Sample records for destroy target cells

  1. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  2. "Killer" Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity.

    PubMed

    Arya, Chandamany; Oh, Hyuntaek; Raghavan, Srinivasa R

    2016-11-02

    We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body's immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The "killer" capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu 2+ ) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu 2+ cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu 2+ cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu 2+ are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules.

  3. Bacterial Imaging and Photodynamic Inactivation Using Zinc(II)-Dipicolylamine BODIPY Conjugates†

    PubMed Central

    Rice, Douglas R.; Gan, Haiying; Smith, Bradley D.

    2015-01-01

    Targeted imaging and antimicrobial photodynamic inactivation (PDI) are emerging methods for detecting and eradicating pathogenic microorganisms. This study describes two structurally related optical probes that are conjugates of a zinc(II)-dipicolylamine targeting unit and a BODIPY chromophore. One probe is a microbial targeted fluorescent imaging agent, mSeek, and the other is an oxygen photosensitizing analogue, mDestroy. The conjugates exhibited high fluorescence quantum yield and singlet oxygen production, respectively. Fluorescence imaging and detection studies examined four bacterial strains: E. coli, S. aureus, K. pneumonia, and B. thuringiensis vegetative cells and purified spores. The fluorescent probe, mSeek, is not phototoxic and enabled detection of all tested bacteria at concentrations of ~100 CFU/mL for B. thuringiensis spores, ~1000 CFU/mL for S. aureus and ~10,000 CFU/mL for E. coli. The photosensitizer analogue, mDestroy, inactivated 99–99.99% of bacterial samples and selectively killed bacterial cells in the presence of mammalian cells. However, mDestroy was ineffective against B. thuringiensis spores. Together, the results demonstrate a new two-probe strategy to optimize PDI of bacterial infection/contamination. PMID:26063101

  4. Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy

    PubMed Central

    Mallikaratchy, Prabodhika; Tang, Zhiwen

    2010-01-01

    This paper describes the application of a molecular construct of a photosensitizer and an aptamer for photo-therapeutically targeting tumor cells. The key step in increasing selectivity in chemotherapeutic drugs is to create effective molecular platforms that could target cancer cells but not normal cells. Recently, we have developed a strategy via cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) to obtain cell specific aptamers using intact viable cells as targets to select aptamers that can recognize cell membrane proteins with high selectivity and excellent affinity. We have identified an aptamer TD05 that only recognizes Ramos cells, a Burkitt’s lymphoma cell line. Here, the high specificity of aptamers in target cell binding and an efficient phototherapy reagent, Ce6, are molecularly engineered to construct a highly selective Aptamer-photosensitizer conjugates (APS) to effectively destroy target cancer cells. Introduction of the APS conjugates followed by irradiation of light selectively destroyed target Ramos cells but not acute lymphoblastic leukemia and myeloid leukemia cell lines. This study demonstrates that the use of cancer specific aptamers conjugated to a photosensitizer will enhance the selectivity of photodynamic therapy. Coupled with the advantages of the cell-SELEX in generating multiple effective aptamers for diseased cell recognition, we will be able to develop highly efficient photosensitizer based therapeutical reagents for clinical applications. PMID:18058891

  5. Nonlinear Optical Properties of ZnO for BioimagingCell and Cell Destruction

    NASA Astrophysics Data System (ADS)

    Urban, Ben; Chakki, Samudyatha; Senthilkumar, Os; Senthilkumar, Kasilingam; Fujita, Yasuhisa; Neogi, Arup

    2011-03-01

    As of recent years nanotechnology has been at the forefront of scientific research. It promises to have a broad range of applications from turning unhealthy foods into health foods, making computers faster and curing cancer. We present results on using nonlinear optical processes of ZnO nano-crystals to detect, track and destroy cells. By incorporating ZnO into a hydrophobic nano-hydrogel matrix with trace amounts of H2 O2 , we can attach antibodies or microRNA for specific cell targeting and, using the heat generating properties of the third order nonlinear process, release H2 O2 in the cell causing instant cell death. Theoretically, with the appropriate sequence for microRNA or the appropriate antibodies, we could target cancer cells in the body and destroy them. This presentation gives our results until now.

  6. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2012-09-01

    ovarian cancer stem cell markers to consider it as a new experimental target for novel nanotechnology approaches capable of destroying ovarian cancer stem...FSHR mRNA after several generations in an amount consistent with stem cell characteristics. Nude mouse experiments to confirm co-expression in vivoare

  7. Compositions and methods for cancer treatment using targeted carbon nanotubes

    DOEpatents

    Harrison, Jr., Roger G; Resasco, Daniel E; Neves, Luis Filipe Ferreira

    2013-08-27

    The present invention is a method for detecting and destroying cancer tumors. The method is based on the concept of associating a linking protein or linking peptide such as, but not limited to, annexin V or other annexins to carbon nanotubes such as single-walled carbon nanotubes (SWNTs) to form a protein-CNT complex. Said linking protein or peptide can selectively bind to cancerous cells, especially tumor vasculature endothelial cells, rather than to healthy ones by binding to cancer-specific external receptors such as anionic phospholipids including phosphatidylserine expressed on the outer surfaces of cancer cells only. Irradiation of bound CNTs with one or more specific electromagnetic wavelengths is then used to detect and destroy those cells to which the CNTs are bound via the linking protein or peptide thereby destroying the tumor or cancer cells and preferably an immunostimulant is provided to the patient to enhance the immune response against antigens released from the tumor or cancer cells.

  8. Cytotoxic Mechanisms Employed by Mouse T Cells to Destroy Pancreatic β-Cells

    PubMed Central

    Varanasi, Vineeth; Avanesyan, Lia; Schumann, Desiree M.; Chervonsky, Alexander V.

    2012-01-01

    Several cytotoxic mechanisms have been attributed to T cells participating in β-cell death in type 1 diabetes. However, sensitivity of β-cells to these mechanisms in vitro and in vivo is likely to be different. Moreover, CD4+ and CD8+ T cells may use distinct mechanisms to cause β-cell demise that possibly involve activation of third-party cytotoxic cells. We used the transfer of genetically modified diabetogenic T cells into normal, mutant, and bone marrow chimeric recipients to test the contribution of major cytotoxic mechanisms in β-cell death. We found that 1) the killing of β-cells by CD4+ T cells required activation of the recipient’s own cytotoxic cells via tumor necrosis factor-α (TNF-α); 2) CD8+ T-cell cytotoxic mechanisms destroying β-cells were limited to perforin and Fas ligand, as double knockouts of these molecules abrogated the ability of T cells to cause diabetes; and 3) individual CD8+ T-cell clones chose their cytotoxic weaponry by a yet unknown mechanism and destroyed their targets via either Fas-independent or Fas-dependent (∼40% of clones) pathways. Fas-dependent destruction was assisted by TNF-α. PMID:22773667

  9. Plasmonic nanobubbles for target cell-specific gene and drug delivery and multifunctional processing of heterogeneous cell systems

    NASA Astrophysics Data System (ADS)

    Lukianova-Hleb, Ekaterina Y.; Huye, Leslie E.; Brenner, Malcolm K.; Lapotko, Dmitri O.

    2014-03-01

    Cell and gene cancer therapies require ex vivo cell processing of human grafts. Such processing requires at least three steps - cell enrichment, cell separation (destruction), and gene transfer - each of which requires the use of a separate technology. While these technologies may be satisfactory for research use, they are of limited usefulness in the clinical treatment setting because they have a low processing rate, as well as a low transfection and separation efficacy and specificity in heterogeneous human grafts. Most problematic, because current technologies are administered in multiple steps - rather than in a single, multifunctional, and simultaneous procedure - they lengthen treatment process and introduce an unnecessary level of complexity, labor, and resources into clinical treatment; all these limitations result in high losses of valuable cells. We report a universal, high-throughput, and multifunctional technology that simultaneously (1) inject free external cargo in target cells, (2) destroys unwanted cells, and (3) preserve valuable non-target cells in heterogeneous grafts. Each of these functions has single target cell specificity in heterogeneous cell system, processing rate > 45 mln cell/min, injection efficacy 90% under 96% viability of the injected cells, target cell destruction efficacy > 99%, viability of not-target cells >99% The developed technology employs novel cellular agents, called plasmonic nanobubbles (PNBs). PNBs are not particles, but transient, intracellular events, a vapor nanobubbles that expand and collapse in mere nanoseconds under optical excitation of gold nanoparticles with short picosecond laser pulses. PNBs of different, cell-specific, size (1) inject free external cargo with small PNBs, (2) Destroy other target cells mechanically with large PNBs and (3) Preserve non-target cells. The multi-functionality, precision, and high throughput of all-in-one PNB technology will tremendously impact cell and gene therapies and other clinical applications that depend on ex vivo processing of heterogeneous cell systems.

  10. Small RNA Enhances Antitumor T-cell Therapy | Center for Cancer Research

    Cancer.gov

    Adoptive T-cell transfer is an effective form of anticancer immunotherapy in which patients receive infusions of cytotoxic T cells that seek out and destroy targeted cancer cells. This type of therapy is usually preceded by a lymphodepleting chemotherapy regimen and combined with high doses of the cytokine interleukin-2 (IL-2) to eliminate immunosuppressive and other immune

  11. Compositions and methods for cancer treatment using targeted carbon nanotubes

    DOEpatents

    Harrison, Jr., Roger G.; Resasco, Daniel E.; Neves, Luis Filipe Ferreira

    2016-11-29

    Compositions for detecting and/or destroying cancer tumors and/or cancer cells via photodynamic therapy are disclosed, as well as methods of use thereof. The compositions comprise a linking protein or peptide attached to or otherwise physically associated with a carbon nanotube to form a targeted protein-carbon nanotube complex.

  12. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  13. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    PubMed

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion. ©2015 American Association for Cancer Research.

  14. Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy.

    PubMed

    Nair, Lakshmi V; Nagaoka, Yutaka; Maekawa, Toru; Sakthikumar, D; Jayasree, Ramapurath S

    2014-07-23

    Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma

    PubMed Central

    Ju, Rui-Jun; Zeng, Fan; Liu, Lei; Mu, Li-Min; Xie, Hong-Jun; Zhao, Yao; Yan, Yan; Wu, Jia-Shuan; Hu, Ying-Jie; Lu, Wan-Liang

    2016-01-01

    The efficacy of chemotherapy for brain glioma is restricted by the blood–brain barrier (BBB), and surgery or radiotherapy cannot eliminate the glioma cells because of their unique location. Residual brain glioma cells can form vasculogenic mimicry (VM) channels that can cause a recurrence of brain glioma. In the present study, targeting liposomes incorporating epirubicin and celecoxib were prepared and used for the treatment of brain glioma, along with the destruction of their VM channels. Evaluations were performed on the human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. Targeting epirubicin plus celecoxib liposomes in the circulatory blood system were able to be transported across the BBB, and accumulated in the brain glioma region. Then, the liposomes were internalized by brain glioma cells and killed glioma cells by direct cytotoxic injury and the induction of apoptosis. The induction of apoptosis was related to the activation of caspase-8- and -3-signaling pathways, the activation of the proapoptotic protein Bax, and the suppression of the antiapoptotic protein Mcl-1. The destruction of brain glioma VM channels was related to the downregulation of VM channel-forming indictors, which consisted of MMP-2, MMP-9, FAK, VE-Cad, and VEGF. The results demonstrated that the targeting epirubicin plus celecoxib liposomes were able to effectively destroy the glioma VM channels and exhibited significant efficacy in the treatment of intracranial glioma-bearing nude mice. Therefore, targeting epirubicin plus celecoxib liposomes could be a potential nanostructured formulation to treat gliomas and destroy their VM channels. PMID:27042063

  16. DARPin-targeting of Measles Virus: Unique Bispecificity, Effective Oncolysis, and Enhanced Safety

    PubMed Central

    Friedrich, Katrin; Hanauer, Jan RH; Prüfer, Steffen; Münch, Robert C; Völker, Iris; Filippis, Christodoulos; Jost, Christian; Hanschmann, Kay-Martin; Cattaneo, Roberto; Peng, Kah-Whye; Plückthun, Andreas; Buchholz, Christian J; Cichutek, Klaus; Mühlebach, Michael D

    2013-01-01

    Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Many naturally occurring viruses have a preferential, although nonexclusive, tropism for tumors and tumor cells. In addition, specific targeting of cancer cells can be achieved at the virus entry level. We optimized retargeting of cell entry by elongating the measles virus attachment protein with designed ankyrin repeat proteins (DARPins), while simultaneously ablating entry through the natural receptors. DARPin-targeted viruses were strongly attenuated in off-target tissue, thereby enhancing safety, but completely eliminated tumor xenografts. Taking advantage of the unique properties of DARPins of being fused without generating folding problems, we generated a virus simultaneous targeting two different tumor markers. The bispecific virus retained the original oncolytic efficacy, while providing proof of concept for a strategy to counteract issues of resistance development. Thus, DARPin-targeting opens new prospects for the development of personalized, targeted therapeutics. PMID:23380817

  17. Clinical trial uses combination therapy for certain types of non-Hodgkin lymphoma | Center for Cancer Research

    Cancer.gov

    Researchers are testing the safety of the combination of an experimental drug with rituximab, a standard treatment, for patients with indolent or diffuse large B-cell lymphoma. The antibody is designed to target and block a protein that is present on cancer cells and is used by those cells to protect themselves from your body’s immune system. Blocking the protein may enable your body’s immune system to find and destroy the cancer cells. Read more…

  18. Grantee Spotlight: Manuel L. Penichet, M.D., Ph.D. - Reprogramming the Immune System to Kill Cancer

    Cancer.gov

    Dr. Manuel L. Penichet, former CURE K01 trainee and NCI R01 grantee, aims to genetically engineer antibodies that can be used to directly target and eliminate cancer cells and also stimulate the body’s immune system to fight and destroy cancer.

  19. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids.

    PubMed

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous ("sea") routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.

  20. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    PubMed Central

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous (“sea”) routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects. PMID:28971063

  1. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    DTIC Science & Technology

    2014-10-01

    disruption of the BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions...recently evolved adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two... innate immune functions have been emphasized traditionally: 1) the recruitment of cells and proteins to destroy pathogens and toxins, and 2) increases

  2. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of chimeric viruses containing genes coding for VSV, together with a gene coding for the glycoprotein from other viruses, including Ebola virus, Lassa virus, LCMV, rabies virus, and Marburg virus, which was substituted for the VSV glycoprotein gene. Ebola and Lassa chimeric viruses were safe in the brain and targeted brain tumors. Lassa-VSV was particularly effective, showed no adverse side effects even when injected directly into the brain, and targeted and destroyed two different types of deadly brain cancer, including glioblastoma and melanoma. PMID:25878115

  3. The offer of chemistry to targeted therapy in cancer.

    PubMed

    Jemel, Ikram; Jellali, Karim; Elloumi, Jihene; Aifa, Sami

    2011-12-01

    Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.

  4. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  5. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  6. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others

    PubMed Central

    Penman, Trent D.; Price, Owen F.

    2016-01-01

    Many houses are at risk of being destroyed by wildfires. While previous studies have improved our understanding of how, when and why houses are destroyed by wildfires, little attention has been given to how these fires started. We compiled a dataset of wildfires that destroyed houses in New South Wales and Victoria and, by comparing against wildfires where no houses were destroyed, investigated the relationship between the distribution of ignition causes for wildfires that did and did not destroy houses. Powerlines, lightning and deliberate ignitions are the main causes of wildfires that destroyed houses. Powerlines were 6 times more common in the wildfires that destroyed houses data than in the wildfires where no houses were destroyed data and lightning was 2 times more common. For deliberate- and powerline-caused wildfires, temperature, wind speed, and forest fire danger index were all significantly higher and relative humidity significantly lower (P < 0.05) on the day of ignition for wildfires that destroyed houses compared with wildfires where no houses were destroyed. For all powerline-caused wildfires the first house destroyed always occurred on the day of ignition. In contrast, the first house destroyed was after the day of ignition for 78% of lightning-caused wildfires. Lightning-caused wildfires that destroyed houses were significantly larger (P < 0.001) in area than human-caused wildfires that destroyed houses. Our results suggest that targeting fire prevention strategies around ignition causes, such as improving powerline safety and targeted arson reduction programmes, and reducing fire spread may decrease the number of wildfires that destroy houses. PMID:27598325

  7. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others.

    PubMed

    Collins, Kathryn M; Penman, Trent D; Price, Owen F

    2016-01-01

    Many houses are at risk of being destroyed by wildfires. While previous studies have improved our understanding of how, when and why houses are destroyed by wildfires, little attention has been given to how these fires started. We compiled a dataset of wildfires that destroyed houses in New South Wales and Victoria and, by comparing against wildfires where no houses were destroyed, investigated the relationship between the distribution of ignition causes for wildfires that did and did not destroy houses. Powerlines, lightning and deliberate ignitions are the main causes of wildfires that destroyed houses. Powerlines were 6 times more common in the wildfires that destroyed houses data than in the wildfires where no houses were destroyed data and lightning was 2 times more common. For deliberate- and powerline-caused wildfires, temperature, wind speed, and forest fire danger index were all significantly higher and relative humidity significantly lower (P < 0.05) on the day of ignition for wildfires that destroyed houses compared with wildfires where no houses were destroyed. For all powerline-caused wildfires the first house destroyed always occurred on the day of ignition. In contrast, the first house destroyed was after the day of ignition for 78% of lightning-caused wildfires. Lightning-caused wildfires that destroyed houses were significantly larger (P < 0.001) in area than human-caused wildfires that destroyed houses. Our results suggest that targeting fire prevention strategies around ignition causes, such as improving powerline safety and targeted arson reduction programmes, and reducing fire spread may decrease the number of wildfires that destroy houses.

  8. Advances in evidence-based cancer adoptive cell therapy.

    PubMed

    Ge, Chunlei; Li, Ruilei; Song, Xin; Qin, Shukui

    2017-04-01

    Adoptive cell therapy (ACT) has been developed in cancer treatment by transferring/infusing immune cells into cancer patients, which are able to recognize, target, and destroy tumor cells. Recently, sipuleucel-T and genetically-modified T cells expressing chimeric antigen receptors (CAR) show a great potential to control metastatic castration-resistant prostate cancer and hematologic malignancies in clinic. This review summarized some of the major evidence-based ACT and the challenges to improve cell quality and reduce the side effects in the field. This review also provided future research directions to make sure ACT widely available in clinic.

  9. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium.

    PubMed

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.

  10. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    PubMed Central

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death. PMID:25667582

  11. New clinical advances in immunotherapy for the treatment of solid tumours

    PubMed Central

    Zavala, Valentina A; Kalergis, Alexis M

    2015-01-01

    Advances in understanding the mechanisms of cancer cells for evading the immune system surveillance, including how the immune system modulates the phenotype of tumours, have allowed the development of new therapies that benefit from this complex cellular network to specifically target and destroy cancer cells. Immunotherapy researchers have mainly focused on the discovery of tumour antigens that could confer specificity to immune cells to detect and destroy cancer cells, as well as on the mechanisms leading to an improved activation of effector immune cells. The Food and Drug Administration approval in 2010 of ipilumumab for melanoma treatment and of pembrolizumab in 2014, monoclonal antibodies against T-lymphocyte-associated antigen 4 and programmed cell death 1, respectively, are encouraging examples of how research in this area can successfully translate into clinical use with promising results. Currently, several ongoing clinical trials are in progress testing new anti-cancer therapies based on the enhancement of immune cell activity against tumour antigens. Here we discuss the general concepts related to immunotherapy and the recent application to the treatment of cancer with positive results that support their consideration of clinical application to patients. PMID:25826229

  12. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.

