters were systematically varied to produce MP with size ranging from 115 to 515 μm and stiffness ranging from 190 to 1600 Pa. In vitro studies showed that the MP thus prepared were cytocompatible. The ratio and identity of the polymers used to make the semi-IPN MP were varied to control their stiffness and to introduce amine groups for potential functionalization. Slow-release polymeric particles loaded with Rhodamine or dexamethasone were incorporated in the MP as a proof-of-principle of drug incorporation and release from the MP. This work has implications in preparing injectable biomaterials of natural or synthetic polymers for applications as soft-tissue fillers. PMID:24561708
Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance
NASA Astrophysics Data System (ADS)
Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena
2017-11-01
A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.
Mars surface transportation options
NASA Technical Reports Server (NTRS)
Leitner, Jeffrey M.; Alred, John W.
1986-01-01
As the number of scientific experiments for the surface of Mars grows, the need for effective surface transportation becomes critical. Because of the diversity of the experiments proposed, as well as the desire to explore Mars from the equator to the poles, the optimum surface vehicle configuration is not obvious. Five candidate vehicles are described, with an estimate of their size and performance. In order to maximize the success of a manned Mars mission, it appears that two vehicles should be designed for surface transportation: an advanced long-range rover, and a remotely-piloted airplane.
Method for improving the sedimentation and filterability of coal-derived liquids
Katz, Sidney; Rodgers, Billy R.
1979-01-02
An improvement in the separation of suspended solids from coal-derived liquids by a separations process in which solids size is a separations parameter is achieved by contacting the coal-derived liquid containing suspended solids with an effective amount of an additive selected from the group of sulfuric acid, phosphoric acid, phosphoric anhydride and salts of sulfuric and phosphoric acid, and maintaining the contacted liquid at a temperature within the range of about 150.degree.-400.degree. C and for a time sufficient to achieve the desired separation rate.
Centroid tracker and aimpoint selection
NASA Astrophysics Data System (ADS)
Venkateswarlu, Ronda; Sujata, K. V.; Venkateswara Rao, B.
1992-11-01
Autonomous fire and forget weapons have gained importance to achieve accurate first pass kill by hitting the target at an appropriate aim point. Centroid of the image presented by a target in the field of view (FOV) of a sensor is generally accepted as the aimpoint for these weapons. Centroid trackers are applicable only when the target image is of significant size in the FOV of the sensor but does not overflow the FOV. But as the range between the sensor and the target decreases the image of the target will grow and finally overflow the FOV at close ranges and the centroid point on the target will keep on changing which is not desirable. And also centroid need not be the most desired/vulnerable point on the target. For hardened targets like tanks, proper aimpoint selection and guidance up to almost zero range is essential to achieve maximum kill probability. This paper presents a centroid tracker realization. As centroid offers a stable tracking point, it can be used as a reference to select the proper aimpoint. The centroid and the desired aimpoint are simultaneously tracked to avoid jamming by flares and also to take care of the problems arising due to image overflow. Thresholding of gray level image to binary image is a crucial step in centroid tracker. Different thresholding algorithms are discussed and a suitable algorithm is chosen. The real-time hardware implementation of centroid tracker with a suitable thresholding technique is presented including the interfacing to a multimode tracker for autonomous target tracking and aimpoint selection. The hardware uses very high speed arithmetic and programmable logic devices to meet the speed requirement and a microprocessor based subsystem for the system control. The tracker has been evaluated in a field environment.
Synthesis and Biological Response of Size-Specific, Monodisperse Drug-Silica Nanoconjugates
Tang, Li; Fan, Timothy M.; Borst, Luke B.; Cheng, Jianjun
2012-01-01
Drug-containing nanoparticles (NPs) with monodisperse, controlled particle sizes are highly desirable for drug delivery. Accumulating evidence suggests that NPs with sizes less than 50 nm demonstrate superior performance in vitro and in vivo. However, it is difficult to fabricate monodisperse, drug-containing NPs with discrete and incremental difference in sizes required for studying and characterizing existing relationships among particle size, biologic processing, and therapeutic functionality. Here, we report a scalable process of fabricating drug-silica conjugated nanoparticles, termed drug-silica nanoconjugates (drug-NCs), which possess monodisperse size distributions and desirable particle sizes as small as 20 nm. We found that 20-nm NCs are superior to their 50-nm and 200-nm NC analogues by 2–5 and 10–20 folds, respectively, with regard to tumor accumulation and penetration, and cellular internalization. These fundamental findings underscore the importance and necessity of further miniaturizing nanomedicine size for optimized drug delivery applications. PMID:22494403
Family size preferences and contraception in Syria.
Immerwahr, G; Maier, A
1986-06-01
Data from the Syria Fertility Survey, a part of the World Fertility Survey, are used to ascertain the relation of background characteristics of Syrian women to their preferred number of children, their desire to stop child-bearing and the extent to which this desire is implemented by the use of contraception. Data show Syria in total to have very high fertility, almost the highest in the world. Syrian women state high fertility desires, a high preference for sons and a low use of contraception despite widespread contraceptive knowledge. While they also show in the urban sector a recent fertility decline and a desired family size well below that of the rural sector, that desired family size is at least double replacement level fertility, even among younger urban women. If one were to look at this picture as static, the outlook for an early substantial fertility reduction would at 1st seem quite disappointing. However, there is some prospect of substantial change, not only in the urban sector butalso in the likelihood that this recent urban trend will soon be felt in the rural sector as well. The spread of education and other forms of modernization suggest the likelihood of a steady decline of fertility in the coming decades in the country as a whole.
The impact of affect on willingness-to-pay and desired-set-size.
Hafenbrädl, Sebastian; Hoffrage, Ulrich; White, Chris M
2013-01-01
What role does affect play in economic decision making? Previous research showed that the number of items had a linear effect on the willingness-to-pay for those items when participants were computationally primed, whereas participants' willingness-to-pay was insensitive to the amount when they were affectively primed. We extend this research by also studying the impact of affect on nonmonetary costs of waiting for items to be displayed and of screening them in a computer task. We assessed these costs by asking participants how many items they desired to see before making their selection. In our experiment, the effect of priming on desired-set-size was even larger than on willingness-to-pay, which can be explained by the fact that the nonmonetary costs, waiting time, were real, whereas willingness-to-pay was hypothetical. Participants also reported their satisfaction with the choosing process and the chosen items; no linear or nonlinear relationship was found between the self-determined desired-set-size and satisfaction. Copyright © 2013 Elsevier B.V. All rights reserved.
Hunter, Susan B.; Vauterin, Paul; Lambert-Fair, Mary Ann; Van Duyne, M. Susan; Kubota, Kristy; Graves, Lewis; Wrigley, Donna; Barrett, Timothy; Ribot, Efrain
2005-01-01
The PulseNet National Database, established by the Centers for Disease Control and Prevention in 1996, consists of pulsed-field gel electrophoresis (PFGE) patterns obtained from isolates of food-borne pathogens (currently Escherichia coli O157:H7, Salmonella, Shigella, and Listeria) and textual information about the isolates. Electronic images and accompanying text are submitted from over 60 U.S. public health and food regulatory agency laboratories. The PFGE patterns are generated according to highly standardized PFGE protocols. Normalization and accurate comparison of gel images require the use of a well-characterized size standard in at least three lanes of each gel. Originally, a well-characterized strain of each organism was chosen as the reference standard for that particular database. The increasing number of databases, difficulty in identifying an organism-specific standard for each database, the increased range of band sizes generated by the use of additional restriction endonucleases, and the maintenance of many different organism-specific strains encouraged us to search for a more versatile and universal DNA size marker. A Salmonella serotype Braenderup strain (H9812) was chosen as the universal size standard. This strain was subjected to rigorous testing in our laboratories to ensure that it met the desired criteria, including coverage of a wide range of DNA fragment sizes, even distribution of bands, and stability of the PFGE pattern. The strategy used to convert and compare data generated by the new and old reference standards is described. PMID:15750058
Management of hepatocellular adenoma: Solitary-uncomplicated, multiple and ruptured tumors
Toso, Christian; Majno, Pietro; Andres, Axel; Rubbia-Brandt, Laura; Berney, Thierry; Buhler, Léo; Morel, Philippe; Mentha, Gilles
2005-01-01
AIM: While hepatocellular adenomas (HAs) have often been studied as a unique entity, we aimed to better define current management of the various forms of HAs. METHODS: Twenty-five consecutive patients operated for solitary-uncomplicated (9), multiple (6), and ruptured (10) HAs were reviewed according to management strategies and outcomes. RESULTS: All solitary-uncomplicated HAs (ranged 2.2-14 cm in size) were removed. Out of 25 HAs, 2 (8%) included foci of carcinoma. In the multiple HA group, previously undiagnosed tumors were identified during surgery in 5/6 cases. In three cases with multiple spread HA, several lesions had to be left unresected. They remained unmodified after 4-, 6-, and 6-year radiological follow-up. Patients with ruptured HA (ranged 1.7-10 cm in size) were initially managed with hemodynamic support and angiography, allowing the embolization of actively bleeding tumors in two patients. All ruptured tumors were subsequently removed 5.5 d (range 4-70 d) after admission. CONCLUSION: Tumors suspected of HA, regardless of the size, should be resected, because of high chances of rupture causing bleeding, and/or containing malignant foci. Although it is desirable to remove all lesions of multiple HA, this may not be possible in some patients, for whom long-term radiological follow-up is advised. Ruptured HA can be managed by hemodynamic support and angiography, allowing scheduled surgery. PMID:16237767
Hybrid Wing Body Configuration Scaling Study
NASA Technical Reports Server (NTRS)
Nickol, Craig L.
2012-01-01
The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.
Fertility decisions and desires in Bangladesh: an econometric investigation.
Sirageldin, I; Khan, M A; Shah, F; Ariturk, A
1976-07-01
2 models are developed to examine fertility behavior in Bangladesh. The 1st model deals with the total number of ever-born children to a couple; the 2nd examines sequential decisions that characterize the desire for an additional child. The "Chicago-Columbia" or "New Home Economics" approach is used, but to the usual economic variables are added sociological and demographic variables; and fertility is examined in relation to the prices of child services consumed as well as a valuation of the mother's time. The data for the study were drawn from a sample of 3088 currently married women respondents to the 1968/69 Impact Survey (an extended KAP survey). The model for completed family size uses 4 endogenous variables: total live births, number of dead children, current income, and female labor force participation; these are examined in terms of 14 exogenous variables, including property ownership, age, literacy, awareness of family planning, rural vs urban, type of family, size of family, and schooling. The model is built on 4 equations with parameters estimated by 2-stage least squares technic and then subjected to multivariate analysis. The model for demand for additional children added 5 exogenous variables including sex of children, desire for children, and perceived need for education of children. This model was examined using standard probit analysis. Interpretation of the 2 models showed that 1) Income was positively related to completed family size but has no effect on desire for additional children; 2) female education, female employment, and cost of fertility control had no effect in either model; 3) Age at marriage had a positive effect on completed family size but none on desire for additional children; 4) Urban women had more live births, but rural women were more likely to want additional children; 5) Sex preference for boys is intense in Bangladesh. The study concludes that: 1) Economic well-being effects fertility; 2) The more adequate couples consider their income, the more likely they are to want more children; 3) Female education and employment have no effect on either completed family size or desire for more children; 4) There are no clear effects of family planning programs on either; and 5) desire for more children decreases as the number of children, particularly sons, increases.
Teevale, Tasileta
2011-03-01
The stimulus behind most of the early investigations into Pacific or Polynesian peoples' body image, particularly those that looked to compare with Western or Westernised groups, is the assumption that Pacific peoples valued and therefore desired very large bodies, and in relation to obesity-risk, this is a problematic cultural feature to have. This may be driven by popular anecdotes which are captured in the title of one such study "Do Polynesians still believe that big is beautiful?" To the author's knowledge, no research in Pacific peoples' body image has been conducted in the New Zealand (NZ) context by Pacific researchers. This study makes a contribution to the literature gap and more importantly through an emic viewpoint. A critique of the current literature is provided below which calls into question the initial catalyst behind earlier investigations which have led to the perpetuation of particular types of body image research for Pacific groups. Using mixed-methods, the specific objective of this study was to describe the behaviours, beliefs and values of Pacific adolescents and their parents, that are related to body image. A self-completion questionnaire was administered to 2495 Pacific students who participated in the New Zealand arm of the Obesity Prevention In Communities (OPIC) project. Sixty-eight people (33 adolescents and 35 parents) from 30 Pacific households were interviewed in the qualitative phase of the study. This study found Pacific adolescents and their parents did not desire obesity-sized bodies but desired a range of average-sized bodies that met their Pacific-defined view of health. It is not clear whether body image research makes any meaningful contribution to obesity prevention for Pacific people, given the cultural-bounded nature of the concept "body image" which sits communication and understanding between obesity interventionists and all healthcare workers generally and Pacific communities. For obesity interventions to be acceptable and useful for Pacific people, they must be responsive to the beliefs and desires of these communities.
Assessing food appeal and desire to eat: the effects of portion size & energy density
2011-01-01
Background Visual presentation of food provides considerable information such as its potential for palatability and availability, both of which can impact eating behavior. Methods We investigated the subjective ratings for food appeal and desire to eat when exposed to food pictures in a fed sample (n = 129) using the computer paradigm ImageRate. Food appeal and desire to eat were analyzed for the effects of food group, portion size and energy density of the foods presented as well as by participant characteristics. Results Food appeal ratings were significantly higher than those for desire to eat (57.9 ± 11.6 v. 44.7 ± 18.0; p < 0.05). Body mass index was positively correlated to desire to eat (r = 0.20; p < 0.05), but not food appeal. Food category analyses revealed that fruit was the highest rated food category for both appeal and desire, followed by discretionary foods. Additionally, overweight individuals reported higher ratings of desire to eat large portions of food compared to smaller portions (p < 0.001), although these effects were relatively small. Energy density of the foods was inversely correlated with ratings for both appeal and desire (r's = - 0.27; p's < 0.01). Conclusions Results support the hypothesis that individuals differentiate between food appeal and desire to eat foods when assessing these ratings using the same type of metric. Additionally, relations among food appeal and desire to eat ratings and body mass show overweight individuals could be more responsive to visual foods cues in a manner that contributes to obesity. PMID:21943082
Assessing food appeal and desire to eat: the effects of portion size & energy density.
Burger, Kyle S; Cornier, Marc A; Ingebrigtsen, Jan; Johnson, Susan L
2011-09-25
Visual presentation of food provides considerable information such as its potential for palatability and availability, both of which can impact eating behavior. We investigated the subjective ratings for food appeal and desire to eat when exposed to food pictures in a fed sample (n=129) using the computer paradigm ImageRate. Food appeal and desire to eat were analyzed for the effects of food group, portion size and energy density of the foods presented as well as by participant characteristics. Food appeal ratings were significantly higher than those for desire to eat (57.9±11.6 v. 44.7±18.0; p<0.05). Body mass index was positively correlated to desire to eat (r=0.20; p<0.05), but not food appeal. Food category analyses revealed that fruit was the highest rated food category for both appeal and desire, followed by discretionary foods. Additionally, overweight individuals reported higher ratings of desire to eat large portions of food compared to smaller portions (p<0.001), although these effects were relatively small. Energy density of the foods was inversely correlated with ratings for both appeal and desire (r's=-0.27; p's<0.01). Results support the hypothesis that individuals differentiate between food appeal and desire to eat foods when assessing these ratings using the same type of metric. Additionally, relations among food appeal and desire to eat ratings and body mass show overweight individuals could be more responsive to visual foods cues in a manner that contributes to obesity.
Ultrafine particles and nitrogen oxides generated by gas and electric cooking.
Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A
2001-08-01
To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.
Validation of prospective portion size and latency to eat as measures of reactivity to snack foods.
van den Akker, Karolien; Bongers, Peggy; Hanssen, Imke; Jansen, Anita
2017-09-01
In experimental studies that investigate reactivity to the sight and smell of highly palatable snack foods, ad libitum food intake is commonly used as a behavioural outcome measure. However, this measure has several drawbacks. The current study investigated two intake-related measures not yet validated for food cue exposure research involving common snack foods: prospective portion size and latency to eat. We aimed to validate these measures by assessing prospective portion size and eating latencies in female undergraduate students who either underwent snack food exposure or a control exposure. Furthermore, we correlated prospective portion size and latency to eat with commonly used measures of food cue reactivity, i.e., self-reported desire to eat, salivation, and ad libitum food intake. Results showed increases in prospective portion size after food cue exposure but not after control exposure. Latency to eat did not differ between the two conditions. Prospective portion size correlated positively with desire to eat and food intake, and negatively with latency to eat. Latency to eat was also negatively correlated with desire to eat and food intake. It is concluded that the current study provides initial evidence for the prospective portion size task as a valid measure of reactivity to snack foods in a Dutch female and mostly healthy weight student population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Body size dissatisfaction among young adults from the 1982 Pelotas birth cohort
Mintem, G C; Horta, B L; Domingues, M R; Gigante, D P
2015-01-01
Background/Objectives: To identify the prevalence and factors associated with body dissatisfaction. Subjects/Methods: Birth cohort study investigating 4100 subjects (2187 men and 1913 women) aged between 22 and 23 years who answered questionnaires, including the body satisfaction Stunkard Scale were included in the study; they were weighed and measured. Multinomial logistic regression was used in the crude and adjusted analyses. Results: The prevalence of body dissatisfaction was 64% (95% CI, 62.7–65.6); 42% (95% CI, 40.6–43.6) of the subjects reported feeling larger than the desired body size, and 22% (95% CI, 20.7–23.3) reported feeling smaller than desired. Underweight subjects, subjects with less schooling, poor and sedentary male subjects with low psychological well-being and female subjects who were already mothers were more likely to express body dissatisfaction, perceiving their body as smaller than the desirable body size. The prevalence of body dissatisfaction was also high among overweight subjects, subjects with a high socioeconomic status and married female subjects, who perceived their body size as too large. Minor psychiatric disorders were associated with body dissatisfaction in all subjects, regardless of perceiving themselves as larger or smaller than the desired body size. Most women perceived themselves as larger, but similar proportions of men perceived themselves as too small or too large. Conclusions: Body dissatisfaction was observed among men and women with normal weight, but it was more evident in the obese individuals. Regardless of the nutritional status, both men and women should be appropriately counseled because body size perception can lead to unhealthy behaviors in relation to diet and physical activity. PMID:25074390
Kahansim, Makshwar L; Hadejia, Idris S; Sambo, Mohammed N
2013-03-01
The total fertility rate of Nigerian women has remained high at 5.7. This is even higher for women in rural areas. Men and women in rural areas desire more children than those in urban areas. This study was aimed at describing and comparing the factors that influence family size decisions among men and women in Bokkos, a rural Local Government Area in Plateau state, Nigeria. A cross sectional descriptive comparative study was used. Data was collected using structured interviewer administered questionnaires. Seventy two percent of women and 83.6% of men who desire to have 1-4 children had at least a secondary school education. Close to seventy percent of both men and women would have fewer children if they are certain of their survival to adulthood. Over 50% of the respondents believe that the husbands should have the final say on family size decisions. Preference for male children influences decisions on family size among men and women in the study population.
Body image and weight control in South Africans 15 years or older: SANHANES-1.
Mchiza, Zandile J; Parker, Whadi-Ah; Makoae, Mokhantso; Sewpaul, Ronel; Kupamupindi, Takura; Labadarios, Demetre
2015-09-30
South African studies have suggested that differences in obesity prevalence between groups may be partly related to differences in body image and body size dissatisfaction. However, there has never been a national study that measured body image and its relationship to weight control in the country. Hence, the main aim of the study was to examine body image in relation to body mass index and weight control in South Africa. A cross-sectional survey and a secondary analyses of data were undertaken for 6 411 South Africans (15+ years) participating in the first South African National Health and Nutrition Examination Survey. Body image was investigated in relation to weight status and attempts to lose or gain weight. Data were analysed using STATA version 11.0. Descriptive statistics are presented as counts (numbers), percentages, means, standard error of means, and 95 % confidence intervals. Any differences in values were considered to be significantly different if the confidence intervals did not overlap. Overall, 84.5 % participants had a largely distorted body image and 45.3 % were highly dissatisfied about their body size. Overweight and obese participants under estimated their body size and desired to be thinner. On the other hand, normal- and under-weight participants over estimated their body size and desired to be fatter. Only 12.1 and 10.1 % of participants attempted to lose or gain weight, respectively, mainly by adjusting dietary intake and physical activity. Body mass index appears to influence body image and weight adjustment in South Africa. South Africans at the extreme ends of the body mass index range have a largely distorted body image and are highly dissatisfied by it. This suggests a need for health education and beneficial weight control strategies to halt the obesity epidemic in the country.
Munitions Classification Library
2016-04-04
F/B N N Practice Rockeye MK118 S Y Y N N U/P N N Practice 25-lb Mk76 B Y N N N F/B N N BDU-33 Practice Bomb 2.25-in SCAR Mk4 Mod0 R Y Y N N F/W Y N...Sphere SO N N N N Pristine Y Y steel 1 P = Projectile; G = Grenade; M = Mortar; R = Rocket; S = Submunition; B = Bomb ; RWH = Rocket Warhead; SO...many of the remaining outstanding desired items as possible and ranged in size from very small munitions (50 cal) all the way up to a 250-lb bomb
Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles
NASA Technical Reports Server (NTRS)
Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo
2003-01-01
Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.
Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado
Soule, James M.; Fitch, Harold R.
1974-01-01
An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.
Effects of male literacy on family size: A cross sectional study conducted in Chakwal city.
Mahmood, Humaira; Khan, Ziaullah; Masood, Sumaira
2016-04-01
To determine the effects of male education on family size, the desired family size, knowledge and use of contraception and opinion about female education. The cross-sectional study was carried out in Chakwal city, Punjab, Pakistan, from June to October 2009. A pre-tested questionnaire was used for data collection. The respondents were males and data on their demographics, age at marriage, actual and desired family size, knowledge about methods of contraception, and opinion about female education was collected. SPSS 15 was used for statistical analysis. Out of the 178 respondents, 52(29.2%) were illiterate and 126(70.8%) were educated. Among the educated, 97(77%) were in favour of small families compared to only 10(19.2%) of the uneducated males (p< 0.001). Besides, 118 (93.6%) educated males were aware of any method of contraception. The most important source of awareness was television 45(37.8%) followed by lady health visitors 40(33.9%). Among the respondents, 38(21.3%) were not using any contraceptive method because they considered it unIslamic, 16(9.1%) had fear of side effects, 57(32.0%) were desirous of large families, while 67(37.6%) had other reasons, like trying to conceive. Among the uneducated males, 17(32.7%) didn't discuss any family planning issue with their wives compared to 14(11.3%) of educated males (p< 0.001). Educational status of the males had an effect on the desired family size, contraceptive use and views in favour of female education.
Methods for Scaling Icing Test Conditions
NASA Technical Reports Server (NTRS)
Anderson, David N.
1995-01-01
This report presents the results of tests at NASA Lewis to evaluate several methods to establish suitable alternative test conditions when the test facility limits the model size or operating conditions. The first method was proposed by Olsen. It can be applied when full-size models are tested and all the desired test conditions except liquid-water content can be obtained in the facility. The other two methods discussed are: a modification of the French scaling law and the AEDC scaling method. Icing tests were made with cylinders at both reference and scaled conditions representing mixed and glaze ice in the NASA Lewis Icing Research Tunnel. Reference and scale ice shapes were compared to evaluate each method. The Olsen method was tested with liquid-water content varying from 1.3 to .8 g/m(exp3). Over this range, ice shapes produced using the Olsen method were unchanged. The modified French and AEDC methods produced scaled ice shapes which approximated the reference shapes when model size was reduced to half the reference size for the glaze-ice cases tested.
Electroformed screens with uniform hole size
NASA Technical Reports Server (NTRS)
Schaer, G. R.
1968-01-01
Efficient method electroforms fine-mesh nickel screens, or plagues, with uniform hole size and accurate spacing between holes. An electroformed nickel mandrel has nonconducting silicone rubber projections that duplicate the desired hole size and shape in the finished nickel screen.
Bonus Organisms in High-Throughput Eukaryotic Whole-Genome Shorgun Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank
2006-02-06
The DOE Joint Genome Institute has sequenced over 50 eukaryotic genomes, ranging in size from 15 MB to 1.6 GB, over a wide range of organism types. In the course of doing so, it has become clear that a substantial fraction of these data sets contains bonus organisms, usually prokaryotes, in addition to the desired genome. While some of these additional organisms are extraneous contamination, they are sometimes symbionts, and so can be of biological interest. Therefore, it is desirable to assemble the bonus organisms along with the main genome. This transforms the problem into one of metagenomic assembly, whichmore » is considerably more challenging than traditional whole-genome shotgun (WGS) assembly. The different organisms will usually be present at different sequence depths, which is difficult to handle in most WGS assemblers. In addition, with multiple distinct genomes present, chimerism can produce cross-organism combinations. Finally, there is no guarantee that only a single bonus organism will be present. For example, one JGI project contained at least two different prokaryotic contaminants, plus a 145 KB plasmid of unknown origin. We have developed techniques to routinely identify and handle such bonus organisms in a high-throughput sequencing environment. Approaches include screening and partitioning the unassembled data, and iterative subassemblies. These methods are applicable not only to bonus organisms, but also to desired components such as organelles. These procedures have the additional benefit of identifying, and allowing for the removal of, cloning artifacts such as E.coli and spurious vector inclusions.« less
Design of a Uranium Dioxide Spheroidization System
NASA Technical Reports Server (NTRS)
Cavender, Daniel P.; Mireles, Omar R.; Frendi, Abdelkader
2013-01-01
The plasma spheroidization system (PSS) is the first process in the development of tungsten-uranium dioxide (W-UO2) fuel cermets. The PSS process improves particle spherocity and surface morphology for coating by chemical vapor deposition (CVD) process. Angular fully dense particles melt in an argon-hydrogen plasma jet at between 32-36 kW, and become spherical due to surface tension. Surrogate CeO2 powder was used in place of UO2 for system and process parameter development. Particles range in size from 100 - 50 microns in diameter. Student s t-test and hypothesis testing of two proportions statistical methods were applied to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders show great than 800% increase in the number of spherical particles over the stock powder with the mean spherocity only mildly improved. It is recommended that powders be processed two-three times in order to reach the desired spherocity, and that process parameters be optimized for a more narrow particles size range. Keywords: spherocity, spheroidization, plasma, uranium-dioxide, cermet, nuclear, propulsion
NASA Technical Reports Server (NTRS)
Freeman, Anthony
2006-01-01
Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .
NASA Technical Reports Server (NTRS)
Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.
2015-01-01
We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.
Sex Work and Mental Health: A Study of Women in the Netherlands.
Krumrei-Mancuso, Elizabeth J
2017-08-01
This study examined how characteristics of prostitution and quality-of-life factors related to symptoms of depression and post-traumatic stress among 88 women engaged in prostitution in the Netherlands. Numerous factors were associated with elevated mental health concerns, including the experience of violence in prostitution, engaging in street prostitution, being motivated to engage in prostitution for financial reasons, having less confidence in one's ability to find alternative work, desiring to leave prostitution, and sense of self-transcendence. In contrast, focusing on achievement, having a sense of fair treatment from others and society, and self-acceptance were associated with better mental health outcomes. Finally, mediation analyses indicated that post-traumatic stress associated with engaging in prostitution against one's deeper desire to exit prostitution was, in part, the result of a lack of self-acceptance. The analyses controlled for relevant demographic factors, including age and level of education. The effect sizes for each of the findings ranged from medium to large. Implications for mental health care and public policy are included.
Interaction Control to Synchronize Non-synchronizable Networks.
Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc
2016-11-17
Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.
Interaction Control to Synchronize Non-synchronizable Networks
Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc
2016-01-01
Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266
Spontaneous formation of nanoparticle stripe patterns through dewetting
NASA Astrophysics Data System (ADS)
Huang, Jiaxing; Kim, Franklin; Tao, Andrea R.; Connor, Stephen; Yang, Peidong
2005-12-01
Significant advancement has been made in nanoparticle research, with synthetic techniques extending over a wide range of materials with good control over particle size and shape. A grand challenge is assembling and positioning the nanoparticles in desired locations to construct complex, higher-order functional structures. Controlled positioning of nanoparticles has been achieved in pre-defined templates fabricated by top-down approaches. A self-assembly method, however, is highly desirable because of its simplicity and compatibility with heterogeneous integration processes. Here we report on the spontaneous formation of ordered gold and silver nanoparticle stripe patterns on dewetting a dilute film of polymer-coated nanoparticles floating on a water surface. Well-aligned stripe patterns with tunable orientation, thickness and periodicity at the micrometre scale were obtained by transferring nanoparticles from a floating film onto a substrate in a dip-coating fashion. This facile technique opens up a new avenue for lithography-free patterning of nanoparticle arrays for various applications including, for example, multiplexed surface-enhanced Raman substrates and templated fabrication of higher-order nanostructures.
Proximity operations considerations affecting spacecraft design
NASA Technical Reports Server (NTRS)
Staas, Steven K.
1991-01-01
Proximity operations can be defined as the maneuvering of two or more spacecraft within 1 nautical mile range, with relative velocity less than 10 feet per second. The passive vehicle is nontranslating and should provide for maintenance of the desired approach attitude. It must accommodate the active (translating) vehicle induced structural loads and performance characteristics (mating hardware tolerances), and support sensor compatibility (transponder, visual targets, etc.). The active vehicle must provide adequate sensor systems (relative state information, field-of-view, redundancy), flight control hardware (thruster sizing, minimal cross-coupling, performance margins, redundancy) and software (reconfigurable, attitude/rate modes, translation and rotation fine control authority) characteristic, and adequate non-propulsive consumables such as power. Operational concerns must be considered. These include the following: (1) the desired approach trajectory and relative orientation; (2) the active vehicle thruster plume effects (forces, torques, contamination) on the passive vehicle; and (3) procedures for contingencies such as loss of communications, sensor or propulsion failures, and target vehicle loss of control.
Desirable forest structures for a restored Front Range
Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan
2014-01-01
As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...
Ye, Jongpil
2015-05-08
Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.
Ye, Jongpil
2015-01-01
Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816
Stereotypical beliefs about appearance: implications for retailing and consumer issues.
Jasper, C R; Klassen, M L
1990-10-01
This research was designed to identify current stereotypical beliefs about obese men and women, assess subjects' desire to work with individuals described as "normal" weight as opposed to obese, examine subjects' perceptions of their own body size, inquire about subjects' personal desire to gain and lose weight, and identify subjects' diet and consumption behavior. The data indicate sex differences in subjects' perceptions of bodily appearance, desire to work with obese people, perceptions of their own weight, desire to lose rather than gain weight, and consumption and diet behavior.
Weight status and the perception of body image in men
Gardner, Rick M
2014-01-01
Understanding the role of body size in relation to the accuracy of body image perception in men is an important topic because of the implications for avoiding and treating obesity, and it may serve as a potential diagnostic criterion for eating disorders. The early research on this topic produced mixed findings. About one-half of the early studies showed that obese men overestimated their body size, with the remaining half providing accurate estimates. Later, improvements in research technology and methodology provided a clearer indication of the role of weight status in body image perception. Research in our laboratory has also produced diverse findings, including that obese subjects sometimes overestimate their body size. However, when examining our findings across several studies, obese subjects had about the same level of accuracy in estimating their body size as normal-weight subjects. Studies in our laboratory also permitted the separation of sensory and nonsensory factors in body image perception. In all but one instance, no differences were found overall between the ability of obese and normal-weight subjects to detect overall changes in body size. Importantly, however, obese subjects are better at detecting changes in their body size when the image is distorted to be too thin as compared to too wide. Both obese and normal-weight men require about a 3%–7% change in the width of their body size in order to detect the change reliably. Correlations between a range of body mass index values and body size estimation accuracy indicated no relationship between these variables. Numerous studies in other laboratories asked men to place their body size into discrete categorizes, ranging from thin to obese. Researchers found that overweight and obese men underestimate their weight status, and that men are less accurate in their categorizations than are women. Cultural influences have been found to be important, with body size underestimations occurring in cultures where a larger body is found to be desirable. Methodological issues are reviewed with recommendations for future studies. PMID:25114606
ESTIMATING SAMPLE REQUIREMENTS FOR FIELD EVALUATIONS OF PESTICIDE LEACHING
A method is presented for estimating the number of samples needed to evaluate pesticide leaching threats to ground water at a desired level of precision. Sample size projections are based on desired precision (exhibited as relative tolerable error), level of confidence (90 or 95%...
NASA Technical Reports Server (NTRS)
Tasciotti, Ennio (Inventor); Hu, Ye (Inventor); Ferrari, Mauro (Inventor); Bouamrani, Ali (Inventor); Liu, Xuewu (Inventor)
2014-01-01
A new fractionation device shows desirable features for exploratory screening and biomarker discovery. The constituent MSCs may be tailored for desired pore sizes and surface properties and for the sequestration and enrichment of extremely low abundant protein and peptides in desired ranges of the mass/charge spectrum. The MSCs are effective in yielding reproducible extracts from complex biological samples as small as 10 microliter in a time as short as 30 minutes. They are inexpensive to manufacture, and allow for scaled up production to attain the simultaneous processing of a large number of samples. The MSCs are multiplexed, label-free diagnostic tools with the potential of biological recognition moiety modification for enhanced specificity. The MSCs may store, protect and stabilize biological fluids, enabling the simplified and cost-effective collection and transportation of clinical samples. The MSC-based device may serve as a diagnostic tool to complement histopathology, imaging, and other conventional clinical techniques. The MSCs mediated identification of disease-specific protein signatures may help in the selection of personalized therapeutic combinations, in the real-time assessment of therapeutic efficacy and toxicity, and in the rational modulation of therapy based on the changes in the protein networks associated with the prognosis and the drug resistance of the disease.
What is the optimum sample size for the study of peatland testate amoeba assemblages?