    PubMed

    Avazzadeh, Reza; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Amanpour, Saeid; Sadeghi, Mohsen

    2017-09-01

    Cancer treatment has been very challenging in recent decades. One of the most promising cancer treatment methods is hyperthermia, which increases the tumor temperature (41-45 °C). Magnetic nanoparticles have been widely used for selective targeting of cancer cells. In the present study, magnetic dextran-spermine nanoparticles, conjugated with Anti-HER2 antibody to target breast cancer cells were developed. The magnetic dextran-spermine nanoparticles (DMNPs) were prepared by ionic gelation, followed by conjugation of antibody to them using EDC-NHS method. Then the Prussian blue method was used to estimate the targeting ability and cellular uptake. Cytotoxicity assay by MTT showed that antibody-conjugated MNPs (ADMNPs) have no toxic effect on SKBR3 and human fibroblast cells. Finally, the hyperthermia was applied to show that synthesized ADMNPs, could increase the cancer cells temperature up to 45 °C and kill most of them without affecting normal cells. These observations proved that Anti-HER2 conjugated magnetic dextran-spermine nanoparticles can target and destroy cancer cells and are potentially suitable for cancer treatment.

  13. Determination of High-Speed Multiple Threat Using Kalman Filter Analysis of Maritime Movement

    DTIC Science & Technology

    2015-06-01

    Ownship, in the blue circle, has destroyed a threat Figure 9. ship, as represented with the red line... destroyed and still arriving when the ship is destroyed ...defenses of a given target. These kinds of attacks are typically used against High Value Assets (HVA), destroyers or larger. While it would be easy

  14. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Tian, Jiguang; Chen, Zhaolong; Liang, Ying; Liu, Jiao; Liu, Si; Li, Huihui; Zhan, Jinhua; Yang, Xingsheng

    2014-08-01

    Photothermal ablation (PTA) is a promising avenue in the area of cancer therapeutics that destroys tumor cells through conversion of near-infrared (NIR) laser light to heat. Hollow gold nanospheres (HGNs) are one of the few materials that are capable of converting light to heat and have been previously used for photothermal ablation studies. Selective delivery of functional nanoparticles to the tumor site is considered as an effective therapeutic approach. In this paper, we demonstrated the anti-cancer potential of HGNs. HGNs were conjugated with monoclonal antibody (anti-TROP2) in order to target cervical cancer cells (HeLa) that contain abundant trophoblast cell surface antigen 2 (TROP2) on the cell surface. The efficient uptake and intracellular location of these functionalized HGNs were studied through application of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy (TEM). Cytotoxicity induced by PTA was measured using CCK-8 assay. HeLa cells incubated with naked HGNs (0.3-3 nmol L-1) within 48 h did not show obvious cytotoxicity. Under laser irradiation at suitable power, anti-TROP2 conjugated HGNs achieved significant tumor cell growth inhibition in comparison to the effects of non-specific PEGylated HGNs (P < 0.05). γH2AX assay results revealed higher occurrences of DNA-DSBs with anti-TROP2 conjugated HGNs plus laser radiation as compared to treatment with laser alone. Flow cytometry analysis showed that the amount of cell apoptosis was increased after laser irradiation with anti-TROP2 conjugated HGNs (P < 0.05). Anti-TROP2 conjugated HGNs resulted in down-regulation of Bcl-2 expression and up-regulation of Bax expression. Our study results confirmed that anti-TROP2 conjugated HGNs can selectively destroy cervical cancer cells through inducing its apoptosis and DNA damages. We propose that HGNs have the potentials to mediate targeted cancer treatment.

  15. Internalization and Recycling of the HER2 Receptor on Human Breast Adenocarcinoma Cells Treated with Targeted Phototoxic Protein DARPinminiSOG

    PubMed Central

    Shilova, O. N.; Proshkina, G. M.; Lebedenko, E. N.; Deyev, S. M.

    2015-01-01

    Design and evaluation of new high-affinity protein compounds that can selectively and efficiently destroy human cancer cells are a priority research area in biomedicine. In this study we report on the ability of the recombinant phototoxic protein DARPin-miniSOG to interact with breast adenacarcinoma human cells overexpressing the extracellular domain of human epidermal growth factor receptor 2 (HER2). It was found that the targeted phototoxin DARPin-miniSOG specifically binds to the HER2 with following internalization and slow recycling back to the cell membrane. An insight into the role of DARPin-miniSOG in HER2 internalization could contribute to the treatment of HER2-positive cancer using this phototoxic protein. PMID:26483969

  16. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.

    PubMed

    Merkle, Florian T; Neuhausser, Werner M; Santos, David; Valen, Eivind; Gagnon, James A; Maas, Kristi; Sandoe, Jackson; Schier, Alexander F; Eggan, Kevin

    2015-05-12

    The CRISPR-Cas9 system has the potential to revolutionize genome editing in human pluripotent stem cells (hPSCs), but its advantages and pitfalls are still poorly understood. We systematically tested the ability of CRISPR-Cas9 to mediate reporter gene knockin at 16 distinct genomic sites in hPSCs. We observed efficient gene targeting but found that targeted clones carried an unexpectedly high frequency of insertion and deletion (indel) mutations at both alleles of the targeted gene. These indels were induced by Cas9 nuclease, as well as Cas9-D10A single or dual nickases, and often disrupted gene function. To overcome this problem, we designed strategies to physically destroy or separate CRISPR target sites at the targeted allele and developed a bioinformatic pipeline to identify and eliminate clones harboring deleterious indels at the other allele. This two-pronged approach enables the reliable generation of knockin hPSC reporter cell lines free of unwanted mutations at the targeted locus. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment

    PubMed Central

    Zhang, Cheng-Xiang; Zhao, Wei-Yu; Liu, Lei; Ju, Rui-Jun; Mu, Li-Min; Zhao, Yao; Zeng, Fan; Xie, Hong-Jun; Yan, Yan; Lu, Wan-Liang

    2015-01-01

    The objectives of the present study were to develop functional targeting epirubicin liposomes for transferring drugs across the blood-brain barrier (BBB), treating glioblastoma, and disabling neovascularization. The studies were performed on glioblastoma cells in vitro and on glioblastoma-bearing mice. The results showed that the constructed liposomes had a high encapsulation efficiency for drugs (>95%), suitable particle size (109 nm), and less leakage in the blood component-containing system; were significantly able to be transported across the BBB; and exhibited efficacies in killing glioblastoma cells and in destroying glioblastoma neovasculature in vitro and in glioblastoma-bearing mice. The action mechanisms of functional targeting epirubicin liposomes correlated with the following features: the long circulation in the blood system, the ability to be transported across the BBB via glucose transporter-1, and the targeting effects on glioblastoma cells and on the endothelial cells of the glioblastoma neovasculature via the integrin β3 receptor. In conclusion, functional targeting epirubicin liposomes could be used as a potential therapy for treating brain glioblastoma and disabling neovascularization in brain glioblastomas. PMID:26418720

  18. Renaissance in tumor immunotherapy: possible combination with phototherapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2016-03-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce highly toxic reactive oxygen species that destroy tumors. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. PDT may accomplish this feat and stimulate long-term, specific anti-tumor immunity. PDT causes an acute inflammatory response, the rapid induction of large amounts of necrotic and apoptotic tumor cells, induction of damage-associated molecular patterns (DAMPS) including heat-shock proteins, stimulates tumor antigen presentation to naïve T-cells, and generation of cytotoxic T-cells that can destroy distant tumor metastases. By using various syngeneic mouse tumors in immunocompetent mice, we have studied specific PDT regimens related to tumor type as well as mouse genotype and phenotype. We have investigated the role of tumor-associated antigens in PDT-induced immune response by choosing mouse tumors that express: model defined antigen, naturally-occurring cancer testis antigen, and oncogenic virus-derived antigen. We studied the synergistic combination of low-dose cyclophosphamide and PDT that unmasks the PDT-induced immune response by depleting the immunosuppressive T-regulatory cells. PDT combined with immunostimulants (toll-like receptor ligands) can synergistically maximize the generation of anti-tumor immunity by activating dendritic cells and switching immunosuppressive macrophages to a tumor rejection phenotype. Tumors expressing defined tumor-associated antigens with known MHC class I peptides allows anti-tumor immunity to be quantitatively compared.

  19. Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.

    PubMed

    Fojan, Peter; Gurevich, Leonid

    2017-01-01

    The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.

  20. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    NASA Astrophysics Data System (ADS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  1. Microwave Hydrogen Production from Methane

    DTIC Science & Technology

    2012-04-01

    combustion NOx control of reciprocating engine exhaust and fuel cell application of biogas . Our target is to obtain the methane conversion efficiency...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources

  2. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities

    PubMed Central

    Guan, Liming; Xu, Gang

    2017-01-01

    Objectives To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. Materials and Methods Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion. SPSS 19.0 software was used for statistical analyses. Results Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. Conclusion High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer. PMID:28121624

  3. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities.

    PubMed

    Guan, Liming; Xu, Gang

    2017-03-21

    To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion.SPSS 19.0 software was used for statistical analyses. Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer.

  4. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.

  5. Production of Prnp-/- goats by gene targeting in adult fibroblasts.

    PubMed

    Zhu, Caihong; Li, Bei; Yu, Guohua; Chen, Jianquan; Yu, Huiqing; Chen, Juan; Xu, Xujun; Wu, Youbing; Zhang, Aimin; Cheng, Guoxiang

    2009-04-01

    Homozygous mice devoid of functional Prnp are resistant to scrapie and prion propagation, but heterozygous mice for Prnp disruption still suffer from prion disease and prion deposition. We have previously generated heterozygous cloned goats with one allele of Prnp functional disruption. To obtain goats with both alleles of Prnp be disrupted which would be resistant to scrapie completely, a second-round gene targeting was applied to disrupt the wild type allele of Prnp in the heterozygous goats. By second-round gene targeting, we successfully disrupted the wild type allele of Prnp in primary Prnp (+/-) goat skin fibroblasts and obtained a Prnp (-/-) cell line without Prnp expression. This is the first report on successful targeting modification in primary adult somatic cells of animals. These cells were used as nuclear donors for somatic cell cloning to produce Prnp (-/-) goats. A total of 57 morulae or blastocytes developed from the reconstructed embryos were transferred to 31 recipients, which produced 7 pregnancies at day 35. At 73 days of gestation, we obtained one cloned fetus with Prnp (-/-) genotype. Our research not only indicated that multiple genetic modifications could be accomplished by multi-round gene targeting in primary somatic cells, but also provided strong evidence that gene targeting in adult cells other than fetal cells could be applied to introduce precise genetic modifications in animals without destroying the embryos.

  6. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    PubMed

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  7. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    PubMed Central

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  8. Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma

    PubMed Central

    Ren, Pei-pei; Li, Ming; Li, Tian-fang; Han, Shuang-yin

    2017-01-01

    Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM. PMID:28302023

  9. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  10. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives

    PubMed Central

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421

  11. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells.

    PubMed

    Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R

    2018-04-01

    Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.

  12. Hemolytic anemia

    MedlinePlus

    Anemia - hemolytic ... bones that helps form all blood cells. Hemolytic anemia occurs when the bone marrow isn't making ... destroyed. There are several possible causes of hemolytic anemia. Red blood cells may be destroyed due to: ...

  13. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  14. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  15. Sequential replication-coupled destruction at G1/S ensures genome stability

    PubMed Central

    Coleman, Kate E.; Grant, Gavin D.; Haggerty, Rachel A.; Brantley, Kristen; Shibata, Etsuko; Workman, Benjamin D.; Dutta, Anindya; Varma, Dileep; Purvis, Jeremy E.; Cook, Jeanette Gowen

    2015-01-01

    Timely ubiquitin-mediated protein degradation is fundamental to cell cycle control, but the precise degradation order at each cell cycle phase transition is still unclear. We investigated the degradation order among substrates of a single human E3 ubiquitin ligase, CRL4Cdt2, which mediates the S-phase degradation of key cell cycle proteins, including Cdt1, PR-Set7, and p21. Our analysis of synchronized cells and asynchronously proliferating live single cells revealed a consistent order of replication-coupled destruction during both S-phase entry and DNA repair; Cdt1 is destroyed first, whereas p21 destruction is always substantially later than that of Cdt1. These differences are attributable to the CRL4Cdt2 targeting motif known as the PIP degron, which binds DNA-loaded proliferating cell nuclear antigen (PCNADNA) and recruits CRL4Cdt2. Fusing Cdt1's PIP degron to p21 causes p21 to be destroyed nearly concurrently with Cdt1 rather than consecutively. This accelerated degradation conferred by the Cdt1 PIP degron is accompanied by more effective Cdt2 recruitment by Cdt1 even though p21 has higher affinity for PCNADNA. Importantly, cells with artificially accelerated p21 degradation display evidence of stalled replication in mid-S phase and sensitivity to replication arrest. We therefore propose that sequential degradation ensures orderly S-phase progression to avoid replication stress and genome instability. PMID:26272819

  16. The application of the fibroblast activation protein α-targeted immunotherapy strategy

    PubMed Central

    Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-01-01

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target. PMID:26985769

  17. Using RNA Interference to Reveal Genetic Vulnerabilities in Human Cancer Cells

    DTIC Science & Technology

    2005-07-01

    pl of RNase/DNase free water and performed PCR amplification in 50pl reaction volumes using Invitrogen’s Platinum® Pfx DNA Polymerase . To obtain a...destroyed1’ 2. This pathway, known as RNA interference (RNAi), has been exploited in organisms ranging from plants to fungi to animals for...experimentally alter its targeting capability. Indeed such strategies have previously succeeded in both plants and animals23󈧜. My initial studies

  18. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  19. Hemolytic crisis

    MedlinePlus

    Hemolytic crisis occurs when large numbers of red blood cells are destroyed over a short time. The loss of ... During a hemolytic crisis, the body cannot make enough red blood cells to replace those that are destroyed. This causes acute and often ...

  20. Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review).

    PubMed

    Bryukhovetskiy, Igor; Ponomarenko, Arina; Lyakhova, Irina; Zaitsev, Sergey; Zayats, Yulia; Korneyko, Maria; Eliseikina, Marina; Mischenko, Polina; Shevchenko, Valerie; Shanker Sharma, Hari; Sharma, Aruna; Khotimchenko, Yuri

    2018-08-01

    Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and ~20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.

  1. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity

    PubMed Central

    Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; Wagner, Karen; Bischoff, Yvonne; Martens, Rieke; Braun, Asolina; Werth, Kathrin; Uvarovskii, Alexey; Kempf, Harald; Meyer-Hermann, Michael; Arens, Ramon; Kremer, Melanie; Sutter, Gerd; Messerle, Martin; Förster, Reinhold

    2016-01-01

    Summary According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. PMID:26872694

  2. Curcumin and 5-Fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia

    PubMed Central

    Balasubramanian, Sivakumar; Girija, Aswathy Ravindran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Kizhikkilot, Venugopal; Yoshida, Yasuhiko; Maekawa, Toru; Nair, Sakthikumar Dasappan

    2014-01-01

    The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU]) and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes) by initiating early and late apoptosis. PMID:24531392

  3. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia.

    PubMed

    Balasubramanian, Sivakumar; Girija, Aswathy Ravindran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Kizhikkilot, Venugopal; Yoshida, Yasuhiko; Maekawa, Toru; Nair, Sakthikumar Dasappan

    2014-01-01

    The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU]) and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes) by initiating early and late apoptosis.

  4. The inner side of T cell lipid rafts.

    PubMed

    Gri, Giorgia; Molon, Barbara; Manes, Santos; Pozzan, Tullio; Viola, Antonella

    2004-07-15

    A key question in understanding the functional role of lipid rafts is whether lipid microdomains at the plasma membrane outer leaflet are coupled to lipid microdomains at the inner leaflet. By using a cyan-fluorescent protein (CFP) targeted to inner plasma membrane rafts of Jurkat T cells, we found that raft domains at the outer and inner leaflets are physically coupled and that this coupling requires cholesterol. Interestingly, TCR/CD3 cross-linking induces co-capping of the raft bilayer independently of cholesterol or signaling events, indicating that cholesterol-extracting drugs are unable to destroy TCR-lipid rafts interaction.

  5. From Breast to Bone: Tracking Gene Expression Changes Responsible for Breast Cancer Metastasis in a Humanized Mouse Model with Molecular Imaging

    DTIC Science & Technology

    2015-11-01

    strategies to predict and prevent metastasis. 15. SUBJECT TERMS triple-negative breast cancer, metastasis, p53, BTG2, PDX Models 16. SECURITY CLASSIFICATION...membrane and into the circulation, survival in the circulation, extravasation into distant organs, tumor dormancy, and finally tumor growth in the...sequencing analysis are novel targets for metastasis prevention or are more effective at destroying metastatic cells while minimizing the risk of

  6. Targeting and destroying tumor vasculature with a near-infrared laser-activated "nanobomb" for efficient tumor ablation.

    PubMed

    Gao, Wen; Li, Shuangshuang; Liu, Zhenhua; Sun, Yuhui; Cao, Wenhua; Tong, Lili; Cui, Guanwei; Tang, Bo

    2017-09-01

    Attacking the supportive vasculature network of a tumor offers an important new avenue for cancer therapy. Herein, a near-infrared (NIR) laser-activated "nanobomb" was developed as a noninvasive and targeted physical therapeutic strategy to effectively disrupt tumor neovasculature in an accurate and expeditious manner. This "nanobomb" was rationally fabricated via the encapsulation of vinyl azide (VA) into c(RGDfE) peptide-functionalized, hollow copper sulfide (HCuS) nanoparticles. The resulting RGD@HCuS(VA) was selectively internalized into integrin α v β 3 -expressing tumor vasculature endothelial cells and dramatically increased the photoacoustic signals from the tumor neovasculature, achieving a maximum signal-to-noise ratio at 4 h post-injection. Upon NIR irradiation, the local temperature increase triggered VA to release N 2 bubbles rapidly. Subsequently, these N 2 bubbles could instantly explode to destroy the neovasculature and further induce necrosis of the surrounding tumor cells. A single-dose injection of RGD@HCuS(VA) led to complete tumor regression after laser irradiation, with no tumor regrowth for 30 days. More importantly, high-resolution photoacoustic angiography, combined with excellent biodegradability, facilitated the precise destruction of tumor neovasculature by RGD@HCuS(VA) without damaging normal tissues. These results demonstrate the great potential of this "nanobomb" for clinical translation to treat cancer patients with NIR laser-accessible orthotopic tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma.

    PubMed

    Ren, Pei-Pei; Li, Ming; Li, Tian-Fang; Han, Shuang-Yin

    2017-01-01

    Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Low- and high-dose laser irradiation effects on cell migration and destruction

    NASA Astrophysics Data System (ADS)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  9. Methods for assisting recovery of damaged brain and spinal cord and treating various diseases using arrays of x-ray microplanar beams

    DOEpatents

    Dilmanian, F Avraham [Yaphank, NY; Anchel, David J [Rocky Point, NY; Gaudette, Glenn [Holden, MA; Romanelli, Pantaleo [Monteroduni, IT; Hainfeld, James [Shoreham, NY

    2010-06-29

    A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.