Mazei, Yuri A; Tsyganov, Andrey N; Esaulov, Anton S; Tychkov, Alexander Yu; Payne, Richard J
2017-10-01
Testate amoebae are widely used in ecological and palaeoecological studies of peatlands, particularly as indicators of surface wetness. To ensure data are robust and comparable it is important to consider methodological factors which may affect results. One significant question which has not been directly addressed in previous studies is how sample size (expressed here as number of Sphagnum stems) affects data quality. In three contrasting locations in a Russian peatland we extracted samples of differing size, analysed testate amoebae and calculated a number of widely-used indices: species richness, Simpson diversity, compositional dissimilarity from the largest sample and transfer function predictions of water table depth. We found that there was a trend for larger samples to contain more species across the range of commonly-used sample sizes in ecological studies. Smaller samples sometimes failed to produce counts of testate amoebae often considered minimally adequate. It seems likely that analyses based on samples of different sizes may not produce consistent data. Decisions about sample size need to reflect trade-offs between logistics, data quality, spatial resolution and the disturbance involved in sample extraction. For most common ecological applications we suggest that samples of more than eight Sphagnum stems are likely to be desirable. Copyright © 2017 Elsevier GmbH. All rights reserved.
High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time
NASA Astrophysics Data System (ADS)
Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven
2017-04-01
As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with <=1 nm resolution. With this system, nanoparticles ranging from 1 to 3000 nm diameters can be studied. The nanoparticles are typically suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.
NASA Astrophysics Data System (ADS)
Carvalho, Karina Penedo; Martins, Nathalia Balthazar; Ribeiro, Ana Rosa Lopes Pereira; Lopes, Taliria Silva; de Sena, Rodrigo Caciano; Sommer, Pascal; Granjeiro, José Mauro
2016-08-01
Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions' nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30-150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco's modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2-NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.
The Lived Experiences of Sexual Desire Among Chinese-Canadian Men and Women.
Dang, Silvain; Chang, Sabrina; Brotto, Lori A
2017-05-19
How North American Chinese conceptualize and experience sexual desire is not well understood, and may have implications for understanding cross-cultural differences in sexual functioning. This study examined narratives of sexual desire among Chinese men and women in Canada. Ten each of Chinese men (age: M = 24.0, range = 18-42) and women (age: M = 23.5, range = 19-38) took part in semi-structured interviews in which they were invited to share personal accounts of sexual desire. A phenomenological analysis of participants' responses showed men and women described desire as having genital, nongenital-physical, and cognitive-emotional components. Chinese cultural prohibitions against sexuality, particularly pronounced in women, were a common inhibitor of desire. Relationship factors appeared as a frequently endorsed context and target of desire. These findings suggest that relationship context is of paramount importance in Chinese individuals and that previous findings of low sexual functioning in this group may be due to inhibition from cultural factors. However, the experience of desire in Chinese individuals is also in many ways similar to that of existing conceptualizations from Western samples.
Grain growth in uranium nitride prepared by spark plasma sintering
NASA Astrophysics Data System (ADS)
Johnson, Kyle D.; Lopes, Denise Adorno
2018-05-01
Uranium mononitride (UN) has long been considered a potential high density, high performance fuel candidate for light water reactor (LWR) and fast reactor (FR) applications. However, deployability of this fuel has been limited by the notable resistance to sintering and subsequent difficulty in producing a desirable microstructure, the high costs associated with 15N enrichment, as well as the known proclivity to oxidation and interaction with steam. In this study, the stimulation of grain growth in UN pellets sintered using SPS has been investigated. The results reveal that by using SPS and controlling temperature, time, and holding pressure, grain growth can be stimulated and controlled to produce a material featuring both a desired porosity and grain size, at least within the range of interest for nuclear fuel candidates. Grain sizes up to 31 μm were obtained using temperatures of 1650 °C and hold times of 15 min. Evaluation by EBSD reveal grain rotation and coalescence as the dominant mechanism in grain growth, which is suppressed by the application of higher external pressure. Moreover, complete closure of the porosity of the material was observed at relative densities of 96% TD, resulting in a material with sufficient porosity to accommodate LWR burnup. These results indicate that a method exists for the economic fabrication of an 15N-bearing uranium mononitride fuel with favorable microstructural characteristics compatible with use in a light water-cooled nuclear reactor.
Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers.
Zhang, Kai; Meng, Dong; Müller-Plathe, Florian; Kumar, Sanat K
2018-01-17
Membrane separations of gas mixtures strive to maximize the permeability of a desired species while keeping out undesired ones. Permeability vs. selectivity data from many polymer membranes for a given gas pair with diameters d A and d B are typically collected in a "Robeson plot"', and are bound from above by a line with a slope λ = (d B /d A ) 2 - 1. A microscopic understanding of this relationship, especially λ, is still missing. We perform molecular dynamics simulations of penetrant diffusion using three different coarse-grained polymer models over a wide range of penetrant sizes, temperatures, and monomer densities. The empirically relevant λ = (d B /d A ) 2 - 1 is only found for polymers that are either supercooled liquids with caged segmental dynamics or glasses and when the penetrant size is approximately half the Kuhn length of the chains, for which the penetrant diffusion is an activated process.
A method for measuring particle number emissions from vehicles driving on the road.
Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G
2002-01-01
Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.
Microencapsulation of xylitol by double emulsion followed by complex coacervation.
Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S
2015-03-15
The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.
Observation of Metal Nanoparticles for Acoustic Manipulation
Chen, Mian; Cai, Feiyan; Wang, Chen; Wang, Zhiyong; Meng, Long; Li, Fei; Zhang, Pengfei; Liu, Xin
2017-01-01
Use of acoustic trapping for the manipulation of objects is invaluable to many applications from cellular subdivision to biological assays. Despite remarkable progress in a wide size range, the precise acoustic manipulation of 0D nanoparticles where all the structural dimensions are much smaller than the acoustic wavelength is still present challenges. This study reports on the observation of metal nanoparticles with different nanostructures for acoustic manipulation. Results for the first time exhibit that the hollow nanostructures play more important factor than size in the nanoscale acoustic manipulation. The acoustic levitation and swarm aggregations of the metal nanoparticles can be easily realized at low energy and clinically acceptable acoustic frequency by hollowing their nanostructures. In addition, the behaviors of swarm aggregations can be flexibly regulated by the applied voltage and frequency. This study anticipates that the strategy based on the unique properties of the metal hollow nanostructures and the manipulation method will be highly desirable for many applications. PMID:28546912
Observation of Metal Nanoparticles for Acoustic Manipulation.
Chen, Mian; Cai, Feiyan; Wang, Chen; Wang, Zhiyong; Meng, Long; Li, Fei; Zhang, Pengfei; Liu, Xin; Zheng, Hairong
2017-05-01
Use of acoustic trapping for the manipulation of objects is invaluable to many applications from cellular subdivision to biological assays. Despite remarkable progress in a wide size range, the precise acoustic manipulation of 0D nanoparticles where all the structural dimensions are much smaller than the acoustic wavelength is still present challenges. This study reports on the observation of metal nanoparticles with different nanostructures for acoustic manipulation. Results for the first time exhibit that the hollow nanostructures play more important factor than size in the nanoscale acoustic manipulation. The acoustic levitation and swarm aggregations of the metal nanoparticles can be easily realized at low energy and clinically acceptable acoustic frequency by hollowing their nanostructures. In addition, the behaviors of swarm aggregations can be flexibly regulated by the applied voltage and frequency. This study anticipates that the strategy based on the unique properties of the metal hollow nanostructures and the manipulation method will be highly desirable for many applications.
The role of biological fertility in predicting family size.
Joffe, M; Key, J; Best, N; Jensen, T K; Keiding, N
2009-08-01
It is plausible that a couple's ability to achieve the desired number of children is limited by biological fertility, especially if childbearing is postponed. Family size has declined and semen quality may have deteriorated in much of Europe, although studies have found an increase rather than a decrease in couple fertility. Using four high-quality European datasets, we took the reported time to pregnancy (TTP) as the predictor variable; births reported as following contraceptive failure were an additional category. The outcome variable was final or near-final family size. Potential confounders were maternal age when unprotected sex began prior to the first birth, and maternal smoking. Desired family size was available in only one of the datasets. Couples with a TTP of at least 12 months tended to have smaller families, with odds ratios for the risk of not having a second child approximately 1.8, and for the risk of not having a third child approximately 1.6. Below 12 months no association was observed. Findings were generally consistent across datasets. There was also a more than 2-fold risk of not achieving the desired family size if TTP was 12 months or more for the first child. Within the limits of the available data quality, family size appears to be predicted by biological fertility, even after adjustment for maternal age, if the woman was at least 20 years old when the couple's first attempt at conception started. The contribution of behavioural factors to this result also needs to be investigated.
Synthesis of Macroporous Poly(dimethylsiloxane) Scaffolds for Tissue Engineering Applications
Pedraza, Eileen; Brady, Ann-Christina; Fraker, Christopher A.
2015-01-01
Macroporous, biostable scaffolds with controlled porous architecture were prepared from poly(dimethylsiloxane) (PDMS) using sodium chloride particles (NaCl) and a solvent casting and particulate leaching (SCPL) technique. The effect of particulate size range and overall porosity on the resulting structure was evaluated. Results found 90% v/v scaffolds and particulate ranges above 100 µm to have the most optimal open framework and porosity. Resulting hydrophobic PDMS scaffolds were coated with fibronectin and evaluated as a platform for adherent cell culture using human mesenchymal stem cells. Biocompatibility of PDMS scaffolds was also evaluated in a rodent model, where implants were found to be highly biocompatibile and biostable, with positive extracellular matrix deposition throughout the scaffold. These results demonstrate the suitability of macroporous PDMS scaffolds for tissue engineering applications where strong integration with the host is desired. PMID:23683037
Plasma-sprayed self-lubricating coatings
NASA Technical Reports Server (NTRS)
Nakamura, H. H.; Logan, W. R.; Harada, Y.
1982-01-01
One of the most important criterion for acceptable commercial application of a multiple phase composition is uniformity and reproducibility. This means that the performance characteristics of the coat - e.g., its lubricating properties, bond strength to the substrate, and thermal properties - can be readily predicted to give a desired performance. The improvement of uniformity and reproducibility of the coats, the oxidation behavior at three temperature ranges, the effect of bond coat and the effect of preheat treatment as measured by adhesive strength tests, coating examination procedures, and physical property measurements were studied. The following modifications improved the uniformity and reproducibility: (1) changes and closer control in the particle size range of the raw materials used, (2) increasing the binder content from 3.2% to 4.1% (dried weight), and (3) analytical processing procedures using step by step checking to assure consistency.
DOT National Transportation Integrated Search
1980-12-01
The report documents revisions made to the Wharton EFA Automobile Demand Model to produce the Wharton EFA Motor Vehicle Demand Model (Mark I). Equations are reestimated for the total desired stock of autos and for desired shares by size class, includ...
Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling
2013-01-30
The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.
Hou, Melody Y; McNicholas, Colleen; Creinin, Mitchell D
2016-10-01
Estimate symptom improvement rate of women with bleeding complaints using the etonogestrel contraceptive implant when started on continuous combined oral contraceptives (COC). We conducted a double-blinded randomised controlled trial of women reporting troublesome bleeding related to their etonogestrel contraceptive implant and desiring intervention. Participants received continuous COCs or placebo for four weeks to evaluate self-reported bleeding improvement at four weeks. Participants could continue study treatment or prescribed COCs for another eight weeks if desired. We planned to enroll 130 participants between two sites (80% power to detect a 20% effect size at a 0.05 significance level, with 10% loss to follow up). We closed the study after enrolling 26 participants due to recruitment futility. All women on COCs and 75% of placebo users reported bleeding improvement at four weeks (p = 0.09), with 92% and 42%, respectively, reporting significant improvement (p = 0.03). The median number of days until bleeding stopped for at least four days in COC and placebo users was 1 day (range 1-9) and 4.5 days (range 1-28), respectively (p = 0.63). Eight (75%) COC and five (42%) placebo users opted to continue study treatment (p = 0.41). Despite bleeding improvement, women who desired implant removal at enrollment were more likely to re-request removal than those who initially considered other interventions (3 of 5 [60%] vs 1 of 17 [6%], p = 0.03). Although women who have troublesome bleeding while using the contraceptive implant may experience improvement with no treatment over 4 weeks, women using COCs are more likely to report significant improvement. Clinicaltrials.gov registration number: NCT01963403.
Standard-Size Blanks for Furniture and Cabinets
Philip A. Araman
1983-01-01
Blanks are rough-dimension parts of a specific size which may be solid or glued up; quality depends on the final use of the material. Standard-size blanks are blanks made to standard thicknesses, lengths, and widths for each desired quality. Blanks in a few standard sizes can be used to make the thousands of different size rough-dimension parts needed by a furniture or...
Filová, Elena; Suchý, Tomáš; Sucharda, Zbyněk; Šupová, Monika; Žaloudková, Margit; Balík, Karel; Lisá, Věra; Šlouf, Miroslav; Bačáková, Lucie
2014-01-01
Hydroxyapatite (HA) is considered to be a bioactive material that favorably influences the adhesion, growth, and osteogenic differentiation of osteoblasts. To optimize the cell response on the hydroxyapatite composite, it is desirable to assess the optimum concentration and also the optimum particle size. The aim of our study was to prepare composite materials made of polydimethylsiloxane, polyamide, and nano-sized (N) or micro-sized (M) HA, with an HA content of 0%, 2%, 5%, 10%, 15%, 20%, 25% (v/v) (referred to as N0–N25 or M0–M25), and to evaluate them in vitro in cultures with human osteoblast-like MG-63 cells. For clinical applications, fast osseointegration of the implant into the bone is essential. We observed the greatest initial cell adhesion on composites M10 and N5. Nano-sized HA supported cell growth, especially during the first 3 days of culture. On composites with micro-size HA (2%–15%), MG-63 cells reached the highest densities on day 7. Samples M20 and M25, however, were toxic for MG-63 cells, although these composites supported the production of osteocalcin in these cells. On N2, a higher concentration of osteopontin was found in MG-63 cells. For biomedical applications, the concentration range of 5%–15% (v/v) nano-size or micro-size HA seems to be optimum. PMID:25125978
Accounting for twin births in sample size calculations for randomised trials.
Yelland, Lisa N; Sullivan, Thomas R; Collins, Carmel T; Price, David J; McPhee, Andrew J; Lee, Katherine J
2018-05-04
Including twins in randomised trials leads to non-independence or clustering in the data. Clustering has important implications for sample size calculations, yet few trials take this into account. Estimates of the intracluster correlation coefficient (ICC), or the correlation between outcomes of twins, are needed to assist with sample size planning. Our aims were to provide ICC estimates for infant outcomes, describe the information that must be specified in order to account for clustering due to twins in sample size calculations, and develop a simple tool for performing sample size calculations for trials including twins. ICCs were estimated for infant outcomes collected in four randomised trials that included twins. The information required to account for clustering due to twins in sample size calculations is described. A tool that calculates the sample size based on this information was developed in Microsoft Excel and in R as a Shiny web app. ICC estimates ranged between -0.12, indicating a weak negative relationship, and 0.98, indicating a strong positive relationship between outcomes of twins. Example calculations illustrate how the ICC estimates and sample size calculator can be used to determine the target sample size for trials including twins. Clustering among outcomes measured on twins should be taken into account in sample size calculations to obtain the desired power. Our ICC estimates and sample size calculator will be useful for designing future trials that include twins. Publication of additional ICCs is needed to further assist with sample size planning for future trials. © 2018 John Wiley & Sons Ltd.
Practical aspects of photovoltaic technology, applications and cost (revised)
NASA Technical Reports Server (NTRS)
Rosenblum, L.
1985-01-01
The purpose of this text is to provide the reader with the background, understanding, and computational tools needed to master the practical aspects of photovoltaic (PV) technology, application, and cost. The focus is on stand-alone, silicon solar cell, flat-plate systems in the range of 1 to 25 kWh/day output. Technology topics covered include operation and performance of each of the major system components (e.g., modules, array, battery, regulators, controls, and instrumentation), safety, installation, operation and maintenance, and electrical loads. Application experience and trends are presented. Indices of electrical service performance - reliability, availability, and voltage control - are discussed, and the known service performance of central station electric grid, diesel-generator, and PV stand-alone systems are compared. PV system sizing methods are reviewed and compared, and a procedure for rapid sizing is described and illustrated by the use of several sample cases. The rapid sizing procedure yields an array and battery size that corresponds to a minimum cost system for a given load requirement, insulation condition, and desired level of service performance. PV system capital cost and levelized energy cost are derived as functions of service performance and insulation. Estimates of future trends in PV system costs are made.
Internal pilots for a class of linear mixed models with Gaussian and compound symmetric data
Gurka, Matthew J.; Coffey, Christopher S.; Muller, Keith E.
2015-01-01
SUMMARY An internal pilot design uses interim sample size analysis, without interim data analysis, to adjust the final number of observations. The approach helps to choose a sample size sufficiently large (to achieve the statistical power desired), but not too large (which would waste money and time). We report on recent research in cerebral vascular tortuosity (curvature in three dimensions) which would benefit greatly from internal pilots due to uncertainty in the parameters of the covariance matrix used for study planning. Unfortunately, observations correlated across the four regions of the brain and small sample sizes preclude using existing methods. However, as in a wide range of medical imaging studies, tortuosity data have no missing or mistimed data, a factorial within-subject design, the same between-subject design for all responses, and a Gaussian distribution with compound symmetry. For such restricted models, we extend exact, small sample univariate methods for internal pilots to linear mixed models with any between-subject design (not just two groups). Planning a new tortuosity study illustrates how the new methods help to avoid sample sizes that are too small or too large while still controlling the type I error rate. PMID:17318914
Ultrafine particles and nitrogen oxides generated by gas and electric cooking
Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A
2001-01-01
OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable. Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045
Cooney, Daniel J; Hickey, Anthony J
2008-01-01
The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412
The Determinants of Low Fertility in India
Dharmalingam, A.; Rajan, Sowmya; Morgan, S. Philip
2015-01-01
Using a conceptual framework focusing on factors that enhance or reduce fertility relative to desired family size (see Bongaarts 2001), we study fertility variation across time (1992–2006) and space (states) in India. Our empirical analyses use data from three waves of the Indian National Family Health Surveys. We find that this framework can account for a substantial portion of the variation in the TFR across the states and over time. Our estimates focus attention on the critical components of contemporary Indian fertility, especially desired family size, unwanted fertility, son preference, and fertility postponement. PMID:24993746
DOT National Transportation Integrated Search
1979-12-01
An econometric model is developed which provides long-run policy analysis and forecasting of annual trends, for U.S. auto stock, new sales, and their composition by auto size-class. The concept of "desired" (equilibrium) stock is introduced. "Desired...
Laura S. Kenefic
2014-01-01
In the 1928 Journal of Forestry, Marinus Westveld commented that logging in the Northeast dating to the mid-1800s had been selective cutting that removed desirable species of large sizes. Later, commercial clearcuts removed progressively smaller trees of merchantable quality and desirable species. Indiscriminate logging damaged young growing stock...
Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869
Magnetic nanorings and manipulation of nanowires
NASA Astrophysics Data System (ADS)
Chien, C. L.
2006-03-01
The properties of nanoscale entities, such as nanorings and nanowires, and the response of such entities to external fields are dictated by their geometrical shapes and sizes, which can be manipulated by fabrication. We have developed a method for fabricating a large number of nanorings (10^10) of different sizes in the range of 100 nm and ring cross sections. During magnetic reversal, both the vortex state and the rotating onion state appear with different proportions, which depend on the ring diameter, ring cross section, and the profile of the ring cross section. In the case of nanowires in suspension, the large aspect ratio of the nanowires can be exploited for manipulation despite extremely small Reynolds numbers of 10-5. Using AC electric field applied to microelectrodes, both magnetic and non-magnetic nanowires can be efficiently assembled into desired patterns. We also demonstrate rotation of nanowires with precisely controlled rotation speed and chirality, as well as an electrically driven nanowire micromotor a few in size. In collaboration with F. Q. Zhu, D. L. Fan, O. Tchernyshyov, R. C. Cammarata (Johns Hopkins University) and X. C. Zhu and J. G. Zhu (Carnegie-Mellon University).
A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
Ju, Jie; Yao, Xi; Hou, Xu; Liu, Qihan; Zhang, Yu Shrike; Khademhosseini, Ali
2017-08-21
Superhydrophobic surface simultaneously possessing exceptional stretchability, robustness, and non-fluorination is highly desirable in applications ranging from wearable devices to artificial skins. While conventional superhydrophobic surfaces typically feature stretchability, robustness, or non-fluorination individually, co-existence of all these features still remains a great challenge. Here we report a multi-performance superhydrophobic surface achieved through incorporating hydrophilic micro-sized particles with pre-stretched silicone elastomer. The commercial silicone elastomer (Ecoflex) endowed the resulting surface with high stretchability; the densely packed micro-sized particles in multi-layers contributed to the preservation of the large surface roughness even under large strains; and the physical encapsulation of the microparticles by silicone elastomer due to the capillary dragging effect and the chemical interaction between the hydrophilic silica and the elastomer gave rise to the robust and non-fluorinated superhydrophobicity. It was demonstrated that the as-prepared fluorine-free surface could preserve the superhydrophobicity under repeated stretching-relaxing cycles. Most importantly, the surface's superhydrophobicity can be well maintained after severe rubbing process, indicating wear-resistance. Our novel superhydrophobic surface integrating multiple key properties, i.e. stretchability, robustness, and non-fluorination, is expected to provide unique advantages for a wide range of applications in biomedicine, energy, and electronics.
Kim, Man Deuk; Kim, Nahk Keun; Kim, Hee Jin; Lee, Mee Hwa
2005-01-01
To determine whether uterine fibroid embolization (UFE) with polyvinyl alcohol (PVA) particles affects fertility in women desiring future pregnancy. Of 288 patients managed with UFE with PVA particles for uterine myoma or adenomyosis between 1998 and 2001, 94 patients were enrolled in this study. The age range of participants was 20-40 years. The data were collected through review of medical records and telephone interviews. Mean duration of follow-up duration was 35 months (range 22-60 months). Patients using contraception and single women were excluded, and the chance of infertility caused by possible spousal infertility or other factors was disregarded. Contrast-enhanced magnetic resonance imaging was performed in all patients before and after UFE, and the size of PVA particles used was 255-700 mum. Among 94 patients who underwent UFE with PVA, 74 were on contraceptives, 6 had been single until the point of interview, and 8 were lost to follow-up. Of the remaining 6 patients who desired future pregnancy, 5 (83%) succeeded in becoming pregnant (1 patient became pregnant twice). Of a total of 8 pregnancies, 6 were planned pregnancies and 2 occurred after contraception failed. Five deliveries were vaginal, and 2 were by elective cesarean. Artificial abortion was performed in 1 case of unplanned pregnancy. There was 1 case of premature rupture of membrane (PROM) followed by preterm labor and delivery of an infant who was small-for-gestational-age. After UFE, mean volume reduction rates of the uterus and fibroid were 36.6% (range 0 to 62.6%) and 69.3% (range 36.3% to 93.3%), respectively. Although the absolute number of cases was small, UFE with PVA particles ultimately did not affect fertility in the women who underwent the procedure.
The Economic Demography of Mass Poverty.
ERIC Educational Resources Information Center
Abegaz, Berhanu, Ed.
1986-01-01
The four papers in this volume discuss various facets of the poverty-demography interaction: the rationale for the desired family size of the poor, the problems of attaining such size, the effect of family size/structure on household economy, and the future well-being of the children of the poor. "Mass Poverty, Demography, and Development…
NASA Astrophysics Data System (ADS)
Pochampally, Kishore K.; Gupta, Surendra M.; Kamarthi, Sagar V.
2004-02-01
Although there are many quantitative models in the literature to design a reverse supply chain, every model assumes that all the recovery facilities that are engaged in the supply chain have enough potential to efficiently re-process the incoming used products. Motivated by the risk of re-processing used products in facilities of insufficient potentiality, this paper proposes a method to identify potential facilities in a set of candidate recovery facilities operating in a region where a reverse supply chain is to be established. In this paper, the problem is solved using a newly developed method called physical programming. The most significant advantage of using physical programming is that it allows a decision maker to express his preferences for values of criteria (for comparing the alternatives), not in the traditional form of weights but in terms of ranges of different degrees of desirability, such as ideal range, desirable range, highly desirable range, undesirable range, and unacceptable range. A numerical example is considered to illustrate the proposed method.
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie; ...
2018-02-05
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less
Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z
2018-04-18
In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.
Phase-contrast x-ray computed tomography for biological imaging
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1997-10-01
We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.
High-power Broadband Organic THz Generator
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-01-01
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234
Robot formation control in stealth mode with scalable team size
NASA Astrophysics Data System (ADS)
Yu, Hongjun; Shi, Peng; Lim, Cheng-Chew
2016-11-01
In situations where robots need to keep electromagnetic silent in a formation, communication channels become unavailable. Moreover, as passive displacement sensors are used, limited sensing ranges are inevitable due to power insufficiency and limited noise reduction. To address the formation control problem for a scalable team of robots subject to the above restrictions, a flexible strategy is necessary. In this paper, under the assumption that the data transmission among the robots is not available, a novel controller and a protocol are designed that do not rely on communication. As the controller only drives the robots to a partially desired formation, a distributed coordination protocol is proposed to resolve the imperfections. It is shown that the effectiveness of the controller and the protocol rely on the formation connectivity, and a condition is given on the sensing range. Simulations are conducted to illustrate the feasibility and advantages of the new design scheme developed.
High-power broadband organic THz generator.
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-11-13
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.
Ion-exchange chromatography separation applied to mineral recycle in closed systems
NASA Technical Reports Server (NTRS)
Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.
1981-01-01
As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.
NASA Astrophysics Data System (ADS)
O'Connor, Timothy G.
2017-01-01
The hypothesis that African elephants may cause the local extirpation of selected woody species was evaluated in a medium-sized, semi-arid reserve following their reintroduction at low density. Mortality, state-change, and regeneration of 25 tree and 17 shrub species were studied between 1997 and 2010. Annual mortality of shrub species ranged from 0.2 to 8.0%, with six species experiencing 6-8%. Eight shrub species lost more than half their adult population (range 10-94%). Annual tree mortality ranged from 0.2 to 10.5%. The two dominant dryland tree species experienced <1% annual mortality, 18 species lost more than half their tree population, and one was eliminated. Elephants accounted for >63% and stress-related agents >20% of tree deaths. The manner in which elephants induced tree death depended on species. The proportion of individuals of a species killed by pollarding or uprooting ranged from 0 to 74%, and by debarking from 0 to 100%. Complete uprooting was a common cause of death for three shrub species. Regeneration ranged from zero for six tree and one shrub species to a seedling every 7 m2 for Colophospermum mopane and 23 m2 for Dichrostachys cinerea in riparian habitat. Three shrub and eight tree species were identified as vulnerable to local extirpation owing to a combination of high mortality and poor regeneration that is likely to result in a considerably simplified system. Reintroduction of elephants into medium-sized reserves without regulation of their numbers may not be a desirable action.
Furler, Philipp; Scheffe, Jonathan; Marxer, Daniel; Gorbar, Michal; Bonk, Alexander; Vogt, Ulrich; Steinfeld, Aldo
2014-06-14
Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables volumetric absorption of concentrated solar radiation for efficient heat transfer to the reaction site during endothermic reduction, while the smaller void size range within the struts, with dmean = 10 μm and strut porosity = 0-0.44, increases the specific surface area for enhanced reaction kinetics during exothermic oxidation with CO2. Characterization is performed via mercury intrusion porosimetry, scanning electron microscopy, and thermogravimetric analysis (TGA). Samples are thermally reduced at 1773 K and subsequently oxidized with CO2 at temperatures in the range 873-1273 K. On average, CO production rates are ten times higher for samples with 0.44 strut porosity than for samples with non-porous struts. The oxidation rate scales with specific surface area and the apparent activation energy ranges from 90 to 135.7 kJ mol(-1). Twenty consecutive redox cycles exhibited stable CO production yield per cycle. Testing of the dual-scale RPC in a solar cavity-receiver exposed to high-flux thermal radiation (3.8 kW radiative power at 3015 suns) corroborated the superior performance observed in the TGA, yielding a shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 1.72%.
Design and integration of an all-in-one biomicrofluidic chip
Liu, Liyu; Cao, Wenbin; Wu, Jingbo; Wen, Weijia; Chang, Donald Choy; Sheng, Ping
2008-01-01
We demonstrate a highly integrated microfluidic chip with the function of DNA amplification. The integrated chip combines giant electrorheological-fluid actuated micromixer and micropump with a microheater array, all formed using soft lithography. Internal functional components are based on polydimethylsiloxane (PDMS) and silver∕carbon black-PDMS composites. The system has the advantages of small size with a high degree of integration, high polymerase chain reaction efficiency, digital control and simple fabrication at low cost. This integration approach shows promise for a broad range of applications in chemical synthesis and biological sensing∕analysis, as different components can be combined to target desired functionalities, with flexible designs of different microchips easily realizable through soft lithography. PMID:19693370
DOT National Transportation Integrated Search
1979-12-01
An econometric model is developed which provides long-run policy analysis and forecasting of annual trends, for U.S. auto stock, new sales, and their composition by auto size-class. The concept of "desired" (equilibrium) stock is introduced. "Desired...
DOT National Transportation Integrated Search
1979-12-01
An econometric model is developed which provides long-run policy analysis and forecasting of annual trends, for U.S. auto stock, new sales, and their composition by auto size-class. The concept of "desired" (equilibrium) stock is introduced. "Desired...
ENVIRONMENTAL STABILITY OF KRAFT PAPER.
kraft paper. It was desired to obtain improved microbiological, oil, water and heat aging resistance. A commercially prepared kraft paper had good...chemically treated papers or commercially prepared kraft paper met all the desired requirements. In general, it is thought that the already sized...condition of the kraft paper substrate made the papers’ receptivity to treatment somewhat variable. (Author)
Improved whisker pointing technique for micron-size diode contact
NASA Technical Reports Server (NTRS)
Mattauch, R. J.; Green, G.
1982-01-01
Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.
Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V
2013-12-01
Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.
Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin
2016-12-01
To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10 -4 . The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.
Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre
2016-09-25
Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Drag king magic: performing/becoming the other.
Rosenfeld, Kathryn
2002-01-01
This chapter seeks to theorize drag king practice through the lenses of alterity, liminality, and performance theory, while attempting to complicate and reinvigorate discussions of identity raised by drag. I examine the ways in which drag king performance plumbs the concept of "the Other," and forces confrontation with a complex field of desire. Contemporary "queergirl" existence negotiates a range of desirable and desiring Others, from the polarities (i.e., butch-femme) unique to queer structures of desire, to the desire of those on the cultural margins for the power of those at the center, and vice versa. I employ anthropological theories of performance, mimesis, and liminality to establish a framework through which drag kings may be viewed as crucibles of this desire and agents of this power exchange. By performing maleness, drag kings expand and redraw the definitional boundaries of the male, interfere with the cultural power of mainstream maleness, and simultaneously transfer some of this power to themselves as queer women. At the same time, drag king existence forces a renegotiation of queergirl desire to encompass a range of masculinities. By performing/becoming the Other, drag kings engage in a practice of magic which transforms both margin and center.
Nanoposition sensors with superior linear response to position and unlimited travel ranges
NASA Astrophysics Data System (ADS)
Lee, Sheng-Chiang; Peters, Randall D.
2009-04-01
With the advancement in nanotechnology, the ability of positioning/measuring at subnanometer scale has been one of the most critical issues for the nanofabrication industry and researchers using scanning probe microscopy. Commercial nanopositioners have achieved direct measurements at the scale of 0.01 nm with capacitive sensing metrology. However, the commercial sensors have small dynamic ranges (up to only a few hundred micrometers) and are relatively large in size (centimeters in the transverse directions to the motion), which is necessary for healthy signal detections but making it difficult to use on smaller devices. This limits applications in which large materials (on the scale of centimeters or greater) are handled with needs of subnanometer resolutions. What has been done in the past is to combine the fine and coarse translation stages with different dynamic ranges to simultaneously achieve long travel range and high spatial resolution. In this paper, we present a novel capacitive position sensing metrology with ultrawide dynamic range from subnanometer to literally any practically desired length for a translation stage. This sensor will greatly simplify the task and enhance the performance of direct metrology in a hybrid translational stage covering translation tasks from subnanometer to centimeters.
Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun
2017-10-24
Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.
Brauner-Otto, Sarah R; Axinn, William G
2017-06-01
Theories relating the changing environment to human fertility predict declining natural resources may actually increase the demand for children. Unfortunately most previous empirical studies have been limited to cross-sectional designs that limit our ability to understand links between processes that change over time. We take advantage of longitudinal measurement spanning more than a decade of change in the natural environment, household agricultural behaviors, and individual fertility preferences to reexamine this question. Using fixed-effects models, we find that women experiencing increasing time required to collect firewood to heat and cook or fodder to feed animals (the dominant needs for natural resources in this setting) increased their desired family size, even as many other macro-level changes have reduced desired family size. In contrast to previous, cross-sectional studies we find no evidence of such a relationship for men. Our findings regarding time spent collecting firewood are also new. These results support the "vicious circle" perspective and economic theories of fertility pointing to the value of children for household labor. This feedback from natural resource constraint to increased fertility is an important mechanism for understanding long term environmental change.
Human-induced evolution caused by unnatural selection through harvest of wild animals
Allendorf, Fred W.; Hard, Jeffrey J.
2009-01-01
Human harvest of phenotypically desirable animals from wild populations imposes selection that can reduce the frequencies of those desirable phenotypes. Hunting and fishing contrast with agricultural and aquacultural practices in which the most desirable animals are typically bred with the specific goal of increasing the frequency of desirable phenotypes. We consider the potential effects of harvest on the genetics and sustainability of wild populations. We also consider how harvesting could affect the mating system and thereby modify sexual selection in a way that might affect recruitment. Determining whether phenotypic changes in harvested populations are due to evolution, rather than phenotypic plasticity or environmental variation, has been problematic. Nevertheless, it is likely that some undesirable changes observed over time in exploited populations (e.g., reduced body size, earlier sexual maturity, reduced antler size, etc.) are due to selection against desirable phenotypes—a process we call “unnatural” selection. Evolution brought about by human harvest might greatly increase the time required for over-harvested populations to recover once harvest is curtailed because harvesting often creates strong selection differentials, whereas curtailing harvest will often result in less intense selection in the opposing direction. We strongly encourage those responsible for managing harvested wild populations to take into account possible selective effects of harvest management and to implement monitoring programs to detect exploitation-induced selection before it seriously impacts viability. PMID:19528656
Controlling solar light and heat in a forest by managing shadow sources
Howard G. Halverson; James L. Smith
1974-01-01
Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...
METHOD FOR MAKING FUEL ELEMENTS
Kates, L.W.; Campbell, R.W.; Heartel, R.H.W.
1960-08-01
A method is given for making zirconium-clad uranium wire. A tube of zirconium is closed with a zirconium plug, after which a chilled uranium core is inserted in the tube to rest against the plug. Additional plugs and cores are inserted alternately as desired. The assembly is then sheathed with iron, hot worked to the desired size, and the iron sheath removed.
Larry Blocker; Susan K. Hagle; Rick Lasko; Robert Keane; Barry Bollenbacher; Bruce Fox; Fred Samson; Randy Gay; Cynthia Manning
2001-01-01
Relationships between the development of desired conditions based on todayâs social values, and an understanding of the historic range of variability (HRV) are key to the implementation of ecosystem management. Relevant to the discussion are wildlife habitat values, forage production, economics related to wood resources, aesthetics and visual quality, changes in...
Lee, Paul H; Tse, Andy C Y
2017-05-01
There are limited data on the quality of reporting of information essential for replication of the calculation as well as the accuracy of the sample size calculation. We examine the current quality of reporting of the sample size calculation in randomized controlled trials (RCTs) published in PubMed and to examine the variation in reporting across study design, study characteristics, and journal impact factor. We also reviewed the targeted sample size reported in trial registries. We reviewed and analyzed all RCTs published in December 2014 with journals indexed in PubMed. The 2014 Impact Factors for the journals were used as proxies for their quality. Of the 451 analyzed papers, 58.1% reported an a priori sample size calculation. Nearly all papers provided the level of significance (97.7%) and desired power (96.6%), and most of the papers reported the minimum clinically important effect size (73.3%). The median (inter-quartile range) of the percentage difference of the reported and calculated sample size calculation was 0.0% (IQR -4.6%;3.0%). The accuracy of the reported sample size was better for studies published in journals that endorsed the CONSORT statement and journals with an impact factor. A total of 98 papers had provided targeted sample size on trial registries and about two-third of these papers (n=62) reported sample size calculation, but only 25 (40.3%) had no discrepancy with the reported number in the trial registries. The reporting of the sample size calculation in RCTs published in PubMed-indexed journals and trial registries were poor. The CONSORT statement should be more widely endorsed. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Tracking through laser-induced clutter for air-to-ground directed energy system
NASA Astrophysics Data System (ADS)
Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen
2003-09-01
The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.
NASA Astrophysics Data System (ADS)
Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür
2017-02-01
Noble metal nano-structures such as Ag, Cu, Au are used commonly to increase power conversion efficiency of the solar cell by using their surface plasmons. The plasmonic metal nanoparticles of Ag among others that have strong LSPR in near UV range. They increase photon absorbance via embedding in the active semiconductor of the solar cell. Thin films of Ag are grown in the desired particle size and interparticle distance easily and at low cost by PLD technique. Ag nanoparticle thin films were grown on micro slide glass at 25-36 mJ laser pulse energies under by PLD using ns-Nd:YAG laser. The result of this work have been presented by carrying out UV-VIS and AFM analysis. It was concluded that a laser energy increases, the density and size of Ag-NPs arriving on the substrate increases, and the interparticle distance was decreases. Therefore, LSPR wavelength shifts towards to longer wavelength region.
NASA Astrophysics Data System (ADS)
Jabena Begum, N.; Mohan, R.; Ravichandran, K.
2013-01-01
Aluminium doped zinc oxide (AZO) thin films were deposited by employing a low cost and simplified spray technique using a perfume atomizer from starting solutions having different volumes (10, 20, … , 50 mL) of solvent. The effect of solvent volume on the structural, electrical, optical, photoluminescence (PL) and surface morphological properties was studied. The electrical resistivity of the AZO films is remarkably influenced by the variation in the solvent volume. The X-ray diffraction profiles clearly showed that all the films have preferential orientation along the (0 0 2) plane irrespective of the solvent volume. The crystallite size was found to be in the nano range of 35-46 nm. The optical transmittance in the visible region is desirably high (>85%). The AFM images show columnar morphology with varying grain size. The PL studies revealed that the AZO film deposited from 50 mL of solvent volume has good quality with lesser defect density.
Zhang, Yaqiong; Niu, Yuge; Luo, Yangchao; Ge, Mei; Yang, Tian; Yu, Liangli Lucy; Wang, Qin
2014-01-01
Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period. Copyright © 2013 Elsevier Ltd. All rights reserved.
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2013 CFR
2013-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2014 CFR
2014-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2012 CFR
2012-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
Lynch, Michael; Mandadzhiev, Boris; Wissa, Aimy
2018-03-20
Birds are highly capable and maneuverable fliers, traits not currently shared with current small unmanned aerial vehicles. They are able to achieve these flight capabilities by adapting the shape of their wings during flight in a variety of complex manners. One feature of bird wings, the primary feathers, separate to form wingtip gaps at the distal end of the wing. This paper presents bio-inspired wingtip devices with varying wingtip gap sizes, defined as the chordwise distance between wingtip devices, for operation in low Reynolds number conditions of Re = 100 000, where many bird species operate. Lift and drag data was measured for planar and nonplanar wingtip devices with the total wingtip gap size ranging from 0% to 40% of the wing's mean chord. For a planar wing with a gap size of 20%, the mean coefficient of lift in the pre-stall region is increased by 7.25%, and the maximum coefficient of lift is increased by 5.6% compared to a configuration with no gaps. The nonplanar wingtip device was shown to reduce the induced drag. The effect of wingtip gap sizes is shown to be independent of the planarity/nonplanarity of the wingtip device, thereby allowing designers to decouple the wingtip parameters to tune the desired lift and drag produced.
Rietsch, Stefan H G; Quick, Harald H; Orzada, Stephan
2015-08-01
In this work, the transmit performance and interelement coupling characteristics of radio frequency (RF) antenna microstrip line elements are examined in simulations and measurements. The initial point of the simulations is a microstrip line element loaded with a phantom. Meander structures are then introduced at the end of the element. The size of the meanders is increased in fixed steps and the magnetic field is optimized. In continuative simulations, the coupling between identical elements is evaluated for different element spacing and loading conditions. Verification of the simulation results is accomplished in measurements of the coupling between two identical elements for four different meander sizes. Image acquisition on a 7 T magnetic resonance imaging (MRI) system provides qualitative and quantitative comparisons to confirm the simulation results. Simulations point out an optimum range of meander sizes concerning coupling in all chosen geometric setups. Coupling measurement results are in good agreement with the simulations. Qualitative and quantitative comparisons of the acquired MRI images substantiate the coupling results. The coupling between coil elements in RF antenna arrays consisting of the investigated element types can be optimized under consideration of the central magnetic field strength or efficiency depending on the desired application.
Thomas, Michael; Corry, Ben
2016-01-01
Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639
Use of surfactants to control island size and density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.
Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.
Advanced Communication for Wireless Sensor Networks
2016-08-22
characteristic peaks of the PZT crystallography and the presence of non-desired secondary phases. Regarding the spinel thin film, a new sol gel process...particles with the desired crystallography were obtained. As shown in Figure 21 (left), the particle morphology and size can be seen using TEM...film. The crystallography of the films was characterized at different annealing temperatures in order to determine the crystallization kinetics. It
Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size
Castillo-Castaneda, Eduardo
2016-01-01
Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user. PMID:27524880
Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size.
Aguilar-Pereyra, J Felipe; Castillo-Castaneda, Eduardo
2016-01-01
Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.; Hirshman, S.P.; Whitson, J.C.
A new class of low aspect ratio toroidal hybrid stellarators is found using more general plasma confinement optimization criterion than quasi-symmetrization. The plasma current profile and shape of the outer magnetic flux surface are used as control variables to achieve near constancy of the longitudinal invariant J* on internal flux surfaces (quasi-omnigeneity), in addition to a number of other desirable physics target properties. We find that a range of compact (small aspect ratio A), high {beta} (ratio of thermal energy to magnetic field energy), low plasma current devices exist which have significantly improved confinement both for thermal as well asmore » energetic (collisionless) particle components. With reasonable increases in magnetic field and geometric size, such devices can also be scaled to confine 3.5 MeV alpha particle orbits.« less
Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Wong, Ray M.
2011-12-01
Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.
Moody, E.K.; Weidel, B.C.; Ahrenstorff, T.D.; Mattes, W.P.; Kitchell, J.F.
2011-01-01
Differences in the preferred thermal habitat of Lake Superior lake trout morphotypes create alternative growth scenarios for parasitic sea lamprey (Petromyzon marinus) attached to lake trout hosts. Siscowet lake trout (Salvelinus namaycush) inhabit deep, consistently cold water (4–6 °C) and are more abundant than lean lake trout (Salvelinus namaycush) which occupy temperatures between 8 and 12 °C during summer thermal stratification. Using bioenergetics models we contrasted the growth potential of sea lampreys attached to siscowet and lean lake trout to determine how host temperature influences the growth and ultimate size of adult sea lamprey. Sea lampreys simulated under the thermal regime of siscowets are capable of reaching sizes within the range of adult sea lamprey sizes observed in Lake Superior tributaries. High lamprey wounding rates on siscowets suggest siscowets are important lamprey hosts. In addition, siscowets have higher survival rates from lamprey attacks than those observed for lean lake trout which raises the prospect that siscowets serve as a buffer to predation on more commercially desirable hosts such as lean lake trout, and could serve to subsidize lamprey growth.
Better Proton-Conducting Polymers for Fuel-Cell Membranes
NASA Technical Reports Server (NTRS)
Narayan, Sri; Reddy, Prakash
2012-01-01
Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.
9 CFR 313.15 - Mechanical; captive bolt.
Code of Federal Regulations, 2010 CFR
2010-01-01
... slaughtering of sheep, swine, goats, calves, cattle, horses, mules, and other equines by using captive bolt... regard to kind, breed, size, age, and sex of the animal to produce the desired results. (2) Special... varies, depending on kind, breed, size, age, and sex of the animal. Young swine, lambs, and calves...
9 CFR 313.15 - Mechanical; captive bolt.
Code of Federal Regulations, 2011 CFR
2011-01-01
... slaughtering of sheep, swine, goats, calves, cattle, horses, mules, and other equines by using captive bolt... regard to kind, breed, size, age, and sex of the animal to produce the desired results. (2) Special... varies, depending on kind, breed, size, age, and sex of the animal. Young swine, lambs, and calves...
46 CFR 162.017-6 - Procedure for approval.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and size of wire of flame screens. (c) Pre-approval tests. Before approval is granted, the... desiring approval of a new design or type of pressure-vacuum relief valve shall submit drawings in quadruplicate showing the design of the valve, the sizes for which approval is requested, method of operation...
46 CFR 162.017-6 - Procedure for approval.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and size of wire of flame screens. (c) Pre-approval tests. Before approval is granted, the... desiring approval of a new design or type of pressure-vacuum relief valve shall submit drawings in quadruplicate showing the design of the valve, the sizes for which approval is requested, method of operation...
46 CFR 162.017-6 - Procedure for approval.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and size of wire of flame screens. (c) Pre-approval tests. Before approval is granted, the... desiring approval of a new design or type of pressure-vacuum relief valve shall submit drawings in quadruplicate showing the design of the valve, the sizes for which approval is requested, method of operation...
Freeform lens generation for quasi-far-field successive illumination targets
NASA Astrophysics Data System (ADS)
Zhuang, Zhenfeng; Thibault, Simon
2018-07-01
A predefined mapping to tailor one or more freeform surfaces is employed to build a freeform illumination system. The emergent rays from the light source corresponding to the prescribed target mesh for a pre-determined lighting distance are mapped by a point-to-point algorithm with respect to the freeform optics, which involves limiting design flexibility. To tackle the problem of design limitation and find the optimum design results, a freeform lens is exploited to produce the desired rectangular illumination distribution at successive target planes at quasi-far-field lighting distances. It is generated using numerical solutions to find out an initial starting point, and an appropriate approach to obtain variables for parameterization of the freeform surface is introduced. The relative standard deviation, which is a useful figure of merit for the analysis, is set up as merit function with respect to illumination non-uniformity at the successive sampled target planes. Therefore, the irradiance distribution in terms of the specific lighting distance range can be ensured by the proposed scheme. A design example of a freeform illumination system, composed of a spherical surface and a freeform surface, is given to produce desired irradiance distribution within the lighting distance range. An optical performance with low non-uniformity and high efficiency is achieved. Compared with the conventional approach, the uniformity of the sampled targets is dramatically enhanced; meanwhile, a design result with a large tolerance of LED size is offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, T; Osanai, M; Homma, N
2016-06-15
Purpose: Dynamic tumor tracking radiation therapy can potentially reduce internal margin without prolongation of irradiation time. However, dynamic tumor tracking technique requires an extra margin (tracking margin, TM) for the uncertainty of tumor localization, prediction, and beam repositioning. The purpose of this study was to evaluate a dosimetric impact caused by TM. Methods: We used 4D XCAT to create 9 digital phantom datasets of different tumor size and motion range: tumor diameter TD=(1, 3, 5) cm and motion range MR=(1, 2, 3) cm. For each dataset, respiratory gating (30%–70% phase) and tumor tracking treatment plans were created using 8-field 3D-CRTmore » by 4D dose calculation implemented in RayStation. The dose constraint was based on RTOG0618. For the tracking plan, TMs of (0, 2.5, 5) mm were considered by surrounding a normal setup margin: SM=5 mm. We calculated V20 of normal lung to evaluate the dosimetric impact for each case, and estimated an equivalent TM that affects the same impact on V20 obtained by the gated plan. Results: The equivalent TMs for (TD=1 cm, MR=2 cm), (TD=1 cm, MR=3 cm), (TD=5 cm, MR=2 cm), and (TD=5 cm, MR=3 cm) were estimated as 1.47 mm, 3.95 mm, 1.04 mm, and 2.13 mm, respectively. The larger the tumor size, the equivalent TM became smaller. On the other hand, the larger the motion range, the equivalent TM was found to be increased. Conclusion: Our results showed the equivalent TM changes depending on tumor size and motion range. The tracking plan with TM less than the equivalent TM achieves a dosimetric impact better than the gated plan in less treatment time. This study was partially supported by JSPS Kakenhi and Varian Medical Systems.« less
Method and apparatus for reducing range ambiguity in synthetic aperture radar
Kare, Jordin T.
1999-10-26
A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.
NASA Technical Reports Server (NTRS)
Doggett, William R.; Dorsey, John T.; Collins, Timothy J.; King, Bruce D.; Mikulas, Martin M., Jr.
2008-01-01
Devices for lifting and transporting payloads and material are critical for efficient Earth-based construction operations. Devices with similar functionality will be needed to support lunar-outpost construction, servicing, inspection, regolith excavation, grading and payload placement. Past studies have proposed that only a few carefully selected devices are required for a lunar outpost. One particular set of operations involves lifting and manipulating payloads in the 100 kg to 3,000 kg range, which are too large or massive to be handled by unassisted astronauts. This paper will review historical devices used for payload handling in space and on earth to derive a set of desirable features for a device that can be used on planetary surfaces. Next, an innovative concept for a lifting device is introduced, which includes many of the desirable features. The versatility of the device is discussed, including its application to lander unloading, servicing, inspection, regolith excavation and site preparation. Approximate rules, which can be used to size the device for specific payload mass and reach requirements, are provided. Finally, details of a test-bed implementation of the innovative concept, which will be used to validate the structural design and develop operational procedures, is provided.
Hildebrand, Martin; Wibbelink, Carlijn J M; Verschuere, Bruno
Self-report measures provide an important source of information in correctional/forensic settings, yet at the same time the validity of that information is often questioned because self-reports are thought to be highly vulnerable to self-presentation biases. Primary studies in offender samples have provided mixed results with regard to the impact of socially desirable responding on self-reports. The main aim of the current study was therefore to investigate-via a meta-analytic review of published studies-the association between the two dimensions of socially desirable responding, impression management and self-deceptive enhancement, and self-report measures with content of dynamic risk factors using the Balanced Inventory of Desirable Responding (BIDR) in offender samples. These self-report measures were significantly and negatively related with self-deception (r = -0.120, p < 0.001; k = 170 effect sizes) and impression management (r = -0.158, p < 0.001; k = 157 effect sizes), yet there was evidence of publication bias for the impression management effect with the trim and fill method indicating that the relation is probably even smaller (r = -0.07). The magnitude of the effect sizes was small. Moderation analyses suggested that type of dynamic risk factor (e.g., antisocial cognition versus antisocial personality), incentives, and publication year affected the relationship between impression management and self-report measures with content of dynamic risk factors, whereas sample size, setting (e.g., incarcerated, community), and publication year influenced the relation between self-deception and these self-report measures. The results indicate that the use of self-report measures to assess dynamic risk factors in correctional/forensic settings is not inevitably compromised by socially desirable responding, yet caution is warranted for some risk factors (antisocial personality traits), particularly when incentives are at play. Copyright © 2018 Elsevier Ltd. All rights reserved.
Making Ceramic/Polymer Parts By Extrusion Stereolithography
NASA Technical Reports Server (NTRS)
Stuffle, Kevin; Mulligan, A.; Creegan, P.; Boulton, J. M.; Lombardi, J. L.; Calvert, P. D.
1996-01-01
Extrusion stereolithography developmental method of computer-controlled manufacturing of objects out of ceramic/polymer composite materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) software used to create image of desired part and translate image into motion commands for combination of mechanisms moving resin dispenser. Extrusion performed in coordination with motion of dispenser so buildup of extruded material takes on size and shape of desired part. Part thermally cured after deposition.
NASA Astrophysics Data System (ADS)
Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine
2018-05-01
The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.
Sim, Julius; Lewis, Martyn
2012-03-01
To investigate methods to determine the size of a pilot study to inform a power calculation for a randomized controlled trial (RCT) using an interval/ratio outcome measure. Calculations based on confidence intervals (CIs) for the sample standard deviation (SD). Based on CIs for the sample SD, methods are demonstrated whereby (1) the observed SD can be adjusted to secure the desired level of statistical power in the main study with a specified level of confidence; (2) the sample for the main study, if calculated using the observed SD, can be adjusted, again to obtain the desired level of statistical power in the main study; (3) the power of the main study can be calculated for the situation in which the SD in the pilot study proves to be an underestimate of the true SD; and (4) an "efficient" pilot size can be determined to minimize the combined size of the pilot and main RCT. Trialists should calculate the appropriate size of a pilot study, just as they should the size of the main RCT, taking into account the twin needs to demonstrate efficiency in terms of recruitment and to produce precise estimates of treatment effect. Copyright © 2012 Elsevier Inc. All rights reserved.
The problem of social desirability bias when measuring desire for adolescent pregnancy.
Payne, Beth A
2018-06-07
Accurate reporting of pregnancy desire is instrumental to develop programs that meet the needs of adolescents and can ensure their right to safety and support during their development into adulthood. In the paper by Estrada et al. the authors present much needed data on pregnancy desire in Latin America through secondary analysis of the UNICEF Multiple Indicator Cluster Surveys (https://mics.unicef.org/surveys). In this study the authors found that pregnancy desire varied significantly by region, ranging from 38% in Panama to 79% in Cuba. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Dixon, Kevin W.; Krueger, Gretchen M.; Rojas, Victoria A.; Hubbard, David C.
1989-09-01
Helmet mounted displays provide required field of regard, out of the cockpit visual imagery for tactical training while maintaining acceptable luminance and resolution levels. An important consideration for visual system designers is the horizontal and vertical dimensions of the instantaneous field of view. This study investigated the effect of various instantaneous field of view sizes on the performance of low level flight and 30 degree manual dive bomb tasks. An in-simulator transfer of training design allowed pilots to be trained in an instantaneous field of view condition and transferred to a wide FOV condition for testing. The selected instantaneous field of view sizes cover the range of current and proposed helmet mounted displays. The field of view sizes used were 127° H x 67° V, 140° H x 80° V, 160° H x 80° V, and 180° H x 80° V. The 300° H x 150° V size provided a full field of view control condition. An A-10 dodecahedron simulator configured with a color light valve display, computer generated imagery, and a Polhemus magnetic head tracker provided the cockpit and display apparatus. The Polhemus magnetic head tracker allowed the electronically masked field of view sizes to be moved on the seven window display of the dodecahedron. The dependent measures were: 1) Number of trials to reach criterion for low level flight tasks and dive bombs, 2) Performance measures of the low level flight route, 3) Performance measures of the dive bombing task, and 4) Subjective questionnaire data. Thirty male instructor pilots from Williams AFB, Arizona served as subjects for the study. The results revealed significant field of view effects for the number of trials required to reach criterion in the two smallest FOV conditions for right 180° turns and dive bomb training. The data also revealed pilots performed closer to the desired pitch angle for all but the two smallest conditions. The questionnaire data revealed that pilots felt their performance was degraded and they relied more on information from their instruments in the smaller field of view conditions. The conclusions of this study are that for tasks requiring close course adherence to a desired flight profile a minimum of 160° H X 80° V instantaneous field of view should be used for training. Future investigations into the instantaneous field of view size will be conducted to validate the results on other tactical tasks.
A computer program for sample size computations for banding studies
Wilson, K.R.; Nichols, J.D.; Hines, J.E.
1989-01-01
Sample sizes necessary for estimating survival rates of banded birds, adults and young, are derived based on specified levels of precision. The banding study can be new or ongoing. The desired coefficient of variation (CV) for annual survival estimates, the CV for mean annual survival estimates, and the length of the study must be specified to compute sample sizes. A computer program is available for computation of the sample sizes, and a description of the input and output is provided.
Chiromagnetic nanoparticles and gels
NASA Astrophysics Data System (ADS)
Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.
2018-01-01
Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.
Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra
2014-08-01
Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.
Wireless Actuation of Micromechanical Resonators
NASA Astrophysics Data System (ADS)
Mateen, Farrukh; Maedler, Carsten; Erramilli, Shyamsunder; Mohanty, Pritiraj
Wireless transfer of power is of fundamental and technical interest with applications ranging from remote operation of electronics, biomedical implants, and device actuation where hard-wired power sources are neither desirable nor practical. In particular, biomedical implants in the body or the brain need small footprint power receiving elements for wireless charging, which can be accomplished by micromechanical resonators. In contrast for fundamental experiments, ultra low-power wireless operation of micromechanical resonators in the microwave range makes low-temperature studies of mechanical systems in the quantum regime possible, where heat carried by the electrical wires in standard actuation techniques is detrimental to maintaining the resonator in a quantum state. We demonstrate successful actuation of micron-sized silicon-based piezoelectric resonators with resonance frequencies from 36 MHz to 120 MHz, at power levels of nanowatts and distances of about 3 feet, including polarization, distance and power dependence measurements. Our demonstration of wireless actuation of micromechanical resonators via electric-field coupling down to nanowatt levels enables a multitude of applications based on micromechanical resonators, inaccessible until now.
New flexible endoscope for otologic application
NASA Astrophysics Data System (ADS)
Marchan, Mark L.
1993-07-01
Endoscopy has become an important procedure in many medical specialties. For the Otologist, however, space limitations within the ear have restricted development of endoscopic procedures. The desire for minimally invasive techniques in Otology has demonstrated itself through the work of numerous physicians who have performed procedures ranging from diagnostic inspection of the middle ear to viewing the interior of the cochlea. To assist in performing such endoscopic procedures, Xomed-Treace has developed a line of flexible fiberoptic endoscopes for use by the Otologist. These scopes combine illumination and imaging fiber bundles within a small diameter unit ranging in size from 0.8 mm to 1.2 mm. The 1.2 mm scope is produced with an angled, rigid stainless steel sheath. The 0.8 mm scope is flexible with the ability to articulate 120 degree(s) in one direction. The fiberscopes have been designed for the Otologist to produce a good resolution image while allowing ease of operation through ergonomics and consideration of the surgical anatomy.
McCoy, Kimberly; Uchida, Masaki; Lee, Byeongdu; Douglas, Trevor
2018-04-24
Bottom-up construction of mesoscale materials using biologically derived nanoscale building blocks enables engineering of desired physical properties using green production methods. Virus-like particles (VLPs) are exceptional building blocks due to their monodispersed sizes, geometric shapes, production ease, proteinaceous composition, and our ability to independently functionalize the interior and exterior interfaces. Here a VLP, derived from bacteriophage P22, is used as a building block for the fabrication of a protein macromolecular framework (PMF), a tightly linked 3D network of functional protein cages that exhibit long-range order and catalytic activity. Assembly of PMFs was electrostatically templated, using amine-terminated dendrimers, then locked into place with a ditopic cementing protein that binds to P22. Long-range order is preserved on removal of the dendrimer, leaving a framework material composed completely of protein. Encapsulation of β-glucosidase enzymes inside of P22 VLPs results in formation of stable, condensed-phase materials with high local concentration of enzymes generating catalytically active PMFs.
Modeling Cardiac Electrophysiology at the Organ Level in the Peta FLOPS Computing Age
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Lawrence; Bishop, Martin; Hoetzl, Elena
2010-09-30
Despite a steep increase in available compute power, in-silico experimentation with highly detailed models of the heart remains to be challenging due to the high computational cost involved. It is hoped that next generation high performance computing (HPC) resources lead to significant reductions in execution times to leverage a new class of in-silico applications. However, performance gains with these new platforms can only be achieved by engaging a much larger number of compute cores, necessitating strongly scalable numerical techniques. So far strong scalability has been demonstrated only for a moderate number of cores, orders of magnitude below the range requiredmore » to achieve the desired performance boost.In this study, strong scalability of currently used techniques to solve the bidomain equations is investigated. Benchmark results suggest that scalability is limited to 512-4096 cores within the range of relevant problem sizes even when systems are carefully load-balanced and advanced IO strategies are employed.« less
A TEMPLATE-BASED FABRICATION TECHNIQUE FOR SPATIALLY-DESIGNED POLYMER MICRO/NANOFIBER COMPOSITES
Naik, Nisarga; Caves, Jeff; Kumar, Vivek; Chaikof, Elliot; Allen, Mark G.
2013-01-01
This paper reports a template-based technique for the fabrication of polymer micro/nanofiber composites, exercising control over the fiber dimensions and alignment. Unlike conventional spinning-based methods of fiber production, the presented approach is based on micro-transfer molding. It is a parallel processing technique capable of producing fibers with control over both in-plane and out-of-plane geometries, in addition to packing density and layout of the fibers. Collagen has been used as a test polymer to demonstrate the concept. Hollow and solid collagen fibers with various spatial layouts have been fabricated. Produced fibers have widths ranging from 2 µm to 50 µm, and fiber thicknesses ranging from 300 nm to 3 µm. Also, three-dimensionality of the process has been demonstrated by producing in-plane serpentine fibers with designed arc lengths, out-of-plane wavy fibers, fibers with focalized particle encapsulation, and porous fibers with desired periodicity and pore sizes. PMID:24533428
Estimating Standardized Linear Contrasts of Means with Desired Precision
ERIC Educational Resources Information Center
Bonett, Douglas G.
2009-01-01
L. Wilkinson and the Task Force on Statistical Inference (1999) recommended reporting confidence intervals for measures of effect sizes. If the sample size is too small, the confidence interval may be too wide to provide meaningful information. Recently, K. Kelley and J. R. Rausch (2006) used an iterative approach to computer-generate tables of…
Lowe, Michael; Ringler, Christine; Haws, Kelly
2018-04-01
Billions of dollars are spent annually with the aim of enticing consumers to purchase food. Yet despite the prevalence of such advertising, little is known about how the actual sensation of this advertising media affects consumer behavior, including consequential choices regarding food. This paper explores the effect of acoustic pitch in food advertising, demonstrating in two studies, including a field study in a live retail environment, how the perception of pitch in advertising can impact food desirability and decisions regarding serving size. In study 1, a field study, pitch affects actual serving sizes and purchase behavior in a live, self-serve retail setting, with low pitch leading to larger serving sizes. Study 2 demonstrates how low pitch increases desire for a food product among hungry consumers, and that this effect is mediated by perceptions of size and how filling consumers believe the product will be. We discuss these results in the context of cross-modal correspondence and mental imagery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schillaci, Michael A; Schillaci, Mario E
2009-02-01
The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (n<10) or very small (n < or = 5) sample sizes. This method can be used by researchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.
Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.
2010-01-01
The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm objects are an empirical extension from larger debris. The extension takes into account the results of micro-debris (from 10 micron to 1 mm) population modeling that is based on shuttle impact data, in the hope of making a smooth transition between micron and millimeter size regimes. This paper also includes a brief discussion on issues and potential future work concerning the analysis and interpretation of Goldstone radar data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Man Deuk; Kim, Nahk Keun; Kim, Hee Jin
Purpose:To determine whether uterine fibroid embolization (UFE) with polyvinyl alcohol (PVA) particles affects fertility in women desiring future pregnancy.Methods:Of 288 patients managed with UFE with PVA particles for uterine myoma or adenomyosis between 1998 and 2001, 94 patients were enrolled in this study. The age range of participants was 20-40 years. The data were collected through review of medical records and telephone interviews. Mean duration of follow-up duration was 35 months (range 22-60 months). Patients using contraception and single women were excluded, and the chance of infertility caused by possible spousal infertility or other factors was disregarded. Contrast-enhanced magnetic resonancemore » imaging was performed in all patients before and after UFE, and the size of PVA particles used was 255-700 {mu}m.Results:Among 94 patients who underwent UFE with PVA, 74 were on contraceptives, 6 had been single until the point of interview, and 8 were lost to follow-up. Of the remaining 6 patients who desired future pregnancy, 5 (83%) succeeded in becoming pregnant (1 patient became pregnant twice). Of a total of 8 pregnancies, 6 were planned pregnancies and 2 occurred after contraception failed. Five deliveries were vaginal, and 2 were by elective cesarean. Artificial abortion was performed in 1 case of unplanned pregnancy. There was 1 case of premature rupture of membrane (PROM) followed by preterm labor and delivery of an infant who was small-for-gestational-age. After UFE, mean volume reduction rates of the uterus and fibroid were 36.6% (range 0 to 62.6%) and 69.3% (range 36.3% to 93.3%), respectively.Conclusion:Although the absolute number of cases was small, UFE with PVA particles ultimately did not affect fertility in the women who underwent the procedure.« less
Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range.
Fuleihan, Ghada El-Hajj; Bouillon, Roger; Clarke, Bart; Chakhtoura, Marlene; Cooper, Cyrus; McClung, Michael; Singh, Ravinder J
2015-07-01
Hypovitaminosis D is prevalent worldwide but proportions vary widely between regions, depending on genetic and lifestyle factors, the threshold to define deficiency, and accuracy of 25-hydroxyvitamin D (25OHD) assays used. Latitude, pollution, concealing clothing, sun exposure, gender, dietary habits, and lack of government regulation account for up to 50% in variations in serum 25OHD levels, whereas genetic polymorphisms in the vitamin D pathway account for less than 5%. Organizations/societies have developed guidelines for recommended desirable 25OHD levels and vitamin D doses to reach them, but their applicability across age groups and populations are still debated. This article and the accompanying online Supporting Information highlight sources of variations in circulating 25OHD levels, uncertainties and knowledge gaps, and analytical problems facing 25OHD assays, while keeping efficacy and safety data as the dominant factors when defining a desirable range for 25OHD levels. We propose a desirable range of 20 to 40 ng/mL (50 to 100 nmol/L), provided precise and accurate assays are used. Although slightly lower levels, 15 to 20 ng/mL, may be sufficient for some infants and adults, higher levels, 40 to 60 ng/mL, may still be safe. This desirable range allows physicians to tailor treatment while taking season, lifestyle, vitamin D intake, and other sources of variation into account. We reserve 25OHD measurements for at-risk patients, defined by disease or lifestyle, and the use of 25OHD assays calibrated against the recommended international standards. Most target groups reach desirable target levels by a daily intake of 400 to 600 IU for children and 800 IU for adults. A total daily allowance of vitamin D of up to 1000 IU in the pediatric age groups, and up to 2000 IU in adults, tailored to an individual patient risk profile, is probably safe over long durations. Additional data are needed to validate the proposed range and vitamin D doses, especially in children, pregnant women, and non-white populations. © 2015 American Society for Bone and Mineral Research.
Wade, T D; Bulik, C M; Heath, A C; Martin, N G; Eaves, L J
2001-08-01
The objective was to investigate the genetic epidemiology of figural stimuli. Standard figural stimuli were available from 5,325 complete twin pairs: 1,751 (32.9%) were monozygotic females, 1,068 (20.1%) were dizygotic females, 752 (14.1%) were monozygotic males, 495 (9.3%) were dizygotic males, and 1,259 (23.6%) were dizygotic male-female pairs. Univariate twin analyses were used to examine the influences on the individual variation in current body size and ideal body size. These data were analysed separately for men and women in each of five age groups. A factorial analysis of variance, with polychoric correlations between twin pairs as the dependent variable, and age, sex, zygosity, and the three interaction terms (age x sex, age x zygosity, sex x zygosity) as independent variables, was used to examine trends across the whole data set. Results showed genetic influences had the largest impact on the individual variation in current body size measures, whereas non-shared environmental influences were associated with the majority of individual variation in ideal body size. There was a significant main effect of zygosity (heritability) in predicting polychoric correlations for current body size and body dissatisfaction. There was a significant main effect of gender and zygosity in predicting ideal body size, with a gender x zygosity interaction. In common with BMI, heritability is important in influencing the estimation of current body size. Selection of desired body size for both men and women is more strongly influenced by environmental factors.
Brisset, Julie; Heißelmann, Daniel; Kothe, Stefan; Weidling, René; Blum, Jürgen
2013-09-01
The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built, and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model.