  10. Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties

    PubMed Central

    Paranjape, A N; Soundararajan, R; Werden, S J; Joseph, R; Taube, J H; Liu, H; Rodriguez-Canales, J; Sphyris, N; Wistuba, I; Miura, N; Dhillon, J; Mahajan, N; Mahajan, K; Chang, J T; Ittmann, M; Maity, S N; Logothetis, C; Tang, D G; Mani, S A

    2016-01-01

    Advanced prostate adenocarcinomas enriched in stem-cell features, as well as variant androgen receptor (AR)-negative neuroendocrine (NE)/small-cell prostate cancers are difficult to treat, and account for up to 30% of prostate cancer-related deaths every year. While existing therapies for prostate cancer such as androgen deprivation therapy (ADT), destroy the bulk of the AR-positive cells within the tumor, eradicating this population eventually leads to castration-resistance, owing to the continued survival of AR-/lo stem-like cells. In this study, we identified a critical nexus between p38MAPK signaling, and the transcription factor Forkhead Box Protein C2 (FOXC2) known to promote cancer stem-cells and metastasis. We demonstrate that prostate cancer cells that are insensitive to ADT, as well as high-grade/NE prostate tumors, are characterized by elevated FOXC2, and that targeting FOXC2 using a well-tolerated p38 inhibitor restores epithelial attributes and ADT-sensitivity, and reduces the shedding of circulating tumor cells in vivo with significant shrinkage in the tumor mass. This study thus specifies a tangible mechanism to target the AR-/lo population of prostate cancer cells with stem-cell properties. PMID:26804168

  11. [Pathological changes in rats with acute Dysosma versipellis poisoning].

    PubMed

    Xu, Xiang; Xu, Mao-sheng; Zhu, Jian-hua; Huang, Guang-zhao

    2013-10-01

    To observe the pathological changes of major organs in rats with acute Dysosma versipellis poisoning and investigate the toxic mechanism and the injuries of target tissues and organs. Forty Sprague-Dawley (SD) rats were randomly divided into three experimental groups, which were given the gavage with 0.5, 1.0 and 2.0 LDo doses of Dysosma versipellis decoction, and one control group, which was given the gavage with 1.0 LD0 dose of normal saline. The rats were sacrificed 14 days after Dysosma versipellis poisoning and samples including brain, heart, liver, lung, and kidney were taken. After pathological process, the pathological changes of the major organs and tissues were observed by light microscope and electron microscope. The experimental data were statistical analyzed by chi2 test. The observations of light microscopy: loose cytoplasm of neurons with loss of most Nissl bodies; swelling of myocardial cells with disappearance of intercalated disk and striations; hepatocellular edema with ballooning degeneration; and swelling epithelial cells of renal proximal convoluted tubule with red light coloring protein-like substances in the tube. The observations of electron microscopy: the structures of cell membrane and nuclear membrane of neurons were destroyed; cytoplasm of neurons, obvious edema; and most organelles, destroyed and disappeared. The mortalities of rats after acute poisoning of the four groups increased with doses (P < 0.05). Acute Dysosma versipellis poisoning can cause multi-organ pathological changes. There is a positive correlation between the toxic effect and the dosage. The target tissues and organs are brain (neurons), heart, liver and kidney.

  12. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer.

    PubMed

    Power, Anthony T; Bell, John C

    2007-04-01

    Recent years have seen tremendous advances in the development of exquisitely targeted replicating virotherapeutics that can safely destroy malignant cells. Despite this promise, clinical advancement of this powerful and unique approach has been hindered by vulnerability to host defenses and inefficient systemic delivery. However, it now appears that delivery of oncolytic viruses within carrier cells may offer one solution to this critical problem. In this review, we compare the advantages and limitations of the numerous cell lineages that have been investigated as delivery platforms for viral therapeutics, and discuss examples showing how combined cell-virus biotherapeutics can be used to achieve synergistic gains in antitumor activity. Finally, we highlight avenues for future preclinical research that might be taken in order to refine cell-virus biotherapeutics in preparation for human trials.

  13. T cells redirected to EphA2 for the immunotherapy of glioblastoma.

    PubMed

    Chow, Kevin K H; Naik, Swati; Kakarla, Sunitha; Brawley, Vita S; Shaffer, Donald R; Yi, Zhongzhen; Rainusso, Nino; Wu, Meng-Fen; Liu, Hao; Kew, Yvonne; Grossman, Robert G; Powell, Suzanne; Lee, Dean; Ahmed, Nabil; Gottschalk, Stephen

    2013-03-01

    Outcomes for patients with glioblastoma (GBM) remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)-13Rα2, epidermal growth factor receptor variant III (EGFRvIII), or human epidermal growth factor receptor 2 (HER2) has shown promise for the treatment of gliomas in preclinical models and in a clinical study (IL-13Rα2). However, targeting IL-13Rα2 and EGFRvIII is associated with the development of antigen loss variants, and there are safety concerns with targeting HER2. Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) has emerged as an attractive target for the immunotherapy of GBM as it is overexpressed in glioma and promotes its malignant phenotype. To generate EphA2-specific T cells, we constructed an EphA2-specific CAR with a CD28-ζ endodomain. EphA2-specific T cells recognized EphA2-positive glioma cells as judged by interferon-γ (IFN-γ) and IL-2 production and tumor cell killing. In addition, EphA2-specific T cells had potent activity against human glioma-initiating cells preventing neurosphere formation and destroying intact neurospheres in coculture assays. Adoptive transfer of EphA2-specific T cells resulted in the regression of glioma xenografts in severe combined immunodeficiency (SCID) mice and a significant survival advantage in comparison to untreated mice and mice treated with nontransduced T cells. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive GBM.

  14. Small RNA Enhances Antitumor T-cell Therapy | Center for Cancer Research

    Cancer.gov

    Adoptive T-cell transfer is an effective form of anticancer immunotherapy in which patients receive infusions of cytotoxic T cells that seek out and destroy targeted cancer cells. This type of therapy is usually preceded by a lymphodepleting chemotherapy regimen and combined with high doses of the cytokine interleukin-2 (IL-2) to eliminate immunosuppressive and other immune cells and to enhance the survival and activity of the transplanted cells. Unfortunately, these high-intensity treatments often lead to severe side effects, such as a prolonged reduction of white blood cells, an increased risk of clotting events, or an accumulation of fluid in the tissues, which limit the pool of patients healthy enough to receive the treatment and can result in prolonged hospitalization and higher health care costs. New approaches that are less toxic but equally effective could allow for more widespread use of adoptive T-cell transfer.

  15. Nanoscale liposomal formulation of a SYK P-site inhibitor against B-precursor leukemia

    PubMed Central

    Qazi, Sanjive; Cely, Ingrid; Sahin, Kazim; Shahidzadeh, Anoush; Ozercan, Ibrahim; Yin, Qian; Gaynon, Paul; Termuhlen, Amanda; Cheng, Jianjun

    2013-01-01

    We report preclinical proof of principle for effective treatment of B-precursor acute lymphoblastic leukemia (ALL) by targeting the spleen tyrosine kinase (SYK)–dependent antiapoptotic blast cell survival machinery with a unique nanoscale pharmaceutical composition. This nanoscale liposomal formulation (NLF) contains the pentapeptide mimic 1,4-Bis (9-O dihydroquinidinyl) phthalazine/hydroquinidine 1,4-phathalazinediyl diether (C61) as the first and only selective inhibitor of the substrate binding P-site of SYK. The C61 NLF exhibited a very favorable pharmacokinetic and safety profile in mice, induced apoptosis in primary B-precursor ALL blast cells taken directly from patients as well as in vivo clonogenic ALL xenograft cells, destroyed the in vivo clonogenic fraction of ALL blast cells, and, at nontoxic dose levels, exhibited potent in vivo antileukemic activity against patient-derived ALL cells in xenograft models of aggressive B-precursor ALL. Our findings establish SYK as an attractive molecular target for therapy of B-precursor ALL. Further development of the C61 NLF may provide the foundation for therapeutic innovation against therapy-refractory B-precursor ALL. PMID:23568490

  16. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis.

    PubMed

    Lv, Chunwei; Su, Qunshu; Liang, Yupei; Hu, Jinqing; Yuan, Sujing

    2016-07-15

    Lung cancer has an especially high incidence rate worldwide, and its resistance to cell death and chemotherapeutic drugs increases its intractability. The vaccinia virus has been shown to destroy neoplasm within a short time and disseminate rapidly and extensively as an enveloped virion throughout the circulatory system, and this virus has also demonstrated a strong ability to overexpress exogenous genes. Interleukin-24 (IL-24/mda-7) is an important cytokine that belongs to the activating caspase family and facilitates the inhibition of STAT3 when a cell enters the apoptosis pathway. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-24 gene knocked in the region of the viral thymidine kinase (TK) gene (VV-IL-24). Our results showed that VV-IL-24 efficiently infected and destroyed lung cancer cells via caspase-dependent apoptosis and decreased the expression of STAT3. In vivo, VV-IL-24 expressed IL-24 at a high level in the transplanted tumour, reduced STAT3 activity, and eventually led to apoptosis. In conclusion, we demonstrated that vv-IL-24 has the potential for use as a new human lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers in the Department of Bioengineering at Rice University are developing a new approach for fighting cancer, based on nanoshells that can both detect and destroy cancerous cells. The aim is to locate the cells, and be able to make a rational choice about whether they need to be destroyed and if possible they should immediately be sent for…

  18. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  19. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria.

    PubMed

    Taniguchi, Shun'ichiro; Fujimori, Minoru; Sasaki, Takayuki; Tsutsui, Hiroko; Shimatani, Yuko; Seki, Keiichi; Amano, Jun

    2010-09-01

    Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment. © 2010 Japanese Cancer Association.

  20. After 65 years, research is still fun.

    PubMed

    Hansel, William

    2013-01-01

    In 1946, at the end of World War II, I entered graduate school at Cornell University, where I remained for 44 years. During that time, my laboratory produced more than 300 publications in the field of reproductive biology, including studies on nutrition and reproduction, the role of the hypothalamus in pituitary gonadotropin release, corpus luteum formation and function, hormone assays, and estrous cycle synchronization. At age seventy, I retired from Cornell and accepted the Gordon Cain Endowed Professorship at Louisiana State University, where I continued my work on the bovine corpus luteum and added research on the collection, maturation, in vitro fertilization, and culture of bovine oocytes. In 1994, I moved to the Pennington Biomedical Research Center and soon thereafter started the research that led to development of the lytic peptide-gonadotropin conjugates, which target and destroy cancer cell membranes. I am continuing my work on the development of targeted cancer cell drugs and, yes, research is still fun!

  1. Strategies to potentiate immune response after photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2017-02-01

    Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not yet advanced to a mainstream cancer treatment. Although PDT has been shown to be an efficient photochemical way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT a great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. Some of these combination approaches use immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen associated molecular patterns. Other approaches use cytokines and growth factors whether directly administered or genetically encoded. A promising approach targets regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.

  2. Inhibition of human papillomavirus expression using DNAzymes.

    PubMed

    Benítez-Hess, María Luisa; Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis Marat

    2011-01-01

    Deoxyribozymes (DXZs) are catalytic oligodeoxynucleotides capable of performing diverse functions including the specific cleavage of a target RNA. These molecules represent a new type of therapeutic oligonucleotides combining the efficiency of ribozymes and the intracellular endurance and simplicity of modified antisense oligonucleotides. Commonly used DXZs include the 8-17 and 10-23 motifs, which have been engineered to destroy disease-associated genes with remarkable efficiency. Targeting DXZs to disease-associated transcripts requires extensive biochemical testing to establish target RNA accessibility, catalytic efficiency, and nuclease sensibility. The usage of modified nucleotides to render nuclease-resistance DXZs must be counterweighted against deleterious consequences on catalytic activity. Further intracellular testing is required to establish the effect of microenvironmental conditions on DXZ activity and off-target issues. Application of modified DXZs to cervical cancer results in specific growth inhibition, cell death, and apoptosis. Thus, DXZs represent a highly effective antisense moiety with minimal secondary effects.

  3. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  4. Laser therapy for cancer

    MedlinePlus

    ... a very narrow, focused beam of light to shrink or destroy cancer cells. It can be used ... be used to: Destroy tumors and precancerous growths Shrink tumors that are blocking the stomach, colon, or ...

  5. Modulation of host cell function by Legionella pneumophila type IV effectors.

    PubMed

    Hubber, Andree; Roy, Craig R

    2010-01-01

    Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.

  6. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  7. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery.

    PubMed

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-11-15

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues. Copyright © 2013 UICC.

  8. Eradication of Large Solid Tumors by Gene Therapy with a T-Cell Receptor Targeting a Single Cancer-Specific Point Mutation.

    PubMed

    Leisegang, Matthias; Engels, Boris; Schreiber, Karin; Yew, Poh Yin; Kiyotani, Kazuma; Idel, Christian; Arina, Ainhoa; Duraiswamy, Jaikumar; Weichselbaum, Ralph R; Uckert, Wolfgang; Nakamura, Yusuke; Schreiber, Hans

    2016-06-01

    Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602. ©2015 American Association for Cancer Research.

  9. SYK as a New Therapeutic Target in B-Cell Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Uckun, Fatih M.; Qazi, Sanjive

    2014-01-01

    The identification of SYK as a master regulator of apoptosis controlling the activation of the PI3-K/AKT, NFκB, and STAT3 pathways—three major anti-apoptotic signaling pathways in B-lineage leukemia/lymphoma cells—prompts the hypothesis that rationally designed inhibitors targeting SYK may overcome the resistance of malignant B-lineage lymphoid cells to apoptosis and thereby provide the foundation for more effective multi-modality treatment regimens for poor prognosis B-precursor acute lymphoblastic leukemia (BPL). In recent preclinical proof-of-concept studies, a liposomal nanoparticle (LNP) formulation of a SYK substrate-binding site inhibitor, known as C61, has been developed as a nanomedicine candidate against poor prognosis and relapsed BPL. This nanoscale formulation of C61 exhibited a uniquely favorable pharmacokinetics and safety profile in mice, induced apoptosis in radiation-resistant primary leukemic cells taken directly from BPL patients as well as in vivo clonogenic BPL xenograft cells, destroyed the leukemic stem cell fraction of BPL blasts, and exhibited potent in vivo anti-leukemic activity in xenograft models of aggressive BPL. Further development of C61-LNP may provide the foundation for new and effective treatment strategies against therapy-refractory BPL. PMID:24851191

  10. The oncolytic compound LTX-401 targets the Golgi apparatus

    PubMed Central

    Zhou, Heng; Sauvat, Allan; Gomes-da-Silva, Lígia C; Durand, Sylvère; Forveille, Sabrina; Iribarren, Kristina; Yamazaki, Takahiro; Souquere, Sylvie; Bezu, Lucillia; Müller, Kevin; Leduc, Marion; Liu, Peng; Zhao, Liwei; Marabelle, Aurélien; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2016-01-01

    LTX-401 is an oncolytic amino acid derivative with potential immunogenic properties. Here, we demonstrate that LTX-401 selectively destroys the structure of the Golgi apparatus, as determined by means of ultrastructural analyses and fluorescence microscopic observation of cells expressing Golgi-targeted GFP reporters. Subcellular fractionation followed by mass spectrometric detection revealed that LTX-401 selectively enriched in the Golgi rather than in mitochondria or in the cytosol. The Golgi-dissociating agent Brefeldin A (BFA) reduced cell killing by LTX-401 as it partially inhibited LTX-401-induced mitochondrial release of cytochrome c and the activation of BAX. The cytotoxic effect of LTX-401 was attenuated by the double knockout of BAX and BAK, as well as the mitophagy-enforced depletion of mitochondria, yet was refractory to caspase inhibition. LTX-401 induced all major hallmarks of immunogenic cell death detectable with biosensor cell lines including calreticulin exposure, ATP release, HMGB1 exodus and a type-1 interferon response. Moreover, LTX-401-treated tumors manifested a strong lymphoid infiltration. Altogether these results support the contention that LTX-401 can stimulate immunogenic cell death through a pathway in which Golgi-localized LTX-401 operates upstream of mitochondrial membrane permeabilization. PMID:27588704

  11. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  12. Nanotechnology: what is it and why is small so big?

    PubMed

    Leary, James F

    2010-10-01

    SIZE matters… the size of the scalpel determines the precision of the surgery. Nanotechnology affords us the chance to construct nanotools that are on the size scale of molecules, allowing us to treat each cell of the human body as a patient. Nanomedicine will allow for eradication of disease at the single-cell level. Since nanotools are self-assembling, nanomedicine has the potential to perform parallel processing medicine on a massive scale. These nanotools can be made of biocompatible and biodegradable nanomaterials. They can be "smart" in that they can use sophisticated targeting strategies, which can perform error checking to prevent harm if even a very small fraction of them are mistargeted. Built-in molecular biosensors can provide controlled drug delivery with feedback control for individual cell dosing. If designed to repair existing cells rather than to just destroy diseased cells, these nanomedical devices can perform in-situ regenerative medicine, programming cells along less dangerous cell pathways to prevent tissues and organs from being destroyed by the treatments and thus providing an attractive alternative to allogeneic organ transplants. Nanomedical tools, while tiny in size, can have a huge impact on medicine and health care. Earlier and more sensitive diagnosis will lead to presymptomatic diagnosis and treatment of disease before permanent damage occurs to tissues and organs. This should result in the delivery of better medicine at lower costs with better outcomes. Lastly, and importantly, some of the first uses of nanotechnology and nanomedicine are occurring in the field of ophthalmology. Some of the potential benefits of nanotechnology for future treatment of retinopathies and optic nerve damage are discussed at the end of this paper.

  13. Antibody-linked drug destroys tumor cells and tumor blood vessels in many types of cancer | Center for Cancer Research

    Cancer.gov

    A team led by Brad St. Croix, Ph.D., Senior Associate Scientist, Mouse Cancer Genetics Program, has developed an antibody-drug conjugate (ADC) that destroys both tumor cells and the blood vessels that nourish them. The drug significantly shrank breast tumors, colon tumors and several other types of cancer and prolonged survival. Learn more...  

  14. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.

    PubMed

    Kutushov, M; Gorelik, O

    2013-01-01

    Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.

  15. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  16. Micromotors to capture and destroy anthrax simulant spores.

    PubMed

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  17. Nanotherapy of cancer by photoelectrons emitted from the surface of nanoparticles exposed to nonionizing ultraviolet radiation.

    PubMed

    Letfullin, Renat R; George, Thomas F

    2017-05-01

    We introduce a new method for selectively destroying cancer cell organelles by electrons emitted from the surface of intracellularly localized nanoparticles exposed to the nonionizing ultraviolet (UV) radiation. We propose to target cancerous intracellular organelles by nanoparticles and expose them to UV radiation with energy density safe for healthy tissue. We simulate the number of photoelectrons produced by the nanoparticles made of various metals and radii, calculate their kinetic energy and compare it to the threshold energy for producing biological damage. Exposure of metal nanoparticles to UV radiation generates photoelectrons with kinetic energies up to 11 eV, which is high enough to produce single- to double-strand breaks in the DNA and damage the cancerous cell organelles.

  18. Targeted radiotherapy with gold nanoparticles: current status and future perspectives

    PubMed Central

    Ngwa, Wilfred; Kumar, Rajiv; Sridhar, Srinivas; Korideck, Houari; Zygmanski, Piotr; Cormack, Robert A; Berbeco, Ross; Makrigiorgos, G Mike

    2014-01-01

    Radiation therapy (RT) is the treatment of cancer and other diseases with ionizing radiation. The ultimate goal of RT is to destroy all the disease cells while sparing healthy tissue. Towards this goal, RT has advanced significantly over the past few decades in part due to new technologies including: multileaf collimator-assisted modulation of radiation beams, improved computer-assisted inverse treatment planning, image guidance, robotics with more precision, better motion management strategies, stereotactic treatments and hypofractionation. With recent advances in nanotechnology, targeted RT with gold nanoparticles (GNPs) is actively being investigated as a means to further increase the RT therapeutic ratio. In this review, we summarize the current status of research and development towards the use of GNPs to enhance RT. We highlight the promising emerging modalities for targeted RT with GNPs and the corresponding preclinical evidence supporting such promise towards potential clinical translation. Future prospects and perspectives are discussed. PMID:24978464

  19. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool.

    PubMed

    Tserevelakis, George J; Psycharakis, Stylianos; Resan, Bojan; Brunner, Felix; Gavgiotaki, Evagelia; Weingarten, Kurt; Filippidis, George

    2012-02-01

    Femtosecond laser assisted nanosurgery of microscopic biological specimens is a relatively new technique which allows the selective disruption of sub-cellular structures without causing any undesirable damage to the surrounding regions. The targeted structures have to be stained in order to be clearly visualized for the nanosurgery procedure. However, the validation of the final nanosurgery result is difficult, since the targeted structure could be simply photobleached rather than selectively destroyed. This fact comprises a main drawback of this technique. In our study we employed a multimodal system which integrates non-linear imaging modalities with nanosurgery capabilities, for the selective disruption of sub-cellular structures in HeLa cancer cells. Third Harmonic Generation (THG) imaging modality was used as a tool for the identification of structures that were subjected to nanosurgery experiments. No staining of the biological samples was required, since THG is an intrinsic property of matter. Furthermore, cells' viability after nanosurgery processing was verified via Two Photon Excitation Fluorescence (TPEF) measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Doxorubicin-conjugated bacteriophages carrying anti-MHC class I chain-related A for targeted cancer therapy in vitro.

    PubMed

    Phumyen, Achara; Jantasorn, Siriporn; Jumnainsong, Amonrat; Leelayuwat, Chanvit

    2014-01-01

    Cancer therapy by systemic administration of anticancer drugs, besides the effectiveness shown on cancer cells, demonstrated the side effects and cytotoxicity on normal cells. The targeted drug-carrying nanoparticles may decrease the required drug concentration at the site and the distribution of drugs to normal tissues. Overexpression of major histocompatibility complex class I chain-related A (MICA) in cancer is useful as a targeted molecule for the delivery of doxorubicin to MICA-expressing cell lines. The application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) chemistry was employed to conjugate the major coat protein of bacteriophages carrying anti-MICA and doxorubicin in a mildly acid condition. Doxorubicin (Dox) on phages was determined by double fluorescence of phage particles stained by M13-fluorescein isothiocyanate (FITC) and drug autofluorescence by flow cytometry. The ability of anti-MICA on phages to bind MICA after doxorubicin conjugation was evaluated by indirect enzyme-linked immunosorbent assay. One cervical cancer and four cholangiocarcinoma cell lines expressing MICA were used as models to evaluate targeting activity by cell cytotoxicity test. Flow cytometry and indirect enzyme-linked immunosorbent assay demonstrated that most of the phages (82%) could be conjugated with doxorubicin, and the Dox-carrying phage-displaying anti-MICA (Dox-phage) remained the binding activity against MICA. Dox-phage was more efficient than free drugs in killing all the cell lines tested. The half maximal inhibitory concentration (IC50) values of Dox-phage were lower than those of free drugs at approximately 1.6-6 times depending on MICA expressions and the cell lines tested. Evidently, the application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide chemistry is effective to conjugate doxorubicin and major coat protein of bacteriophages without destroying binding activity of MICA antibodies. Dox-carrying bacteriophages targeting MICA have been successfully developed and may enable a broad range of applications in cancer-targeting chemotherapy.

  1. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment.

    PubMed

    Kim, Ji-Young; Lee, Hwa-Yong; Park, Kwan-Kyu; Choi, Yang-Kyu; Nam, Jeong-Seok; Hong, In-Sun

    2016-04-12

    Liver cancer stem cells (CSCs) are resistant to conventional chemotherapy and radiation, which may destroy tumor masses, but not all liver CSCs contribute to tumor initiation, metastasis, and relapse. In the present study, we showed that liver CSCs with elevated Wnt/β-catenin signaling possess much greater self-renewal and clonogenic potential. We further documented that the increased clonogenic potential of liver CSCs is highly associated with changes in Wnt/β-catenin signaling and that Wnt/β-catenin signaling activity is positively correlated with CD133 expression and aldehyde dehydrogenase (ALDH) enzymatic activity. Notably, the small molecule inhibitor CWP232228, which antagonizes the binding of β-catenin to TCF in the nucleus, inhibits Wnt/β-catenin signaling and depletes CD133+/ALDH+ liver CSCs, thus ultimately diminishing the self-renewal capacity of CSCs and decreasing tumorigenicity in vitro and in vivo. Taken together, our findings suggest that CWP232228 acts as a candidate therapeutic agent for liver cancer by preferentially targeting liver CSCs.

  2. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent

    PubMed Central

    Stefflova, Klara; Li, Hui; Chen, Juan; Zheng, Gang

    2008-01-01

    We designed and synthesized a folate receptor-targeted, water soluble, and pharmacomodulated photodynamic therapy (PDT) agent that selectively detects and destroys the targeted cancer cells while sparing normal tissue. This was achieved by minimizing the normal organ uptake (e.g., liver and spleen) and by discriminating between tumors with different levels of folate receptor (FR) expression. This construct (Pyro-peptide-Folate, PPF) is comprised of three components: 1) Pyropheophorbide a (Pyro) as an imaging and therapeutic agent, 2) peptide sequence as a stable linker and modulator improving the delivery efficiency, and 3) Folate as a homing molecule targeting FR-expressing cancer cells. We observed an enhanced accumulation of PPF in KB cancer cells (FR+) compared to HT 1080 cancer cells (FR-), resulting in a more effective post-PDT killing of KB cells over HT 1080 or normal CHO cells. The accumulation of PPF in KB cells can be up to 70% inhibited by an excess of free folic acid. The effect of Folate on preferential accumulation of PPF in KB tumors (KB vs. HT 1080 tumors 2.5:1) was also confirmed in vivo. In contrast to that, no significant difference between the KB and HT 1080 tumor was observed in case of the untargeted probe (Pyro-peptide, PP), eliminating the potential influence of Pyro’s own nonspecific affinity to cancer cells. More importantly, we found that incorporating a short peptide sequence considerably improved the delivery efficiency of the probe – a process we attributed to a possible peptide-based pharmacomodulation – as was demonstrated by a 50-fold reduction in PPF accumulation in liver and spleen when compared to a peptide-lacking probe (Pyro-K-Folate, PKF). This approach could potentially be generalized to improve the delivery efficiency of other targeted molecular imaging and photodynamic therapy agents. PMID:17298029

  3. Microfluidic Encapsulation of Prickly Zinc-Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy.

    PubMed

    Zhang, Hongbo; Liu, Dongfei; Wang, Liang; Liu, Zehua; Wu, Runrun; Janoniene, Agne; Ma, Ming; Pan, Guoqing; Baranauskiene, Lina; Zhang, Linlin; Cui, Wenguo; Petrikaite, Vilma; Matulis, Daumantas; Zhao, Hongxia; Pan, Jianming; Santos, Hélder A

    2017-06-01

    Structural features of nanoparticles have recently been explored for different types of applications. To explore specific particles as nanomedicine and physically destroy cancer is interesting, which might avoid many obstacles in cancer treatment, for example, drug resistance. However, one key element and technical challenge of those systems is to selectively target them to cancer cells. As a proof-of-concept, Prickly zinc-doped copper oxide (Zn-CuO) nanoparticles (Prickly NPs) have been synthesized, and subsequently encapsulated in a pH-responsive polymer; and the surface has been modified with a novel synthesized ligand, 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl] benzenesulfonamide (VD1142). The Prickly NPs exhibit very effective cancer cell antiproliferative capability. Moreover, the polymer encapsulation shields the Prickly NPs from unspecific nanopiercing and, most importantly, VD1142 endows the engineered NPs to specifically target to the carbonic anhydrase IX, a transmembrane protein overexpressed in a wide variety of cancer tumors. Intracellularly, the Prickly NPs disintegrate into small pieces that upon endosomal escape cause severe damage to the endoplasmic reticulum and mitochondria of the cells. The engineered Prickly NP is promising in efficient and targeted cancer treatment and it opens new avenue in nanomedication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    PubMed

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  5. Comparison of hemagglutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains.

    PubMed

    Storz, J; Zhang, X M; Rott, R

    1992-01-01

    Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.

  6. Medical applications of nanotechnology.

    PubMed

    Zdrojewicz, Zygmunt; Waracki, Mateusz; Bugaj, Bartosz; Pypno, Damian; Cabała, Krzysztof

    2015-10-29

    Nanotechnologies are new areas of research focusing on affecting matter at the atomic and molecular levels. It is beyond doubt that modern medicine can benefit greatly from it; thus nanomedicine has become one of the main branches of nanotechnological research. Currently it focuses on developing new methods of preventing, diagnosing and treating various diseases. Nanomaterials show very high efficiency in destroying cancer cells and are already undergoing clinical trials. The results are so promising that nanomaterials might become an alternative to traditional cancer therapy, mostly due to the fact that they allow cancer cells to be targeted specifically and enable detailed imaging of tissues, making planning further therapy much easier. Nanoscience might also be a source of the needed breakthrough in the fight against atherosclerosis, since nanostructures may be used in both preventing and increasing the stability of atherosclerotic lesions. One area of interest is creating nanomaterials that are not only efficient, but also well tolerated by the human body. Other potential applications of nanotechnology in medicine include: nanoadjuvants with immunomodulatory properties used to deliver vaccine antigens; the nano-knife, an almost non-invasive method of destroying cancer cells with high voltage electricity; and carbon nanotubes, which are already a popular way of repairing damaged tissues and might be used to regenerate nerves in the future. The aim of this article is to outline the potential uses of nanotechnology in medicine. Original articles and reviews have been used to present the new developments and directions of studies.

  7. Adult T-Cell Leukemia/Lymphoma

    MedlinePlus

    ... Adult T-Cell Leukemia/Lymphoma Adult T-Cell Leukemia/Lymphoma Adult T-cell A type of white ... immune responses by destroying harmful substances or cells. leukemia Disease generally characterized by the overproduction of abnormal ...

  8. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo.

    PubMed

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-02-12

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte's functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye's anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  9. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  10. Collateral Sensitivity of Multidrug-Resistant Cells to the Orphan Drug Tiopronin

    PubMed Central

    Goldsborough, Andrew S.; Handley, Misty D.; Dulcey, Andrés E.; Pluchino, Kristen M.; Kannan, Pavitra; Brimacombe, Kyle R.; Hall, Matthew D.; Griffiths, Gary; Gottesman, Michael M.

    2011-01-01

    A major challenge in the treatment of cancer is multidrug resistance (MDR) that develops during chemotherapy. Here we demonstrate that tiopronin (1), a thiol-substituted N-propanoylglycine derivative, was selectively toxic to a series of cell lines expressing the drug efflux pump P-glycoprotein (P-gp, ABCB1) and MRP1 (ABCC1). Treatment of MDR cells with 1 led to instability of the ABCB1 mRNA and consequently a reduction in P-gp protein, despite functional assays demonstrating that tiopronin does not interact with P-gp. Long-term exposure of P-gp-expressing cells to 1 sensitized them to doxorubicin and taxol, both P-gp substrates. Treatment of MRP1-overexpressing cells with tiopronin led to a significant reduction in MRP1 protein. Synthesis and screening of analogs of tiopronin demonstrated that the thiol functional group was essential for collateral sensitivity, while substitution of the amino acid backbone altered but did not destroy specificity, pointing to future development of targeted analogs. PMID:21657271

  11. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

    PubMed Central

    Suvannasankha, Attaya; Tompkins, Douglas R.; Edwards, Daniel F.; Petyaykina, Katarina V.; Crean, Colin D.; Fournier, Pierrick G.; Parker, Jamie M.; Sandusky, George E.; Ichikawa, Shoji; Imel, Erik A.; Chirgwin, John M.

    2015-01-01

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  12. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    PubMed

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Stress-induced molecules MICA as potential target for radioimmunotherapy of cancer

    NASA Astrophysics Data System (ADS)

    Abakushina, E. V.; Anokhin, Yu N.; Abakushin, D. N.; Kaprin, A. D.

    2017-01-01

    Improving the treatment of cancer, increasing their effectiveness and safety is the main objective in the medicine. Molecular nuclear medicine plays an important role in the therapy of cancer. Radioimmunotherapy (RIT) involves the use of antibodies conjugated with therapeutic radionuclides. More often for RIT use the radiolabeled monoclonal antibodies against tumor-associated antigens. Encouraging results have been achieved with this technology in the management of hematologic malignancies. On the contrary, solid tumors have been less responsive. Despite these encouraging results, new potential target for radioimmunodetection and RIT should be found. It was found to increase the level of tumor-associated molecules MICA in the serum of cancer patients. Use of anti-MICA monoclonal antibodies capable a specifically attach to cancer cell via NKG2D ligands and destroy it, is a very promising direction, both therapeutic and diagnostic standpoint.

  14. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion

    USDA-ARS?s Scientific Manuscript database

    The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae...

  15. Hantavirus-infection Confers Resistance to Cytotoxic Lymphocyte-Mediated Apoptosis

    PubMed Central

    Gupta, Shawon; Braun, Monika; Tischler, Nicole D.; Stoltz, Malin; Sundström, Karin B.; Björkström, Niklas K.; Ljunggren, Hans-Gustaf; Klingström, Jonas

    2013-01-01

    Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)), both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response. PMID:23555267

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montrose, Kristopher; Krissansen, Geoffrey W., E-mail: gw.krissansen@auckland.ac.nz

    Highlights: • A novel proteolysis targeting chimeric molecule (PROTAC) to treat hepatitis B. • The PROTAC antagonizes and destroys the X-protein of the hepatitis B virus. • The PROTAC is a fusion of the X-protein oligomerization and instability domains. • The oligomerization domain is a dominant-negative inhibitor of X-protein function. • X-protein-targeting PROTACs have potential to prevent hepatocellular carcinoma. - Abstract: The X-protein of the hepatitis B virus (HBV) is essential for virus infection and contributes to the development of HBV-induced hepatocellular carcinoma (HCC), a disease which causes more than one million deaths each year. Here we describe the designmore » of a novel PROTAC (proteolysis targeting chimeric molecule) capable of simultaneously inducing the degradation of the X-protein, and antagonizing its function. The PROTAC was constructed by fusing the N-terminal oligomerization and C-terminal instability domains of the X-protein to each other, and rendering them cell-permeable by the inclusion of a polyarginine cell-penetrating peptide (CPP). It was predicted that the oligomerization domain would bind the X-protein, and that the instability domain would cause the X-protein to be targeted for proteasomal degradation. Addition of the PROTAC to HepG2 liver cancer cells, engineered to express full-length and C-terminally truncated forms of the X-protein, resulted in the degradation of both forms of the X-protein. A cell-permeable stand-alone form of the oligomerization domain was taken up by HepG2 cells, and acted as a dominant-negative inhibitor, causing inhibition of X-protein-induced apoptosis. In summary, the PROTAC described here induces the degradation of the X-protein, and antagonizes its function, and warrants investigation in a preclinical study for its ability to prevent or treat HBV infection and/or the development of HCC.« less

  17. Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement.

    PubMed

    Diekmann, Jan; Adamopoulou, Eleni; Beck, Olaf; Rauser, Georg; Lurati, Sarah; Tenzer, Stefan; Einsele, Hermann; Rammensee, Hans-Georg; Schild, Hansjörg; Topp, Max S

    2009-08-01

    The EBV Ag latent membrane protein 1 (LMP1) has been described as a potential target for T cell immunotherapy in EBV-related malignancies. However, only a few CD8(+) T cell epitopes are known, and the benefit of LMP1-specific T cell immunotherapy has not yet been proven. In this work, we studied the processing of the two LMP1 HLA-A02-restricted epitopes, YLLEMLRWL and YLQQNWWTL. We found that target cells endogenously expressing the native LMP1 are not recognized by CTLs specific for these epitopes because the N-terminal part of LMP1 limits the efficiency of epitope generation. We further observed that the proteasome is not required for the generation of both epitopes and that the YLLEMLRWL epitope seems to be destroyed by the proteasome, because blocking of proteasomal activities enhanced specific CTL activation. Activation of LMP1-specific CTLs could be significantly reduced after inhibition of the tripeptidyl peptidase II, suggesting a role for this peptidase in the processing of both epitopes. Taken together, our results demonstrate that the MHC class I-restricted LMP1 epitopes studied in this work are two of very few epitopes known to date to be processed proteasome independently by tripeptidyl peptidase II.

  18. Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases.

    PubMed

    Biering, Scott B; Choi, Jayoung; Halstrom, Rachel A; Brown, Hailey M; Beatty, Wandy L; Lee, Sanghyun; McCune, Broc T; Dominici, Erin; Williams, Lelia E; Orchard, Robert C; Wilen, Craig B; Yamamoto, Masahiro; Coers, Jörn; Taylor, Gregory A; Hwang, Seungmin

    2017-07-12

    All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells.

    PubMed

    Wu, Ping; Gao, Yang; Zhang, Hui; Cai, Chenxin

    2012-09-18

    The aptamer (S2.2)-guided Ag-Au nanostructures (aptamer-Ag-Au) have been synthesized by photoreduction and validated by ultraviolet-visible light (UV-vis) spectra and transmission electron microscopy (TEM) images. Differential interference contrast (DIC), fluorescence, and TEM images, and surface-enhanced Raman scattering (SERS) spectra indicated that the aptamer-Ag-Au nanostructures can target the surface of human breast cancer cells (MCF-7) with high affinity and specificity. This targeting is completed via the specific interaction between S2.2 aptamer (a 25-base oligonucleotide) and MUC1 mucin (a large transmembrane glycoprotein, whose expression increased at least 10-fold at MCF-7 cells in primary and metastatic breast cancers). However, the nanostructures cannot target HepG2 (human liver cancer cells) or MCF-10A cells (human normal breast epithelial cells), because these cells are MUC1-negative expressed. Moreover, the synthesized nanostructures exhibited a high SERS activity. Based on these results, a new assay for specifically detecting MCF-7 cells has been proposed. This assay can also discriminate MCF-7 cells from MCF-10A cells and different cancer cell lines, such as HepG2 cells. In addition, the aptamer-Ag-Au nanostructures have a high capability of adsorpting near-infrared (NIR) irradiation and are able to perform photothermal therapy of MCF-7 cells at a very low irradiation power density (0.25 W/cm(2)) without destroying the healthy cells and the surrounding normal tissue. Therefore, the proposed assay is significant for the diagnosis of tumors in their nascent stage. The synthesized nanostructures could offer a protocol to specifically recognize and sensitively detect the cancer cells, and would have great potential for application in the photothermal therapy of the cancers.