Borg, Bridget L; Arthur, Stephen M; Bromen, Nicholas A; Cassidy, Kira A; McIntyre, Rick; Smith, Douglas W; Prugh, Laura R
2016-01-01
The desire to see free ranging large carnivores in their natural habitat is a driver of tourism in protected areas around the globe. However, large carnivores are wide-ranging and subject to human-caused mortality outside protected area boundaries. The impact of harvest (trapping or hunting) on wildlife viewing opportunities has been the subject of intense debate and speculation, but quantitative analyses have been lacking. We examined the effect of legal harvest of wolves (Canis lupus) along the boundaries of two North American National Parks, Denali (DNPP) and Yellowstone (YNP), on wolf viewing opportunities within the parks during peak tourist season. We used data on wolf sightings, pack sizes, den site locations, and harvest adjacent to DNPP from 1997-2013 and YNP from 2008-2013 to evaluate the relationship between harvest and wolf viewing opportunities. Although sightings were largely driven by wolf population size and proximity of den sites to roads, sightings in both parks were significantly reduced by harvest. Sightings in YNP increased by 45% following years with no harvest of a wolf from a pack, and sightings in DNPP were more than twice as likely during a period with a harvest buffer zone than in years without the buffer. These findings show that harvest of wolves adjacent to protected areas can reduce sightings within those areas despite minimal impacts on the size of protected wolf populations. Consumptive use of carnivores adjacent to protected areas may therefore reduce their potential for non-consumptive use, and these tradeoffs should be considered when developing regional wildlife management policies.
Borg, Bridget L.; Arthur, Stephen M.; Bromen, Nicholas A.; Cassidy, Kira A.; McIntyre, Rick; Smith, Douglas W.; Prugh, Laura R.
2016-01-01
The desire to see free ranging large carnivores in their natural habitat is a driver of tourism in protected areas around the globe. However, large carnivores are wide-ranging and subject to human-caused mortality outside protected area boundaries. The impact of harvest (trapping or hunting) on wildlife viewing opportunities has been the subject of intense debate and speculation, but quantitative analyses have been lacking. We examined the effect of legal harvest of wolves (Canis lupus) along the boundaries of two North American National Parks, Denali (DNPP) and Yellowstone (YNP), on wolf viewing opportunities within the parks during peak tourist season. We used data on wolf sightings, pack sizes, den site locations, and harvest adjacent to DNPP from 1997–2013 and YNP from 2008–2013 to evaluate the relationship between harvest and wolf viewing opportunities. Although sightings were largely driven by wolf population size and proximity of den sites to roads, sightings in both parks were significantly reduced by harvest. Sightings in YNP increased by 45% following years with no harvest of a wolf from a pack, and sightings in DNPP were more than twice as likely during a period with a harvest buffer zone than in years without the buffer. These findings show that harvest of wolves adjacent to protected areas can reduce sightings within those areas despite minimal impacts on the size of protected wolf populations. Consumptive use of carnivores adjacent to protected areas may therefore reduce their potential for non-consumptive use, and these tradeoffs should be considered when developing regional wildlife management policies. PMID:27124729
Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad
2016-01-01
Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml(-1)) were reacted. The results showed that silver nitrate (2mM) and plant extract (10 mg ml(-1)) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO3 ratio of 6:4v/v resulted in the highest conversion efficiency of AgNO3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO3 to synthesize biologically stable AgNPs. Copyright © 2015 Elsevier B.V. All rights reserved.
Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Serantes, David; Chantrell, Roy; Chubykalo-Fesenko, Oksana; Baldomir, Daniel
2016-11-04
In the magnetic fluid hyperthermia (MFH) research field, it is usually assumed that achieving a uniform temperature enhancement (ΔT) of the entire tumour is a key-point for treatment. However, various experimental works reported successful cell apoptosis via MFH without a noticeable ΔT of the system. A possible explanation of the success of these negligible-ΔT experiments is that a local ΔT restricted to the particle nanoenvironment (i.e. with no significant effect on the global temperature T) could be enough to trigger cell death. Shedding light on such a possibility requires accurate knowledge of heat dissipation at the local level in relation to the usually investigated global (average) one. Since size polydispersity is inherent to all synthesis techniques and the heat released is proportional to the particle size, heat dissipation spots with different performances - and thus different effects on the cells - will likely exist in every sample. In this work we aim for a double objective: (1) to emphasize the necessity to distinguish between the total dissipated heat and hyperthermia effectiveness, and (2) to suggest a theoretical approach on how to select, for a given size polydispersity, a more adequate average size so that most of the particles dissipate within a desired heating power range. The results are reported in terms of Fe 3 O 4 nanoparticles as a representative example.
Body size dissatisfaction among young Chinese children in Hong Kong: a cross-sectional study.
Knowles, Gemma; Ling, Fiona Chun Man; Thomas, G Neil; Adab, Peymane; McManus, Alison M
2015-04-01
To determine the potential predictors of body size dissatisfaction in Chinese children. The Child's Body Image Scale was used to assess body size perception and dissatisfaction. BMI was calculated from objectively measured height and weight. Predictors of body size dissatisfaction were examined by logistic regression analysis. Hong Kong, China. Six hundred and twenty children (53 % boys, aged 6·1-12·9 years) from a state-run primary school. Female sex (adjusted OR (AOR)=1·91; 95 % CI 1·32, 2·76), age (AOR=2·62; 95 % CI 1·65, 4·16 for 8-10 years; AOR=2·16; 95 % CI 1·38, 3·38 for >10 years), overweight (AOR=6·23; 95 % CI 3·66, 10·60) and obesity (AOR=19·04; 95 % CI 5·64, 64·32) were positively associated with desire to be thinner. Size misperception was a strong predictor of body size dissatisfaction, irrespective of actual weight status (AOR=1·90; 95 % CI 1·02, 3·54 for overestimation; AOR=0·43; 95 % CI 0·27, 0·67 for underestimation). Body size dissatisfaction is prevalent among Chinese children as young as 6 years. Female sex, age, overweight, obesity and overestimation of size were associated with increased desire to be thinner. These findings emphasise the importance of preventing body image issues from an early age.
Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
Salari, A; Gnyawali, V; Griffiths, I M; Karshafian, R; Kolios, M C; Tsai, S S H
2017-11-29
Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (<10 μm) are desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed to relate the size of the microbubbles produced and the system's input parameters. In this manuscript, we characterize microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.
NASA Technical Reports Server (NTRS)
Elleman, D. D.; Wang, T. G.
1986-01-01
Spheres sized and treated for desired sieve properties. Filter constructed from densely packed spheres restrained by screens. Hollow gas-filled plastic or metal spheres normally used. Manufactured within one percent or better diameter tolerance. Normally, all spheres in filter of same nominal diameter. Filter used as sieve to pass only particles smaller than given size or to retain particles larger than that size. Options available under filter concept make it easy to design for specific applications.
Woskov, Paul P.; Hadidi, Kamal
2003-01-01
In embodiments, spectroscopic monitor monitors modulated light signals to detect low levels of contaminants and other compounds in the presence of background interference. The monitor uses a spectrometer that includes a transmissive modulator capable of causing different frequency ranges to move onto and off of the detector. The different ranges can include those with the desired signal and those selected to subtract background contributions from those with the desired signal. Embodiments of the system are particularly useful for monitoring metal concentrations in combustion effluent.
Carbothermal shock synthesis of high-entropy-alloy nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing
2018-03-01
The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.
Global fishery development patterns are driven by profit but not trophic level.
Sethi, Suresh A; Branch, Trevor A; Watson, Reg
2010-07-06
Successful ocean management needs to consider not only fishing impacts but drivers of harvest. Consolidating post-1950 global catch and economic data, we assess which attributes of fisheries are good indicators for fishery development. Surprisingly, year of development and economic value are not correlated with fishery trophic levels. Instead, patterns emerge of profit-driven fishing for attributes related to costs and revenues. Post-1950 fisheries initially developed on shallow ranging species with large catch, high price, and big body size, and then expanded to less desirable species. Revenues expected from developed fisheries declined 95% from 1951 to 1999, and few high catch or valuable fishing opportunities remain. These results highlight the importance of economic attributes of species as leading indicators for harvest-related impacts in ocean ecosystems.
Global fishery development patterns are driven by profit but not trophic level
Sethi, Suresh A.; Branch, Trevor A.; Watson, Reg
2010-01-01
Successful ocean management needs to consider not only fishing impacts but drivers of harvest. Consolidating post-1950 global catch and economic data, we assess which attributes of fisheries are good indicators for fishery development. Surprisingly, year of development and economic value are not correlated with fishery trophic levels. Instead, patterns emerge of profit-driven fishing for attributes related to costs and revenues. Post-1950 fisheries initially developed on shallow ranging species with large catch, high price, and big body size, and then expanded to less desirable species. Revenues expected from developed fisheries declined 95% from 1951 to 1999, and few high catch or valuable fishing opportunities remain. These results highlight the importance of economic attributes of species as leading indicators for harvest-related impacts in ocean ecosystems. PMID:20566867
Use of the 4D-Global Reference Atmosphere Model (GRAM) for space shuttle descent design
NASA Technical Reports Server (NTRS)
Mccarty, S. M.
1987-01-01
The method of using the Global Reference Atmosphere Model (GRAM) mean and dispersed atmospheres to study skipout/overshoot requirements, to characterize mean and worst case vehicle temperatures, study control requirements, and verify design was discussed. Landing sites in these analyses range from 65 N to 30 S, while orbit inclinations vary from 20 deg to 98 deg. The primary concern was that they cannot use as small vertical steps in the reentry calculation as desired because the model predicts anomalously large density shear rates for very small vertical step sizes. The winds predicted by the model are not satisfactory. This is probably because they are geostrophic winds and because the model has an error in the computation of winds in the equatorial regions.
Unsteady jet in designing innovative drug delivery system
NASA Astrophysics Data System (ADS)
Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza
2014-11-01
Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.
Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong
2016-01-01
The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.
Low work function, stable compound clusters and generation process
Dinh, Long N.; Balooch, Mehdi; Schildbach, Marcus A.; Hamza, Alex V.; McLean, II, William
2000-01-01
Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.
Generation of knockout rabbits using transcription activator-like effector nucleases.
Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue
2014-01-01
Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.
Film bulk acoustic resonators (FBARs) as biosensors: A review.
Zhang, Yi; Luo, Jikui; Flewitt, Andrew J; Cai, Zhiqiang; Zhao, Xiubo
2018-09-30
Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Pattern of demand for children in Pakistan.
Ahmed, T
1992-01-01
The study aim was to determine the pattern of demand for children and to suggest ways to introduce the idea of a small-family norm and reduce the unmet need for contraception in Pakistan. The concept of demand for children included the wantedness of the last birth and the timing of the next birth and changed with stage in reproductive life cycle. Data were obtained from the Pakistan Contraception Prevalence Survey of 1984/85. Pakistan's strong patriarchal system emphasized rapid achievement of first pregnancy in order to assure the perpetuation of the lineage. Female status, even with advanced education, emphasized fecundity and producing a male heir. The birthing pattern among rural and urban lower-class women is to bear 3-4 children early in marriage. Evidence from prior surveys showed that educated women plan for a delay in second birth. Of the 6655 ever pregnant and nonsterilized women, about 48% of currently married women desired discontinuation of childbearing. 18% desired a delay of childbearing by 2 years and 10% desired no more children after a last undesired pregnancy. Unmet need was estimated at 17% of all women in the sample. Women desiring no more children were primarily older with 6-8 prior births. Indirect fertility estimates were generated by using Arriaga's techniques for stages of family formation. The resulting estimates showed that higher-parity women desiring no more children still had 2 more children, which was evidence of unmet need. Those desiring more children had higher fertility than those not desiring more children. These women also showed different patterns in their total demand for children, ideal family size, currently living children, and desire for their next birth. Ideal size tended to rise over the length of a marriage, which may mean that women with growing families may justify unwanted fertility. Duration of marriage was viewed as a reasonable indicator of need for fertility control and the concomitant need for outreach, counseling, and family planning services. Increased birth spacing occurred only after 3-4 births. There was a decline in the proportion desiring an additional child with increased birth interval and parity. Results indicated a high prevalence of intended pregnancy, rationalization of high parity in terms of demand for children, and demand for contraception for spacing or limiting births.
Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj
2015-01-01
Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.
High flow rate nozzle system with production of uniform size droplets
Stockel, I.H.
1990-10-16
Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.
High flow rate nozzle system with production of uniform size droplets
Stockel, Ivar H.
1990-01-01
Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.
Tilgner, Linda; Wertheim, Eleanor H; Paxton, Susan J
2004-03-01
The current study examined whether a social desirability response bias is a source of measurement error in prevention research. Six hundred and seventy-seven female students in Grade 7 (n = 345) and Grade 8 (n = 332) were divided into either an intervention condition, in which participants watched a videotape promoting body acceptance and discouraging dieting and then discussed issues related to the video, or a control condition. Questionnaires were completed at baseline, postintervention, and at 1-month follow-up. Social desirability scores were correlated at a low but significant level with baseline body dissatisfaction, drive for thinness, bulimic tendencies, intention to diet, and size discrepancy for intervention participants. Social desirability did not correlate significantly with change over time in the outcome measures. The findings suggested that changes in girls' self-reports related to a prevention program were relatively free of social desirability response bias. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 211-216, 2004.
Stand size, stand distribution, and rotation lengths for forest wildlife
Steven E. Backs; Russel R. Titus
1989-01-01
The key to managing forest wildlife is providing diverse habitats. Stand size, stand distribution, and rotation length determine how diverse habitats will be. Since the tenure of private forest owners is generally shorter than prescribed rotations, rotation recommendations serve more as guides to the amount and intensity of cutting needed to maintain desired habitat....
Rough-Part Sizes Needed from Lumber for Manufacturing Furniture and Kitchen Cabinets
Philip A. Araman
1982-01-01
This report summarizes the results from a recent survey of the rough-part sizes needed from lumber for manufacturing furniture and kitchen cabinets. Twenty furniture and twelve cabinet companies participated in the survey. Lumber thicknesses needed and rough-part qualities desired are presented along with distributions describing the required rough-part dimensions....
Conditional Optimal Design in Three- and Four-Level Experiments
ERIC Educational Resources Information Center
Hedges, Larry V.; Borenstein, Michael
2014-01-01
The precision of estimates of treatment effects in multilevel experiments depends on the sample sizes chosen at each level. It is often desirable to choose sample sizes at each level to obtain the smallest variance for a fixed total cost, that is, to obtain optimal sample allocation. This article extends previous results on optimal allocation to…
Production of stocker-size hybrid tilapia in an outdoor biofloc production system
USDA-ARS?s Scientific Manuscript database
Production efficiency per unit volume of water can be improved when stocking rate is adjusted to allow rapid growth of the culture organism to the desired target weight. Fingerlings often are grown to stocker size (ca. 100-150 g/fish) at high stocking rates and then the population is thinned to allo...
Initiation of small-satellite formations via satellite ejector
NASA Astrophysics Data System (ADS)
McMullen, Matthew G
Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, offering expanded area coverage through formation flight. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of love deployment velocities (on the order of meters per second). Motivated to address this shortcoming, a conceived satellite ejector would offer a significant orbit change by ejecting the satellite at higher deployment velocities (125-200 m/s). Focusing on the applications of the ejector, it is sought to bridge the gap in prior research by offering a method to initiate formation flight. As a precursor to the initiation, the desired orbit properties to initiate the formation are specified in terms of spacing and velocity change vector. From this, a systematic method is developed to find the relationship among velocity change vector, the desired orbit's orientation, and the spacing required to initiate the formation.
Chow, Vincent C; Yong, Rose M; Li, Alice L; Lee, Chi-wai; Ho, Eva H; Chan, Ching-kit; Lo, Stanley H; Mo, Stephen K; Wong, Kin-shing
2003-12-01
Nutritional status is related to morbidity and mortality in the continuous ambulatory peritoneal dialysis (CAPD) population. In the present study, we compared the dietary intake of CAPD patients with their requirements for calorie and protein nutrition and with the recommended intakes of potassium and phosphate. Patients were recruited from the CAPD clinic. Desirable body weight was derived from the height of the individual patients and the desirable body mass index (BMI) for adult Asians. The calorie requirement was calculated by multiplying desirable body weight by 30 kcal. The protein requirement was calculated by multiplying desirable body weight by 1.2 - 1.5, according to serum albumin level. The K requirement was set at 3500 mg daily, and the PO(4) requirement, at 1000 mg daily. The actual dietary intake of individual patients was estimated from dietary history by a computer software program. The study included 57 patients who had been on CAPD for 22.1 +/- 23.5 months. Of the 57 patients, 8 patients (14.0%) were below the desirable BMI range, 20 (35.1%) were within the range, and 29 (50.9%) were above the range. By subjective global assessment (SGA), 45 patients (78.9%) were mildly-to-moderately malnourished, and 12 (21.1%) well nourished. Serum albumin was 32.1 +/- 4.7 g/L. Patients met 98% +/- 35.7% (range: 33% - 224%) of their nutritional requirement for calories and 92.1% +/- 37.7% (range: 22% - 202%) of their nutritional requirement for protein. Only 23 patients (40.4%) reached the target for calorie intake, and only 22 (38.6%) reached the target for protein intake. Excess K intake was seen in 1 patient (1.8%), and excess PO(4) intake, in 6 patients (10.5%). Actual dietary intake was not related to BMI or SGA score. Most CAPD patients had inadequate calorie and protein intakes. Calorie and protein intakes were not related to BMI and SGA scores. Compliance with recommended K and PO(4) intakes was good.
Tuning the sensing range of silicon pressure sensor by trench etching technology
NASA Astrophysics Data System (ADS)
Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua
2006-01-01
The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.
Method for preparing salt solutions having desired properties
Ally, Moonis R.; Braunstein, Jerry
1994-01-01
The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.
Epplin, F M; Haankuku, C; Horn, G W
2015-09-01
Pastures available for grazing studies may be of unequal size and may have heterogeneous carrying capacity necessitating the assignment of unequal numbers of animals per pasture. To reduce experimental error, it is often desirable that the initial mean BW be similar among experimental units. The objective of this note is to present and illustrate the use of a method for assignment of animals to experimental units of different sizes such that the initial mean weight of animals in each unit is approximately the same as the overall mean. Two alternative models were developed and solved to assign each of 231 weaned steers () to 1 of 12 pastures with carrying capacity ranging from 5 to 26 animals per pasture. A solution to Model 1 was obtained in which the mean weights among pastures were approximately the same but the variances among pastures were heteroskedastic, meaning that weight variances across pens were different (-value < 0.05). An alternative model was developed (Model 2) and used to derive assignments with nearly equal mean weights and homoskedastic variances among pastures.
NASA Astrophysics Data System (ADS)
Salim, Ali Aqeel; Bidin, Noriah
2017-12-01
Broad range of biomedical applications demands accurate synthesis and characterization of various nanoparticles. We report the characterization of cinnamon nanoparticles (CNPs) grown via simple pulsed laser ablation in liquid (PLAL). The influence of different liquid media (olive oil, ethanol, and citric acid each of volume 4 ml) on the growth morphology, structure and optical properties of CNPs is determined. Q-switched 1064-Nd: YAG laser of 10 ns pulse duration, 1 Hz repetition rate, 532 nm s harmonic generation and laser fluence of 6.37 J/cm2 is used to irradiate the cinnamon targets immersed in those liquids. Samples are characterized using TEM, HRTEM, SAED, FTIR, UV-Vis and Photoluminescence measurements. TEM images revealed the nucleation of CNPs of average size 18.36 nm (in olive oil), 21.48 nm (in ethanol), and 29.56 nm (in citric acid). Morphology of CNPs is demonstrated to be sensitive to the liquid medium. Our simple and innovative method may constitute a basis to produce CNPs of desired size distribution potential for the development of nanobiomedicine.
Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces.
Galliker, Patrick; Schneider, Julian; Rüthemann, Lukas; Poulikakos, Dimos
2013-08-13
The controlled formation and handling of minute liquid volumes on surfaces is essential to the success of microfluidics in biology, chemistry, and materials applications. Even though current methods have demonstrated their potential in a variety of experimental assays, there remain significant difficulties concerning breadth of applicability, standardization, throughput, and economics. Here we introduce a unique microfluidic paradigm in which microscopic volatile droplets are formed, sustained, and manipulated in size and content at any desired spot on unpatterned substrates. Their sustainability is warranted by continuous replacement of the rapidly vaporizing sessile fluid through controlled equivalent volume deposition of smaller discrete liquid entities by an electrohydrodynamic nanodripping process. Using nanoparticle inks we show that the concentration of solutes in so-stabilized droplets can be linearly increased at isochoric conditions and user-defined rates. An intriguing insensitivity of the droplet shape toward surface heterogeneities ensures robustness and experimental reproducibility, even when handling attoliter quantities. The unique capabilities and technical simplicity of the presented method introduce a high degree of flexibility and make it pertinent to a diverse range of applications.
Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces
Galliker, Patrick; Schneider, Julian; Rüthemann, Lukas; Poulikakos, Dimos
2013-01-01
The controlled formation and handling of minute liquid volumes on surfaces is essential to the success of microfluidics in biology, chemistry, and materials applications. Even though current methods have demonstrated their potential in a variety of experimental assays, there remain significant difficulties concerning breadth of applicability, standardization, throughput, and economics. Here we introduce a unique microfluidic paradigm in which microscopic volatile droplets are formed, sustained, and manipulated in size and content at any desired spot on unpatterned substrates. Their sustainability is warranted by continuous replacement of the rapidly vaporizing sessile fluid through controlled equivalent volume deposition of smaller discrete liquid entities by an electrohydrodynamic nanodripping process. Using nanoparticle inks we show that the concentration of solutes in so-stabilized droplets can be linearly increased at isochoric conditions and user-defined rates. An intriguing insensitivity of the droplet shape toward surface heterogeneities ensures robustness and experimental reproducibility, even when handling attoliter quantities. The unique capabilities and technical simplicity of the presented method introduce a high degree of flexibility and make it pertinent to a diverse range of applications. PMID:23898173
Nanophosphor CaSO4:Eu2+ for photoluminescence liquid crystal display (PLLCD)
NASA Astrophysics Data System (ADS)
Patle, Anita; Patil, R. R.; Moharil, S. V.
2018-05-01
In this work PL enhancement of CaSO4:Eu2+ nanophosphor which was synthesized with 0.01M molarity by co-precipitation method is presented. Synthesized phosphor was characterized by XRD, SEM, TEM and PL measurements. Average particle size is found to be in the range 80-100nm with Hexagonal morphology and PL studies showed emission peaks at 380nm, when samples were excited by 254nm. The observed PL emission is characteristic emission of Eu2+ similar to that observed in bulk CaSO4:Eu2. However under identical condition it is observed that intensity of emission get enhanced for 0.01M size which is doubled to that of 0.1M with similar emission at 380nm. A phosphor with narrow emission band around 390 nm is desirable, since at this wavelength the transmission of standard glass, polarizing plastic, other coating and LCD material is at acceptable level. Strong Eu2+ emission is observed in CaSO4:Eu nanophosphor which finds applications for PLLCD (photoluminescent liquid crystal display).
System and Method for Scan Range Gating
NASA Technical Reports Server (NTRS)
Lindemann, Scott (Inventor); Zuk, David M. (Inventor)
2017-01-01
A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.
Grain size control of rhenium strip
NASA Technical Reports Server (NTRS)
Schuster, Gary B.
1991-01-01
Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.
The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery
Scott, Abigail L.; York, Paul H.; Duncan, Clare; Macreadie, Peter I.; Connolly, Rod M.; Ellis, Megan T.; Jarvis, Jessie C.; Jinks, Kristin I.; Marsh, Helene; Rasheed, Michael A.
2018-01-01
Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services – including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top–down and bottom–up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services. PMID:29487606
NASA Astrophysics Data System (ADS)
Anju, V. P.; Narayanankutty, Sunil K.
2016-01-01
Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.
Coaxial twin-fluid atomization with pattern air gas streams
NASA Astrophysics Data System (ADS)
Hei Ng, Chin; Aliseda, Alberto
2010-11-01
Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.
Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.
Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei
2015-01-01
The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.
Optimizing the Timing Resolution for the NEXT Array
NASA Astrophysics Data System (ADS)
Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.
2016-09-01
In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.
NASA Astrophysics Data System (ADS)
Conrad, Philipp; Weber, Wilhelm; Jung, Alexander
2017-04-01
Hydropower plants are indispensable to stabilize the grid by reacting quickly to changes of the energy demand. However, an extension of the operating range towards high and deep part load conditions without fatigue of the hydraulic components is desirable to increase their flexibility. In this paper a model sized Francis turbine at low discharge operating conditions (Q/QBEP = 0.27) is analyzed by means of computational fluid dynamics (CFD). Unsteady two-phase simulations for two Thoma-number conditions are conducted. Stochastic pressure oscillations, observed on the test rig at low discharge, require sophisticated numerical models together with small time steps, large grid sizes and long simulation times to cope with these fluctuations. In this paper the BSL-EARSM model (Explicit Algebraic Reynolds Stress) was applied as a compromise between scale resolving and two-equation turbulence models with respect to computational effort and accuracy. Simulation results are compared to pressure measurements showing reasonable agreement in resolving the frequency spectra and amplitude. Inner blade vortices were predicted successfully in shape and size. Surface streamlines in blade-to-blade view are presented, giving insights to the formation of the inner blade vortices. The acquired time dependent pressure fields can be used for quasi-static structural analysis (FEA) for fatigue calculations in the future.
Raju, Seshadri; Ward, Mark; Jones, Tamekia L
2015-01-01
Quantification of reflux is desirable in advanced chronic venous disease as clinical features are based on its adverse impact on ambulatory venous pressure (AMVP). Prior clinical observation suggests that reflux in a saphenous vein > 5 mm is likely significant. On the basis of normal calf pump mechanics, we hypothesized that a reflux volume ≥ 30 mL was necessary to upset pump equilibrium. Venous laboratory data in 119 limbs with isolated saphenous reflux were analyzed. Reflux volume was calculated by duplex ultrasound (area × velocity × duration). The relationship of reflux volume to saphenous size, calf pump function (air plethysmography, AMVP), flow resistance (Poiseuille equation), and clinical severity were examined. Saphenous size had a bimodal relationship to reflux volume. Reflux volume of ≥ 30 mL occurred mostly (97% of limbs) with saphenous size of ≥ 5.5 mm, but 51% of saphenous veins >5.5 mm had reflux volumes <30 mL. This is because saphenous veins invariably carried less than their maximum reflux potential indicated by their size (Poiseuille equation). Variable additional focal resistance across refluxive valve cusps and narrower re-entry perforators is not taken into account when only saphenous truncal size is used for resistance calculation. Furthermore, the association of AMVP with reflux was found not to be based on a set (≥ 30 mL) threshold but was variable, depending on existing calf pump mechanics, compensatory in some (12% of limbs) and aggravating reflux effects in others (26%). Calf pump abnormalities were found in 70% of refluxive limbs and in 44% (n = 16) of contralateral limbs without any reflux. Reflux volume was significantly higher overall in limbs with ulcer (C6), but the range overlapped with lesser clinical classes. Seven of 14 limbs with active ulcers had reflux volume >30 mL; six of seven limbs with active ulcers and reflux volume of <30 mL had calf pump abnormalities that would be poorly tolerant of reflux even at these smaller volumes. Saphenous size alone cannot be used as an indicator of significant reflux. More than two thirds of the limbs with isolated saphenous reflux have calf pump abnormalities, which also occurred without reflux in the opposite limb--a novel finding. This means that in addition to quantification of reflux volume, calf pump assessment such as with air plethysmography and AMVP is desirable in clinical classes 3 and higher for proper assessment. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoon, Ilsang; Weinberg, Martin D.; Katz, Neal
2011-06-01
We introduce a new galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes), which is a front-end application of the Bayesian Inference Engine (BIE), a parallel Markov chain Monte Carlo package, to provide full posterior probability distributions and reliable confidence intervals for all model parameters. The BIE relies on GALPHAT to compute the likelihood function. GALPHAT generates scale-free cumulative image tables for the desired model family with precise error control. Interpolation of this table yields accurate pixellated images with any centre, scale and inclination angle. GALPHAT then rotates the image by position angle using a Fourier shift theorem, yielding high-speed, accurate likelihood computation. We benchmark this approach using an ensemble of simulated Sérsic model galaxies over a wide range of observational conditions: the signal-to-noise ratio S/N, the ratio of galaxy size to the point spread function (PSF) and the image size, and errors in the assumed PSF; and a range of structural parameters: the half-light radius re and the Sérsic index n. We characterize the strength of parameter covariance in the Sérsic model, which increases with S/N and n, and the results strongly motivate the need for the full posterior probability distribution in galaxy morphology analyses and later inferences. The test results for simulated galaxies successfully demonstrate that, with a careful choice of Markov chain Monte Carlo algorithms and fast model image generation, GALPHAT is a powerful analysis tool for reliably inferring morphological parameters from a large ensemble of galaxies over a wide range of different observational conditions.
Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass
NASA Astrophysics Data System (ADS)
Caccavale, F.; De Marchi, G.; Gonella, F.; Mazzoldi, P.; Meneghini, C.; Quaranta, A.; Arnold, G. W.; Battaglin, G.; Mattei, G.
1995-03-01
Ion-exchanged glass samples were obtained by immersing soda-lime slides in molten salt baths of molar concentration in the range 1-20% AgNO 3 in NaNO 3, at temperatures varying from 320 to 350°C, and processing times of the order of a few minutes. Irradiations of exchanged samples were subsequently performed by using H +m, He +, N + ions at different energies in order to obtain comparable projected ranges. The fluence was varied between 5 × 10 15 and 2 × 10 17 ions/cm 2. Most of the samples were treated at current densities lower than 2 μA/cm 2, in order to avoid heating effects. Some samples were irradiated with 4 keV electrons, corresponding to a range of 250 nm. The formation of nanoclusters of radii in the range 1-10 nm has been observed after irradiation, depending on the treatment conditions. The precipitation process is governed by the electronic energy deposition of incident particles. The most desirable results are obtained for helium implants. The process was characterized by the use of Secondary Ion Mass Spectrometry (SIMS) and nuclear techniques (Rutherford Backscattering (RBS), Nuclear Reactions (NRA)), in order to determine concentration-depth profiles and by optical absorption and Transmission Electron Microscopy (TEM) measurements for the silver nanoclusters detection and size evaluation.
Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K
2006-11-03
In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.
Stocking levels and underlying assumptions for uneven-aged Ponderosa Pine stands.
P.H. Cochran
1992-01-01
Potential Problems With Q-Values Many ponderosa pine stands have a limited number of size classes, and it may be desirable to carry very large trees through several cutting cycles. Large numbers of trees below commercial size are not needed to provide adequate numbers of future replacement trees. Under these conditions, application of stand density index (SDI) can have...
Parameter Estimation with Small Sample Size: A Higher-Order IRT Model Approach
ERIC Educational Resources Information Center
de la Torre, Jimmy; Hong, Yuan
2010-01-01
Sample size ranks as one of the most important factors that affect the item calibration task. However, due to practical concerns (e.g., item exposure) items are typically calibrated with much smaller samples than what is desired. To address the need for a more flexible framework that can be used in small sample item calibration, this article…
“Where Have All the Good Men Gone?” Gendered Interactions in Online Dating
Kreager, Derek A.; Cavanagh, Shannon E.; Yen, John; Yu, Mo
2013-01-01
This article explores gendered patterns of online dating and their implications for heterosexual union formation. The authors hypothesized that traditional gender norms combine with preferences for more socially desirable partners to benefit men and disadvantage women in the earliest stages of dating. They tested this with 6 months of online dating data from a mid-sized southwestern city (N = 8,259 men and 6,274 women). They found that both men and women tend to send messages to the most socially desirable alters in the dating market, regardless of their own social desirability. They also found that women who initiate contacts connect with more desirable partners than those who wait to be contacted, but women are 4 times less likely to send messages than men. They concluded that socioeconomic similarities in longer term unions result, in part, from relationship termination (i.e., nonreciprocity) rather than initial preferences for similar partners. PMID:24910472
Pappas, E; Maris, T G; Papadakis, A; Zacharopoulou, F; Damilakis, J; Papanikolaou, N; Gourtsoyiannis, N
2006-10-01
The aim of this work is to investigate experimentally the detector size effect on narrow beam profile measurements. Polymer gel and magnetic resonance imaging dosimetry was used for this purpose. Profile measurements (Pm(s)) of a 5 mm diameter 6 MV stereotactic beam were performed using polymer gels. Eight measurements of the profile of this narrow beam were performed using correspondingly eight different detector sizes. This was achieved using high spatial resolution (0.25 mm) two-dimensional measurements and eight different signal integration volumes A X A X slice thickness, simulating detectors of different size. "A" ranged from 0.25 to 7.5 mm, representing the detector size. The gel-derived profiles exhibited increased penumbra width with increasing detector size, for sizes >0.5 mm. By extrapolating the gel-derived profiles to zero detector size, the true profile (Pt) of the studied beam was derived. The same polymer gel data were also used to simulate a small-volume ion chamber profile measurement of the same beam, in terms of volume averaging. The comparison between these results and actual corresponding small-volume chamber profile measurements performed in this study, reveal that the penumbra broadening caused by both volume averaging and electron transport alterations (present in actual ion chamber profile measurements) is a lot more intense than that resulted by volume averaging effects alone (present in gel-derived profiles simulating ion chamber profile measurements). Therefore, not only the detector size, but also its composition and tissue equivalency is proved to be an important factor for correct narrow beam profile measurements. Additionally, the convolution kernels related to each detector size and to the air ion chamber were calculated using the corresponding profile measurements (Pm(s)), the gel-derived true profile (Pt), and convolution theory. The response kernels of any desired detector can be derived, allowing the elimination of the errors associated with narrow beam profile measurements.