  20. [A case of petrous ridge meningioma manifested as pneumocephalus followed by Eustachian tube insufflation].

    PubMed

    Yamaguchi, Shinya; Gi, Hidefuku; Uno, Jyunji; Ikai, Yoshiaki; Inoha, Satoshi; Nagaoka, Shintarou; Nishio, Shunji

    2009-05-01

    A 50-year-old female, who had a headache after Eustachian tube insufflation for her ear congestion, came to our hospital. CT and MRI revealed pneumocephalus and petrous ridge meningioma which destroyed petrous bone and air cells. Eustachian tube insufflation was considered to make the air coming into the middle ear, mastoid air cell and then into the intracranial space destroying the tumor. At surgery, there was subdural hematoma around the tumor. Total removal of the tumor and the hematoma membrane was performed. Histologically, the tumor was transitional meningioma and the cluster of meningioma cells were noted in the subdural hematoma membrane.

  1. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  2. Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles.

    PubMed

    Pellé, Karell G; Jiang, Rays H Y; Mantel, Pierre-Yves; Xiao, Yu-Ping; Hjelmqvist, Daisy; Gallego-Lopez, Gina M; O T Lau, Audrey; Kang, Byung-Ho; Allred, David R; Marti, Matthias

    2015-11-01

    Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal-mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host-targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal-mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal-mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM. © 2015 John Wiley & Sons Ltd.

  3. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    PubMed Central

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  4. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. © The Author(s) 2014.

  5. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies.

    PubMed

    Pull, Christopher D; Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark Jf; Cremer, Sylvia

    2018-01-09

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus , the negative consequences of fungal infections ( Metarhizium brunneum ) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.

  6. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The 150 most important questions in cancer research and clinical oncology series: Questions 25-30 : Edited by Chinese Journal of Cancer.

    PubMed

    2017-05-04

    To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology. In this article, 6 more questions are presented as followed. Question 25: Does imprinting of immune responses to infections early in life predict future risk of childhood and adult cancers? Question 26: How to induce homogeneous tumor antigen expression in a heterogeneous tumor mass to enhance the efficacy of cancer immunotherapy? Question 27: Could we enhance the therapeutic effects of immunotherapy by targeting multiple tumor antigens simultaneously or sequentially? Question 28: Can immuno-targeting to cytokines halt cancer metastasis? Question 29: How can we dynamically and less-invasively monitor the activity of CD8 + T killer cells at tumor sites and draining lymph nodes? Question 30: How can the immune system destroy the niches for cancer initiation?

  8. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies

    PubMed Central

    Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark JF

    2018-01-01

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen’s non-contagious incubation period, utilising chemical ‘sickness cues’ emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. PMID:29310753

  9. Childhood Central Nervous System Embryonal Tumors Treatment

    MedlinePlus

    ... lower back is numbed. High-dose chemotherapy with stem cell rescue High-dose chemotherapy with stem cell rescue is a way of giving high doses ... blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood ...

  10. Characterization of the receptor-destroying enzyme activity from infectious salmon anaemia virus.

    PubMed

    Kristiansen, Marianne; Frøystad, Marianne K; Rishovd, Anne Lise; Gjøen, Tor

    2002-11-01

    Infectious salmon anaemia virus (ISAV) infects cells via the endocytic pathway and, like many other enveloped viruses, ISAV contains a receptor-destroying enzyme. We have analysed this acetylesterase activity with respect to substrate specificity, enzyme kinetics, inhibitors, temperature and pH stability. The ISAV acetylesterase was inhibited by di-isopropyl fluorophosphate (DFP) in a dose-dependent fashion but not by other known hydrolase inhibitors, suggesting that a serine residue is part of the active site. The pH optimum of the enzyme was in the range 7.5-8.0 and the enzymatic activity was lessened at temperatures above 40 degrees C. The effect of DFP on agglutination/elution of erythrocytes by ISAV demonstrated that the acetylesterase activity is the bona fide receptor-destroying enzyme. A haemadsorption assay was used to analyse whether the esterase was active on the surface of infected cells or not.

  11. FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI

    PubMed Central

    Dounce, Alexander L.; Monty, Kenneth J.

    1955-01-01

    1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437

  12. Method of sterilization using ozone

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    2002-01-01

    Methods of using ozone have been developed which sterilize instruments and medical wastes, oxidize, organics found in wastewater, clean laundry, break down contaminants in soil into a form more readily digested by microbes, kill microorganisms present in food products, and destroy toxins present in food products. The preferred methods for killing microorganism and destroying toxins use pressurized, humidified, and concentrated ozone produced by an electrochemical cell.

  13. Renewing the Assault on mRNA

    PubMed Central

    McCAIN, JACK

    2004-01-01

    Mammalian cells dislike double-stranded RNA. They interpret it as a sign of an intruder, and they can unleash a recently discovered defensive mechanism to deal with the problem – they chop the invader into little pieces and use the remnants, called small interfering RNA, to identify and destroy the invader and its progeny. This process, known as RNA interference, may lend itself to new treatments for a wide range of diseases. RNA interference, however, resembles two therapies studied during the 1990s, antisense and ribozymes, in that the gene-silencing target is messenger RNA (mRNA). Is RNA interference really the Next Big Thing – or just a variation on an older but still intriguing theme? PMID:23372488

  14. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  15. Targeted Mesoporous Silica Nanocarriers in Oncology.

    PubMed

    Baeza, Alejandro; Vallet-Regi, Maria

    2018-02-08

    Cancer is one of the major leading causes of death worldwide and its prevalence will be higher in the coming years due to the progressive aging of the population. The development of nanocarriers in oncology has provided a new hope in the fight against this terrible disease. Among the different types of nanoparticles which have been reported in the scientific literature, mesoporous silica nanoparticles (MSNs) are very promising materials due to their inherent properties such as high loading capacity of many different drugs, excellent biocompatibility and easy functionalization. This review presents the current state of the art related to the development of mesoporous silica nanocarriers for antitumoral therapy paying special attention on targeted MSN able to selectively destroy tumoral cells, reducing the side damage in healthy ones, and the basic principles of targeting tumoral tissues and cells. MSNs constitute a promising nanomaterial for drug delivery applications in antitumoral therapy as a consequence of its unique properties such as excellent biocompatibility, high loading capacity, robustness, easy production and existence of multiple strategies for their functionalization with a myriad of bio-organic moieties. In the coming years, the clever application of this material would provide novel alternatives for the treatment of this complex disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Immune System

    MedlinePlus

    ... do: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses ... like the soldiers, destroying the invaders that the intelligence system has identified. Here's how it works. A ...

  17. Developing Performance Measures for Manned-Unmanned Teaming Skills

    DTIC Science & Technology

    2015-02-01

    Moves aircraft to safe area Utilize standardized radio communication and signal operating procedures Perform BDA Utilize Standard report formats...UAS does not conduct BDA ; assumes target is destroyed without verification UAS evaluates target; reports BDA to engaging aircraft (or...ground unit) after prompting UAS evaluates target; proactively reports BDA to engaging aircraft (or ground unit) 1 2 3 4 5 1 2 3 4 5 B

  18. Lymph nodes

    MedlinePlus Videos and Cool Tools

    ... and conveying lymph and by producing various blood cells. Lymph nodes play an important part in the ... the microorganisms being trapped inside collections of lymph cells or nodes. Eventually, these organisms are destroyed and ...

  19. Overcoming Multidrug Resistance through the GLUT1-Mediated and Enzyme-Triggered Mitochondrial Targeting Conjugate with Redox-Sensitive Paclitaxel Release.

    PubMed

    Ma, Pengkai; Chen, Jianhua; Bi, Xinning; Li, Zhihui; Gao, Xing; Li, Hongpin; Zhu, Hongyu; Huang, Yunfang; Qi, Jing; Zhang, Yujie

    2018-04-18

    Multidrug resistance (MDR) is thought to be the major obstacle leading to the failure of paclitaxel (PTX) chemotherapy. To solve this problem, a glucose transporter-mediated and matrix metalloproteinase 2 (MMP2)-triggered mitochondrion-targeting conjugate [glucose-polyethylene glycol (PEG)-peptide-triphenylphosponium-polyamidoamine (PAMAM)-PTX] composed of a PAMAM dendrimer and enzymatic detachable glucose-PEG was constructed for mitochondrial delivery of PTX. The conjugate was characterized by a 30 nm sphere particle, MMP2-sensitive PEG outer layer detachment from PAMAM, and glutathione (GSH)-sensitive PTX release. It showed higher cellular uptake both in glucose transporter 1 (GLUT1) overexpressing MCF-7/MDR monolayer cell (2D) and multicellular tumor spheroids (3D). The subcellular location study showed that it could specifically accumulate in the mitochondria. Moreover, it exhibited higher cytotoxicity against MCF-7/MDR cells, which significantly reverse the MDR of MCF-7/MDR cells. The MDR reverse might be caused by reducing the ATP content through destroying the mitochondrial membrane as well as by down-regulating P-gp expression. In vivo imaging and tissue distribution indicated more conjugate accumulated in the tumor of the tumor-bearing mice model. Consequently, the conjugate showed better tumor inhibition rate and lower body weight loss, which demonstrated that it possessed high efficiency and low toxicity. This study provides glucose-mediated GLUT targeting, MMP2-responsive PEG detachment, triphenylphosponium-mediated mitochondria targeting, and a GSH-sensitive intracellular drug release conjugate that has the potential to be exploited for overcoming MDR of PTX.

  20. Electrochemical production of ozone and hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1999-01-01

    Methods of using ozone have been developed which sterilize instruments and medical wastes, oxidize organics found in wastewater, clean laundry, break down contaminants in soil into a form more readily digested by microbes, kill microorganisms present in food products, and destroy toxins present in food products. The preferred methods for killing microorganisms and destroying toxins use pressurized, humidified, and concentrated ozone produced by an electrochemical cell.

  1. Genetics Home Reference: chronic granulomatous disease

    MedlinePlus

    ... is primarily active in immune system cells called phagocytes. These cells catch and destroy foreign invaders such as bacteria and fungi. Within phagocytes, NADPH oxidase is involved in the production of ...

  2. Phosphodiesterase type 5 and cancers: progress and challenges

    PubMed Central

    Barone, Ines; Giordano, Cinzia; Bonofiglio, Daniela; Andò, Sebastiano; Catalano, Stefania

    2017-01-01

    Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings. PMID:29228762

  3. Clostridial binary toxins: iota and C2 family portraits.

    PubMed

    Stiles, Bradley G; Wigelsworth, Darran J; Popoff, Michel R; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host-cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.

  4. Stem Cell Transplants in Cancer Treatment

    Cancer.gov

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  5. Diacylglycerol kinase α inactivation is an integral component of the costimulatory pathway that amplifies TCR signals.

    PubMed

    Arranz-Nicolás, Javier; Ogando, Jesús; Soutar, Denise; Arcos-Pérez, Raquel; Meraviglia-Crivelli, Daniel; Mañes, Santos; Mérida, Isabel; Ávila-Flores, Antonia

    2018-06-01

    The arsenal of cancer therapies has evolved to target T lymphocytes and restore their capacity to destroy tumor cells. T cells rely on diacylglycerol (DAG) to carry out their functions. DAG availability and signaling are regulated by the enzymes diacylglycerol kinase (DGK) α and ζ, whose excess function drives T cells into hyporesponsive states. Targeting DGKα is a promising strategy for coping with cancer; its blockade could reinstate T-cell attack on tumors while limiting tumor growth, due to positive DGKα functions in several oncogenic pathways. Here, we made a side-by-side comparison of the effects of commercial pharmacological DGK inhibitors on T-cell responses with those promoted by DGKα and DGKζ genetic deletion or silencing. We show the specificity for DGKα of DGK inhibitors I and II and the structurally similar compound ritanserin. Inhibitor treatment promoted Ras/ERK (extracellular signal-regulated kinase) signaling and AP-1 (Activator protein-1) transcription, facilitated DGKα membrane localization, reduced the requirement for costimulation, and cooperated with enhanced activation following DGKζ silencing/deletion. DGKiII and ritanserin had similar effects on TCR proximal signaling, but ritanserin counteracted long-term T-cell activation, an effect that was potentiated in DGKα -/- cells. In contrast with enhanced activation triggered by pharmacological inhibition, DGKα silencing/genetic deletion led to impaired Lck (lymphocyte-specific protein tyrosine kinase) activation and limited costimulation responses. Our results demonstrate that pharmacological inhibition of DGKα downstream of the TCR provides a gain-of-function effect that amplifies the DAG-dependent signaling cascade, an ability that could be exploited therapeutically to reinvigorate T cells to attack tumors.

  6. Immune System (For Parents)

    MedlinePlus

    ... functions: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses ... like the soldiers, destroying the invaders that the intelligence system has identified. Here's how it works: When ...

  7. 77 FR 26294 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... ELISA-like assay entirely to the molecular level, complex macroscopic or microfluidic washing and... for ELISA assays Modify or destroy target molecules, while detecting them Detect genetic diseases in...

  8. Use of polyclonal/monoclonal antibody therapies in transplantation.

    PubMed

    Yeung, Melissa Y; Gabardi, Steven; Sayegh, Mohamed H

    2017-03-01

    For over thirty years, antibody (mAb)-based therapies have been a standard component of transplant immunosuppression, and yet much remains to be learned in order for us to truly harness their therapeutic capabilities. Current mAbs used in transplant directly target and destroy graft-destructive immune cells, interrupt cytokine and costimulation-dependent T and B cell activation, and prevent down-stream complement activation. Areas covered: This review summarizes our current approaches to using antibody-based therapies to prevent and treat allograft rejection. It also provides examples of promising novel mAb therapies, and discusses the potential for future mAb development in transplantation. Expert opinion: The broad capability of antibodies, in parallel with our growing ability to synthetically modulate them, offers exciting opportunities to develop better biologic therapeutics. In order to do so, we must further our understanding about the basic biology underlying allograft rejection, and gain better appreciation of how characteristics of therapeutic antibodies affect their efficacy.

  9. Streptomycin action to the mammalian inner ear vestibular organs: comparison between pigmented guinea pigs and rats.

    PubMed

    Meza, Graciela; Aguilar-Maldonado, Beatriz

    2007-01-01

    Streptomycin is the antibiotic of choice to treat tuberculosis and other infectious diseases but it causes vestibular malfunction and hipoacusia. Rodents are usually employed as models of drug action to the inner ear and results are extrapolated to what happens in humans. In rats, streptomycin destroys macular sensory cells and does not affect cochlear ones, whereas in guinea pigs the contrary is true. Action on the vestibular cristae cells involved in vestibulo-ocular reflex integrity is less clear. Thus, we compared this response in both pigmented guinea pigs (Cavia cobaya) and rats (Rattus norvegicus) after parallel streptomycin chronic treatment. In guinea pigs, the reflex was obliterated along treatment time; in rats this behavior was not observed, suggesting that the end organ target was diverse. In recent studies, streptidine, a streptomycin derivative found in the blood of humans and rats treated with streptomycin, was the actual ototoxic agent. The putative streptomycin vestibular organ target observed in humans corresponds with the guinea pig observations. Results observed in rats are controversial: streptidine did not cause any damage either to vestibular cristae nor auditory cells. We hypothesize differential drug metabolism and distribution and conclude that results in laboratory animals may not always be applicable in the human situation.

  10. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    PubMed Central

    2009-01-01

    Background Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Results Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy. PMID:19799784

  11. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells.

    PubMed

    Xiao, Yan; Gao, Xiugong; Taratula, Oleh; Treado, Stephen; Urbas, Aaron; Holbrook, R David; Cavicchi, Richard E; Avedisian, C Thomas; Mitra, Somenath; Savla, Ronak; Wagner, Paul D; Srivastava, Sudhir; He, Huixin

    2009-10-02

    Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy.

  12. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  13. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers

    PubMed Central

    Wilson, Joanna B.; Manet, Evelyne; Fahraeus, Robin

    2018-01-01

    The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus. PMID:29642420

  14. Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut).

    PubMed

    Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer

    2010-12-29

    We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic peptide efficiently kills termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into hindgut of workers), but is less bacteriacidal than the lytic peptide alone. The loss of protozoa leads to the death of the termites in less than two weeks. In the future, we will genetically engineer microorganisms that can survive in the termite hindgut and spread through a termite colony as "Trojan Horses" to express ligand-lytic peptides that would kill the protozoa in the termite gut and subsequently kill the termites in the colony. Ligand-lytic peptides also could be useful for drug development against protozoan parasites.

  15. Mechanical interactions between ice crystals and red blood cells during directional solidification.

    PubMed

    Ishiguro, H; Rubinsky, B

    1994-10-01

    Experiments in which red blood cells were frozen on a directional solidification stage under a microscope show that there is a mechanical interaction between ice crystals and cells in which cells are pushed and deformed by the ice crystals. The mechanical interaction occurs during freezing of cells in physiological saline and is significantly inhibited by the addition of 20% v/v glycerol to the solution. The addition of osmotically insignificant quantities of antifreeze proteins from the winter flounder or ocean pout to the physiological saline with 20% v/v glycerol generates strong mechanical interactions between the ice and the cells. The cells were destroyed during freezing in physiological saline, survived freezing in physiological saline with glycerol, and were completely destroyed by the addition of antifreeze proteins to the solution with glycerol. The difference in cell survival through freezing and thawing appears to be related, in part, to the habit of ice crystal growing in the suspension of red blood cells and the nature of mechanical interaction between the ice crystal and the cells. This suggests that mechanical damage may be a factor during cryopreservation of cells.

  16. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Gomes-da-Silva, Lígia C; Zhao, Liwei; Bezu, Lucillia; Zhou, Heng; Sauvat, Allan; Liu, Peng; Durand, Sylvère; Leduc, Marion; Souquere, Sylvie; Loos, Friedemann; Mondragón, Laura; Sveinbjørnsson, Baldur; Rekdal, Øystein; Boncompain, Gaelle; Perez, Franck; Arnaut, Luis G; Kepp, Oliver; Kroemer, Guido

    2018-05-28

    Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. © 2018 The Authors.

  17. Inhibition of human cervical carcinoma growth by cytokine-induced killer cells in nude mouse xenograft model.

    PubMed

    Kim, Hwan Mook; Lim, Jaeseung; Kang, Jong Soon; Park, Song-Kyu; Lee, Kiho; Kim, Jee Youn; Kim, Yeon Jin; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2009-03-01

    Cervical cancer is a major cause of cancer mortality in women worldwide and is an important public health problem for adult women in developing countries. Despite aggressive treatment with surgery and chemoradiation, the outcomes for cervical cancer patients remain poor. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against human cervical cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 antibody-coated flasks for 5 days, followed by incubation in IL-2-containing medium for 9 days. The resulting populations of CIK cells comprised 95% CD3(+), 3% CD3(-)CD56(+), 35% CD3(+)CD56(+), 11% CD4(+), <1% CD4(+)CD56(+), 80% CD8(+), and 25% CD8(+)CD56(+). At an effector-target cell ratio of 100:1, CIK cells destroyed 56% of KB-3-1 human cervical cancer cells, as measured by the (51)Cr-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 34% and 57% of KB-3-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for cervical cancer patients.

  18. The baffling human body and the boundless nanomaterial boon-a trap for cancer crab.

    PubMed

    Jeelani, S; Asokan, G S; Anuradha, G; Parthiban, J; Sivasankari, T

    2014-07-01

    Life is a balance of infinite physiochemical balanced harmonies and the basic unit cell is responsible in maintaining it. Cardiovascular diseases and Cancer are the prime causes of death worldwide. Cancerous cells break the harmonious balance and result in uncontrolled growth and spread. Emerging among the existing modalities for management of cancer, as a ray of hope is Nanotechnology based treatment. Dendrimers, Quantum dots and nanobubbles contribute significantly as part of nano based diagnosis and treatment in the management of cancer. Dendrimers are nanoparticles which employ the principle of Trojan horse strategy in that encapsulation and conjugation of anti cancer agents helps in targeting the cancerous cells specifically without affecting the adjacent healthy cells. Quantum dots are cadmium based nanoparticles which when exposed to UV light glow and help in destroying the cancerous cells in the incipient stage. Nanobubbles are generated with short pulses of laser, which helps in identifying the individual cancerous cells and explodes them. Apart from them other technologies such as liposomes, fullerenes, carbon nanotubes, nanoshells, paramagnetic nanoparticles, nanoburrs, respirocytes, microbiovores, nanopores, smart coating and nano bandaid contribute a great lot as boundless nanomaterial boon for the management of cancer, cardiovascular problems and overall systemic health.

  19. Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design

    PubMed Central

    Poels, Renée; Mulders, Manon J.; van de Donk, Niels W. C. J.; Themeli, Maria; Lokhorst, Henk M.; Mutis, Tuna

    2018-01-01

    Recent clinical advances with chimeric antigen receptor (CAR) T cells have led to the accelerated clinical approval of CD19-CARs to treat acute lymphoblastic leukemia. The CAR T cell therapy is nevertheless associated with toxicities, especially if the CARs are not entirely tumor-specific. Therefore, strategies for controlling the CAR T cell activity are required to improve their safety profile. Here, by using the multiple myeloma (MM)-associated CD38 molecule as target molecule, we tested the feasibility and utility of a doxycycline (DOX) inducible Tet-on CD38-CAR design to control the off-target toxicities of CAR T cells. Using CARs with high affinity to CD38, we demonstrate that this strategy allows the proper induction of CD38-CARs and CAR-mediated T cell cytotoxicity in a DOX-dose dependent manner. Especially when the DOX dose was limited to 10ng/ml, its removal resulted in a relatively rapid decay of CAR- related off-tumor effects within 24 hours, indicating the active controllability of undesired CAR activity. This Tet-on CAR design also allowed us to induce the maximal anti-MM cytotoxic activity of affinity-optimized CD38-CAR T cells, which already display a low toxicity profile, hereby adding a second level of safety to these cells. Collectively, these results indicate the possibility to utilize this DOX inducible CAR-design to actively regulate the CAR-mediated activities of therapeutic T cells. We therefore conclude that the Tet-on system may be more advantageous above suicide-genes to control the potential toxicities of CAR T cells without the need to destroy them permanently. PMID:29847570

  20. Using antibody directed phototherapy to target oesophageal adenocarcinoma with heterogeneous HER2 expression

    PubMed Central

    Pye, Hayley; Butt, Mohammed Adil; Funnell, Laura; Reinert, Halla W.; Puccio, Ignazio; Rehman Khan, Saif U.; Saouros, Savvas; Marklew, Jared S.; Stamati, Ioanna; Qurashi, Maryam; Haidry, Rehan; Sehgal, Vinay; Oukrif, Dahmane; Gandy, Michael; Whitaker, Hayley C.; Rodriguez-Justo, Manuel; Novelli, Marco; Hamoudi, Rifat; Yahioglu, Gokhan; Deonarain, Mahendra P.; Lovat, Laurence B.

    2018-01-01

    Early oesophageal adenocarcinoma (OA) and pre-neoplastic dysplasia may be treated with endoscopic resection and ablative techniques such as photodynamic therapy (PDT). Though effective, discrete areas of disease may be missed leading to recurrence. PDT further suffers from the side effects of off-target photosensitivity. A tumour specific and light targeted therapeutic agent with optimised pharmacokinetics could be used to destroy residual cancerous cells left behind after resection. A small molecule antibody-photosensitizer conjugate was developed targeting human epidermal growth factor receptor 2 (HER2). This was tested in an in vivo mouse model of human OA using a xenograft flank model with clinically relevant low level HER2 expression and heterogeneity. In vitro we demonstrate selective binding of the conjugate to tumour versus normal tissue. Light dependent cytotoxicity of the phototherapy agent in vitro was observed. In an in vivo OA mouse xenograft model the phototherapy agent had desirable pharmacokinetic properties for tumour uptake and blood clearance time. PDT treatment caused tumour growth arrest in all the tumours despite the tumours having a clinically defined low/negative HER2 expression level. This new phototherapy agent shows therapeutic potential for treatment of both HER2 positive and borderline/negative OA. PMID:29796164

  1. Cell-to-cell interactions in changed gravity: Ground-based and flight experiments

    NASA Astrophysics Data System (ADS)

    Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.

    2005-07-01

    Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.

  2. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  3. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  4. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  5. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  6. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for...

  7. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments. PMID:25428507

  8. Type 1 diabetes: prospective cohort studies for identification of the environmental trigger.

    PubMed

    Rønningen, Kjersti S

    2013-12-01

    Type 1 diabetes (T1D) is one of the most common chronic diseases with childhood onset, and the disease incidence has increased two to fivefold over the past half century by as yet unknown means. T1D occurs when the body's immune system turns against itself, destroying in a very specific and targeted way-the pancreatic β-cells. T1D results from poorly defined interactions between susceptibility genes and environmental determinants. In contrast to the rapid progress in finding T1D genes, identification and confirmation of environmental determinants remain a formidable challenge. This review article will give an overview of ongoing prospective cohort studies aiming to identify the environmental trigger(s) causing T1D.

  9. Substantia nigra and Parkinson disease (image)

    MedlinePlus

    ... is a slowly progressive disorder that affects movement, muscle control, and balance. Part of the disease process develops as cells are destroyed in certain parts of the brain stem, particularly the crescent-shaped cell mass known as ...

  10. Bolts from Orion: Destroying Mobile Surface-to-Air Missile Systems with Lethal Autonomous Aircraft

    DTIC Science & Technology

    2016-07-01

    era SAMs that had been upgraded by Ukrainian contractors . During the operation, Russian aircraft’s 10 electronic countermeasures could not...main SEAD asset is the F-16 CJ equipped with the HARM targeting system ( HTS ). The HTS can autonomously locate and identify threat radars and pass...targeting information to the HARMs before launch. The HTS can also provide targeting 13 information to global positioning system (GPS) guided

  11. Effective Photothermal Chemotherapy Using Doxorubicin-Loaded Gold Nanospheres That Target EphB4 Receptors in Tumors

    PubMed Central

    You, Jian; Zhang, Rui; Xiong, Chiyi; Zhong, Meng; Melancon, Maritess; Gupta, Sanjay; Nick, Alpa M.; Sood, Anil K.; Li, Chun

    2012-01-01

    Photothermal ablation (PTA) is an emerging technique that uses near-infrared laser light-generated heat to destroy tumor cells. However, complete tumor eradication by PTA therapy alone is difficult because heterogeneous heat distribution can lead to sub-lethal thermal dose in some areas of the tumor. Successful PTA therapy requires selective delivery of photothermal conducting nanoparticles to mediate effective PTA of tumor cells, and the ability to combine PTA with other therapy modalities. Here, we synthesized multifunctional doxorubicin (DOX)-loaded hollow gold nanospheres (DOX@HAuNS) that target EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on the cell membrane of multiple tumors and angiogenic blood vessels. Increased uptake of targeted nanoparticles T-DOX@HAuNS was observed in three EphB4-positive tumors both in vitro and in vivo. In vivo release of DOX from DOX@HAuNS, triggered by near-infrared laser, was confirmed by dual radiotracer technique. Treatment with T-DOX@HAuNS followed by near-infrared laser irradiation resulted in significantly decreased tumor growth when compared to treatments with non-targeted DOX@HAuNS plus laser or HAuNS plus laser. The tumors in six of the eight mice treated with T-DOX@HAuNS plus laser regressed completely with only residual scar tissue by 22 days following injection, and none of the treatment groups experienced a loss in body weight. Together, our findings demonstrate that concerted chemo-photothermal therapy with a single nanodevice capable of mediating simultaneous PTA and local drug release may have promise as a new anticancer therapy. PMID:22865457

  12. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells

    PubMed Central

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X.; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-01-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(D,L-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ~500 times of enhancement compared to the simple mixture of the two drugs. PMID:26344365

  13. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  14. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  15. Synergistic immuno photothermal nanotherapy (SYMPHONY) to treat unresectable and metastatic cancers and produce and cancer vaccine effect

    NASA Astrophysics Data System (ADS)

    Vo-Dinh, Tuan; Inman, Brant; Maccarini, Paolo; Palmer, Gregory; Liu, Yang

    2018-02-01

    Biocompatible gold nanostars (GNS) with tip-enhanced electromagnetic and optical properties have been developed and applied for multifunctional cancer diagnostics and therapy (theranostics). Their multiple sharp branches acting like "lightning rods" can convert safely and efficiently light into heat. As with other nanoparticles, GNS sizes can be controlled so that they passively accumulate in tumors due to the enhanced permeability and retention (EPR) effect of tumor vasculature. This feature improves tumor-targeting precision and permits the use of reduced laser energy required to destroy the targeted cancer cells. The ability to selectively heat tumor areas where GNS are located while keeping surrounding healthy tissues at significantly lower temperatures offers significant advantages over other thermal therapies. GNS-mediated photothermal therapy combined with checkpoint immunotherapy was shown to reverse tumor-mediated immunosuppression, leading to the treatment of not only primary tumors but also cancer metastasis as well as inducing effective long-lasting immunity, i.e. an anticancer `vaccine' effect.

  16. Cryopreservation of Schistosome Larvae.

    DTIC Science & Technology

    1980-10-02

    anacardic acid, obtained by fractionation of an extract from the cashew nut shell, were tested for toxicity to B. glabrata. The triene form was most toxic...attacked and destroyed muscle cells of the atrium, a reaction against self; 6# 5) Molluscicidal effect of cashew nut shell extract for D. abgata was...Passive unsuliibll !Nd& bl. gjabn phawed amebocytes attacking and destroying mul" ea- Y ad~t effct f cshe nut shell extract for 9, a~ was shown to be due

  17. Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Chen, Junling; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tong, Ti; Wang, Hongda

    2017-06-01

    Signal transducer and activator of transcription 3 (STAT3) plays a key role in various cellular processes such as cell proliferation, differentiation, apoptosis and immune responses. In particular, STAT3 has emerged as a potential molecular target for cancer therapy. The functional role and standard activation mechanism of STAT3 have been well studied, however, the spatial distribution of STAT3 during the cell cycle is poorly known. Therefore, it is indispensable to study STAT3 spatial arrangement and nuclear-cytoplasimic localization at the different phase of cell cycle in cancer cells. By direct stochastic optical reconstruction microscopy imaging, we find that STAT3 forms various number and size of clusters at the different cell-cycle stage, which could not be clearly observed by conventional fluorescent microscopy. STAT3 clusters get more and larger gradually from G1 to G2 phase, during which time transcription and other related activities goes on consistently. The results suggest that there is an intimate relationship between the clustered characteristic of STAT3 and the cell-cycle behavior. Meanwhile, clustering would facilitate STAT3 rapid response to activating signals due to short distances between molecules. Our data might open a new door to develop an antitumor drug for inhibiting STAT3 signaling pathway by destroying its clusters.

  18. Killing machines: three pore-forming proteins of the immune system

    PubMed Central

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki

    2014-01-01

    The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  19. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity.

    PubMed

    Zhang, Jianglin; Lei, Zhou; Huang, Zunnan; Zhang, Xu; Zhou, Youyou; Luo, Zhongling; Zeng, Weiqi; Su, Juan; Peng, Cong; Chen, Xiang

    2016-11-29

    TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma.

  20. Central peptidergic mechanisms controlling reproductive hormone secretion: novel methodology reveals a role for the natriuretic peptides.

    PubMed

    Samson, W K; Alexander, B D; Skala, K D; Huang, F L; Fulton, R J

    1992-05-01

    A variety of neural factors can influence reproductive hormone secretion by neuromodulatory actions within the hypothalamus or neuroendocrine actions within the anterior pituitary gland. Passive immunoneutralization and antagonist administration protocols have suggested physiological roles for a number of these factors; however, both experimental approaches have severe technical limitations. We have developed novel methodology utilizing cytotoxin cell targeting with neuropeptides linked to the toxic A chain of the plant cytotoxin ricin. With this methodology we can target and destroy in vivo or in vitro cells bearing receptors for that peptide. Ricin A chain conjugated to atrial natriuretic peptide (ANP), a neuropeptide known to pharmacologically inhibit luteinizing hormone-releasing hormone (LHRH) release, was injected into the cerebroventricular system of intact, cycling rats and ovariectomized rats. Cytotoxin conjugate treatment significantly lengthened the estrous cycle. In ovariectomized rats the luteinizing hormone surge induced by steroid priming was completely inhibited. LHRH content of the median eminences of these rats was not significantly altered. These data suggest that ANP binding to clearance receptors in the hypothalamus displaces the C-type natriuretic peptide (CNP) from the shared clearance receptor, making more CNP available to inhibit LHRH release. In the absence of cells bearing the clearance receptor all available CNP binds to the ANPR-B receptor and exerts its effect via an inhibitory interneuron, since LHRH fibers are spared by this treatment.

  1. pH-Triggered Echogenicity and Contents Release from Liposomes

    PubMed Central

    2015-01-01

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%). PMID:25271780

  2. pH-triggered echogenicity and contents release from liposomes.

    PubMed

    Nahire, Rahul; Hossain, Rayat; Patel, Rupa; Paul, Shirshendu; Meghnani, Varsha; Ambre, Avinash H; Gange, Kara N; Katti, Kalpana S; Leclerc, Estelle; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2014-11-03

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).

  3. Highly active anticancer curcumin analogues.

    PubMed

    Mosley, Cara A; Liotta, Dennis C; Snyder, James P

    2007-01-01

    Curcumin, a compound in the human food supply, represents a near-perfect starting point for drug discovery. Consequently, a number of research groups have taken the natural product as a starting point to prepare and biologically evaluate a wide variety of curcumin analogues. One widely used structural modification truncates the central conjugated beta-diketone in curcumin to the monocarbonyl dienone. A diverse array of the latter compounds exhibit cytotoxicities against an equally diverse set of cancer-related cell lines. Importantly, these compounds still retain toxicity profiles in rodents comparable to the parent natural product, whereas some analogues (e.g., EF-24, 41) exhibit good oral bioavailability and good pharmacokinetics in mice. Thiol conjugates of EF-24 analogues have been prepared that address stability and solubility issues while demonstrating cellular activities similar to the unmodified dienones. In parallel experiments, the factor VIIa-tissue factor complex (fVIIa-TF) has been exploited to develop a targeting strategy for the analogues. In particular, the EF24-FFRck-fVIIa protein conjugate is not only somewhat more effective relative to the drug alone against breast cancer and melanocyte cells. Both simple curcumin analogues and the protein conjugate evidence antiangiogenic activity in cell culture. The implication is that the fVIIa-TF targeting process, like the dienone drugs, permits a double-pronged attack with the potential to destroy a tumor directly by apoptosis.

  4. Parasitic Aspects of a Fairy Ring Fungus, Marasmius oreades

    Treesearch

    T. H. Filer

    1965-01-01

    Marasmius oreades parasitizes Poa pratensis, Festuca rubra, and Agrostis tenuis. The fungus penetrates the root directly in all three species and does not require natural openings or wounds. The mycelium ramifies in the cortical cells and destroys the cell contents.

  5. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct novel SNA-based nanomaterials with desired properties and applying targeting moieties to the SNA platform to achieve cell type specific gene regulation effects. Due to the flexibility of the SNA approach, the SNA platform can potentially be applied to many genetic disorders through tailored target specificities.

  6. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.

    PubMed

    Tyagi, Nikhil; Tyagi, Monika; Pachauri, Manendra; Ghosh, Prahlad C

    2015-11-01

    Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.

  7. Clostridial Binary Toxins: Iota and C2 Family Portraits

    PubMed Central

    Stiles, Bradley G.; Wigelsworth, Darran J.; Popoff, Michel R.; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium. PMID:22919577

  8. Spot scanning proton therapy plan assessment: design and development of a dose verification application for use in routine clinical practice

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Walsh, Timothy J.; Beltran, Chris J.; Stoker, Joshua B.; Mundy, Daniel W.; Parry, Mark D.; Bues, Martin; Fatyga, Mirek

    2016-04-01

    The use of radiation therapy for the treatment of cancer has been carried out clinically since the late 1800's. Early on however, it was discovered that a radiation dose sufficient to destroy cancer cells can also cause severe injury to surrounding healthy tissue. Radiation oncologists continually strive to find the perfect balance between a dose high enough to destroy the cancer and one that avoids damage to healthy organs. Spot scanning or "pencil beam" proton radiotherapy offers another option to improve on this. Unlike traditional photon therapy, proton beams stop in the target tissue, thus better sparing all organs beyond the targeted tumor. In addition, the beams are far narrower and thus can be more precisely "painted" onto the tumor, avoiding exposure to surrounding healthy tissue. To safely treat patients with proton beam radiotherapy, dose verification should be carried out for each plan prior to treatment. Proton dose verification systems are not currently commercially available so the Department of Radiation Oncology at the Mayo Clinic developed its own, called DOSeCHECK, which offers two distinct dose simulation methods: GPU-based Monte Carlo and CPU-based analytical. The three major components of the system include the web-based user interface, the Linux-based dose verification simulation engines, and the supporting services and components. The architecture integrates multiple applications, libraries, platforms, programming languages, and communication protocols and was successfully deployed in time for Mayo Clinic's first proton beam therapy patient. Having a simple, efficient application for dose verification greatly reduces staff workload and provides additional quality assurance, ultimately improving patient safety.