Simulating the x-ray image contrast to setup techniques with desired flaw detectability
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
Role of step size and max dwell time in anatomy based inverse optimization for prostate implants
Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha
2013-01-01
In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323
Latkin, Carl A; Edwards, Catie; Davey-Rothwell, Melissa A; Tobin, Karin E
2017-10-01
Social desirability response bias may lead to inaccurate self-reports and erroneous study conclusions. The present study examined the relationship between social desirability response bias and self-reports of mental health, substance use, and social network factors among a community sample of inner-city substance users. The study was conducted in a sample of 591 opiate and cocaine users in Baltimore, Maryland from 2009 to 2013. Modified items from the Marlowe-Crowne Social Desirability Scale were included in the survey, which was conducted face-to-face and using Audio Computer Self Administering Interview (ACASI) methods. There were highly statistically significant differences in levels of social desirability response bias by levels of depressive symptoms, drug use stigma, physical health status, recent opiate and cocaine use, Alcohol Use Disorders Identification Test (AUDIT) scores, and size of social networks. There were no associations between health service utilization measures and social desirability bias. In multiple logistic regression models, even after including the Center for Epidemiologic Studies Depression Scale (CES-D) as a measure of depressive symptomology, social desirability bias was associated with recent drug use and drug user stigma. Social desirability bias was not associated with enrollment in prior research studies. These findings suggest that social desirability bias is associated with key health measures and that the associations are not primarily due to depressive symptoms. Methods are needed to reduce social desirability bias. Such methods may include the wording and prefacing of questions, clearly defining the role of "study participant," and assessing and addressing motivations for socially desirable responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Promoting family planning use after childbirth and desire to limit childbearing in Ethiopia
2014-01-01
Background In Ethiopia the average fertility rate in rural areas is about 6 children per woman, while it is 2.4 children per woman in urban areas. It is with this concept in mind that the investigators of this study wanted to correlate the promotion of after-child-birth-use of family planning and desire to limit childbearing in Ethiopia. Postpartum amenorrhea signifies the interval between childbirth and the return of menstruation. Objectives The specific objective is to examine the desire to limit family size, along with cases of sterilized, fecund, postpartum amenorrhoea, declared in-fecund and menopausal women within the study area. Methods The study is based on the analysis of secondary data obtained from the 2011 Ethiopian Demographic and Health Survey (EDHS). This study is concentrated on couples because we need to know more about married people’s desire to limit their family size. The bivariate, ANOVA, and multivariate analyses were used to analyse the association. Results The total number of respondents was 6,745 (78.3% rural and 21.7% urban), with 93.6% of them being currently married and 6.4% of them living with a partner. The mean duration of amenorrhea among women who gave birth in the five years preceding the survey is 16 months. Women with equal numbers of sons and daughters were found to be 75.4% (OR = 0.25) less likely to desire more children, compared to women with more sons than daughters. Conclusion Achievable resolutions include increasing females’ ages at marriage, avoiding unwanted teenage pregnancies, completely eradicating home delivery, and inspiring young people to use modern methods of family planning to achieve Millennium Development Goals 4 & 5. PMID:25026977
Size segregation in bedload sediment transport at the particle scale
NASA Astrophysics Data System (ADS)
Frey, P.; Martin, T.
2011-12-01
Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. After a certain time, a quasi-continuous area of smaller beads developed under moving and above quasi-immobile coarser beads (see figure). Results include the time evolution of segregating smaller beads, assessment of percolation velocity and streamwise and vertical velocity depth profiles.
Mercado, Karla P; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J
2016-05-01
Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.
Mercado, Karla P.; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J.
2016-01-01
Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions. PMID:27250199
Metal bellows custom-fabricated from tubing
NASA Technical Reports Server (NTRS)
1965-01-01
Mandrel assembly mounted in a lathe chuck is used with a forming wheel to roll-form bellows from standard sheet metal tubing. Spacers and mandrels of various sizes custom-fabricate bellows of any desired dimensions.
41 CFR 51-6.13 - Replacement and similar commodities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 6-PROCUREMENT... desire to procure additional sizes, colors, or other variations of a commodity after the commodity is...
41 CFR 51-6.13 - Replacement and similar commodities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 6-PROCUREMENT... desire to procure additional sizes, colors, or other variations of a commodity after the commodity is...
41 CFR 51-6.13 - Replacement and similar commodities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 6-PROCUREMENT... desire to procure additional sizes, colors, or other variations of a commodity after the commodity is...
41 CFR 51-6.13 - Replacement and similar commodities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 6-PROCUREMENT... desire to procure additional sizes, colors, or other variations of a commodity after the commodity is...
41 CFR 51-6.13 - Replacement and similar commodities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 6-PROCUREMENT... desire to procure additional sizes, colors, or other variations of a commodity after the commodity is...
Method of fabricating a scalable nanoporous membrane filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem
A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less
NASA Astrophysics Data System (ADS)
Frederickson, Lee Thomas
Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm laser and detector. Beer's law is then used to calculate particle loading. The CPG needs to produce a certain particle loading for a corresponding receiver test. By obtaining the particle loading in the system, the reaction conversion to solid carbon in the CPG can be calculated to measure the efficiency of the CPG. To predict trends in reaction conversion and particle size from experimentation, the CHEMKIN-PRO computer model for the CPG is run for various flow rates and wall temperature profiles. These predictions were a reason for testing at higher wall set point temperatures. Based on these research goals, it was shown that the CPG consistently produces a mean particle diameter of 200-400 nm at the conditions tested, fitting perfectly inside the desired range. This led to successful lab scale SPHER testing which produced a 10-point efficiency increase and 150°C temperature difference with particles present. Also, at 3 g/s dilution air flow rate, an efficiency of 80% at an outlet temperature above 800°C was obtained. Promise was shown at higher CPG experimental temperatures to produce higher reaction conversion, both experimentally and in the model. However, based on wall temperature data taken during experimentation, it is apparent that the CPG needs to have multiple heating zones with separate temperature controllers in order to have an isothermal zone rather than a parabolic temperature profile. As for the computer model, it predicted much higher reaction conversion at higher temperature. The mass fraction of fuel in the inlet stream was shown to not affect conversion while increasing residence time led to increasing conversion. Particle size distribution in the model was far off and showed a bimodal distribution for one of the statistical methods. Using the results from experimentation and modeling, a preliminary CPG design is presented that will operate in a 5MWth receiver system.
Emami, Shahram; Siahi-Shadbad, Mohammadreza; Barzegar-Jalali, Mohammad; Adibkia, Khosro
2018-06-01
This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.
Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis
Adnan, Tassha Hilda
2016-01-01
Sensitivity and specificity analysis is commonly used for screening and diagnostic tests. The main issue researchers face is to determine the sufficient sample sizes that are related with screening and diagnostic studies. Although the formula for sample size calculation is available but concerning majority of the researchers are not mathematicians or statisticians, hence, sample size calculation might not be easy for them. This review paper provides sample size tables with regards to sensitivity and specificity analysis. These tables were derived from formulation of sensitivity and specificity test using Power Analysis and Sample Size (PASS) software based on desired type I error, power and effect size. The approaches on how to use the tables were also discussed. PMID:27891446
Contributed review: quantum cascade laser based photoacoustic detection of explosives.
Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P
2015-03-01
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.
Accurate integration over atomic regions bounded by zero-flux surfaces.
Polestshuk, Pavel M
2013-01-30
The approach for the integration over a region covered by zero-flux surface is described. This approach based on the surface triangulation technique is efficiently realized in a newly developed program TWOE. The elaborated method is tested on several atomic properties including the source function. TWOE results are compared with those produced by using well-known existing programs. Absolute errors in computed atomic properties are shown to range usually from 10(-6) to 10(-5) au. The demonstrative examples prove that present realization has perfect convergence of atomic properties with increasing size of angular grid and allows to obtain highly accurate data even in the most difficult cases. It is believed that the developed program can be bridgehead that allows to implement atomic partitioning of any desired molecular property with high accuracy. Copyright © 2012 Wiley Periodicals, Inc.
Contributed Review: Quantum cascade laser based photoacoustic detection of explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.
2015-03-15
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less
Microparticulate drug delivery system containing tramadol hydrochloride for pain treatment.
Ciurba, Adriana; Todoran, Nicoleta; Vari, C E; Lazăr, Luminita; Al Hussein, Stela; Hancu, G
2014-01-01
The current trend of replacing conventional pharmaceutical forms is justified because most substances administered in this form give fluctuations of therapeutic concentrations and often outside the therapeutic range. In addition, these formulations offer a reduction in the dose or the number of administrations, thus increasing patient compliance. In the experiment, we developed an appropriate technology for the preparation of gelatin microspheres containing tramadol hydrochloride by emulsification/cross-linking method. The formulated microspheres were characterized by product yield, size distribution, encapsulation efficiency and in vitro release of tramadol hydrochloride. Data obtained from in vitro release studies were fitted to various mathematical models to elucidate the transport mechanisms. The kinetic models used were zero-order, first-order, Higuchi Korsmeyer-Peppas and Hopfenberg. Spherical microspheres were obtained, with free-flowing properties. The entrapment efficiency of tramadol hydrochloride in microparticles was 79.91% and product yield -94.92%. As the microsphere size was increased, the entrapment efficiency increased. This was 67.56, 70.03, 79.91% for formulations MT80-250, MT8-500 and, MT250-500. High entrapment efficiency was observed for MT250-500 formulation. The gelatin microspheres had particle sizes ranging from 80 to 500 microm. The drug was released for a period of 12 hours with a maximum release of 96.02%. Of the three proposed formulations, MT250-500 presented desirable properties and optimal characteristics for the therapy of pain. Release of tramadol hydrochloridi was best fitted to Korsmeyer-Peppas equation because the Akaike Information Criterion had the lowest values for this kinetic model. These results suggest the opportunity to influence the therapeutic characteristics of gelatin microspheres to obtain a suitable drug delivery system for the oral administration of tramadol hydrochloride.
Assessment of representational competence in kinematics
NASA Astrophysics Data System (ADS)
Klein, P.; Müller, A.; Kuhn, J.
2017-06-01
A two-tier instrument for representational competence in the field of kinematics (KiRC) is presented, designed for a standard (1st year) calculus-based introductory mechanics course. It comprises 11 multiple choice (MC) and 7 multiple true-false (MTF) questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical) expressions (1st tier). Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier). Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N =83 and N =46 , respectively), including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR 20 =0.86 ). Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions) and for the scope of content covered (e.g., choice of coordinate systems). Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students' representational competency in kinematics (and of its potential change). Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen's d ) varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination). The introduced method of test combination analysis can be applied to any test comprising two components for the purpose of finding effect size ranges.
Size-sensitive sorting of microparticles through control of flow geometry
NASA Astrophysics Data System (ADS)
Wang, Cheng; Jalikop, Shreyas V.; Hilgenfeldt, Sascha
2011-07-01
We demonstrate a general concept of flow manipulation in microfluidic environments, based on controlling the shape and position of flow domains in order to force switching and sorting of microparticles without moving parts or changes in design geometry. Using microbubble acoustic streaming, we show that regulation of the relative strength of streaming and a superimposed Poiseuille flow allows for size-selective trapping and releasing of particles, with particle size sensitivity much greater than what is imposed by the length scales of microfabrication. A simple criterion allows for quantitative tuning of microfluidic devices for switching and sorting of particles of desired size.
Managing numerical errors in random sequential adsorption
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Nowak, Aleksandra
2016-09-01
Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.
Miller, Jr., William H.
1976-01-01
A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.
Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin
2016-04-01
Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).
SiC/Si diode trigger circuit provides automatic range switching for log amplifier
NASA Technical Reports Server (NTRS)
1967-01-01
SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.
Stormwater solids removal characteristics of a catch basin insert using geotextile.
Alam, Md Zahanggir; Anwar, A H M Faisal; Heitz, Anna
2018-03-15
Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180μm (P1; D 50 :106μm) and 0-300μm (P2; D 50 :150μm). The results revealed that the desired stormwater TSS concentration (<30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m 2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10 -5 m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability. Copyright © 2017 Elsevier B.V. All rights reserved.
Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L
2012-10-01
Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Comments on historical variation & desired condition as tools for terrestrial landscape analysis
Constance I. Millar
1997-01-01
Historic (natural or reference) variability and desired condition are key ecosystem-management concepts advocated in many approaches to terrestrial landscape analysis. Historical variation is considered to be a conservative indicator of sustainability. If current conditions are outside the range of historic values, management actions are described to realign the system...
Creativity as a Desirable Graduate Attribute: Implications for Curriculum Design and Employability
ERIC Educational Resources Information Center
Rampersad, Giselle; Patel, Fay
2014-01-01
A wide range of graduate attributes are listed, categorized and prioritized by different higher education institutions. However, one attribute that is less visible in the literature is creativity. In the current study, creativity has emerged as a desirable graduate attribute among students and employers. This paper presents an exploratory…
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-01-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599
Xiao, Bo; Wan, Ying; Wang, Xiaoyu; Zha, Qichen; Liu, Haoming; Qiu, Zhiye; Zhang, Shengmin
2012-03-01
A series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride (HTCC) samples with various degrees of quaternization ranging from 12.4 to 43.7% was synthesized. The structures and properties of HTCC were investigated by FT-IR, (1)H NMR, conductometric titration and XRD analysis. It was found that HTCC had a more amorphous structure than chitosan. HTCC samples showed significantly lower cytotoxicity than polyethyleneimine in HepG2 and HeLa cell lines. The samples spontaneously formed complexes with pGL3 luciferase plasmid. These complexes had desirable particle sizes (160-300 nm) and zeta potentials (10.8-18.7 mV) when the weight ratios of HTCC to plasmid altered in the range of 3:1-20:1. In vitro gene transfection results indicated that HTCC had significantly high transfection efficiency compared with chitosan for delivering pGL3 luciferase plasmid to HeLa cells. The results suggest that HTCC could be a promising non-viral vector for safe and efficient DNA delivery. Copyright © 2011 Elsevier B.V. All rights reserved.
Methods for providing ceramic matrix composite components with increased thermal capacity
NASA Technical Reports Server (NTRS)
Steibel, James Dale (Inventor); Utah, David Alan (Inventor)
2001-01-01
A method for enhancing the cooling capability of a turbine component made from a ceramic matrix composite. The method improves the thermal performance of the component by producing a surface having increased cooling capacity, thereby allowing the component to operate at a higher temperature. The method tailors the available surface area on the cooling surface of the composite component by depositing a particulate layer of coarse grained ceramic powders of preselected size onto the surface of the ceramic matrix composite component. The size of the particulate is selectively tailored to match the desired surface finish or surface roughness of the article. The article may be designed to have different surface finishes for different locations, so that the application of different sized powders can provide different cooling capabilities at different locations, if desired. The compositions of the particulates are chemically compatible with the ceramic material comprising the outer surface or portion of the ceramic matrix composite. The particulates are applied using a slurry and incorporated into the article by heating to an elevated temperature without melting the matrix, the particulates or the fiber reinforcement.
Singh, Gurjeet; Sharma, Shailesh; Gupta, Ghanshyam Das
2017-07-01
The present study emphasized on the use of solid dispersion technology to triumph over the drawbacks associated with the highly effective antihypertensive drug telmisartan using different polymers (poloxamer 188 and locust bean gum) and methods (modified solvent evaporation and lyophilization). It is based on the comparison between selected polymers and methods for enhancing solubility through particle size reduction. The results showed different profiles for particle size, solubility, and dissolution of formulated amorphous systems depicting the great influence of polymer/method used. The resulting amorphous solid dispersions were characterized using x-ray diffraction (XRD), differential scanning calorimetry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analysis. The optimized solid dispersion (TEL 19) prepared with modified locust bean gum using lyophilization technique showed reduced particle size of 184.5 ± 3.7 nm and utmost solubility of 702 ± 5.47 μg/mL in water, which is quite high as compared to the pure drug (≤1 μg/mL). This study showed that the appropriate selection of carrier may lead to the development of solid dispersion formulation with desired solubility and dissolution profiles. The optimized dispersion was later formulated into fast-dissolving tablets, and further optimization was done to obtain the tablets with desired properties.
Tran, Anh K; Koch, Robert L
2017-06-01
The soybean aphid, Aphis glycines Matsumura, is an economically important soybean pest. Many studies have demonstrated that predatory insects are important in suppressing A. glycines population growth. However, to improve the utilization of predators in A. glycines management, sampling plans need to be developed and validated for predators. Aphid predators were sampled in soybean fields near Rosemount, Minnesota, from 2006-2007 and 2013-2015 with sample sizes of 20-80 plants. Sampling plans were developed for Orius insidiosus (Say), Harmonia axyridis (Pallas), and all aphidophagous Coccinellidae species combined. Taylor's power law parameters from the regression of log variance versus log mean suggested aggregated spatial patterns for immature and adult stages combined for O. insidiosus, H. axyridis, and Coccinellidae in soybean fields. Using the parameters from Taylor's power law and Green's method, sequential fixed-precision sampling plans were developed to estimate the density for each predator taxon at desired precision levels of 0.10 and 0.25. To achieve a desired precision of 0.10 and 0.25, the average sample number (ASN) ranged from 398-713 and 64-108 soybean plants, respectively, for all species. Resulting ASNs were relatively large and assumed impractical for most purposes; therefore, the desired precision levels were adjusted to determine the level of precision associated with a more practical ASN. Final analysis indicated an ASN of 38 soybean plants provided precision of 0.32-0.40 for the predators. Development of sampling plans should provide guidance for improved estimation of predator densities for A. glycines pest management programs and for research purposes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Children and Adults Use Physical Size and Numerical Alliances in Third-Party Judgments of Dominance.
Lourenco, Stella F; Bonny, Justin W; Schwartz, Bari L
2015-01-01
Humans and other social animals interact regularly with conspecifics as part of affiliative groups. Many of these interactions are cooperative, but many others involve competition for resources. Competitive exchanges are often resolved on the basis of dominance relationships, with higher-ranking individuals receiving priority access to desired goods. Although no single cue can establish permanent dominance relationships, there are some cues that predict dominance fairly reliably across context. In the present study, we focused on two such cues relevant to competing groups: (i) the physical sizes of individual members, and (ii) their relative number. Using a social competition task, we examined whether, and how, preschool-aged children and adults used differences in physical size and numerical alliances to judge which of two groups should prevail in a competitive exchange for a desired object. These judgments were made when either physical size or number differed between groups (Experiment 1), and when both were available but pitted against each other (Experiments 1 and 2). Our findings revealed that by 3 years of age, humans use multiple perceptible cues in third-party judgments of dominance. Our findings also revealed that 3-year-olds, like adults, weighted these cues flexibly according to the additional factor of overall group size, with the physical sizes of individuals determining dominance in smaller groups (e.g., 2 vs. 4 characters) and the relative number of individuals determining dominance in larger groups (e.g., 15 vs. 30 characters). Taken together, our findings suggest that a basic formula for determining dominance in competitive exchanges, which weights physical size of individuals and numerical alliances as a function of overall group size, is available to young children and appears fairly stable through to adulthood.
Nonsteroidal selective androgen receptor modulators enhance female sexual motivation.
Jones, Amanda; Hwang, Dong Jin; Duke, Charles B; He, Yali; Siddam, Anjaiah; Miller, Duane D; Dalton, James T
2010-08-01
Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder.
Nonsteroidal Selective Androgen Receptor Modulators Enhance Female Sexual Motivation
Jones, Amanda; Hwang, Dong Jin; Duke, Charles B.; He, Yali; Siddam, Anjaiah; Miller, Duane D.
2010-01-01
Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder. PMID:20444881
Andrighetto, Giulia; Grieco, Daniela; Tummolini, Luca
2015-01-01
Three main motivations can explain compliance with social norms: fear of peer punishment, the desire for others' esteem and the desire to meet others' expectations. Though all play a role, only the desire to meet others' expectations can sustain compliance when neither public nor private monitoring is possible. Theoretical models have shown that such desire can indeed sustain social norms, but empirical evidence is lacking. Moreover it is unclear whether this desire ranges over others' “empirical” or “normative” expectations. We propose a new experimental design to isolate this motivation and to investigate what kind of expectations people are inclined to meet. Results indicate that, when nobody can assign either material or immaterial sanctions, the perceived legitimacy of others' normative expectations can motivate a significant number of people to comply with costly social norms. PMID:26500568
Advances in food crystallization.
Hartel, Richard W
2013-01-01
Crystals often play an important role in food product quality and shelf life. Controlling crystallization to obtain the desired crystal content, size distribution, shape, and polymorph is key to manufacturing products with desired functionality and shelf life. Technical developments in the field have improved the tools with which we study and characterize crystals in foods. These developments also help our understanding of the physico-chemical phenomena that govern crystallization and improve our ability to control it during processing and storage. In this review, some of the more important recent developments in measuring and controlling crystallization are discussed.
Pooremamali, Parvin; Eklund, Mona; Östman, Margareta; Persson, Dennis
2012-07-01
Persons with a Middle Eastern background represent a minority in Sweden which has significantly increased in size over recent years. The purpose of the present study was to explore the elements that shape the experiences and perceptions of clients with a Middle Eastern background living by Muslim norms who received occupational therapy in mental health care at the time of participating in the study. The study included interviews with 11 clients who received occupational therapy in mental health care. Data collection and analysis were carried out in accordance with the grounded theory approach. One core category, desiring a union, described the clients' desire for an alliance with the therapists that encompassed the realities and truths embedded in their values, preferences, world-views, and belief systems, as well as a wish to reconstruct their abilities to function and perform daily life tasks within their cultural contexts. The core category included sub-categories: desiring relationship, desiring affiliation, and desiring affirmation as well as some related components. The overall findings showed a tentative model in which the notion of mahram affinity was embedded. The results demonstrated that the clients' views regarding desiring a union had their support in collectivistic world-views that often clash with those of the therapists.
Bicycle-bus conflict area study.
DOT National Transportation Integrated Search
2009-11-01
Increasing bicycle use and bus ridership are both desirable policy goals : from a sustainability standpoint, but on city streets these two modes of : transport are often in conflict. While occupying opposite ends of the size : and weight spectrum, th...
User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels
Bennett, James P.
2001-01-01
This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.
Selection and deposition of nanoparticles using CO.sub.2-expanded liquids
Roberts, Christopher B [Auburn, AL; McLeod, Marshall Chandler [Hillsboro, OR; Anand, Madhu [Auburn, AL
2008-06-10
A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO.sub.2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.
Selection of nanoparticles using CO.sub.2-expanded liquids
Roberts, Christopher B; McLeod, Marshall Chandler; Anand, Madhu
2013-02-19
A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO.sub.2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.
Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Singh, Vivek; Ding, Yuchen
2014-03-01
Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.
Young, G.J.; Ohlinger, L.A.
1958-06-24
A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.
Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2015-01-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
Hall, David B; Meier, Ulrich; Diener, Hans-Cristoph
2005-06-01
The trial objective was to test whether a new mechanism of action would effectively treat migraine headaches and to select a dose range for further investigation. The motivation for a group sequential, adaptive, placebo-controlled trial design was (1) limited information about where across the range of seven doses to focus attention, (2) a need to limit sample size for a complicated inpatient treatment and (3) a desire to reduce exposure of patients to ineffective treatment. A design based on group sequential and up and down designs was developed and operational characteristics were explored by trial simulation. The primary outcome was headache response at 2 h after treatment. Groups of four treated and two placebo patients were assigned to one dose. Adaptive dose selection was based on response rates of 60% seen with other migraine treatments. If more than 60% of treated patients responded, then the next dose was the next lower dose; otherwise, the dose was increased. A stopping rule of at least five groups at the target dose and at least four groups at that dose with more than 60% response was developed to ensure that a selected dose would be statistically significantly (p=0.05) superior to placebo. Simulations indicated good characteristics in terms of control of type 1 error, sufficient power, modest expected sample size and modest bias in estimation. The trial design is attractive for phase 2 clinical trials when response is acute and simple, ideally binary, placebo comparator is required, and patient accrual is relatively slow allowing for the collection and processing of results as a basis for the adaptive assignment of patients to dose groups. The acute migraine trial based on this design was successful in both proof of concept and dose range selection.
Meena, Anuprabha K; Desai, Divyakant; Serajuddin, Abu T M
2017-02-01
The objective of this study was to enhance tabletability of a poorly compactible drug, acetaminophen, by wet granulation using twin screw extruder at high temperature. It was desired that there would be minimum amounts of excipients used and the granules obtained after extrusion would be dry and fall within a size range suitable for tableting without any further processing. Mixtures of acetaminophen (95%) with binders (5% povidone or partially pregelatinized starch) were wet granulated through twin screw extruder at 70°C by adding 7% w/w water. The process had a short granulation time (<1 min), and, on account of the elevated processing temperature used, no drying after extrusion was needed. By optimizing formulation and processing parameters, >90% granules in the size range of 125 to 1000 μm (<3% above 1000 μm and <7% below 125 μm) were obtained without any milling. When the granules were compressed by adding 1% disintegrant and 0.5% lubricant extragranularly, tablets produced (93.6% drug load) had good mechanical strength having hardness >1.7 MPa, which was superior to that of tablets prepared by conventional high shear wet granulation. As the granules could be extruded continuously and did not require drying and milling, the method was amenable to continuous processing. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Comments on Nancy Snow, "Generativity and Flourishing"
ERIC Educational Resources Information Center
Kamtekar, Rachana
2015-01-01
In her rich and wide-ranging paper, Nancy Snow argues that there is a virtue of generativity--an other-regarding desire to invest one's substance in forms of life and work that will outlive the self (p. 10). By "virtue" Snow means not just a desirable or praiseworthy quality of a person, but more precisely, as Aristotle defined it, a…
Family Sex Communication and the Sexual Desire, Attitudes, and Behavior of Late Adolescents
ERIC Educational Resources Information Center
Zamboni, Brian D.; Silver, Rachel
2009-01-01
Parental sex education might promote healthy sexual behavior among adolescents, but some parents assume that family communication about sex will lead to sexual activity. Family sex communication has been studied with a limited range of adolescent sexual behaviors but not sexual fantasy or desire. Two measures of family sex communication were…
Calculation of Local Volume Factors for Relascope Cruising
Charles B. Briscoe
1957-01-01
In these days of climbing stumpage prices it is frequently desirable to attain more precision from a relascope cruise than is possible using ready-made volume factors. Like any factors made to be approximately applicalble over a wide range of conditions, volume factors may give very misleading results under certain local condition. For this reason it is desirable to...
Carr, David L.
2009-01-01
This case study examines the link between marine resource management, and the universal contraceptive use among married couples in the lobster- fishing village of Punta Allen, located in the Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico. Several reasons appear to contribute to small desired and actual family sizes. Some of these include a medical clinic staff effective in promoting family planning, cooperative and private resource ownership, changing cultural attitudes, geographical limitations to population and economic growth, and a desire to conserve the environment for aesthetic and economic motives. Lastly, families desired to preserve a sustained balance between benefiting from lobster harvests today and safeguarding this marine resource for their children in the future. PMID:19672473
NASA Technical Reports Server (NTRS)
Gainer, Patrick A.
1961-01-01
A method is described for determining aerodynamic-influence coefficients from wind-tunnel data for calculating the steady-state load distribution on a wing with arbitrary angle-of-attack distribution at supersonic speeds. The method combines linearized theory with empirical adjustments in order to give accurate results over a wide range of angles of attack. The experimented data required are pressure distributions measured on a flat wing of the desired planform at the desired Mach number and over the desired range of angles of attack. The method has been tested by applying it to wind-tunnel data measured at Mach numbers of 1.61 and 2.01 on wings of the same planform but of different surface shapes. Influence coefficients adjusted to fit the flat wing gave good predictions of the spanwise and chord-wise distributions of loadings measured on twisted and cambered wings.
Barry, Christopher T; Lui, Joyce H L; Anderson, Alexandra C
2017-01-01
An important threat to validity in personality research pertains to an individual's motivation to respond in a socially desirable manner on self-report inventories. This issue was examined in this study in the context of narcissism, aggression, and prosocial behavior in a sample of at-risk adolescents. Participants were 161 adolescents (128 males, 29 females, 4 not reported) ranging in age from 16 to 19 years who were attending a residential program for youth who have dropped out of school. Overall, socially desirable response tendencies were negatively correlated with vulnerable narcissism and self-reported aggression. Moreover, low socially desirable responses strengthened the relation between narcissism and self-reported aggression. Socially desirable responding was not associated with self- or peer-reported prosocial behavior and did not moderate the relation between narcissism and prosocial behavior. These findings indicate that the relation between narcissism and aggression is attenuated by concerns with social desirability. However, further work is needed in broader samples of adolescents to more closely examine whether social desirability concerns actually mitigate aggression among some youth or signify underreporting of one's problem behaviors.
Torsional texturing of superconducting oxide composite articles
Christopherson, Craig John; Riley, Jr., Gilbert N.; Scudiere, John
2002-01-01
A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. In a preferred embodiment, the desired superconducting oxide material is BSCCO 2223.
NASA Astrophysics Data System (ADS)
Sims, Wesley Daniel
This dissertation aims to add to the scientific knowledge of physics in the field of optics by investigating the feasibility to develop a novel technique for immobilization of dye- labeled biomolecules on a polymer substrate. The development of this platform could potentially be used for bio sensing of biohazards in food and the environment. The process is facilitated by excitation of a dye-label attached to the biomolecule of interest with visible light of 488 nm wavelength. Biomolecules from an aqueous medium can be attached at any desired spot on the substrate simply by exposing the area to light. The area of the focused laser beam can control the spot-size of immobilized biomolecules. The technique is used to fabricate microarrays of immobilized antibodies (immunomicroarray) having spot-size of the order of 1 micron. This is a significant improvement over the typical commercial microarrays with spot-size in 10-100 micron range. The immobilization technique is characterized by attaching phospholipids, which have been shown to be useful as platforms for bio sensing applications. It can further be developed by attaching common proteins like Avidin as well as other antibodies against toxins and pathogens known for potential bio-terrorism through food and water systems. Absorption of laser-excited dye labeled biomolecules within the polymer appears to be the mechanism for attachment technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, D. H.; Das Arulsamy, A.; Rider, A. E.
A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si{sup 3+} and Si{sup 1+} ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nmmore » size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si{sup 1+} ions in a low substrate temperature range (227-327 deg. C). As low substrate temperatures ({<=}500 deg. C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.« less
Jung, Yi-seul; Lee, Byung-Hoo
2017-01-01
Porous starch granules (PSGs) with various pores and cavity sizes were prepared by amylolysis enzymes. The greatest hydrolysis rate on corn starch granule was observed with α-amylase, followed by gluco- and β-amylases. Temperature increase enhanced glucoamylase reaction rate more drastically than other enzyme treatments. Final hydrolysis level with glucoamylase reached to 66.9%, close to 67.5% of α-amylolysis. The α-amylase-treated PSGs displayed the greatest pore size and ratio of cavity-to-granule diameters. Gelatinization onset temperatures of PSGs increased to 72.1 (α-), 68.7 (β-), and 68.1°C (gluco-amylolysis) after 8 h; enthalpy changes of β- and gluco-amylase-treated PSGs increased to 13.4, and 13.1 J/g but α-amylase-treated one showed slightly reduced value of 8.5 J/g. Water holding capacities of PSGs were 209.7 (α-), 94.6 (β-), and 133.8% (gluco-amylolysis), and the untreated control had 89.1%; oil holding capacities of them showed 304.5, 182.7, and 211.5%, respectively, while the untreated control had 161.8%. Thus, enzyme types and their reaction conditions can be applied to generate desirable cavity and pore sizes in starch granules. This biocatalytic approach could contribute to develop tailor-made PSGs with distinct internal structure for specific uses in wide range of food, pharmaceutical and other industrial applications. PMID:28727742
The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Baird, James K.; Pusey, Marc L.
1998-01-01
An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.
A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun
2013-06-01
Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.
NASA Astrophysics Data System (ADS)
Seo, D. H.; Rider, A. E.; Das Arulsamy, A.; Levchenko, I.; Ostrikov, K.
2010-01-01
A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si3+ and Si1+ ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si1+ ions in a low substrate temperature range (227-327 °C). As low substrate temperatures (≤500 °C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.
Evidence-based treatments for low sexual desire in women.
Brotto, Lori A
2017-04-01
Low sexual desire is the most common sexual complaint in women, with multinational studies finding that at least a third of women experience low sexual desire. No single etiology for the development of Female Sexual Interest/Arousal Disorder, the diagnosis laid out by the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders, has been established. There has been considerable interest in pharmacological approaches to improving low desire, and agents targeting a range of neurotransmitters have been examined. To date, only flibanserin, a centrally acting medication targeting the serotonin, dopamine, and norepinephrine systems, has been approved by the Food and Drug Administration (FDA). Despite statistically significant effects on sexual desire, sexual distress, and sexually satisfying events, side-effects are significant, and flibanserin is completely contraindicated with alcohol. As such, there has been renewed interest in advancing the science of psychological approaches to low desire, including cognitive behavioral and mindfulness therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Mergeable nervous systems for robots.
Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco
2017-09-12
Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.
Singh, Deependra; Saraf, Swarnlata; Dixit, Vinod Kumar; Saraf, Shailendra
2008-04-01
Gentamicin-Eudragit RS100 microspheres were prepared by modified double emulsion method. A 3(2) full factorial experiment was designed to study the effects of the composition of outer aqueous phase in terms of amount of glycerol (viscosity effect) and sodium chloride (osmotic pressure gradient effect) on the entrapment efficiency and % yield and microsphere size. The results of analysis of variance test for responses measured indicated that the test is significant (p>0.05). The contribution of sodium chloride concentration was found to be higher on entrapment efficiency and % yield, whereas glycerol produced significant effect on the mean diameter of microspheres. Microspheres demonstrated spherical particles in the size range of 33.24-60.43 microm. In vitro release profile of optimized formulation demonstrated sustained release for 24 h following Higuchi kinetics. Finally, drug bioactivity was found to remain intact after microencapsulation. Response surface graphs are presented to examine the effects of independent variables on the responses studied. Thus, by formulation design important parameters affecting formulation characteristics of gentamicin loaded Eudragit RS100 microspheres can be identified for controlled delivery with desirable characters in terms of maximum entrapment and yield.
NASA Astrophysics Data System (ADS)
Pervaiz, Erum; Syam Azhar Virk, Muhammad; Tareen, Ayesha Khan; Zhang, Bingxue; Zhao, Qiuyan; Wang, Zhenzhen; Yang, Minghui
2018-05-01
The fabrication of functional materials in patterned morphology is focused to obtain remarkable physiognomies of the materials for certain applications. Instead of randomly distributed agglomerated nanoparticles, it is highly desirable to arrange them in a motif, as this directed formation of nanomaterials can have a substantial influence on their performance and activity in various applications. With this perspective, MOF derived hollow cubes of nickel cobalt ferrites have been synthesized via a facile process using sacrificial templates at 600 °C. Microcubes, composed of tiny grains in a size range from 10 nm ± 2 nm were obtained in pure form as a polycrystalline material. The high specific surface area (1185 m2 g‑1) and mesoporous nature of hollow cubic ferrites were found to be excellent adsorbents for nitrophenol at room temperature. The equilibrium quantity of adsorbed nitrophenol was calculated as 47 mg g‑1 ferrite, accomplished in 7 min. Their large surface area, mesopores and hollow nature, in combination with controlled size distribution of grains, have enabled this remarkable utilization of nanoferrites for removal of nitrophenol from water.