  9. Can biowarfare agents be defeated with light?

    PubMed

    Vatansever, Fatma; Ferraresi, Cleber; de Sousa, Marcelo Victor Pires; Yin, Rui; Rineh, Ardeshir; Sharma, Sulbha K; Hamblin, Michael R

    2013-11-15

    Biological warfare and bioterrorism is an unpleasant fact of 21st century life. Highly infectious and profoundly virulent diseases may be caused in combat personnel or in civilian populations by the appropriate dissemination of viruses, bacteria, spores, fungi, or toxins. Dissemination may be airborne, waterborne, or by contamination of food or surfaces. Countermeasures may be directed toward destroying or neutralizing the agents outside the body before infection has taken place, by destroying the agents once they have entered the body before the disease has fully developed, or by immunizing susceptible populations against the effects. A range of light-based technologies may have a role to play in biodefense countermeasures. Germicidal UV (UVC) is exceptionally active in destroying a wide range of viruses and microbial cells, and recent data suggests that UVC has high selectivity over host mammalian cells and tissues. Two UVA mediated approaches may also have roles to play; one where UVA is combined with titanium dioxide nanoparticles in a process called photocatalysis, and a second where UVA is combined with psoralens (PUVA) to produce "killed but metabolically active" microbial cells that may be particularly suitable for vaccines. Many microbial cells are surprisingly sensitive to blue light alone, and blue light can effectively destroy bacteria, fungi, and Bacillus spores and can treat wound infections. The combination of photosensitizing dyes such as porphyrins or phenothiaziniums and red light is called photodynamic therapy (PDT) or photoinactivation, and this approach cannot only kill bacteria, spores, and fungi, but also inactivate viruses and toxins. Many reports have highlighted the ability of PDT to treat infections and stimulate the host immune system. Finally pulsed (femtosecond) high power lasers have been used to inactivate pathogens with some degree of selectivity. We have pointed to some of the ways light-based technology may be used to defeat biological warfare in the future.

  10. Can biowarfare agents be defeated with light?

    PubMed Central

    Vatansever, Fatma; Ferraresi, Cleber; de Sousa, Marcelo Victor Pires; Yin, Rui; Rineh, Ardeshir; Sharma, Sulbha K; Hamblin, Michael R

    2013-01-01

    Biological warfare and bioterrorism is an unpleasant fact of 21st century life. Highly infectious and profoundly virulent diseases may be caused in combat personnel or in civilian populations by the appropriate dissemination of viruses, bacteria, spores, fungi, or toxins. Dissemination may be airborne, waterborne, or by contamination of food or surfaces. Countermeasures may be directed toward destroying or neutralizing the agents outside the body before infection has taken place, by destroying the agents once they have entered the body before the disease has fully developed, or by immunizing susceptible populations against the effects. A range of light-based technologies may have a role to play in biodefense countermeasures. Germicidal UV (UVC) is exceptionally active in destroying a wide range of viruses and microbial cells, and recent data suggests that UVC has high selectivity over host mammalian cells and tissues. Two UVA mediated approaches may also have roles to play; one where UVA is combined with titanium dioxide nanoparticles in a process called photocatalysis, and a second where UVA is combined with psoralens (PUVA) to produce “killed but metabolically active” microbial cells that may be particularly suitable for vaccines. Many microbial cells are surprisingly sensitive to blue light alone, and blue light can effectively destroy bacteria, fungi, and Bacillus spores and can treat wound infections. The combination of photosensitizing dyes such as porphyrins or phenothiaziniums and red light is called photodynamic therapy (PDT) or photoinactivation, and this approach cannot only kill bacteria, spores, and fungi, but also inactivate viruses and toxins. Many reports have highlighted the ability of PDT to treat infections and stimulate the host immune system. Finally pulsed (femtosecond) high power lasers have been used to inactivate pathogens with some degree of selectivity. We have pointed to some of the ways light-based technology may be used to defeat biological warfare in the future. PMID:24067444

  11. Nicotinamide Inhibits Vasculogenic Mimicry, an Alternative Vascularization Pathway Observed in Highly Aggressive Melanoma

    PubMed Central

    Shalmon, Bruria; Kubi, Adva; Treves, Avraham J.; Shapira-Frommer, Ronnie; Avivi, Camilla; Ortenberg, Rona; Ben-Ami, Eytan; Schachter, Jacob; Besser, Michal J.; Markel, Gal

    2013-01-01

    Vasculogenic mimicry (VM) describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo. We tested the ability of nicotinamide, the amide form of vitamin B3 (niacin), which acts as an epigenetic gene regulator through unique cellular pathways, to modify VM. Nicotinamide effectively inhibited the formation of VM structures and destroyed already formed ones, in a dose-dependent manner. Remarkably, VM formation capacity remained suppressed even one month after the complete withdrawal of Nicotimamid. The inhibitory effect of nicotinamide on VM formation could be at least partially explained by a nicotinamide-driven downregulation of vascular endothelial cadherin (VE-Cadherin), which is known to have a central role in VM. Further major changes in the expression profile of hundreds of genes, most of them clustered in biologically-relevant clusters, were observed. In addition, nicotinamide significantly inhibited melanoma cell proliferation, but had an opposite effect on their invasion capacity. Cell cycle analysis indicated moderate changes in apoptotic indices. Therefore, nicotinamide could be further used to unravel new biological mechanisms that drive VM and tumor progression. Targeting VM, especially in combination with anti-angiogenic strategies, is expected to be synergistic and might yield substantial anti neoplastic effects in a variety of malignancies. PMID:23451174

  12. [Application of photodynamic therapy in dentistry – literature review].

    PubMed

    Oruba, Zuzanna; Chomyszyn-Gajewska, Maria

    Photodynamic therapy (PDT) is based on the principle that the target cells are destroyed by means of toxic reactive oxygen species generated upon the interaction of a photosensitizer, light and oxygen. This method is nowadays widely applied in various branches of medicine, mainly in oncology and dermatology. It is also applied in dentistry in the treatment of oral potentially malignant disorders (like lichen planus or leukoplakia) and infectious conditions (periodontitis, herpetic cheilitis, root canal disinfection). The application of the photodynamic therapy in the abovementioned indications is worth attention, as the method is noninvasive, painless, and the results of the published studies seem promising. The present article aims at presenting the principle of the photodynamic therapy and, based on the literature, the possibilities and results of its application in dentistry.

  13. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    PubMed

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  14. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  15. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    PubMed

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  16. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media

    PubMed Central

    Meunier, Sarah M.; Todorovic, Biljana; Dare, Emma V.; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J. Larry; Sasges, Michael; Aucoin, Marc G.

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  17. The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein.

    PubMed

    Spierings, Eric; Brickner, Anthony G; Caldwell, Jennifer A; Zegveld, Suzanne; Tatsis, Nia; Blokland, Els; Pool, Jos; Pierce, Richard A; Mollah, Sahana; Shabanowitz, Jeffrey; Eisenlohr, Laurence C; van Veelen, Peter; Ossendorp, Ferry; Hunt, Donald F; Goulmy, Els; Engelhard, Victor H

    2003-07-15

    Minor histocompatibility (H) antigens crucially affect the outcome of human leukocyte antigen (HLA)-identical allogeneic stem cell transplantation (SCT). To understand the basis of alloimmune responses against minor H antigens, identification of minor H peptides and their antigenicity-determining mechanisms is essential. Here we report the identification of HA-3 and its encoding gene. The HA-3 peptide, VTEPGTAQY (HA-3T), is encoded by the lymphoid blast crisis (Lbc) oncogene. We thus show for the first time that a leukemia-associated oncogene can give rise to immunogenic T-cell epitopes that may have participated in antihost and antileukemic alloimmune responses. Genotypic analysis of HA-3- individuals revealed the allelic counterpart VMEPGTAQY (HA-3M). Despite the lack of T-cell recognition of HA-3- cells, the Thr-->Met substitution had only a modest effect on peptide binding to HLA-A1 and a minimal impact on recognition by T cells when added exogenously to target cells. This substitution did not influence transporter associated with antigen processing (TAP) transport, but, in contrast to the HA-3T peptide, HA-3M is destroyed by proteasome-mediated digestion. Thus, the immunogenicity of minor H antigens can result from proteasome-mediated destruction of the negative allelic peptide.

  18. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3.

    PubMed

    Antoci, Vasilichia; Mantu, Dorina; Cozma, Danut Gabriel; Usru, Cornelia; Mangalagiu, Ionel I

    2014-01-01

    Antitumour chemotherapy is nowadays a very active field of research, DNA targeting drugs being the most widely used group in therapy. The design, synthesis and anticancer activity of a new class of anticancer derivatives with pyrrolo-1,2-diazine and benzoquinone skeleton is presented. The synthesis is direct and efficient, involving an alkylation followed by a [3+2] dipolar cycloaddition. The penta- and tetra-cyclic pyrrolo-1,2-diazine were evaluated for their in vitro anticancer activity against an NCI 60 human tumour cell line panel. The pentacyclic-1,2-diazine exhibit a significant anticancer activity against Non-Small Cell Lung Cancer NCI-H460, Leukemia MOLT-4, Leukemia CCRF-CEM and Breast Cancer MCF7. We hypothesize that these molecules will exert their anticancer activity through multiple mechanisms of action: intercalating the DNA, inhibiting the topoisomerase enzymes and, destroying the DNA strands via electron transfer mechanism. However, the intercalation with the DNA seems to prevail in competition with the others mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Trial Watch

    PubMed Central

    Vacchelli, Erika; Aranda, Fernando; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Accumulating evidence suggests that the clinical efficacy of selected anticancer drugs, including conventional chemotherapeutics as well as targeted anticancer agents, originates (at least in part) from their ability to elicit a novel or reinstate a pre-existing tumor-specific immune response. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). Cancer cells succumbing to ICD are de facto converted into an anticancer vaccine and as such elicit an adaptive immune response. Several common chemotherapeutics share the ability of triggering ICD, as demonstrated in vaccination experiments relying on immunocompetent mice and syngeneic cancer cells. A large number of ongoing clinical trials involve such ICD inducers, often (but not always) as they are part of the gold standard therapeutic approach against specific neoplasms. In this Trial Watch, we summarize the latest advances on the use of cyclophosphamide, doxorubicin, epirubicin, oxaliplatin, and mitoxantrone in cancer patients, discussing high-impact studies that have been published during the last 13 months as well as clinical trials that have been initiated in the same period to assess the antineoplastic profile of these immunogenic drugs as off-label therapeutic interventions. PMID:24800173

  20. Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger.

    PubMed

    Zhang, Jie; Wu, Xi; Zhang, Shuang-Quan

    2008-12-01

    Antibacterial peptide, CM4 (ABP-CM4), a 35 amino acid peptide from Chinese silkworm-Bombyx mori, displayed a strong antifungal activity against Aspergillus niger, Trichoderma viride and Gibberella saubinetii. Scanning electron microcopy showed that the morphology of conidia became more irregular and swelled when treated with ABP-CM4 at its minimal inhibitory concentration (MIC) of 8 muM. A cell wall regeneration assay indicated that the plasma membrane was the prime target of ABP-CM4 action. Confocal laser scanning microscopy showed that the cytoskeleton of A. niger was destroyed when treated with ABP-CM4 at 8 muM. Furthermore, transmission electron microscopy showed that the membrane and the cellular organelles of fungus were disrupted and there were many vacuoles in the fungal cellular space after the treatment with ABP-CM4. A gel-retardation assay showed that ABP-CM4 bound the DNA of A. niger. Our results suggest that ABP-CM4 exerts its antifungal activity by disrupting the structure of cell membranes and the cytoskeleton and interacts with the organelles, such as the mitochondrion and with the DNA in the fungal cell, subsequently resulting in cell death.

  1. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis.

    PubMed

    Richard, A; Tulasne, D

    2012-03-08

    Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.

  2. Spectral imaging based in vivo model system for characterization of tumor microvessel response to vascular targeting agents

    NASA Astrophysics Data System (ADS)

    Wankhede, Mamta

    Functional vasculature is vital for tumor growth, proliferation, and metastasis. Many tumor-specific vascular targeting agents (VTAs) aim to destroy this essential tumor vasculature to induce indirect tumor cell death via oxygen and nutrition deprivation. The tumor angiogenesis-inhibiting anti-angiogenics (AIs) and the established tumor vessel targeting vascular disrupting agents (VDAs) are the two major players in the vascular targeting field. Combination of VTAs with conventional therapies or with each other, have been shown to have additive or supra-additive effects on tumor control and treatment. Pathophysiological changes post-VTA treatment in terms of structural and vessel function changes are important parameters to characterize the treatment efficacy. Despite the abundance of information regarding these parameters acquired using various techniques, there remains a need for a quantitative, real-time, and direct observation of these phenomenon in live animals. Through this research we aspired to develop a spectral imaging based mouse tumor system for real-time in vivo microvessel structure and functional measurements for VTA characterization. A model tumor system for window chamber studies was identified, and then combinatorial effects of VDA and AI were characterized in model tumor system. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  3. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  4. Pointing and Jitter Control for the USNA Multi-Beam Combining System

    DTIC Science & Technology

    2013-05-10

    previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state

  5. New trial evaluates investigational drug for endometrial and breast cancers | Center for Cancer Research

    Cancer.gov

    A new clinical trial is testing ONC201, an investigational drug that in laboratory studies has been shown to kill breast and endometrial cancer cells most likely by destroying mitochondria within the tumor cells. Mitochondria are the “powerhouse” of the cell, and blocking its activity may kill tumor cells and shrink tumors in human patients.

  6. The energy of a prolate spheroidal shell in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Koksharov, Yu. A.

    2017-04-01

    The problem of the energy of a spheroidal magnetic shell, solved by methods of classical electrodynamics, arises, in particular, upon the study of thin-wall biocompatible microcapsules in connection with a pressing issue of targeted drug delivery. The drug inside a microcapsule should be released from the shell at a required instant of time by destroying the capsule's shell. The placement inside a shell of magnetic nanoparticles sensitive to an external magnetic field theoretically makes it possible to solve both problems: to transport a capsule to the required place and to destroy its shell. In particular, the shell can be destroyed under the action of internal stress when the shape of a capsule is changed. In this paper, the analysis of the model of a magnetic microcapsule in the form of a prolate spheroidal shell is performed and formulas for the magnetostatic and magnetic free energy when the magnetic field is directed along the major axis of the spheroid are derived.

  7. Reticulocyte count

    MedlinePlus

    Anemia - reticulocyte ... A higher than normal reticulocytes count may indicate: Anemia due to red blood cells being destroyed earlier than normal ( hemolytic anemia ) Bleeding Blood disorder in a fetus or newborn ( ...

  8. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics.

    PubMed

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.

  9. Tumor Evolution in Space: The Effects of Competition Colonization Tradeoffs on Tumor Invasion Dynamics

    PubMed Central

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890

  10. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    PubMed

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired.

  11. Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity.

    PubMed

    Yamada, Yuma; Munechika, Reina; Kawamura, Eriko; Sakurai, Yu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    Most anticancer drugs are intended to function in the nuclei of cancer cells. If an anticancer drug could be delivered to mitochondria, the source of cellular energy, this organelle would be destroyed, resulting in the arrest of the energy supply and the killing of the cancer cells. To achieve such an innovative strategy, a mitochondrial drug delivery system targeted to cancer cells will be required. We recently reported on the development of a MITO-Porter, a liposome for mitochondrial delivery. In this study, we validated the utility of such a cancer therapeutic strategy by delivering anticancer drugs directly to mitochondria. We succeeded in packaging doxorubicin (DOX) as a model cargo in MITO-Porter to produce a DOX-MITO-Porter. We evaluated cellular toxicity of OS-RC-2 cell, a type of DOX-resistant cancer cell, after delivering DOX to mitochondria using the MITO-Porter system. Cell viability was decreased by the DOX-MITO-Porter treatment, while cell viability was not decreased in the case of naked DOX and a conventional DOX liposomal formulation. We also found a relationship between cellular toxicity and mitochondrial toxicity. The use of a MITO-Porter system for mitochondrial delivery of a toxic agent represents a possible therapeutic strategy for treating drug-resistant cancers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction

    PubMed Central

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Xiong, Xingyu; Zhu, Lianhua; Fang, Kejing

    2016-01-01

    Ultrasound (US)-targeted microbubble destruction has been widely used as an effective drug-delivery system. However, nanobubbles (NBs) have better stability and stronger penetration than microbubbles, and drug delivery assisted by US-targeted NB destruction (UTND) still needs to be investigated. Our aim was to investigate the effect of doxorubicin (DOX) on the inhibition of prostate cancer growth under UTND. Contrast-enhanced US imaging of transplanted PC3 prostate cancer in mice showed that under a combination of 1 W/cm2 US power and a 100 Hz intermittent pulse with a “5 seconds on, 5 seconds off” mode, NBs with an average size of (485.7±33) nm were effectively destroyed within 15 minutes in the tumor location. PC3 cells and 20 tumor-bearing mice were divided into four groups: a DOX group, a DOX + NB group, a DOX + US group, and a DOX + NB + US group. The cell growth-inhibition rate and DOX concentration of xenografts in the DOX + NB + US group were highest. Based on another control group and these four groups, another 25 tumor-bearing mice were used to observe the treatment effect of nine DOX injections under UTND. The xenografts in the DOX + NB + US group decreased more obviously and had more cellular apoptosis than other groups. Finally, electron microscopy was used to estimate the cavitation effect of NBs under US irradiation in the control group, NB group, US group, and NB + US group. The results of scanning electron microscopy showed that PC3 cells in the DOX + NB + US group had more holes and significantly increased cell-surface folds. Meanwhile, transmission electric microscopy confirmed that more lanthanum nitrate particles entered the parenchymal cells in xenografts in the NB + US group compared with the other groups. This study suggested that UTND technology could be an effective method to promote drugs to function in US-irradiated sites, and the underlying mechanism may be associated with a cavitation effect. PMID:27536100

  13. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A

    PubMed Central

    2012-01-01

    Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA’s interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment. PMID:22821938

  14. New Opportunities of Low-Cost Photogrammetry for Culture Heritage Preservation

    NASA Astrophysics Data System (ADS)

    Shults, R.

    2017-05-01

    In the paper, the questions of using the technologies of low-cost photogrammetry in combination with the additional capabilities of modern smartphones are considered. The research was carried out on the example of documenting the historical construction of the II World War - the Kiev Fortified Region. Brief historical information about the object of research is given. The possibilities of using modern smartphones as measuring instruments are considered. To get high-quality results, the camera of the smartphone was calibrated. The calibration results were used in the future to perform 3D modeling of defense facilities. Photographing of three defense structures in a different state: destroyed, partially destroyed and operating was carried out. Based on the results of photography using code targets, 3D object models were constructed. To verify the accuracy of the 3D modelling, control measurements of the lines between the code targets at the objects were performed. The obtained results are satisfying, and the technology considered in the paper can be recommended for use in performing archaeological and historical studies.

  15. Cationic Peptide Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption

    PubMed Central

    Kennedy, Stephen M.; Aiken, Erik J.; Beres, Kaytlyn A.; Hahn, Adam R.; Kamin, Samantha J.; Hagness, Susan C.; Booske, John H.; Murphy, William L.

    2014-01-01

    Background The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF’s ability to disrupt plasma membranes. Methodology/Principal Findings We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell’s PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1–2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Conclusions/Significance Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired. PMID:24671150

  16. Fixation of Oligosaccharides to a Surface May Increase the Susceptibility to Human Parainfluenza Virus 1, 2, or 3 Hemagglutinin-Neuraminidase▿†

    PubMed Central

    Tappert, Mary M.; Smith, David F.; Air, Gillian M.