Crystal Engineering; How molecules build solids
NASA Astrophysics Data System (ADS)
Williams, Jeffrey H.
2017-09-01
There are more than 20 million chemicals in the literature, with new materials being synthesized each week. Most of these molecules are stable, and the 3-dimensional arrangement of the atoms in the molecules, in the various solids may be determined by routine x-ray crystallography. When this is done, it is found that this vast range of molecules, with varying sizes and shapes can be accommodated by only a handful of solid structures. This limited number of architectures for the packing of molecules of all shapes and sizes, to maximize attractive intermolecular forces and minimizing repulsive intermolecular forces, allows us to develop simple models of what holds the molecules together in the solid. In this volume we look at the origin of the molecular architecture of crystals; a topic that is becoming increasingly important and is often termed, crystal engineering. Such studies are a means of predicting crystal structures, and of designing crystals with particular properties by manipulating the structure and interaction of large molecules. That is, creating new crystal architectures with desired physical characteristics in which the molecules pack together in particular architectures; a subject of particular interest to the pharmaceutical industry.
Cavitation guide for control valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tullis, J.P.
1993-04-01
This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines sixmore » cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.« less
Sadeghzade, Sorour; Emadi, Rahmatollah; Tavangarian, Fariborz; Naderi, Mozhgan
2017-02-01
In recent decades, bone scaffolds have received a great attention in biomedical applications due to their critical roles in bone tissue regeneration, vascularization, and healing process. One of the main challenges of using scaffolds in bone defects is the mechanical strength mismatch between the implant and surrounding host tissue which causes stress shielding or failure of the implant during the course of treatment. In this paper, space holder method was applied to synthesize diopside/forsterite composite scaffolds with different diopside content. During the sintering process, NaCl, as spacer agent, gradually evaporated from the system and produced desirable pore size in the scaffolds. The results showed that adding 10wt.% diopside to forsterite can enormously improve the bioactivity, biodegradability, and mechanical properties of the composite scaffolds. The size of crystals and pores of the obtained scaffolds were measured to be in the range 70-100nm and 100-250μm, respectively. Composite scaffolds containing 10wt.% diopside showed similar compressive strength and Young's modulus (4.36±0.3 and 308.15±7MPa, respectively) to that of bone. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Teutsch, Michael; Saur, Günter
2011-11-01
Spaceborne SAR imagery offers high capability for wide-ranging maritime surveillance especially in situations, where AIS (Automatic Identification System) data is not available. Therefore, maritime objects have to be detected and optional information such as size, orientation, or object/ship class is desired. In recent research work, we proposed a SAR processing chain consisting of pre-processing, detection, segmentation, and classification for single-polarimetric (HH) TerraSAR-X StripMap images to finally assign detection hypotheses to class "clutter", "non-ship", "unstructured ship", or "ship structure 1" (bulk carrier appearance) respectively "ship structure 2" (oil tanker appearance). In this work, we extend the existing processing chain and are now able to handle full-polarimetric (HH, HV, VH, VV) TerraSAR-X data. With the possibility of better noise suppression using the different polarizations, we slightly improve both the segmentation and the classification process. In several experiments we demonstrate the potential benefit for segmentation and classification. Precision of size and orientation estimation as well as correct classification rates are calculated individually for single- and quad-polarization and compared to each other.
Holographic enhanced remote sensing system
NASA Technical Reports Server (NTRS)
Iavecchia, Helene P.; Gaynor, Edwin S.; Huff, Lloyd; Rhodes, William T.; Rothenheber, Edward H.
1990-01-01
The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site.
Pervaiz, Erum; Virk, Muhammad Syam Azhar; Tareen, Ayesha Khan; Zhang, Bingxue; Zhao, Qiuyan; Wang, Zhenzhen; Yang, Minghui
2018-05-25
The fabrication of functional materials in patterned morphology is focused to obtain remarkable physiognomies of the materials for certain applications. Instead of randomly distributed agglomerated nanoparticles, it is highly desirable to arrange them in a motif, as this directed formation of nanomaterials can have a substantial influence on their performance and activity in various applications. With this perspective, MOF derived hollow cubes of nickel cobalt ferrites have been synthesized via a facile process using sacrificial templates at 600 °C. Microcubes, composed of tiny grains in a size range from 10 nm ± 2 nm were obtained in pure form as a polycrystalline material. The high specific surface area (1185 m 2 g -1 ) and mesoporous nature of hollow cubic ferrites were found to be excellent adsorbents for nitrophenol at room temperature. The equilibrium quantity of adsorbed nitrophenol was calculated as 47 mg g -1 ferrite, accomplished in 7 min. Their large surface area, mesopores and hollow nature, in combination with controlled size distribution of grains, have enabled this remarkable utilization of nanoferrites for removal of nitrophenol from water.
Rugged sensor window materials for harsh environments
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jasbinger; Hunt, Michael; Aggarwal, Ishwar D.
2014-09-01
There are several military or commercial systems operating in very harsh environments that require rugged windows. On some of these systems, windows become the single point of failure. These applications include sensor or imaging systems, high-energy laser weapons systems, submarine photonic masts, IR countermeasures and missiles. Based on the sea or land or air based platforms the window or dome on these systems must withstand wave slap, underwater or ground based explosions, or survive flight through heavy rain and sand storms while maintaining good optical transmission in the desired wavelength range. Some of these applications still use softer ZnS or fused silica windows because of lack of availability of rugged materials in shapes or sizes required. Sapphire, ALON and spinel are very rugged materials with significantly higher strengths compared to ZnS and fused silica. There have been recent developments in spinel, ALON and sapphire materials to fabricate in large sizes and conformal shapes. We have been developing spinel ceramics for several of these applications. We are also developing β-SiC as a transparent window material as it has higher hardness, strength, and toughness than sapphire, ALON and spinel. This paper gives a summary of our recent findings.
Mohammad-Zamani, Mohammad Javad; Neshat, Mohammad; Moravvej-Farshi, Mohammad Kazem
2016-01-15
A new generation unbiased antennaless CW terahertz (THz) photomixer emitters array made of asymmetric metal-semiconductor-metal (MSM) gratings with a subwavelength pitch, operating in the optical near-field regime, is proposed. We take advantage of size effects in near-field optics and electrostatics to demonstrate the possibility of enhancing the THz power by 4 orders of magnitude, compared to a similar unbiased antennaless array of the same size that operates in the far-field regime. We show that, with the appropriate choice of grating parameters in such THz sources, the first plasmonic resonant cavity mode in the nanoslit between two adjacent MSMs can enhance the optical near-field absorption and, hence, the generation of photocarriers under the slit in the active medium. These photocarriers, on the other hand, are accelerated by the large built-in electric field sustained under the nanoslits by two dissimilar Schottky barriers to create the desired large THz power that is mainly radiated downward. The proposed structure can be tuned in a broadband frequency range of 0.1-3 THz, with output power increasing with frequency.
Laus, Maria Fernanda; Costa, Telma Maria Braga; Almeida, Sebastião Sousa
2015-12-01
The aim of this study was to investigate gender differences in the accuracy of body size estimation and body dissatisfaction among Brazilian undergraduates and their relationships with perceptions of the ideal body silhouettes that would be selected by same-gender and opposite-gender peers. A total of 159 undergraduates (79 males) from a public University in Ribeirao Preto, Sao Paulo, Brazil, participated in the study. They completed a Figure Rating Scale and indicated the figure that best describes the size of their own body (actual), their desired body, the body they judged would be ideal to same-gender peers, and the body they judged would be ideal to opposite-gender peers. The results showed that women were less precise in estimating their actual size and more dissatisfied. The mean Body Mass Index (BMI) that was selected as “current” by women was significantly higher than their desired and ideal BMIs, whereas the mean BMIs that were selected by men were practically the same. Men and women selected ideal silhouettes for their own gender that were the same as those that were selected as ideal by the opposite gender. The mean BMIs that were actually chosen by men and women as desired and ideal were closer to the upper end of normal weight and lower end of overweight, respectively. Such results contradict what has been assumed to be a normative characteristic of men and women in several countries, raising some doubts regarding the role of beliefs about judgments of the opposite gender in the development of body image disturbances.
The desirable qualities of future doctors--a study of medical student perceptions.
Hurwitz, Steven; Kelly, Brian; Powis, David; Smyth, Robyn; Lewin, Terry
2013-07-01
There is a lack of consensus regarding the qualities possessed by the ideal doctor, and very limited research regarding the views of medical students on these qualities. To investigate the views of commencing medical students regarding the desirable qualities of doctors. A survey containing a set of proposed desirable qualities of doctors identified from the existing literature was completed by 158 first-year medical students. The survey had a 75% response rate. Students rated the individual qualities of empathy, motivation to be a doctor, good verbal communication, ethically sound, integrity and honesty as the most important. A factor analysis identified six categories of qualities: methodical processing, cognitive capacity, people skills, generic work ethic, role certainty and warmth. Significant differences in factor scores were found across subgroups of students (international and domestic students, with and without prior tertiary studies) on the following factors: methodical processing, which was scored highest by domestic students with prior tertiary studies, cognitive capacity, which was scored highest by domestic students without prior tertiary studies and generic work ethic, which was scored highest by international students. Medical students identified a range of desirable personal qualities of a doctor which varied according to student characteristics, including their prior educational experience. Future research aiming to define such desirable qualities should include a broader range of stakeholders, including students at different training levels and institutions.
NASA Astrophysics Data System (ADS)
Silva, T. F.; Rodrigues, C. L.; Added, N.; Rizzutto, M. A.; Tabacniks, M. H.; Mangiarotti, A.; Curado, J. F.; Aguirre, F. R.; Aguero, N. F.; Allegro, P. R. P.; Campos, P. H. O. V.; Restrepo, J. M.; Trindade, G. F.; Antonio, M. R.; Assis, R. F.; Leite, A. R.
2018-05-01
The elemental mapping of large areas using ion beam techniques is a desired capability for several scientific communities, involved on topics ranging from geoscience to cultural heritage. Usually, the constraints for large-area mapping are not met in setups employing micro- and nano-probes implemented all over the world. A novel setup for mapping large sized samples in an external beam was recently built at the University of São Paulo employing a broad MeV-proton probe with sub-millimeter dimension, coupled to a high-precision large range XYZ robotic stage (60 cm range in all axis and precision of 5 μ m ensured by optical sensors). An important issue on large area mapping is how to deal with the irregularities of the sample's surface, that may introduce artifacts in the images due to the variation of the measuring conditions. In our setup, we implemented an automatic system based on machine vision to correct the position of the sample to compensate for its surface irregularities. As an additional benefit, a 3D digital reconstruction of the scanned surface can also be obtained. Using this new and unique setup, we have produced large-area elemental maps of ceramics, stones, fossils, and other sort of samples.
NASA Astrophysics Data System (ADS)
Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.
2016-07-01
Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.
Simulant Development for LAWPS Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Schonewill, Philip P.; Burns, Carolyn A.
2017-05-23
This report describes simulant development work that was conducted to support the technology maturation of the LAWPS facility. Desired simulant physical properties (density, viscosity, solids concentration, solid particle size), sodium concentrations, and general anion identifications were provided by WRPS. The simulant recipes, particularly a “nominal” 5.6M Na simulant, are intended to be tested at several scales, ranging from bench-scale (500 mL) to full-scale. Each simulant formulation was selected to be chemically representative of the waste streams anticipated to be fed to the LAWPS system, and used the current version of the LAWPS waste specification as a formulation basis. After simulantmore » development iterations, four simulants of varying sodium concentration (5.6M, 6.0M, 4.0M, and 8.0M) were prepared and characterized. The formulation basis, development testing, and final simulant recipes and characterization data for these four simulants are presented in this report.« less
A space mission to detect imminent Earth impactors
NASA Astrophysics Data System (ADS)
Valsecchi, G. B.; Perozzi, E.; Rossi, A.
2015-03-01
One of the goals of NEO surveys is to discover Earth impactors before they hit. How much warning time is desirable depends on the size of the impactors: for the larger ones more time is needed to mount effective mitigation measures. Initially, NEO surveys were aimed at large impactors, that can have significant global effects; however, their typical time scale is orders of magnitude larger than human lifetime. At the other extreme, monthly and annual events, liberating energies of the order of 1 to 10 kilotons, are immaterial as a threat to mankind, not justifying substantial expenditure on them. Intermediate events are of more concern: in the megatons range, timescales are of the order of centuries, and the damage can be substantial. A classical example is the Tunguska event, in which a body with a diameter of about 30 to 50 m liberated about 5 megatons in the atmosphere, devastating 2 000 square kilometers of Siberian forest.
The Impact of Sampling Medium and Environment on Particle Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Enekwizu, Ogochukwu; Ma, Yan
Sampling on different substrates is commonly used in laboratory and field studies to investigate the morphology and mixing state of aerosol particles. Our focus was on the transformations that can occur to the collected particles during storage, handling, and analysis. Particle samples were prepared by electrostatic deposition of size-classified sodium chloride, sulfuric acid, and coated soot aerosols on different substrates. The samples were inspected by electron microscopy before and after exposure to various environments. For coated soot, the imaging results were compared against mass-mobility measurements of airborne particles that underwent similar treatments. The extent of sample alteration ranged from negligiblemore » to major, depending on the environment, substrate, and particle composition. We discussed the implications of our findings for cases where morphology and the mixing state of particles must be preserved, and cases where particle transformations are desirable.« less
Flat-panel video resolution LED display system
NASA Astrophysics Data System (ADS)
Wareberg, P. G.; Kennedy, D. I.
The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.
Imaging live humans through smoke and flames using far-infrared digital holography.
Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P
2013-03-11
The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.
Santos, Rafael Silva; Loureiro, Kahynna; Rezende, Polyana; Nalone, Luciana; Barbosa, Raquel de Melo; Santini, Antonello; Santos, Ana Cláudia; da Silva, Classius F; Souto, Eliana Barbosa; de Souza, Damião Pergentino; Amaral, Ricardo Guimarães; Severino, Patrícia
2018-06-01
Nanomedicine manipulates materials at atomic, molecular, and supramolecular scale, with at least one dimension within the nanometer range, for biomedical applications. The resulting nanoparticles have been consistently shown beneficial effects for antifungal drugs delivery, overcoming the problems of low bioavailability and high toxicity of these drugs. Due to their unique features, namely the small mean particle size, nanoparticles contribute to the enhanced drug absorption and uptake by the target cells, potentiating the therapeutic drug effect. The topical route is desirable due to the adverse effects arising from oral administration. This review provides a comprehensive analysis of the use of nano compounds for the current treatment of topical fungal infections. A special emphasis is given to the employment of lipid nanoparticles, due to their recognized efficacy, versatility and biocompatibility, attracting the major attention as novel topical nanocompounds used for the administration of antifungal drugs.
NASA Astrophysics Data System (ADS)
Carey, Elizabeth M.; Peters, Gregory H.; Choukroun, Mathieu; Chu, Lauren; Carpenter, Emma; Cohen, Brooklin; Panossian, Lara; Zhou, Yu Meng; Sarkissian, Ani; Moreland, Scott; Shiraishi, Lori R.; Backes, Paul; Zacny, Kris; Green, Jacklyn R.; Raymond, Carol
2017-11-01
Comets are icy remnants of the Solar System formation, and as such contain some of the most primitive volatiles and organic materials. Sampling the surface of a comet is a high priority for the New Frontiers program. Planetary simulants are crucial to the development of adequate in situ instruments and sample acquisition systems. A high-fidelity comet surface simulant has been developed to support hardware design and development for one Comet Surface Sample Return tool, the BiBlade Comet Sampler. Mechanical Porous Ambient Comet Simulants (MPACS) can be manufactured to cover a wide range of desired physical properties, such as density and cone penetration resistance, and exhibit a brittle fracture mode. The structure of the MPACS materials is an aggregated composite structure of weakly-bonded grains of very small size (diameter ≤ 40 μm) that are most relevant to the structure of the surface of a comet nucleus.
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
Hughes, M Courtney; Patrick, Donald L; Hannon, Peggy A; Harris, Jeffrey R; Ghosh, Donetta L
2011-07-01
This study explores the decision-making process for implementing and continuing health promotion programs at small to midsized businesses to inform health promotion practitioners and researchers as they market their services to these businesses. Qualitative interviews are conducted with 24 employers located in the Pacific Northwest ranging in size from 75 to 800 employees, with the majority having between 100 and 200 employees. Small to midsized employers depend most on company success-related factors rather than on humanitarian motives when deciding whether to adopt workplace health promotion programs. They rely heavily on health insurers for health promotion and desire more information about the actual costs and cost-benefits of programs. To increase health promotion adoption at small to midsized businesses, health promotion practitioners should appeal to overall company success-related factors, use the insurance channel, and target their information to both human resource personnel and senior management.
Synthesis of nano-titanium dioxide by sol-gel route
NASA Astrophysics Data System (ADS)
Kaler, Vandana; Duchaniya, R. K.; Pandel, U.
2016-04-01
Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO2 powder in anatase phase was realized by XRD. The optical studies of nano-TiO2 powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO2 particles were in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO2 particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.
The Impact of Sampling Medium and Environment on Particle Morphology
Chen, Chao; Enekwizu, Ogochukwu; Ma, Yan; ...
2017-08-29
Sampling on different substrates is commonly used in laboratory and field studies to investigate the morphology and mixing state of aerosol particles. Our focus was on the transformations that can occur to the collected particles during storage, handling, and analysis. Particle samples were prepared by electrostatic deposition of size-classified sodium chloride, sulfuric acid, and coated soot aerosols on different substrates. The samples were inspected by electron microscopy before and after exposure to various environments. For coated soot, the imaging results were compared against mass-mobility measurements of airborne particles that underwent similar treatments. The extent of sample alteration ranged from negligiblemore » to major, depending on the environment, substrate, and particle composition. We discussed the implications of our findings for cases where morphology and the mixing state of particles must be preserved, and cases where particle transformations are desirable.« less
Method for low temperature preparation of a noble metal alloy
Even, Jr., William R.
2002-01-01
A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.
Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets
NASA Technical Reports Server (NTRS)
Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.
2010-01-01
With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets
Growth and modelling of spherical crystalline morphologies of molecular materials
NASA Astrophysics Data System (ADS)
Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.
2014-10-01
Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.
Sterile Basics of Compounding: Relationship Between Syringe Size and Dosing Accuracy.
Kosinski, Tracy M; Brown, Michael C; Zavala, Pedro J
2018-01-01
The purpose of this study was to investigate the accuracy and reproducibility of a 2-mL volume injection using a 3-mL and 10-mL syringe with pharmacy student compounders. An exercise was designed to assess each student's accuracy in compounding a sterile preparation with the correct 4-mg strength using a 3-mL and 10-mL syringe. The average ondansetron dose when compounded with the 3-mL syringe was 4.03 mg (standard deviation ± 0.45 mg), which was not statistically significantly different than the intended 4-mg desired dose (P=0.497). The average ondansetron dose when compounded with the 10-mL syringe was 4.18 mg (standard deviation + 0.68 mg), which was statistically significantly different than the intended 4-mg desired dose (P=0.002). Additionally, there also was a statistically significant difference in the average ondansetron dose compounded using a 3-mL syringe (4.03 mg) and a 10-mL syringe (4.18 mg) (P=0.027). The accuracy and reproducibility of the 2-mL desired dose volume decreased as the compounding syringe size increased from 3 mL to 10 mL. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
2013-01-01
Background and the aim of the study The objective of the present study was to formulate and optimize nanoparticles (NPs) of sildenafil-loaded poly (lactic-co-glycolic acid) (PLGA) by double emulsion solvent evaporation (DESE) method. The relationship between design factors and experimental data was evaluated using response surface methodology. Method A Box-Behnken design was made considering the mass ratio of drug to polymer (D/P), the volumetric proportion of the water to oil phase (W/O) and the concentration of polyvinyl alcohol (PVA) as the independent agents. PLGA-NPs were successfully prepared and the size (nm), entrapment efficiency (EE), drug loading (DL) and cumulative release of drug from NPs post 1 and 8 hrs were assessed as the responses. Results The NPs were prepared in a spherical shape and the sizes range of 240 to 316 nm. The polydispersity index of size was lower than 0.5 and the EE (%) and DL (%) varied between 14-62% and 2-6%, respectively. The optimized formulation with a desirability factor of 0.9 was selected and characterized. This formulation demonstrated the particle size of 270 nm, EE of 55%, DL of 3.9% and cumulative drug release of 79% after 12 hrs. In vitro release studies showed a burst release at the initial stage followed by a sustained release of sildenafil from NPs up to 12 hrs. The release kinetic of the optimized formulation was fitted to Higuchi model. Conclusions Sildenafil citrate NPs with small particle size, lipophilic feature, high entrapment efficiency and good loading capacity is produced by this method. Characterization of optimum formulation, provided by an evaluation of experimental data, showed no significant difference between calculated and measured data. PMID:24355133
NASA Astrophysics Data System (ADS)
Kåver, Gereon; Lind, Bengt K.; Löf, Johan; Liander, Anders; Brahme, Anders
1999-12-01
The aim of the present work is to better account for the known uncertainties in radiobiological response parameters when optimizing radiation therapy. The radiation sensitivity of a specific patient is usually unknown beyond the expectation value and possibly the standard deviation that may be derived from studies on groups of patients. Instead of trying to find the treatment with the highest possible probability of a desirable outcome for a patient of average sensitivity, it is more desirable to maximize the expectation value of the probability for the desirable outcome over the possible range of variation of the radiation sensitivity of the patient. Such a stochastic optimization will also have to consider the distribution function of the radiation sensitivity and the larger steepness of the response for the individual patient. The results of stochastic optimization are also compared with simpler methods such as using biological response `margins' to account for the range of sensitivity variation. By using stochastic optimization, the absolute gain will typically be of the order of a few per cent and the relative improvement compared with non-stochastic optimization is generally less than about 10 per cent. The extent of this gain varies with the level of interpatient variability as well as with the difficulty and complexity of the case studied. Although the dose changes are rather small (<5 Gy) there is a strong desire to make treatment plans more robust, and tolerant of the likely range of variation of the radiation sensitivity of each individual patient. When more accurate predictive assays of the radiation sensitivity for each patient become available, the need to consider the range of variations can be reduced considerably.
Fish movement and habitat use depends on water body size and shape
Woolnough, D.A.; Downing, J.A.; Newton, T.J.
2009-01-01
Home ranges are central to understanding habitat diversity, effects of fragmentation and conservation. The distance that an organism moves yields information on life history, genetics and interactions with other organisms. Present theory suggests that home range is set by body size of individuals. Here, we analyse estimates of home ranges in lakes and rivers to show that body size of fish and water body size and shape influence home range size. Using 71 studies including 66 fish species on five continents, we show that home range estimates increased with increasing water body size across water body shapes. This contrasts with past studies concluding that body size sets home range. We show that water body size was a consistently significant predictor of home range. In conjunction, body size and water body size can provide improved estimates of home range than just body size alone. As habitat patches are decreasing in size worldwide, our findings have implications for ecology, conservation and genetics of populations in fragmented ecosystems. ?? 2008 Blackwell Munksgaard.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... range infrastructure and livestock management to move toward desired conditions for soils, vegetation... levels using a combination of range improvements and adaptive management strategies to meet or move... Forest Plan standards and guidelines. Range improvement proposals include: Removal of approximately 3...
Ahmad, Rumana; Nicora, Carrie D; Shukla, Anil K; Smith, Richard D; Qian, Wei-Jun; Liu, Alvin Y
2016-12-01
Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in the clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen. In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen were pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction. The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well. Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications.
Rumpagaporn, Pinthip; Kaur, Amandeep; Campanella, Osvaldo H; Patterson, John A; Hamaker, Bruce R
2012-01-01
In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry. © 2011 Institute of Food Technologists®
Environmental Support for Electro Optics Systems
1975-04-01
particles of the atmosphere, it is desirable to determine the size, number concentration, chemical composition, charge carried, if any, radioactivity , if...Proceedings of Symposium on Multiple-Source Urban Diffusion Models, U. S. Environmental Protection Agency Air Polution Control Office, Research Triangle Park
Producing graphite with desired properties
NASA Technical Reports Server (NTRS)
Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.
1971-01-01
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.
Data, Staff, and Money: Leadership Reflections on the Future of Public Health Informatics.
Leider, Jonathon P; Shah, Gulzar H; Williams, Karmen S; Gupta, Akrati; Castrucci, Brian C
Health informatics can play a critical role in supporting local health departments' (LHDs') delivery of certain essential public health services and improving evidence base for decision support. However, LHDs' informatics capacities are below an optimum level. Efforts to build such capacities face ongoing challenges. Moreover, little is known about LHD leaders' desires for the future of public health informatics. Conduct a qualitative analysis of LHDs' future informatics plans, perceived barriers to accomplishing those plans, and potential impact of future advances in public health informatics on the work of the public health enterprise. This research presents findings from 49 in-depth key informant interviews with public health leaders and informatics professionals from LHDs, representing insights from across the United States. Interviewees were selected on the basis of the size of the population their LHD serves, as well as level of informatics capacity. Interviews were transcribed, verified, and double coded. Major barriers to doing more with informatics included staff capacity and training, financial constraints, dependency on state health agency, and small LHD size/lack of regionalization. When asked about the role of leadership in expanding informatics, interviewees said that leaders could make it a priority through (1) learning more about informatics and (2) creating appropriate budgets for integrated information systems. Local health department leaders said that they desired data that were timely and geographically specific. In addition, LHD leaders said that they desired greater access to clinical data, especially around chronic disease indicators. Local health department leadership desires to have timely or even real-time data. Local health departments have a great potential to benefit from informatics, particularly electronic health records in advancing their administrative practices and service delivery, but financial and human capital represents the largest barrier. Interoperability of public health systems is highly desirable but hardly achievable in the presence of such barriers.
Lab-on-chip platform for circulating tumor cells isolation
NASA Astrophysics Data System (ADS)
Maurya, D. K.; Fooladvand, M.; Gray, E.; Ziman, M.; Alameh, K.
2015-12-01
We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.
Johnson, Fred A.; Madsen, Jesper
2016-01-01
This document describes progress to date on the development of an adaptive harvest management strategy for maintaining the Svalbard population of pink‐footed geese (Anser brachyrhynchus) near their agreed target level (60,000) by providing for sustainable harvests in Norway and Denmark. This report provides an assessment of the most recent monitoring information (1991-2015) and its implications for the harvest management strategy. By combining varying hypotheses about survival and reproduction, a suite of nine models have been developed that represent a wide range of possibilities concerning the extent to which demographic rates are density dependent or independent. These results suggest that the pink‐footed goose population may have recently experienced a release from density‐dependent mechanisms, corresponding to the period of most rapid growth in population size. Beginning with the 2016 hunting season, harvest quotas will be prescribed on an annual basis rather than every three years because of the potential to better meet population management objectives. Based on updated model weights, the recent observations of population size (74,800), the proportion of the population comprised of one-year-old birds (0.138), and temperature days in Svalbard (20), the optimal harvest quota for the 2016 hunting season is 25,000. The large increase in quota compared to that during first three years of AHM reflects stakeholders’ desire to reduce population size to the goal of 60,000, recognizing that population size remains relatively high and above-average production is expected in 2016 due to a warm spring.
McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S
2014-07-01
Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Astrophysics Data System (ADS)
Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.
2012-12-01
Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on their composition and structure. In both laboratory and field studies, inorganic salts completely covered by an organic coating have been observed. The impact of this coating on water uptake is uncertain, and a systematic study that examines water uptake as a function of relative humidity is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is one of the most uncertain aspects of future climate change. In this study, we probe the connection between aerosol composition, size and light extinction directly by measuring fRHext, the ratio of the extinction coefficient for humidified particles to the extinction coefficient for dry particles. Particles were composed of 1,2,6-hexanetriol and ammonium sulfate, a system that forms organic coatings around the inorganic core. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity. The fRHext values for a range of %RH for pure ammonium sulfate, pure 1,2,6-hexanetriol, and ammonium sulfate particles with 1,2,6-hexanetriol coatings were measured. The coated particles are created using a method of liquid-liquid separation, where the particles are exposed to water vapor creating a RH% above their deliquescence RH%. The particles are then dried with a Nafion dryer to a RH% that is below the point where liquid-liquid phase separation is observed, but above the efflorescence RH%. Pure 1,2,6-hexanetriol takes up little water over the observed RH range of 45-65%, and therefore fRHext ~ 1. With pure ammonium sulfate for the same RH% range, the fRHext varied from 1.5 - 2, depending on the RH% and the particle size. For the coated particles, at each RH%, the fRHext values fall between those for pure ammonium sulfate and pure 1,2,6-hexanetriol values. This suggests that the organic coating does not prevent water uptake by the ammonium sulfate cores.
Allbutt, John; Ling, Jonathan; Rowley, Martin; Shafiullah, Mohammed
2011-09-01
Correlational research investigating the relationship between scores on self-report imagery questionnaires and measures of social desirable responding has shown only a weak association. However, researchers have argued that this research may have underestimated the size of the relationship because it relied primarily on the Marlowe-Crowne scale (MC; Crowne & Marlowe, Journal of Consulting Psychology, 24, 349-354, 1960), which loads primarily on the least relevant form of social desirable responding for this particular context, the moralistic bias. Here we report the analysis of data correlating the Vividness of Visual Imagery Questionnaire (VVIQ; Marks, Journal of Mental Imagery, 19, 153-166, 1973) with the Balanced Inventory of Desirable Responding (BIDR; Paulhus, 2002) and the MC scale under anonymous testing conditions. The VVIQ correlated significantly with the Self-Deceptive Enhancement (SDE) and Agency Management (AM) BIDR subscales and with the MC. The largest correlation was with SDE. The ability of SDE to predict VVIQ scores was not significantly enhanced by adding either AM or MC. Correlations between the VVIQ and BIDR egoistic scales were larger when the BIDR was continuously rather than dichotomously scored. This analysis indicates that the relationship between self-reported imagery and social desirable responding is likely to be stronger than previously thought.
Application of Structure-from-Motion photogrammetry in laboratory flumes
NASA Astrophysics Data System (ADS)
Morgan, Jacob A.; Brogan, Daniel J.; Nelson, Peter A.
2017-01-01
Structure-from-Motion (SfM) photogrammetry has become widely used for topographic data collection in field and laboratory studies. However, the relative performance of SfM against other methods of topographic measurement in a laboratory flume environment has not been systematically evaluated, and there is a general lack of guidelines for SfM application in flume settings. As the use of SfM in laboratory flume settings becomes more widespread, it is increasingly critical to develop an understanding of how to acquire and process SfM data for a given flume size and sediment characteristics. In this study, we: (1) compare the resolution and accuracy of SfM topographic measurements to terrestrial laser scanning (TLS) measurements in laboratory flumes of varying physical dimensions containing sediments of varying grain sizes; (2) explore the effects of different image acquisition protocols and data processing methods on the resolution and accuracy of topographic data derived from SfM techniques; and (3) provide general guidance for image acquisition and processing for SfM applications in laboratory flumes. To investigate the effects of flume size, sediment size, and photo overlap on the density and accuracy of SfM data, we collected topographic data using both TLS and SfM in five flumes with widths ranging from 0.22 to 6.71 m, lengths ranging from 9.14 to 30.48 m, and median sediment sizes ranging from 0.2 to 31 mm. Acquisition time, image overlap, point density, elevation data, and computed roughness parameters were compared to evaluate the performance of SfM against TLS. We also collected images of a pan of gravel where we varied the distance and angle between the camera and sediment in order to explore how photo acquisition affects the ability to capture grain-scale microtopographic features in SfM-derived point clouds. A variety of image combinations and SfM software package settings were also investigated to determine optimal processing techniques. Results from this study suggest that SfM provides topographic data of similar accuracy to TLS, at higher resolution and lower cost. We found that about 100pixels per grain are required to resolve grain-scale topography. We suggest protocols for image acquisition and SfM software settings to achieve best results when using SfM in laboratory settings. In general, convergent imagery, taken from a higher angle, with at least several overlapping images for each desired point in the flume will result in an acceptable point cloud.
Data intensive computing at Sandia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Andrew T.
2010-09-01
Data-Intensive Computing is parallel computing where you design your algorithms and your software around efficient access and traversal of a data set; where hardware requirements are dictated by data size as much as by desired run times usually distilling compact results from massive data.
Enhanced graphene oxide membranes and methods for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yongsoon; Gotthold, David W.; Fifield, Leonard S.
A method for making a graphene oxide membrane and a resulting free-standing graphene oxide membrane that provides desired qualities of water permeability and selectivity at larger sizes, thinner cross sections, and with increased ruggedness as compared to existing membranes and processes.
Method and apparatus for separating material
Oder, Robin R.; Jamison, Russell E.
2004-11-23
An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor or a pulverizer for reducing the size of the particles. The apparatus includes a mechanism for separating undesired material from desired material.
Impact of a Sophomore Seminar on the Desire of STEM Majors to Pursue a Science Career
ERIC Educational Resources Information Center
Sweeder, Ryan D.; Strong, Philip E.
2012-01-01
This study focuses on the impact of a sophomore seminar on STEM majors desire to pursue a science career. This seminar was a component in a broader scholarship program and focused on helping students gain a broader understanding of the process of science, expose students to a range of career options and provide opportunities for outside of class…
Automatic controls and regulators: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Devices, methods, and techniques for control and regulation of the mechanical/physical functions involved in implementing the space program are discussed. Section one deals with automatic controls considered to be, essentially, start-stop operations or those holding the activity in a desired constraint. Devices that may be used to regulate activities within desired ranges or subject them to predetermined changes are dealt with in section two.
Life on the edge: carnivore body size variation is all over the place
Meiri, Shai; Dayan, Tamar; Simberloff, Daniel; Grenyer, Richard
2009-01-01
Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way. PMID:19324818
Family size preference and factors affecting the fertility rate in Hyogo, Japan.
Matsumoto, Yasuyo; Yamabe, Shingo
2013-01-30
Japan has consistently shown a low fertility rate, which has been lower than the replacement level since 1974, and represents one of the least fertile countries in the world. This study was designed to determine the family size preference of and its effect on Japanese women. We conducted a questionnaire survey among women who visited the obstetrics and gynecology department of 18 hospitals and clinics in the Hyogo Prefecture, Japan, between October 2011 and February 2012. All the women were categorized according to age group and area of residence, and the survey results were statistically analyzed using a t test. A total of 1616 women were included in this study. There was no significant difference between the mean desired and actual marital ages (26.70 and 26.67 years, respectively). The mean desired number of children was 2.55, which was significantly more than the mean actual number of children (1.77) in all generations. The mean desired and actual numbers of children were more in the rural areas (2.73 and 2.09, respectively) than in the urban (2.54 and 1.70, respectively) and semi-urban areas (2.49 and 1.60, respectively). The mean number of family members was significantly greater in the rural areas (3.84) than in the urban (3.25) and semi-urban areas (3.05).The most important concern among women who had never delivered a baby was childbearing itself, followed by the expenses related to pregnancy and childbearing. The family size preference of the women in our study was higher than the actual numbers of children. The fertility intentions were low among the younger women but high among those living in rural areas with larger families.
Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing
2016-01-01
Context: Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. Objective: The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. Materials and Methods: B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. Results: The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of −31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. Conclusion: B-NLCs described in this study are well-suited for the delivery of baicalin. SUMMARY Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ: Streptozotocin, TC: Total cholesterol, TEM: Transmission Electron Microscope, TG: Total Triglyceride, ZP: Zeta Potential. PMID:27601850
Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing
2016-01-01
Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ: Streptozotocin, TC: Total cholesterol, TEM: Transmission Electron Microscope, TG: Total Triglyceride, ZP: Zeta Potential.
NASA Technical Reports Server (NTRS)
Gonzalez-Titman, Carlos
1994-01-01
It has been demonstrated that R2BaCuO(5-x) (R = Y, Sm, Gd, Dy, Ho, Er, Yb) does not undergo significant densification unless the sintering temperatures are near the incongruent melting point or the sintering times are long. Good quality powders of Y2BaCuO(5-x) have been synthesized by using oxide raw materials or precursors such as acetates and nitrates. The acetates- and the nitrates-derived yttrium green phase resulted in finer particle sizes, acceptable dielectric properties and lower melting temperatures than those processed via oxide raw materials. The hot pressing technique has been employed to produce a dense R2BaCuO(5-x) (R=Y,Gd) substrate with satisfactory dielectric properties. Reactivity to reducing conditions, i.e. graphite die, limited the optimization of the properties. A high sensitivity to the annealing atmosphere has been demonstrated in Y2BaCuO,.,,. Oxygen treatment at 950 OC has been shown to improve the dielectric properties while treatment in nitrogen, at the same temperature, degraded desirable properties. A high sensitivity to the annealing atmosphere has been demonstrated in Y2BaCuO(5-x). Oxygen treatment at 950 C has been shown to improve the dielectric properties while treatment in nitrogen, at the same temperature, degraded desirable properties. The dielectric constants of the rare earth green phases R2BaCuO(5-x) were found to be low. Relaxation peaks were detected at low temperatures (T less than 150 K) and at high temperatures (150 less than T greater than 420 K). The dielectric losses and conductivities at 77 K were measured to be in the range of 10(exp -4) and 10(exp -12) (Omega-cm)(exp -1), respectively. Many parameters were found to exhibit dependencies on the rare earth cation sizes.
Strong size-dependent stress relaxation in electrospun polymer nanofibers
NASA Astrophysics Data System (ADS)
Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; Cai, Shengqiang
2017-01-01
Electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.
Strong size-dependent stress relaxation in electrospun polymer nanofibers
Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; ...
2017-01-04
Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less
Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-25
Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions
NASA Astrophysics Data System (ADS)
Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming
2016-06-01
On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms
Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc
2014-01-01
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792
Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions
Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming
2016-01-01
On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840
Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.
Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming
2016-06-29
On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.
An approach to detecting deliberately introduced defects and micro-defects in 3D printed objects
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-05-01
In prior work, Zeltmann, et al. demonstrated the negative impact that can be created by defects of various sizes in 3D printed objects. These defects may make the object unsuitable for its application or even present a hazard, if the object is being used for a safety-critical application. With the uses of 3D printing proliferating and consumer access to printers increasing, the desire of a nefarious individual or group to subvert the desired printing quality and safety attributes of a printer or printed object must be considered. Several different approaches to subversion may exist. Attackers may physically impair the functionality of the printer or launch a cyber-attack. Detecting introduced defects, from either attack, is critical to maintaining public trust in 3D printed objects and the technology. This paper presents an alternate approach. It applies a quality assurance technology based on visible light sensing to this challenge and assesses its capability for detecting introduced defects of multiple sizes.
Thermal barriers constrain microbial elevational range size via climate variability.
Wang, Jianjun; Soininen, Janne
2017-08-01
Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.
2014-01-01
Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence. PMID:24694150
TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS
Elliott, R. Paul
1963-01-01
Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889–894. 1963.—The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959
The quality mammographic image. A review of its components.
Rickard, M T
1989-11-01
Seven major factors resulting in a quality or high contrast and high resolution mammographic image have been discussed. The following is a summary of their key features: 1) Dedicated mammographic equipment. --Molybdenum target material --Molybdenum filter, beryllium window --Low kVp usage, in range of 24 to 30 --Routine contact mammography performed at 25 kVp --Slightly lower kVp for coned compression --Slightly higher kVp for microfocus magnification 2) Film density --Phototimer with adjustable position --Calibration of phototimer to optimal optical density of approx. 1.4 over full kVp range 3) Breast Compression --General and focal (coned compression). --Essential to achieve proper contrast, resolution and breast immobility. --Foot controls preferable. 4) Focal Spot. --Size recommendation for contact work 0.3 mm. --Minimum power output of 100 mA at 25 kVp desirable to avoid movement blurring in contact grid work. --Size recommendation for magnification work 0.1 mm. 5) Grid. --Usage recommended as routine in all but magnification work. 6) Film-screen Combination. --High contrast--high speed film. --High resolution screen. --Specifically designed cassette for close film-screen contact and low radiation absorption. --Use of faster screens for magnification techniques. 7) Dedicated processing. --Increased developing time--40 to 45 seconds. --Increased developer temperature--35 to 38 degrees. --Adjusted replenishment rate and dryer temperature. All seven factors contributing to image contrast and resolution affect radiation dosage to the breast. The risk of increased dosage associated with the use of various techniques needs to be balanced against the risks of incorrect diagnosis associated with their non-use.(ABSTRACT TRUNCATED AT 250 WORDS)
Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Ochilov, S.; Alam, M. S.; Bal, A.
2006-05-01
Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.
Guidelines for Selecting Microphones for Human Voice Production Research
ERIC Educational Resources Information Center
Svec, Jan G.; Granqvist, Svante
2010-01-01
Purpose: This tutorial addresses fundamental characteristics of microphones (frequency response, frequency range, dynamic range, and directionality), which are important for accurate measurements of voice and speech. Method: Technical and voice literature was reviewed and analyzed. The following recommendations on desirable microphone…
A Powder Delivery System (PoDS) for Mars in situ Science
NASA Astrophysics Data System (ADS)
Bryson, C.; Blake, D.; Saha, C.; Sarrazin, P.
2004-12-01
Many instruments proposed for in situ Mars science investigations work best with fine-grained samples of rocks or soils. Such instruments include the mineral analyzer CheMin [1] and any instrument that requires samples having high surface areas (e.g., mass spectrometers, organic analyzers, etc). The Powder Delivery System (PoDS) is designed to deliver powders of selected grain sizes from a sample acquisition device such as an arm-deployed robotic driller or corer to an instrument suite located on the body of a rover/lander. PoDS is capable of size-selective sampling of crushed rocks, soil or drill powder for delivery to instruments that require specific grain sizes (e.g. 5-50 mg of less than150 micron powder for CheMin). Sample material is transported as an aerosol of particles and gas by vacuum advection. In the laboratory a venturi pump driven by compressed air provides the impulse. On Mars, the ambient atmosphere is a source of CO2 that can be captured and compressed by adsorption pumping during diurnal temperature cycling [2]. The lower atmospheric pressure on the surface of Mars (7 torr) will affect fundamental parameters of gas-particle interaction such as Reynolds, Stocks and Knudsen numbers [3]. However, calculations show that the PoDS will operate under both Martian and terrestrial atmospheric conditions. Cyclone separators with appropriate particle size selection ranges remove particles from the aerosol stream. The vortex flow inside the cyclone causes grains larger than a specific size to be collected, while smaller grains remain entrained in the gas. Cyclones are very efficient inertial and centrifugal particle separators with cut sizes (d50) as low as 4 microns. Depending on the particle size ranges desired, a series of cyclones with descending cut sizes may be used, the simplest case being a single cyclone for particle deposition without mass separation. Transmission / membrane filters of appropriate pore sizes may also be used to collect powder from the aerosol stream. Results of a number of tests of the prototype PoDS will be presented. [1] Blake D. F., Sarrazin P., Bish D. L., Feldman S., Chipera S. J, Vaniman D.T., and Collins S., 2004, Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument, LPSC XXXV abstr. #1794 (CD-ROM). [2] Finn J. E., McKay C. P. and Sridhar R. K., 1999, Martian Atmosphere Utilization by Temperature-Swing Adsorption, University of Arizona, Publication No.961597, http://stl.ame.arizona.edu/publications/961597.pdf [3] Hinds W. C., 1999, Aerosol Technology - Properties, Behavior, and Measurement of Airborne Particles, Second edition, John Wiley & Sons, Inc., pp 15-67, 111-136.
Building sandbars in Grand Canyon
2016-01-01
Now, by implementing a new strategy that calls for repeated releases of large volumes of water from the dam, the U.S. Department of the Interior seeks to increase the size and number of these sandbars. Three years into the “High Flow Experiment” protocol, the releases appear to be achieving the desired effect. Many sandbars have increased in size following each controlled flood and the cumulative results of the first three releases suggests that sandbar declines may be reversed if controlled floods can be implemented frequently enough.
Building sandbars in the Grand Canyon
Grams, Paul E.; Schmidt, John C.; Wright, Scott A.; Topping, David; Melis, Theodore S.; Rubin, David M.
2015-01-01
Now, by implementing a new strategy that calls for repeated releases of large volumes of water from the dam, the U.S. Department of the Interior (DOI) seeks to increase the size and number of these sandbars. Three years into the "high-flow experiment" (HFE) protocol, the releases appear to be achieving the desired effect. Many sandbars have increased in size following each controlled flood, and the cumulative results of the first three releases suggest that sandbar declines may be reversed if controlled floods can be implemented frequently enough.
Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots
NASA Astrophysics Data System (ADS)
Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil
2018-05-01
Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).
Optimal number of features as a function of sample size for various classification rules.
Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R
2005-04-15
Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.
Gunst, Annika; Jern, Patrick; Westberg, Lars; Johansson, Ada; Salo, Benny; Burri, Andrea; Spector, Tim; Eriksson, Elias; Sandnabba, N Kenneth; Santtila, Pekka
2015-03-01
Female sexual desire and arousal problems have been shown to have a heritable component of moderate size. Previous molecular genetic studies on sexual desire have mainly focused on genes associated with neurotransmitters such as dopamine and serotonin. Nevertheless, there is reason to believe that hormones with more specific functions concerning sexuality could have an impact on sexual desire and arousal. The aim of the present study was to investigate the possible effects of 17 single nucleotide polymorphisms (SNPs) located in estrogen receptor genes on female sexual desire and subjective and genital arousal (lubrication). Based on previous research, we hypothesized that ESR1 and ESR2 are relevant genes that contribute to female sexual desire and arousal. The desire, arousal, and lubrication subdomains of the Female Sexual Function Index self-report questionnaire were used. The present study involved 2,448 female twins and their sisters aged 18-49 who had submitted saliva samples for genotyping. The participants were a subset from a large-scale, population-based sample. We found nominally significant main effects on sexual desire for three ESR2 -linked SNPs when controlled for anxiety, suggesting that individuals homozygous for the G allele of the rs1271572 SNP, and the A allele of the rs4986938 and rs928554 SNPs had lower levels of sexual desire. The rs4986938 SNP also had a nominally significant effect on lubrication. No effects for any of the SNPs on subjective arousal could be detected. The number of nominally significant results for SNPs in the ESR2 gene before correcting for multiple testing suggests that further studies on the possible influence of this gene on interindividual variation in female sexual functioning are warranted. In contrast, no support for an involvement of ESR1 was obtained. Our results should be interpreted with caution until replicated in independent, large samples. © 2014 International Society for Sexual Medicine.
Regional deposition of nasal sprays in adults: A wide ranging computational study.
Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H
2018-05-01
The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.
Electrically tunable laser based on oblique heliconical cholesteric liquid crystal
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Storey, John M. D.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter
2016-01-01
A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch p in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch p and thus the wavelength of lasing λ¯ can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with λ¯ spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLCOH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLCOH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography. PMID:27807135
Electrically tunable laser based on oblique heliconical cholesteric liquid crystal.
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D; Palffy-Muhoray, Peter
2016-11-15
A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch [Formula: see text] in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch [Formula: see text] and thus the wavelength of lasing [Formula: see text] can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with [Formula: see text] spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLC OH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLC OH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography.
Son preference, fertility desire and contraceptive use in two largest cities of Pakistan.
Farooqui, M N
1990-01-01
The preference for sons in deeprooted in Pakistan and the growth rate is 3.1%/year, which has long term implications for the Population Welfare Program. In this study, the relationship between living sons and contraceptive use is examined among 1243 currently married industrial workers and 307 control group workers from 13 sample industries in Karachi and Lahore, Pakistan. The Family Welfare Education for Workers' Project has been operating in these industries. Questions were asked about the number of living children by sex, desired number of children by sex, and ideal family size by sex. The ideal number of children was 4 (3.7) with an average of 2.2 sons and 1.5 daughters, which indicates son preference. Average desired children (living plus additional wanted) is 5.0 (4.7) with an average of 2.6 for sons and 2.1 for daughters. All workers with an ideal of 1 wanted a son. 90% of those wanting an ideal of 2 children desired 1 son and 1 daughter. 95% with an ideal of 3 children wanted 2 sons and 1 daughter. 83% with an ideal of 4 children desired 2 sons and 2 daughters, and 16% wanted 3 sons and 1 daughter. 85% with an ideal of 5 children wanted 3 sons and 2 daughters. Further evidence for son preference occurs with total desired number of children; i.e., 79% of those desiring 2 children preferred 1 of each sex, and 21%, 2 sons. This pattern was repeated for each increase in child desired. The desire for children was also examined in terms of existing children. Workers who have more sons were less likely to desire another child; however, those with 2 living daughters desired 1.63 more children and those with 1 of each desired .85 more children. Those with 2 sons desired .67 more children. The number of additional children desired decreases with the increasing number of living children, and with increasing numbers of living sons. Desiring no more children tends to increase with an increase in number of living children, and with an increase in the number of living sons shows a stronger tendency to desire no more children. Contraception is used for spacing as well as halting childbearing. There is a direct association between the number of living children and the current use of contraception, and contraception use increases with an increase in the number of living children, and in the number of living sons, linearly. The exception is 2 sons and a desire for a daughter. Results are not generalizable to the national population.
Continuous internal channels formed in aluminum fusion welds
NASA Technical Reports Server (NTRS)
Gault, J.; Sabo, W.
1967-01-01
Process produces continuous internal channel systems on a repeatable basis in 2014-T6 aluminum. Standard machining forms the initial channel, which is filled with tungsten carbide powder. TIG machine fusion welding completes formation of the channel. Chem-mill techniques enlarge it to the desired size.
Wide-field high-performance geosynchronous imaging
NASA Astrophysics Data System (ADS)
Wood, H. John; Jenstrom, Del; Wilson, Mark; Hinkal, Sanford; Kirchman, Frank
1998-01-01
The NASA Mission to Planet Earth (MTPE) Program and the National Oceanographic and Atmospheric Administration (NOAA) are sponsoring the Advanced Geosynchronous Studies (AGS) to develop technologies and system concepts for Earth observation from geosynchronous orbit. This series of studies is intended to benefit both MTPE science and the NOAA GOES Program. Within the AGS program, advanced imager trade studies have investigated two candidate concepts for near-term advanced geosynchronous imagers. One concept uses a scan mirror to direct the line of sight from a 3-axis stabilized platform. Another eliminates the need for a scan mirror by using an agile spacecraft bus to scan the entire instrument. The purpose of this paper is to discuss the optical design trades and system issues encountered in evaluating the two scanning approaches. The imager design started with a look at first principles: what is the most efficient way to image the Earth in those numerous spectral bands of interest to MTPE scientists and NOAA weather forecasters. Optical design trades included rotating filter wheels and dispersive grating instruments. The design converged on a bandpass filter instrument using four focal planes to cover the spectral range 0.45 to 13.0 micrometers. The first imager design uses a small agile spacecraft supporting an afocal optical telescope. Dichroic beamsplitters feed refractive objectives to four focal planes. The detectors are a series of long linear and rectangular arrays which are scanned in a raster fashion over the 17 degree Earth image. The use of the spacecraft attitude control system to raster the imager field-of-view (FOV) back and forth over the Earth eliminates the need for a scan mirror. However, the price paid is significant energy and time required to reverse the spacecraft slew motions at the end of each scan line. Hence, it is desired to minimize the number of scan lines needed to cover the full Earth disk. This desire, coupled with the ground coverage requirements, drives the telescope design to a 1.6 degree square FOV to provide full Earth disk coverage in less than 12 swaths. The telescope design to accommodate the FOV and image quality requirements is a 30 cm aperture three-element off-axis anastigmat. The size and mass of the imager instrument that result from this optical configuration are larger than desired. But spacecraft reaction wheel torque and power requirements to raster the imager FOV are achievable using existing spacecraft technology. However, launch mass and cost are higher than desired. In the second high-level trade study, the AGS imager team is looking at incorporating a scan mirror and having the satellite three-axis stabilized. The use of the scan mirror eliminates the long turn-around times of the spacecraft scanning approach, allowing for faster Earth coverage. Thus the field of view of the afocal telescope can be reduced by half while still satisfying ground coverage requirements. The optical design of the reduced field afocal telescope is being studied to shrink its size and improve its performance. Both a three-mirror Cassegrain afocal and a two-mirror pair of confocal paraboloids are being considered. With either telescope, the size, mass, and power requirements of this imager are significantly less than those of the first imager design. Both imager designs appear to be feasible and both meet envisioned MTPE and NOAA geosynchronous imaging needs. The AGS imager team is continuing to explore the optical trade space to further optimize imager designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Randolph R; Campbell, David V; Shinde, Subhash L
A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitchmore » is preserved across the enlarged pixel array.« less
A compact roller-gear pitch-yaw joint module: Design and control issues
NASA Technical Reports Server (NTRS)
Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.
1993-01-01
Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.
An Informatics Based Approach to Reduce the Grain Size of Cast Hadfield Steel
NASA Astrophysics Data System (ADS)
Dey, Swati; Pathak, Shankha; Sheoran, Sumit; Kela, Damodar H.; Datta, Shubhabrata
2016-04-01
Materials Informatics concept using computational intelligence based approaches are employed to bring out the significant alloying additions to achieve grain refinement in cast Hadfield steel. Castings of Hadfield steels used for railway crossings, requires fine grained austenitic structure. Maintaining proper grain size of this component is very crucial in order to achieve the desired properties and service life. This work studies the important variables affecting the grain size of such steels which includes the compositional and processing variables. The computational findings and prior knowledge is used to design the alloy, which is subjected to a few trials to validate the findings.
49 CFR 213.343 - Continuous welded rail (CWR).
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and...) Designation of a desired rail installation temperature range for the geographic area in which the CWR is... installation temperature range when adjusting CWR. (b) Rail anchoring or fastening requirements that will...
Balata, Gehan F; Essa, Ebtessam A; Shamardl, Hanan A; Zaidan, Samira H; Abourehab, Mohammed AS
2016-01-01
Resveratrol is a nonflavonoid polyphenolic compound which has a broad range of desirable biological actions which include antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and antitumor activities. However, there is concern that the bioavailability of resveratrol may limit some of its clinical utility. So, the aim of this study was to enhance the dissolution rate and oral hypoglycemic and hypolipidemic effect of resveratrol. This was achieved using self-emulsifying drug delivery system. The solubility of resveratrol was determined in various oils, surfactants, and cosurfactants. Phase diagram was plotted to identify the efficient self-emulsification regions using olive oil, Tween 80, and propylene glycol. The prepared self-emulsifying drug delivery system formulations were tested for thermodynamic stability, emulsification efficiency, droplet size, zeta potential, and in vitro drug release. Self-emulsification time averaged 17–99 seconds without precipitation and the mean droplet sizes ranged from 285 to 823 nm with overall zeta potential of −2.24 to −15.4 mv. All formulations improved drug dissolution in relation to unprocessed drug with a trend of decreased dissolution parameters with increasing oil content. The optimized formula, F19, with dissolution efficiency of 94% compared to only 42% of pure drug was used to study the in vivo hypoglycemic and hypolipidemic effects of resveratrol in diabetic-induced albino rats and comparing these effects with that of pure resveratrol in different doses. Treatment with the optimized formula, F19, at 10 mg/kg had significant hypoglycemic and hypolipidemic effects in diabetic-induced albino rats which were nearly similar to the high dose (20 mg/kg) of unprocessed resveratrol. From the study, it was concluded that formulation F19 has good emulsification property with uniform globule size, satisfactory in vitro drug release profile, and significant in vivo hypoglycemic effects which identify future opportunities for resveratrol delivery. PMID:26792979
Balata, Gehan F; Essa, Ebtessam A; Shamardl, Hanan A; Zaidan, Samira H; Abourehab, Mohammed As
2016-01-01
Resveratrol is a nonflavonoid polyphenolic compound which has a broad range of desirable biological actions which include antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and antitumor activities. However, there is concern that the bioavailability of resveratrol may limit some of its clinical utility. So, the aim of this study was to enhance the dissolution rate and oral hypoglycemic and hypolipidemic effect of resveratrol. This was achieved using self-emulsifying drug delivery system. The solubility of resveratrol was determined in various oils, surfactants, and cosurfactants. Phase diagram was plotted to identify the efficient self-emulsification regions using olive oil, Tween 80, and propylene glycol. The prepared self-emulsifying drug delivery system formulations were tested for thermodynamic stability, emulsification efficiency, droplet size, zeta potential, and in vitro drug release. Self-emulsification time averaged 17-99 seconds without precipitation and the mean droplet sizes ranged from 285 to 823 nm with overall zeta potential of -2.24 to -15.4 mv. All formulations improved drug dissolution in relation to unprocessed drug with a trend of decreased dissolution parameters with increasing oil content. The optimized formula, F19, with dissolution efficiency of 94% compared to only 42% of pure drug was used to study the in vivo hypoglycemic and hypolipidemic effects of resveratrol in diabetic-induced albino rats and comparing these effects with that of pure resveratrol in different doses. Treatment with the optimized formula, F19, at 10 mg/kg had significant hypoglycemic and hypolipidemic effects in diabetic-induced albino rats which were nearly similar to the high dose (20 mg/kg) of unprocessed resveratrol. From the study, it was concluded that formulation F19 has good emulsification property with uniform globule size, satisfactory in vitro drug release profile, and significant in vivo hypoglycemic effects which identify future opportunities for resveratrol delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damast, Shari, E-mail: shari.damast@yale.edu; Alektiar, Kaled M.; Goldfarb, Shari
Purpose: We used the Female Sexual Function Index (FSFI) to investigate the prevalence of sexual dysfunction (SD) and factors associated with diminished sexual functioning in early stage endometrial cancer (EC) patients treated with simple hysterectomy and adjuvant brachytherapy. Methods and Materials: A cohort of 104 patients followed in a radiation oncology clinic completed questionnaires to quantify current levels of sexual functioning. The time interval between hysterectomy and questionnaire completion ranged from <6 months to >5 years. Multivariate regression was performed using the FSFI as a continuous variable (score range, 1.2-35.4). SD was defined as an FSFI score of <26, basedmore » on the published validation study. Results: SD was reported by 81% of respondents. The mean ({+-} standard deviation) domain scores in order of highest-to-lowest functioning were: satisfaction, 2.9 ({+-}2.0); orgasm, 2.5 ({+-}2.4); desire, 2.4 ({+-}1.3); arousal, 2.2 ({+-}2.0); dryness, 2.1 ({+-}2.1); and pain, 1.9 ({+-}2.3). Compared to the index population in which the FSFI cut-score was validated (healthy women ages 18-74), all scores were low. Compared to published scores of a postmenopausal population, scores were not statistically different. Multivariate analysis isolated factors associated with lower FSFI scores, including having laparotomy as opposed to minimally invasive surgery (effect size, -7.1 points; 95% CI, -11.2 to -3.1; P<.001), lack of vaginal lubricant use (effect size, -4.4 points; 95% CI, -8.7 to -0.2, P=.040), and short time interval (<6 months) from hysterectomy to questionnaire completion (effect size, -4.6 points; 95% CI, -9.3-0.2; P=.059). Conclusions: The rate of SD, as defined by an FSFI score <26, was prevalent. The postmenopausal status of EC patients alone is a known risk factor for SD. Additional factors associated with poor sexual functioning following treatment for EC included receipt of laparotomy and lack of vaginal lubricant use.« less
Extending the Host Range of Bacteriophage Particles for DNA Transduction.
Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi
2017-06-01
A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.
Talluri, Siddhartha Venkata; Kuppusamy, Gowthamarajan; Karri, Veera Venkata Satyanarayana Reddy; Yamjala, Karthik; Wadhwani, Ashish; Madhunapantula, SubbaRao V; Pindiprolu, Saikiran S S
2017-05-01
The current work was carried out by the principles of quality-by-design approach to develop an optimized solid lipid nanoparticles (SLNs) formulation of diallyl disulfide (DADS) through systematic statistical study. And its antitumor activity of DADS was also evaluated on breast cancer cell lines. To understand the effect of formulation variables (critical parameters) on the responses (critical quality attributes) of SLN, a 3-factor, 3-level Box-Behnken design, was explored to predict the responses such as particle size (Y1) and % entrapment efficiency (EE) (Y2) when concentration of surfactant (X1), amount of lipid (X2), and volume of solvent (X3) were selected as independent variables. Particle size analysis revealed that all the batches were within the nanometer range. DADS was released from the SLN much more rapidly at pH 4.5 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. The cytotoxicity, reactive oxygen species (ROS), determination revealed that the antitumor activity of DADS is enhanced with SLN compared to DADS-free drug, and apoptosis is the mechanism underlying the cytotoxicity. The present study indicated the remarkable potential of DADS-SLN in enhancing the anticancer effect of DADS in breast cancer cells in vitro.
Application of modern radiative transfer tools to model laboratory quartz emissivity
NASA Astrophysics Data System (ADS)
Pitman, Karly M.; Wolff, Michael J.; Clayton, Geoffrey C.
2005-08-01
Planetary remote sensing of regolith surfaces requires use of theoretical models for interpretation of constituent grain physical properties. In this work, we review and critically evaluate past efforts to strengthen numerical radiative transfer (RT) models with comparison to a trusted set of nadir incidence laboratory quartz emissivity spectra. By first establishing a baseline statistical metric to rate successful model-laboratory emissivity spectral fits, we assess the efficacy of hybrid computational solutions (Mie theory + numerically exact RT algorithm) to calculate theoretical emissivity values for micron-sized α-quartz particles in the thermal infrared (2000-200 cm-1) wave number range. We show that Mie theory, a widely used but poor approximation to irregular grain shape, fails to produce the single scattering albedo and asymmetry parameter needed to arrive at the desired laboratory emissivity values. Through simple numerical experiments, we show that corrections to single scattering albedo and asymmetry parameter values generated via Mie theory become more necessary with increasing grain size. We directly compare the performance of diffraction subtraction and static structure factor corrections to the single scattering albedo, asymmetry parameter, and emissivity for dense packing of grains. Through these sensitivity studies, we provide evidence that, assuming RT methods work well given sufficiently well-quantified inputs, assumptions about the scatterer itself constitute the most crucial aspect of modeling emissivity values.
Oxygen sensing glucose biosensors based on alginate nano-micro systems
NASA Astrophysics Data System (ADS)
Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit
2014-04-01
Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.
Multiphysics control of a two-fluid coaxial atomizer supported by electric-charge on the liquid jet
NASA Astrophysics Data System (ADS)
Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto
2017-11-01
We present an experimental setup to investigate multiphysics control strategies on atomization of a laminar fluid stream by a coaxial turbulent jet. Spray control (i.e. driving the droplet size distribution and the spatio-temporal location of the droplets towards a desired objective) has many potential engineering applications, but requires a mechanistic understanding of the processes that control droplet formation and transport (primary and secondary instabilities, turbulent transport, hydrodynamic and electric forces on the droplets, ...). We characterize experimentally the break-up dynamics in a canonical coaxial atomizer, and the spray structure (droplet size, location, and velocity as a function of time) in a series of open loop conditions with harmonic forcing of the gas swirl ratio, liquid injection rate, the electric field strength at the nozzle and along the spray development region. The effect of these actuators are characterized for different gas Reynolds numbers ranging from 104-106. This open-loop characterization of the injector will be used to develop reduced order models for feedback control, as well as to validate assumptions underlying an adjoint-based computational control strategy. This work is part of a large-scale project funded by an ONR MURI to provide fundamental understanding of the mechanisms for feedback control of sprays.
Lesion strength control by automatic temperature guided retinal photocoagulation.
Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf
2016-09-01
Laser photocoagulation is an established treatment for a variety of retinal diseases. However, when using the same irradiation parameter, the size and strength of the lesions are unpredictable due to unknown inter- and intraindividual optical properties of the fundus layers. The aim of this work is to investigate a feedback system to generate desired lesions of preselectable strengths by automatically controlling the irradiation time. Optoacoustics were used for retinal temperature monitoring. A 532-nm continuous wave Nd:YAG laser was used for photocoagulation. A 75-ns/523-nm Q-switched Nd:YLF laser simultaneously excited temperature-dependent pressure transients, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. The temperature data were analyzed during the irradiation by a LabVIEW routine. The treatment laser was switched off automatically when the required lesion strength was achieved. Five different feedback control algorithms for different lesion sizes were developed and tested on rabbits in vivo. With a laser spot diameter of 133???m, five different lesion types with ophthalmoscopically visible diameters ranging mostly between 100 and 200???m, and different appearances were achieved by automatic exposure time control. The automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.
Lesion strength control by automatic temperature guided retinal photocoagulation
NASA Astrophysics Data System (ADS)
Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf
2016-09-01
Laser photocoagulation is an established treatment for a variety of retinal diseases. However, when using the same irradiation parameter, the size and strength of the lesions are unpredictable due to unknown inter- and intraindividual optical properties of the fundus layers. The aim of this work is to investigate a feedback system to generate desired lesions of preselectable strengths by automatically controlling the irradiation time. Optoacoustics were used for retinal temperature monitoring. A 532-nm continuous wave Nd:YAG laser was used for photocoagulation. A 75-ns/523-nm Q-switched Nd:YLF laser simultaneously excited temperature-dependent pressure transients, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. The temperature data were analyzed during the irradiation by a LabVIEW routine. The treatment laser was switched off automatically when the required lesion strength was achieved. Five different feedback control algorithms for different lesion sizes were developed and tested on rabbits in vivo. With a laser spot diameter of 133 μm, five different lesion types with ophthalmoscopically visible diameters ranging mostly between 100 and 200 μm, and different appearances were achieved by automatic exposure time control. The automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.
Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D
2015-10-01
Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tucker, Michael; Meredith, Oliver; Brothers, Bobby
1986-01-01
Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.
Schmidt, Marek E; Yasaka, Anto; Akabori, Masashi; Mizuta, Hiroshi
2017-08-01
The recent technological advance of the gas field ion source (GFIS) and its successful integration into systems has renewed the interest in the focused ion beam (FIB) technology. Due to the atomically small source size and the use of light ions, the limitations of the liquid metal ion source are solved as device dimensions are pushed further towards the single-digit nanometer size. Helium and neon ions are the most widely used, but a large portfolio of available ion species is desirable, to allow a wide range of applications. Among argon and hydrogen, $${\\rm N}_{2}^{{\\plus}} $$ ions offer unique characteristics due to their covalent bond and their use as dopant for various carbon-based materials including diamond. Here, we provide a first look at the $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB enabled imaging of a large selection of microscopic structures, including gold on carbon test specimen, thin metal films on insulator and nanostructured carbon-based devices, which are among the most actively researched materials in the field of nanoelectronics. The results are compared with images acquired by He+ ions, and we show that $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB can offer improved material contrast even at very low imaging dose and is more sensitive to the surface roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterova, T.N.; Malova, T.N.; Pil'shchikov, V.A.
1985-09-01
The authors describe the results of a study to evaluate the thermodynamic properties of t-Alk phi. These results, combined with earlier results, have enabled the authors to complete a thermodynamic analysis of the process for preparing tertiary alkylphenols which are widely used as additives in lubricating and fuel oils. Research was conducted over a fairly wide temperature range, in which the median temperature value corresponds to the upper temperature limit for a continuous process utilizing a type KU-2 ion-exchange resin catalyst; continuous operations are currently the most widely used method for industrial preparation of alkylphenols. Experimentally determined values of themore » equilibrium constants in a table indicate that they are influenced primarily by the nature of the reaction, and do not depend on the size of the tertiary alkyl substituents. Data in another table demonstrate that the thermodynamic properties of a given reaction are determined by the reaction type and are independent of the size of the tertiary alkylphenols. It was discovered that in order to increase the yield of the desired tert-alkylphenol product, the process should be carried out at the minimum possible temperature, using catalysts which are sufficiently active to guarantee thermodynamic control.« less
Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio
2018-01-23
Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.
Tang, Siah Ying; Manickam, Sivakumar; Wei, Tan Khang; Nashiru, Billa
2012-03-01
In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Y.; Bradford, S. A.; Simunek, J.
2011-12-01
Laboratory and numerical studies were conducted to investigate the influence of physical and chemical factors on the transport of E.coli O157:H7 and coliphage φX174 through preferential flow systems. Preferential flow systems were created in 13.2 cm diameter and 20 cm length columns by embedding sand lens of various grain size, length, and vertical position into finer textured matrix sand. Tracer solutions containing bromide and microbes were prepared at different ionic strength (IS) and sprayed onto the surface of the columns at desired steady rates using a rain simulator to achieve saturated or unsaturated conditions. Effluents were collected at the column bottom continuously and analyzed for concentrations of bromide, φX174, and E.coli. Complementary numerical simulations were conducted using the HYDRUS 2D code over a wider range of physical and chemical conditions, and to analyze bromide and microbe transport in the columns. Results indicated that preferential transport of the microbes was dependent on the hydraulic contrasts between the matrix and lens, the length of the lens, the size of microorganism, and the water saturation. The IS also influenced the preferential transport of microbes. In particular, increasing retention with IS decreased the overall microbe transport but increased the relative importance of preferential flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun
Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less
How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.
Wiczling, Paweł; Kaliszan, Roman
2016-01-05
In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.
Inverse design of a proper number, shapes, sizes, and locations of coolant flow passages
NASA Technical Reports Server (NTRS)
Dulikravich, George S.
1992-01-01
During the past several years we have developed an inverse method that allows a thermal cooling system designer to determine proper sizes, shapes, and locations of coolant passages (holes) in, say, an internally cooled turbine blade, a scram jet strut, a rocket chamber wall, etc. Using this method the designer can enforce a desired heat flux distribution on the hot outer surface of the object, while simultaneously enforcing desired temperature distributions on the same hot outer surface as well as on the cooled interior surfaces of each of the coolant passages. This constitutes an over-specified problem which is solved by allowing the number, sizes, locations and shapes of the holes to adjust iteratively until the final internally cooled configuration satisfies the over-specified surface thermal conditions and the governing equation for the steady temperature field. The problem is solved by minimizing an error function expressing the difference between the specified and the computed hot surface heat fluxes. The temperature field analysis was performed using our highly accurate boundary integral element code with linearly varying temperature along straight surface panels. Examples of the inverse design applied to internally cooled turbine blades and scram jet struts (coated and non-coated) having circular and non-circular coolant flow passages will be shown.
Han, Felicity Y; Thurecht, Kristofer J; Lam, Ai-Leen; Whittaker, Andrew K; Smith, Maree T
2015-07-01
Intractable cancer-related pain complicated by a neuropathic component due to nerve impingement is poorly alleviated even by escalating doses of a strong opioid analgesic. To address this unmet medical need, we developed sustained-release, bioerodable, hydromorphone (potent strong opioid)- and ketamine (analgesic adjuvant)-loaded microparticles for intrathecal (i.t.) coadministration. Drug-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared using a water-in-oil-in-water method with evaporation. Encapsulation efficiency of hydromorphone and ketamine in PLGA (50:50) microparticles was 26% and 56%, respectively. Microparticles had the desired size range (20-60 μm) and in vitro release was prolonged at ≥28 days. Microparticles were stable for ≥6 months when stored refrigerated protected from light in a desiccator. Desirably, i.t. injected fluorescent dye-labeled PLGA microparticles in rats remained in the lumbar region for ≥7 days. In a rat model of neuropathic pain, i.t. coinjection of hydromorphone- and ketamine-loaded microparticles (each 1 mg) produced analgesia for 8 h only. Possible explanations include inadequate release of ketamine and/or hydromorphone into the spinal fluid, and/or insufficient ketamine loading to prevent development of analgesic tolerance to the released hydromorphone. As sub-analgesic doses of i.t. ketamine at 24-48 h intervals restored analgesia on each occasion, insufficient ketamine loading appears problematic. We will investigate these issues in future work. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kafeshani, Farzaneh Alizadeh; Rajabpour, Ali; Aghajanzadeh, Sirous; Gholamian, Esmaeil; Farkhari, Mohammad
2018-04-02
Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.
Gupta, Biki; Poudel, Bijay Kumar; Pathak, Shiva; Tak, Jin Wook; Lee, Hee Hyun; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2016-06-01
Imatinib (IMT), an anticancer agent, inhibits receptor tyrosine kinases and is characterized by poor aqueous solubility, extensive first-pass metabolism, and rapid clearance. The aims of the current study are to prepare imatinib-loaded solid lipid nanoparticles (IMT-SLN) and study the effects of associated formulation variables on particle size and drug encapsulation on IMT-SLN using an experimental design. IMT-SLN was optimized by use of a "combo" approach involving Plackett-Burman design (PBD) and Box-Behnken design (BBD). PBD screening resulted in the determination of organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), and amount of Tween® 20 (Tw20) as three significant variables for particle size (S z), drug loading (DL), and encapsulation efficiency (EE) of IMT-SLN, which were used for optimization by BBD, yielding an optimized criteria of O/A = 0.04, D/L = 0.03, and Tw20 = 2.50% w/v. The optimized IMT-SLN exhibited monodispersed particles with a size range of 69.0 ± 0.9 nm, ζ-potential of -24.2 ± 1.2 mV, and DL and EE of 2.9 ± 0.1 and 97.6 ± 0.1% w/w, respectively. Results of in vitro release study showed a sustained release pattern, presumably by diffusion and erosion, with a higher release rate at pH 5.0, compared to pH 7.4. In conclusion, use of the combo experimental design approach enabled clear understanding of the effects of various formulation variables on IMT-SLN and aided in the preparation of a system which exhibited desirable physicochemical and release characteristics.
Scaling in the Donangelo-Sneppen model for evolution of money
NASA Astrophysics Data System (ADS)
Stauffer, Dietrich; P. Radomski, Jan
2001-03-01
The evolution of money from unsuccessful barter attempts, as modeled by Donangelo and Sneppen, is modified by a deterministic instead of a probabilistic selection of the most desired product as money. We check in particular the characteristic times of the model as a function of system size.
A Study of the Deregionalization of a High School District.
ERIC Educational Resources Information Center
Tuckman, Bruce W.; Libonate, George A.
In past decades communities regionalized their high school districts to overcome size limitations. Now, community growth, changes in property values, and concern with self-governance have prompted interest in deregionalization. This is the study of a constituent community's desire to withdraw from a regional district. The study has four…
Desktop Publishing: A Brave New World and Publishing from the Desktop.
ERIC Educational Resources Information Center
Lormand, Robert; Rowe, Jane J.
1988-01-01
The first of two articles presents basic selection criteria for desktop publishing software packages, including discussion of expectations, required equipment, training costs, publication size, desired software features, additional equipment needed, and quality control. The second provides a brief description of desktop publishing using the Apple…
Internal Temperature Control For Vibration Testers
NASA Technical Reports Server (NTRS)
Dean, Richard J.
1996-01-01
Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.
The Argumentative Student in the Speech Communication Classroom: An Investigation and Implications.
ERIC Educational Resources Information Center
Infante, Dominic A.
1982-01-01
Discusses a recent conceptualization of argumentativeness. Reports on an investigation of characteristics of argumentative students, which included variables such as birth order, family size, high school training, college grade point average, etc. Supports the assumption that argumentativeness is a desirable communication trait and considers…
NASA Technical Reports Server (NTRS)
Mclyman, C. W.
1983-01-01
Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.
Factors that influence sexual arousal in men: a focus group study.
Janssen, Erick; McBride, Kimberly R; Yarber, William; Hill, Brandon J; Butler, Scott M
2008-04-01
The goal of this study was to improve our understanding of men's sexual response and its components as well as the factors or types of situations that men describe as facilitating or interfering with sexual arousal. Six focus groups, involving 50 mostly white, heterosexual men (M age = 35.2 years; range, 18-70), were conducted. As it was previously found in women (Graham, Sanders, Milhausen, & McBride, Archives of Sexual Behavior, 33, 527-538, 2004), men described a wide range of physical (genital as well as nongenital) and cognitive/affective cues for sexual arousal. Also, men described the relationship between sexual desire and arousal as being variable and complex, presented a wide range of factors that increased or decreased sexual arousal, and showed substantial variability in both the importance and direction of their effects. The findings may help further development of models of sexual response and inform discussions about gender differences in sexual desire and arousal.
Development of a new body image assessment scale in urban Cameroon: an anthropological approach.
Cohen, Emmanuel; Pasquet, Patrick
2011-01-01
Develop and validate body image scales (BIS) presenting real human bodies adapted to the macroscopic phenotype of urban Cameroonian populations. Quantitative and qualitative analysis. Yaoundé, capital city of Cameroon. Four samples with balanced sex-ratio: the first (n=16) aged 18 to 65 years (qualitative study), the second (n=30) aged 25 to 40 years (photo database), the third (n=47) and fourth (n=181), > or =18 years (validation study). Construct validity, test retest reliability, concurrent and convergent validity of BIS. Body image scales present six Cameroonians of each sex arranged according to main body mass index (BMI) categories: underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight (25-29.9 kg/m2), obesity class I (30-34.9 kg/m2), obesity class II (35-39.9 kg/m2), and obesity class III (> or =40 kg/m2). Test-retest reliability correlations for current body size (CBS), desired body size and current desirable discrepancy (body self-satisfaction index) on BIS were never below .90. Plus, for the concurrent validity, we observed a significant correlation (r=0.67, P<.01) between measured BMI and CBS. Finally, the convergent validity between BIS and a female African American silhouettes scale, for different dimensions of body size perceptions, is acceptable. Body image scales are adapted to the phenotypic characteristics of urban Cameroonian populations. They are reliable and valid to assess body size perceptions and culturally adapted to the Cameroonian context.
New approaches for estimating the demand for children.
Lightbourne R
1987-01-01
This paper estimates the instantaneous demand for children during each month of the reproductive span. It does so by analyzing survey data on the desire to conceive as a function of 2 variables: parity and months elapsed since entry to each parity. Based on the estimates of the instantaneous demand for children, the paper develops a unified model for estimating desired conception waits, desired birth intervals, number of births wanted over a lifetime, the desired level of contraceptive prevalence, and the unmet need for contraception. The model is applied to Ecuador, Ghana, Malaysia and the Republic of Korea. In 3 of the 4 countries, substantial numbers of women desire very long birth intervals; if that preference for long birth intervals were realized, fertility would be substantially reduced. In all 4 countries there is a fraction of women whose desired conception wait is so short as to endanger maternal health and raise child mortality. In all 4 countries, the mean number of children that women would bear if they conceived only when they wanted to is very much lower than the contemporaneous total fertility rate and is substantially lower than desired family size. The estimates indicate that if women fully implemented their postponing and terminating preferences, fertility would decline by 58% in Ecuador, 25% in Ghana, 42% in Malaysia and 31% in the Republic of Korea. The level of contraceptive prevalence that would come into being if women implemented their postponing and terminating preferences is much higher than the actual level of contraceptive prevalence, thus indicating high levels of unmet need for contraceptives. These findings have implications for population policy in the areas of maternal health and child mortality, fertility and family planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.
2014-04-15
Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample sizemore » required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.« less
2017-01-01
Home range size is a fundamental concept for understanding animal dispersion and ecological needs, and it is one of the most commonly reported ecological attributes of free-ranging mammals. Previous studies indicate that red foxes Vulpes vulpes display great variability in home range size. Yet, there has been little consensus regarding the reasons why home range sizes of red foxes vary so extensively. In this study, we examine possible causes of variation in red fox home range sizes using data from 52 GPS collared red foxes from four study areas representing a gradient of landscape productivity and human landscape alteration in Norway and Sweden. Using 90% Local Convex Hull home range estimates, we examined how red fox home range size varied in relation to latitude, elevation, vegetation zone, proportion of agricultural land and human settlement within a home range, and sex and age. We found considerable variation in red fox home range sizes, ranging between 0.95 km2 to 44 km2 (LoCoH 90%) and 2.4 km2 to 358 km2 (MCP 100%). Elevation, proportion of agricultural land and sex accounted for 50% of the variation in home range size found amongst foxes, with elevation having the strongest effect. Red foxes residing in more productive landscapes (those in more southern vegetation zones), had home ranges approximately four times smaller than the home ranges of foxes in the northern boreal vegetation zone. Our results indicate that home range size was influenced by a productivity gradient at both the landscape (latitude) and the local (elevation) scale. The influence of the proportion of agriculture land on home range size of foxes illustrates how human landscape alteration can affect the space use and distribution of red foxes. Further, the variation in home range size found in this study demonstrates the plasticity of red foxes to respond to changing human landscape alteration as well as changes in landscape productivity, which may be contributing to red fox population increases and northern range expansions. PMID:28384313
Indetermination of particle sizing by laser diffraction in the anomalous size ranges
NASA Astrophysics Data System (ADS)
Pan, Linchao; Ge, Baozhen; Zhang, Fugen
2017-09-01
The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.
Survival and home-range size of Northern Spotted Owls in southwestern Oregon
Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.
2013-01-01
In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x = 576; SE = 75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.
Easton, Jonathan F; Stephens, Christopher R; Sicilia, Heriberto Román
2017-01-01
We study the relationship among real, self-perceived, and desired body mass index (BMI) in 21,288 adults from the Mexican National Health and Nutrition Survey 2012, analyzing the effect of sex and diagnosis of obesity/overweight by a healthcare professional. Self-perceived and desired BMI are analyzed via a figure rating scale question and compared to real BMI. Only 8.8 and 6.1% of the diagnosed and non-diagnosed obese, respectively, correctly identify themselves as such. For the obese, 20.2% of non-diagnosed and 12.7% of diagnosed perceive themselves as normal or underweight, while 49.1 and 37% of these are satisfied with their perceived BMI. Only 7.8% of the obese, whose real and perceived BMI coincide, have a desired BMI equal to their perceived one. In contrast, 43.2% of the obese, whose perceived BMI is normal, have a desired BMI the same as their perceived one. Although the average desired body figure corresponds to the normal BMI range, misperceptions of BMI correlate strongly with the degree of satisfaction associated with perceived BMI, with larger misperceptions indicating a higher degree of satisfaction. Hypothesizing that the differences between real, perceived, and desired weight are a motivator for weight change, one potential intervention could be the periodic assessment of real, perceived, and desired BMI in order to correct misleading weight misperceptions that could potentially obstruct positive behavioral change.
Strona, Giovanni; Galli, Paolo; Montano, Simone; Seveso, Davide; Fattorini, Simone
2012-01-01
Although fish range sizes are expected to be associated with species dispersal ability, several studies failed to find a clear relationship between range size and duration of larval stage as a measure of dispersal potential. We investigated how six characteristics of the adult phase of fishes (maximum body length, growth rate, age at first maturity, life span, trophic level and frequency of occurrence) possibly associated with colonization ability correlate with range size in both freshwater and marine species at global scale. We used more than 12 million point records to estimate range size of 1829 freshwater species and 10068 marine species. As measures of range size we used both area of occupancy and extent of occurrence. Relationships between range size and species traits were assessed using Canonical Correlation Analysis. We found that frequency of occurrence and maximum body length had a strong influence on range size measures, which is consistent with patterns previously found (at smaller scales) in several other taxa. Freshwater and marine fishes showed striking similarities, suggesting the existence of common mechanisms regulating fish biogeography in the marine and freshwater realms.
A GNM mission and system design proposal
NASA Technical Reports Server (NTRS)
Bailey, Stephen
1990-01-01
Here, the author takes an advocacy position for the proposed Mars Global Network Mission (GNM); it is not intended to be an objective review, although both pros and cons are presented in summary. The mission consists of launches from earth in the '96, '98, and '01 opportunities on Delta-class launch vehicles (approx. 1000 kg injected to Mars in 8 to 10 ft diameter shroud). The trans Mars boost stage injects a stack of small independent, aeroshelled spacecraft. The stack separates from the boost stage and each rigid (as opposed to deployable) aeroshell flies to Mars on its own, performing midcourse maneuvers as necessary. Each spacecraft flies a unique trajectory which is targeted to achieve approach atmospheric interface at the desired latitude and lighting conditions; arrival times may vary by a month or more. A direct entry is performed, there is no propulsive orbit capture. The aeroshelled rough-landers are targeted to achieve a desired attitude and entry flight path angle, and then follow a passive ballistic trajectory until terminal descent. Based on sensed acceleration (integrated to deduce altitude), the aft aeroshell skirt is jettisoned; a short later a supersonic parachute is deployed. The ballistic coefficient of the parachute is sized to achieve terminal velocity at about 8 km. However the parachute is not deployed until a few Km above the surface to minimize wind-induced drift. The nose cap descent imaging begins, a laser altimeter also measures true altitude. Based on range and range rate to the surface, the parachute is jettisoned and the lander uses descent engines to achieve touchdown velocity. A contact sensor shuts down the motors to avoid cratering, and the lander rough-lands at less than 5 m/sec. The remaining aeroshell and a deployable bladder attenuate landing loads and minimize the possibility of tip over. Science instruments are deployed and activated, and the network is established.
Economic Analysis of a Postulated space Tourism Transportation System
NASA Astrophysics Data System (ADS)
Hill, Allan S.
2002-01-01
Design concepts and associated costs were defined for a family of launch vehicles supporting a space tourism endeavor requiring the weekly transport of space tourists to and from an Earth- orbiting facility. The stated business goal for the Space Tourist Transportation System (STTS) element of the proposed commercial space venture was to transport and return ~50 passengers a week to LEO at a cost of roughly 50 K per seat commencing in 2005. This paper summarizes the economic analyses conducted within a broader Systems Engineering study of the postulated concept. Parametric costs were derived using TransCostSystems' (TCS) Cost Engineering Handbook, version 7. Costs were developed as a function of critical system characteristics and selected business scenarios. Various economic strategies directed toward achieving a cost of ~50 K per seat were identified and examined. The study indicated that with a `nominal' business scenario, the initial cost for developing and producing a fully reusable, 2-stage STTS element for a baseline of 46-passengers was about 15.5 B assuming a plausible `commercialization factor' of 0.333. The associated per-seat ticket cost was ~890 K, more than an order of magnitude higher than desired. If the system is enlarged to 104 passengers for better efficiency, the STTS initial cost for the nominal business scenario is increased to about 19.8 B and the per-seat ticket cost is reduced to ~530 K. It was concluded that achieving the desired ticket cost of 50 K per seat is not feasible unless the size of the STTS, and therefore of the entire system, is substantially increased. However, for the specified operational characteristics, it was shown that a system capacity of thousands of passengers per week is required. This implies an extremely high total system development cost, which is not very realistic as a commercial venture, especially in the proposed time frame. These results suggested that ambitious commercial space ventures may have to rely on sizeable government subsidies for economic viability. For example, in this study a hypothesized government subsidy of half the STTS development cost reduced the per-seat ticket cost by about 35%. A number of other business scenarios were also investigated, including `expensing' the entire program initial cost. These analyses showed that even greater government participation, additional aggressive business strategies and/or very low commercialization factors (in the range of 1/9 to 1/30) must be implemented or attained to achieve the desired per-seat cost of 50 K per passenger with reasonably sized vehicles.
Turchik, Jessica A; Hassija, Christina M
2014-09-01
The purpose of the present study was to examine the relationship between college women's sexual victimization experiences, health risk behaviors, and sexual functioning. A sample of 309 college women at a mid-sized Midwestern university completed measures assessing sexual victimization, sexual risk taking, substance use behaviors, sexual desire, sexual functioning, prior sexual experiences, and social desirability. Severity of sexual victimization was measured using a multi-item, behaviorally specific, gender-neutral measure, which was divided into four categories based on severity (none, sexual contact, sexual coercion, rape). Within the sample, 72.8% (n = 225) of women reported at least one experience of sexual victimization since age 16. Results from MANCOVAs and a multinomial logistic regression, controlling for social desirability and prior sexual experience, revealed that sexual victimization among female students was related to increased drug use, problematic drinking behaviors, sexual risk taking, sexual dysfunction, and dyadic sexual desire. In addition, findings indicated that women exposed to more severe forms of sexual victimization (i.e., rape) were most likely to report these risk-taking behaviors and sexual functioning issues. Implications for sexual assault risk reduction programming and treatment are discussed. © The Author(s) 2014.
Li, Ning; Ziegemeier, Daisy; Bass, Laura; Wang, Wei
2008-12-15
In this study, size exclusion high performance liquid chromatography was evaluated for its application in separation and quantitation of free polyethylene glycol (PEG) and its PEGylated-protein-conjugate (PEG-conjugate). Although the large mass of the free PEG (2-fold greater than the protein) made separation difficult, chromatographic conditions were identified enabling resolution and quantitation of the free PEG, PEG-conjugate and non-PEGylated protein with Shodex Protein KW803 and KW804 columns in series and refractive index detection. The optimum resolution of 1.7 and 2.0 was achieved for the free PEG and PEG-conjugate as well as the free PEG and non-PEGylated protein using 20mM HEPES buffer at pH 6.5. Under this condition, the plot of log(10)MW of all the pertinent analytes against retention time showed a linear relationship with a correlation coefficient of 1. Limited assay performance evaluation demonstrated that the method was linear in the concentration range of 10 to 250 microg/mL of free PEG with correlation coefficients of > or = 0.99. When free PEG in this concentration range was spiked into PEG-conjugate samples at 1mg/mL, the recovery was in the range of 78%-120%. Detection and quantitation limits were determined to be, respectively, 10 and 25 microg/mL for free PEG. The R.S.D. for intra- and inter-day precision was 0.09% or less for retention time measurements and 2.9% or less for area count measurements. Robustness testing was performed by deliberately deviating +/-0.2 pH units away from the desired pH as well as by increasing the flow rate. These deviations resulted in no significant impact on area percent distribution of all species. However, separation was found to be sensitive to high ionic strength and buffer species.
Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.
2002-01-01
The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.
Iyer, Sneha R; Gogate, Parag R
2017-01-01
The current work investigates the application of low intensity ultrasonic irradiation for improving the cooling crystallization of Mefenamic Acid for the first time. The crystal shape and size has been analyzed with the help of optical microscope and image analysis software respectively. The effect of ultrasonic irradiation on crystal size, particle size distribution (PSD) and yield has been investigated, also establishing the comparison with conventional approach. It has been observed that application of ultrasound not only enhances the yield but also reduces the induction time for crystallization as compared to conventional cooling crystallization technique. In the presence of ultrasound, the maximum yield was obtained at optimum conditions of power dissipation of 30W and ultrasonic irradiation time of 10min. The yield was further improved by application of ultrasound in cycles where the formed crystals are allowed to grow in the absence of ultrasonic irradiation. It was also observed that the desired crystal morphology was obtained for the ultrasound assisted crystallization. The conventionally obtained needle shaped crystals transformed into plate shaped crystals for the ultrasound assisted crystallization. The particle size distribution was analyzed using statistical means on the basis of skewness and kurtosis values. It was observed that the skewness and excess kurtosis value for ultrasound assisted crystallization was significantly lower as compared to the conventional approach. XRD analysis also revealed better crystal properties for the processed mefenamic acid using ultrasound assisted approach. The overall process intensification benefits of mefenamic acid crystallization using the ultrasound assisted approach were reduced particle size, increase in the yield and uniform PSD coupled with desired morphology. Copyright © 2016 Elsevier B.V. All rights reserved.
Method and Apparatus for Forming Nanodroplets
NASA Technical Reports Server (NTRS)
Ackley, Donald; Forster, Anita
2011-01-01
This innovation uses partially miscible fluids to form nano- and microdroplets in a microfluidic droplet generator system. Droplet generators fabricated in PDMS (polydimethylsiloxane) are currently being used to fabricate engineered nanoparticles and microparticles. These droplet generators were first demonstrated in a T-junction configuration, followed by a cross-flow configuration. All of these generating devices have used immiscible fluids, such as oil and water. This immiscible fluid system can produce mono-dispersed distributions of droplets and articles with sizes ranging from a few hundred nanometers to a few hundred microns. For applications such as drug delivery, the ability to encapsulate aqueous solutions of drugs within particles formed from the droplets is desirable. Of particular interest are non-polar solvents that can dissolve lipids for the formation of liposomes in the droplet generators. Such fluids include ether, cyclohexane, butanol, and ethyl acetate. Ethyl acetate is of particular interest for two reasons. It is relatively nontoxic and it is formed from ether and acetic acid, and maybe broken down into its constituents at relatively low concentrations.
Interparticle interactions effects on the magnetic order in surface of FeO4 nanoparticles.
Lima, E; Vargas, J M; Rechenberg, H R; Zysler, R D
2008-11-01
We report interparticle interactions effects on the magnetic structure of the surface region in Fe3O4 nanoparticles. For that, we have studied a desirable system composed by Fe3O4 nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (approximately 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.
Rotordynamic Design Analysis of an Oil-Free Turbocharger
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
1997-01-01
Modern heavy duty diesel engines utilize turbochargers for increased power output. Also, a wide range of power levels can be achieved with one engine displacement through the use of different turbocharger configurations, eliminating the need for several different sized engines. These are the reasons that virtually all diesel truck engines currently marketed use turbochargers. However, because these turbochargers rely on ring seals and oil-lubricated floating sleeve bearings, they often suffer breakdowns. These turbochargers operate at elevated temperatures which often causes the oil to degrade and even coke to the bearing surfaces. This can lead to catastrophic failure, increased particulate emissions from oil leaks, and, in extreme cases, engine fires. Replacing the oil lubricated bearings from these turbochargers with some other device is desirable to eliminate these inherent problems. Foil bearings are compliant selecting bearings lubricated by air and are well suited to high speed, light load applications. Thus, foil bearings present one potential replacement for oil-lubricated sleeve bearings. Their use as such is investigated in this work.
Big capabilities in small packages: hyperspectral imaging from a compact platform
NASA Astrophysics Data System (ADS)
Beasley, Matthew; Goldberg, Hannah; Voorhees, Christopher; Illsley, Peter
2016-09-01
We present the Compact Holographic Aberration-corrected Platform (CHAP) instrument, designed and developed at Planetary Resources Development Corporation. By combining a dispersive element with the secondary of a telescope, we are able to produce a relatively long focal length with moderate dispersion at the focal plane. This design enables us to build a capable hyperspectral imaging instrument within the size constraints of the Cubesat form-factor. The advantages of our design revolves around its simplicity: there are only two optical elements, producing both a white light and diffracted image. With the use of a replicated grating, we can produce a long focal length hyperspectral imager at a price point far below other spaceflight instruments. The design is scalable for larger platforms and since it has no transmitting optics and only two reflective surfaces could be designed to function at any desired wavelength. Our system will be capable of spectral imaging across the 400 to 900 nm spectral range for use in small body surveys.
NASA Technical Reports Server (NTRS)
Fitz, Rhonda; Whitman, Gerek
2016-01-01
Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.
Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.
2002-01-01
The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.
Corneal reshaping using a pulsed UV solid-state laser
NASA Astrophysics Data System (ADS)
Ren, Qiushi; Simon, Gabriel; Parel, Jean-Marie A.; Shen, Jin-Hui; Takesue, Yoshiko
1993-06-01
Replacing the gas ArF (193 nm) excimer laser with a solid state laser source in the far-UV spectrum region would eliminate the hazards of a gas laser and would reduce its size which is desirable for photo-refractive keratectomy (PRK). In this study, we investigated corneal reshaping using a frequency-quintupled (213 nm) pulsed (10 ns) Nd:YAG laser coupled to a computer-controlled optical scanning delivery system. Corneal topographic measurements showed myopic corrections ranging from 2.3 to 6.1 diopters. Post-operative examination with the slit-lamp and operating microscope demonstrated a smoothly ablated surface without corneal haze. Histological results showed a smoothly sloping surface without recognizable steps. The surface quality and cellular effects were similar to that of previously described excimer PRK. Our study demonstrated that a UV solid state laser coupled to an optical scanning delivery system is capable of reshaping the corneal surface with the advantage of producing customized, aspheric corrections without corneal haze which may improve the quality of vision following PRK.
NASA Technical Reports Server (NTRS)
Lee, S.; Lueptow, R. M.
2001-01-01
Reverse osmosis (RO) is a compact process that has potential for the removal of ionic and organic pollutants for recycling space mission wastewater. Seven candidate RO membranes were compared using a batch stirred cell to determine the membrane flux and the solute rejection for synthetic space mission wastewaters. Even though the urea molecule is larger than ions such as Na+, Cl-, and NH4+, the rejection of urea is lower. This indicates that the chemical interaction between solutes and the membrane is more important than the size exclusion effect. Low pressure reverse osmosis (LPRO) membranes appear to be most desirable because of their high permeate flux and rejection. Solute rejection is dependent on the shear rate, indicating the importance of concentration polarization. A simple transport model based on the solution-diffusion model incorporating concentration polarization is used to interpret the experimental results and predict rejection over a range of operating conditions. Grant numbers: NAG 9-1053.
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Wei; Wu, Yanjiao; Huang, Zhanhua; Liu, Shouxin
2014-10-01
The hydrothermal carbonization of monosaccharides and polysaccharides is widely used in the production of carbonaceous material with a desired structure. However, the liquid products are regarded as waste and discarded. Here, we report a facile approach for the synthesis of water-soluble carbon nano dots (CNDs) with substantial fluorescence from the liquid by-products of the hydrothermal carbonization of pentosan, thus the by-products of pulp refining. The synthesized CNDs are monodispersed spheres with abundant oxygen-containing groups and they have an average size of 30 nm. Quantum yield measurements revealed CNDs with substantial green photoluminescence (PL) without passivation. Additionally, excitation was independent, pH-sensitive and stable. The use of CNDs as a photosensitizer in the CNDs/TiO2 system for methylene blue (MB) degradation under visible light irradiation is attractive. The spectral response range of the CNDs/TiO2 system can be widened from the UV region to a part of the visible light region (400-550 nm).
Ruffner, Judith Alison
1999-01-01
A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.
Design of light concentrators for Cherenkov telescope observatories
NASA Astrophysics Data System (ADS)
Hénault, François; Petrucci, Pierre-Olivier; Jocou, Laurent; Khélifi, Bruno; Manigot, Pascal; Hormigos, Stéphane; Knödlseder, Jürgen; Olive, Jean-François; Jean, Pierre; Punch, Michael
2013-09-01
The Cherenkov Telescope Array (CTA) will be the largest cosmic gamma ray detector ever built in the world. It will be installed at two different sites in the North and South hemispheres and should be operational for about 30 years. In order to cover the desired energy range, the CTA is composed of typically 50-100 collecting telescopes of various sizes (from 6 to 24-m diameters). Most of them are equipped with a focal plane camera consisting of 1500 to 2000 Photomultipliers (PM) equipped with light concentrating optics, whose double function is to maximize the amount of Cherenkov light detected by the photo-sensors, and to block any stray light originating from the terrestrial environment. Two different optical solutions have been designed, respectively based on a Compound Parabolic Concentrator (CPC), and on a purely dioptric concentrating lens. In this communication are described the technical specifications, optical designs and performance of the different solutions envisioned for all these light concentrators. The current status of their prototyping activities is also given.
Synthesis of nano-titanium dioxide by sol-gel route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaler, Vandana, E-mail: vandana.kaler@gmail.com; Duchaniya, R. K.; Pandel, U.
Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO{sub 2} powder in anatase phase was realized by XRD. The optical studies of nano-TiO{sub 2} powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO{sub 2} particles weremore » in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO{sub 2} particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.« less
Hermann, Stefanie; Wessig, Martin; Kollofrath, Dennis; Gerigk, Melanie; Hagedorn, Kay; Odendal, James A; Hagner, Matthias; Drechsler, Markus; Erler, Philipp; Fonin, Mikhail; Maret, Georg; Polarz, Sebastian
2017-05-08
Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.
2016-03-01
This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.
An analysis of the magnitude and frequency of floods on Oahu, Hawaii
Nakahara, R.H.
1980-01-01
An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)
Nondestructive assessment of pore size in foam-based hybrid composite materials
NASA Astrophysics Data System (ADS)
Chen, M. Y.; Ko, R. T.
2012-05-01
In-situ non-destructive evaluation (NDE) during processing of high temperature polymer based hybrids offers great potential to gain close control and achieve the desired level of pore size, with low overall development cost. During the polymer curing cycle, close control over the evolution of volatiles would be beneficial to avoid the presence of pores or at least control their sizes. Traditional NDE methods cannot realistically be expected to evaluate individual pores in such components, as each pore evolves and grows during curing. However, NDE techniques offer the potential to detect and quantify the macroscopic response of many pores that are undesirable or intentionally introduced into these advanced materials. In this paper, preliminary results will be presented for nondestructive assessment of pore size in foam-based hybrid composite materials using ultrasonic techniques. Pore size was evaluated through the frequency content of the ultrasonic signal. The effects of pore size on the attenuation of ultrasound were studied. Feasibility of this method was demonstrated on two types of foams with various pore sizes.
Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M
2018-05-01
Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Home range size of Tengmalm's owl during breeding in Central Europe is determined by prey abundance.
Kouba, Marek; Bartoš, Luděk; Tomášek, Václav; Popelková, Alena; Šťastný, Karel; Zárybnická, Markéta
2017-01-01
Animal home ranges typically characterized by their size, shape and a given time interval can be affected by many different biotic and abiotic factors. However, despite the fact that many studies have addressed home ranges, our knowledge of the factors influencing the size of area occupied by different animals is, in many cases, still quite poor, especially among raptors. Using radio-telemetry (VHF; 2.1 g tail-mounted tags) we studied movements of 20 Tengmalm's owl (Aegolius funereus) males during the breeding season in a mountain area of Central Europe (the Czech Republic, the Ore Mountains: 50° 40' N, 13° 35' E) between years 2006-2010, determined their average hunting home range size and explored what factors affected the size of home range utilised. The mean breeding home range size calculated according to 95% fixed kernel density estimator was 190.7 ± 65.7 ha (± SD) with a median value of 187.1 ha. Home range size was affected by prey abundance, presence or absence of polygyny, the number of fledglings, and weather conditions. Home range size increased with decreasing prey abundance. Polygynously mated males had overall larger home range than those mated monogamously, and individuals with more fledged young possessed larger home range compared to those with fewer raised fledglings. Finally, we found that home ranges recorded during harsh weather (nights with strong wind speed and/or heavy rain) were smaller in size than those registered during better weather. Overall, the results provide novel insights into what factors may influence home range size and emphasize the prey abundance as a key factor for breeding dynamics in Tengmalm's owl.