    2011-01-01

    The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N′s role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341–8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface. PMID:21917945

  17. Bubbly cavitating flow generation and investigation of its erosional nature for biomedical applications.

    PubMed

    Koşar, Ali; Şeşen, Muhsincan; Oral, Ozlem; Itah, Zeynep; Gozuacik, Devrim

    2011-05-01

    This paper presents a study that investigates the destructive energy output resulting from hydrodynamic bubbly cavitation in microchannels and its potential use in biomedical applications. The research performed in this study includes results from bubbly cavitation experiments and findings showing the destructive effects of bubbly cavitating flow on selected solid specimens and live cells. The bubbles generated by hydrodynamic cavitation are highly destructive at the surfaces of the target medium on which they are carefully focused. The resulting destructive energy output could be effectively used for biomedical treatments, such as destroying kidney stones (renal calculi) or killing cancer cells. Motivated by this potential, the cavitation damage to cancerous cells and material removal from chalk pieces (which possess similar material properties as some kidney stones) was investigated. Our results showed that cavitation could induce damage both on chalk pieces and leukemia/lymphoma cells. We discovered that hydrodynamic cavitation exposure had early and delayed effects on cancer cell survival. Hence, the potential of hydrodynamic bubbly cavitation generated at the microscale for biomedical treatments was revealed using the microchannel configuration as a microorifice (with an inner diameter of 147 μm and a length of 1.52 cm), which acts as the source of bubbly cavitating flows. © 2011 IEEE

  18. Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering.

    PubMed

    Jung, Moonjung; Dunbar, Cynthia E; Winkler, Thomas

    2015-12-01

    The combination of epigenetic reprogramming with advanced genome editing technologies opened a new avenue to study disease mechanisms, particularly of disorders with depleted target tissue. Bone marrow failure syndromes (BMFS) typically present with a marked reduction of peripheral blood cells due to a destroyed or dysfunctional bone marrow compartment. Somatic and germline mutations have been etiologically linked to many cases of BMFS. However, without the ability to study primary patient material, the exact pathogenesis for many entities remained fragmentary. Capturing the pathological genotype in induced pluripotent stem cells (iPSCs) allows studying potential developmental defects leading to a particular phenotype. The lack of hematopoietic stem and progenitor cells in these patients can also be overcome by differentiating patient-derived iPSCs into hematopoietic lineages. With fast growing genome editing techniques, such as CRISPR/Cas9, correction of disease-causing mutations in iPSCs or introduction of mutations in cells from healthy individuals enable comparative studies that may identify other genetic or epigenetic events contributing to a specific disease phenotype. In this review, we present recent progresses in disease modeling of inherited and acquired BMFS using reprogramming and genome editing techniques. We also discuss the challenges and potential shortcomings of iPSC-based models for hematological diseases.

  19. Real-time photoacoustic flow cytography and photothermolysis of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2017-03-01

    Metastasis is responsible for as many as 90% of cancer-related deaths, and the deadliest skin cancer, melanoma, has a high propensity for metastasis. Since hematogenous spread of circulating tumor cells (CTCs) is cancer's main route of metastasis, detecting and destroying CTCs can impede metastasis and improve patients' prognoses. Extensive studies employing exogenous agents to detect tumor-specific biomarkers and guide therapeutics to CTCs have achieved promising results, but biosafety remains a critical concern. Taking another approach, physical detection and destruction of CTCs is a safer way to evaluate and reduce metastasis risks. Melanoma cells strongly express melanosomes, providing a striking absorption contrast with the blood background in the red to near-infrared spectrum. Exploiting this intrinsic optical absorption contrast of circulating melanoma cells, we coupled dual-wavelength photoacoustic flow cytography with a nanosecond-pulsed laser killing mechanism that specifically targets melanoma CTCs. We have successfully achieved in vivo label-free imaging of rare single CTCs and CTC clusters in mice. Further, the photoacoustic signal from a CTC immediately hardware-triggers a lethal pinpoint laser irradiation that lyses it on the spot in a thermally confined manner. Our technology can facilitate early inhibition of metastasis by clearing circulating tumor cells from vasculature.

  20. SOLVING THE STAND-OFF PROBLEM FOR MAGNETIZED TARGET FUSION: PLASMA STREAMS AS DISPOSABLE ELECTRODES, PLUS A LOCAL SPHERICAL BLANKET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D D; Thio, Y F

    In a fusion reactor based on the Magnetized Target Fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1 to 10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief physic analysis of the processes associated with creation of plasma electrodes ismore » discussed.« less

  1. Identification of an IL-1-induced gene expression pattern in AR+ PCa cells that mimics the molecular phenotype of AR- PCa cells.

    PubMed

    Thomas-Jardin, Shayna E; Kanchwala, Mohammed S; Jacob, Joan; Merchant, Sana; Meade, Rachel K; Gahnim, Nagham M; Nawas, Afshan F; Xing, Chao; Delk, Nikki A

    2018-06-01

    In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR + ) PCa cells into AR negative (AR - ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. LNCaP and PC3 PCa cells were treated with IL-1β or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1β, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. Comparative analysis of sequencing data from the AR + LNCaP PCa cell line versus the AR - PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. Our data supports that IL-1 reprograms AR + PCa cells to mimic AR - PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival. © 2018 Wiley Periodicals, Inc.

  2. Drug carrier in cancer therapy: A simulation study based on magnetic carrier substances

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    The principle of magnetic carrier is a medium for transferring information by sending the drug to the specific part to kill tumor cells. Generally, there are seven stages of cancer. Most of the patient with cancer can only be detected when reaches stage four. At that stage, the cancer is difficult to destroy or to cure. Comparing to the nearly stage, there are probability to destroy tumor cell completely by sending the drug through magnetic carrier directly to nerve. Another way to destroyed tumor completely is by using Deoxyribonucleic acid (DNA). This project is about the simulation study based on magnetic carrier substances. The COMSOL multiphysic software is used in this project. The simulation model represents a permanent magnet, blood vessel, surrounding tissues and air in 2D. Based on result obtained, the graph shown during sending the magnetic flux is high. However, as its carry information the magnetic flux reducess from the above, the move from 0m until 0.009 m it become the lowers and start increase the flux from this until maximum at 0.018m. This is due the fact that carrier start to increase after because the low information is gradually reduce until 0.018m.

  3. Bacterial Infections

    MedlinePlus

    ... Many are helpful. Some bacteria help to digest food, destroy disease-causing cells, and give the body ... vitamins. Bacteria are also used in making healthy foods like yogurt and cheese. But infectious bacteria can ...

  4. HIV/AIDS

    MedlinePlus

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV most ...

  5. Components of released liquid from ultrasonic waste activated sludge disintegration.

    PubMed

    Wang, Fen; Lu, Shan; Ji, Min

    2006-05-01

    Ultrasound can be applied as a pretreatment to disintegrate sludge. In this paper, by observing the solution concentration of polysaccharide, protein, DNA, Ca and Mg before and after disintegration, the main components in the released liquid are analyzed. It has been found that the predominant component of the released liquid in this research is protein. Ultrasound can destroy the extracellular polymeric substances (EPS), which is important to the sludge flocs structure. Ca2+ and Mg2+, which play a key role in binding the EPS are released into the aqueous phase. As a result, the sludge flocs are loosened. Under the effect of the hydraulic shear force, the sludge is disintegrated. Then the hydraulic shear forces destroy the cell walls, the substances inside the cells are released into the aqueous phase.

  6. HIV Life Cycle

    MedlinePlus

    ... the risk of HIV drug resistance . ART can’t cure HIV, but HIV medicines help people with HIV live longer, healthier lives. ART also reduces the risk of HIV transmission (the spread of HIV to others). HIV attacks and destroys the CD4 cells of the immune system . CD4 cells are a ...

  7. Toxicity of selected acaricides in a glass-vial bioassay to two-spotted spider mite (Acari: Tetranychidae)

    USDA-ARS?s Scientific Manuscript database

    Two-spotted spider mite (TSSM), Tetranychus urticae Koch, feeds on epidermal cells of cotton foliage, destroys photosynthetic cells, and reduces yields, fiber quality and seed germination. With a short life cycle, prolific fecundity, an arrhenotokous reproduction, and an ability to expeditiously dig...

  8. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    PubMed

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  9. Containment challenges in HPAPI manufacture for ADC generation.

    PubMed

    Dunny, Elizabeth; O'Connor, Imelda; Bones, Jonathan

    2017-06-01

    Antibody-drug conjugates (ADCs) are emerging as an impactful class of therapeutics for the treatment of cancer because of their ability to harness the specificity of an antibody and the cytotoxic potential of the payload to target and destroy cancer cells. However, the potent nature of the cytotoxic payload creates associated manufacturing challenges for active pharmaceutical ingredient (API) manufacturers, because huge investment in containment technology is required to ensure the protection of operators and the environment. Here, we examine the differing attitudes to high-potency categorisation and levels of containment control. We also provide an overview of the most widely used containment strategies for facility design, powder handling, purification, analysis, and cleaning. Finally, we briefly consider the health and safety regulatory challenges associated with the manufacture of cytotoxic payloads for use in antibody-drug conjugates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes

    PubMed Central

    Pieper, Andrew A.; Brat, Daniel J.; Krug, David K.; Watkins, Crystal C.; Gupta, Alok; Blackshaw, Seth; Verma, Ajay; Wang, Zhao-Qi; Snyder, Solomon H.

    1999-01-01

    Streptozotocin (STZ) selectively destroys insulin-producing beta islet cells of the pancreas providing a model of type I diabetes. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme whose overactivation by DNA strand breaks depletes its substrate NAD+ and then ATP, leading to cellular death from energy depletion. We demonstrate DNA damage and a major activation of PARP in pancreatic islets of STZ-treated mice. These mice display a 500% increase in blood glucose and major pancreatic islet damage. In mice with homozygous targeted deletion of PARP (PARP −/−), blood glucose and pancreatic islet structure are normal, indicating virtually total protection from STZ diabetes. Partial protection occurs in PARP +/− animals. Thus, PARP activation may participate in the pathophysiology of type I diabetes, for which PARP inhibitors might afford therapeutic benefit. PMID:10077636

  11. Minimalist Antibodies and Mimetics: An Update and Recent Applications.

    PubMed

    Bruce, Virginia J; Ta, Angeline N; McNaughton, Brian R

    2016-10-17

    The immune system utilizes antibodies to recognize foreign or disease-relevant receptors, initiating an immune response to destroy unwelcomed guests. Because researchers can evolve antibodies to bind virtually any target, it is perhaps unsurprising that these reagents, and their small-molecule conjugates, are used extensively in clinical and basic research environments. However, virtues of antibodies are countered by significant challenges. Foremost among these is the need for expression in mammalian cells (largely due to often necessary post-translational modifications). In response to these challenges, researchers have developed an array of minimalist antibodies and mimetics, which are smaller, more stable, simpler to express in Escherichia coli, and amendable to laboratory evolution and protein engineering. Here we describe these scaffolds and discuss recent applications of minimalist antibodies and mimetics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Targeting the Progression of Parkinson’s Disease

    PubMed Central

    George, J.L; Mok, S; Moses, D; Wilkins, S; Bush, A.I; Cherny, R.A; Finkelstein, D.I

    2009-01-01

    By the time a patient first presents with symptoms of Parkinson’s disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson’s disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease. PMID:19721815

  13. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    PubMed Central

    Braidwood, Lynne; Graham, Sheila V; Graham, Alex; Conner, Joe

    2013-01-01

    Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF]), is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report such studies of oncolytic HSV in combination with other drugs, and we review their findings here. Viral interactions with cellular hosts are complex and frequently involve intracellular signaling networks, thus creating diverse opportunities for synergistic or additive combinations with many anticancer drugs. We discuss potential mechanisms that may lead to synergistic interactions. PMID:27512658

  14. Diabetes Fact Sheet

    MedlinePlus

    ... is an autoimmune disease, meaning the body's immune (defense) system attacks and destroys the cells in the ... Age: It often develops in childhood. Family health history: Having a parent or brother or sister with ...

  15. Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes.

    PubMed

    Hanon, E; Hall, S; Taylor, G P; Saito, M; Davis, R; Tanaka, Y; Usuku, K; Osame, M; Weber, J N; Bangham, C R

    2000-02-15

    The role of the cellular immune response in human T-cell leukemia virus type I (HTLV-I) infection is not fully understood. A persistently activated cytotoxic T lymphocyte (CTL) response to HTLV-I is found in the majority of infected individuals. However, it remains unclear whether this CTL response is protective or causes tissue damage. In addition, several observations paradoxically suggest that HTLV-I is transcriptionally silent in most infected cells and, therefore, not detectable by virus-specific CTLs. With the use of a new flow cytometric procedure, we show here that a high proportion of naturally infected CD4+ peripheral blood mononuclear cells (PBMC) (between 10% and 80%) are capable of expressing Tax, the immunodominant target antigen recognized by virus-specific CTLs. Furthermore, we provide direct evidence that autologous CD8+ T cells rapidly kill CD4+ cells naturally infected with HTLV-I and expressing Tax in vitro by a perforin-dependent mechanism. Consistent with these observations, we observed a significant negative correlation between the frequency of Tax(11-19)-specific CD8+ T cells and the percentage of CD4+ T cells in peripheral blood of patients infected with HTLV-I. Those results are in accordance with the view that virus-specific CTLs participate in a highly efficient immune surveillance mechanism that persistently destroys Tax-expressing HTLV-I-infected CD4+ T cells in vivo. (Blood. 2000;95:1386-1392)

  16. Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella.

    PubMed

    Zhong, Zhisheng; Kazmierczak, Robert A; Dino, Alison; Khreis, Rula; Eisenstark, Abraham; Schatten, Heide

    2007-10-01

    Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

  17. Overactivating CAR T cells interferes with their ability to fight cancer in mice | Center for Cancer Research

    Cancer.gov

    CAR T-cell therapy, in which a patient’s T cells are reprogrammed in the lab to boost their ability to recognize and destroy cancer cells when they are returned to the body, has led to dramatic responses for many patients with certain blood cancers. Not all patients respond to the treatment, however, and many who do eventually relapse. Read more…

  18. Aging changes in immunity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/004008.htm Aging changes in immunity To use the sharing features ... cells and antibodies that destroy these harmful substances. AGING CHANGES AND THEIR EFFECTS ON THE IMMUNE SYSTEM ...

  19. HIV/AIDS in Women

    MedlinePlus

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV often ...

  20. Living with HIV/AIDS

    MedlinePlus

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. Infection with ...

  1. Reducing pesticide drift by considering propeller rotation effects from aerial application and near buffer zones

    USDA-ARS?s Scientific Manuscript database

    Off-target drift of chemical from agricultural spraying can damage sensitive crops, destroy beneficial insects, and intrude on human and domestic animal habitats, threatening environmental quality. Reduction of drift from aerial application can be facilitated at the edge of a field by offsetting spr...

  2. Intestinal immune response to chicken Coccidiosis in the context of Th1 and Th17 response

    USDA-ARS?s Scientific Manuscript database

    Coccidiosis is one of the most economically important diseases of the chickens caused by several different Eimeria spp. The primary target tissue of Eimeria parasites is the intestinal mucosa and coccidiosis infection destroys intestinal epithelium resulting in nutrient malabsorption, body weight lo...

  3. Hardening Unmanned Aerial Systems Against High Power Microwave Threats in Support of Forward Operations

    DTIC Science & Technology

    2017-04-01

    spectrum ( EMS ) to disrupt, degrade, damage, or destroy targets. They can theoretically be used against all Groups of UAS. C-UAS weapons utilizing HPM...18 This pulse creates an electromagnetic ( EM ) field surrounding the target, typically measured in volts per meter, kilovolts per meter, or watts...through a normally utilized input device, such as an antenna. This type of coupling typically only occurs within the narrow band of the EMS that

  4. Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, S.; Costa, T.; Herz, A.

    1988-07-25

    The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex.more » The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.« less

  5. Engraftment and Differentiation of Embryonic Stem Cell–Derived Neural Progenitor Cells in the Cochlear Nerve Trunk: Growth of Processes into the Organ of Corti

    PubMed Central

    Corrales, C. Eduardo; Pan, Luying; Li, Huawei; Liberman, M. Charles; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal’s canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. PMID:17013931

  6. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.

    PubMed

    Sato, Masahiro; Miyoshi, Kazuchika; Nagao, Yozo; Nishi, Yohei; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi

    2014-01-01

    The recent development of the type II clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has enabled genome editing of mammalian genomes including those of mice and human; however, its applicability and efficiency in the pig have not been studied in depth. Here, using the CRISPR/Cas9 system, we aimed to destroy the function of the porcine α-1,3-galactosyltransferase (α-GalT) gene (GGTA1) whose product is responsible for the synthesis of the α-Gal epitope, a causative agent for hyperacute rejection upon pig-to-human xenotransplantation. Porcine embryonic fibroblasts were transfected with a Cas9 expression vector and guide RNA specifically designed to target GGTA1. At 4 days after transfection, the cells were incubated with IB4 conjugated with saporin (IB4SAP), which eliminates α-Gal epitope-expressing cells. Therefore, the cells surviving after IB4SAP treatment would be those negative for α-Gal epitope expression, which in turn indicates the generation of GGTA1 biallelic knockout (KO) cells. Of the 1.0 × 10(6) cells transfected, 10-33 colonies survived after IB4SAP treatment, and almost all colonies (approximately 90%) were negative for staining with red fluorescence-labeled IB4. Sequencing of the mutated portion of GGTA1 revealed a frameshift of the α-GalT protein. Porcine blastocysts derived from the somatic cell nuclear transfer of these α-Gal epitope-negative cells also lacked the α-Gal epitope on their surface. These results demonstrated that the CRISPR/Cas9 system can efficiently induce the biallelic conversion of GGTA1 in the resulting somatic cells and is thus a promising tool for the creation of KO cloned piglets. © 2014 John Wiley & Sons A/S.

  7. Usefulness of Photodynamic Therapy as a Possible Therapeutic Alternative in the Treatment of Basal Cell Carcinoma

    PubMed Central

    Savoia, Paola; Deboli, Tommaso; Previgliano, Alberto; Broganelli, Paolo

    2015-01-01

    Basal cell carcinoma (BCC) is the most common cancer in individuals with fair skin type (I–II) and steadily increasing in incidence (70% of skin malignancy). It is locally invasive but metastasis is usually very rare, with an estimated incidence of 0.0028%–0.55%. Conventional therapy is surgery, especially for the H region of the face and infiltrative lesions; in case of inoperable tumors, radiotherapy is a valid option. Recently, topical photodynamic therapy (PDT) has become an effective treatment in the management of superficial and small nodular BCC. PDT is a minimally invasive procedure that involves the administration of a photo-sensibilizing agent followed by irradiation at a pre-defined wavelength; this determines the creation of reactive oxygen species that specifically destroy target cells. The only major side effect is pain, reported by some patients during the irradiation. The high cure rate and excellent cosmetic outcome requires considering this possibility for the management of patients with both sporadic and hereditary BCC. In this article, an extensive review of the recent literature was made, in order to clarify the role of PDT as a possible alternative therapeutic option in the treatment of BCC. PMID:26426005

  8. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease*

    PubMed Central

    Galiullina, Raisa A.; Kasperkiewicz, Paulina; Chichkova, Nina V.; Szalek, Aleksandra; Serebryakova, Marina V.; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B.

    2015-01-01

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. PMID:26283788

  9. Transfusion reaction - hemolytic

    MedlinePlus

    ... blood, your body produces antibodies to destroy the donor's blood cells. This process causes the transfusion reaction. Blood ... of transfusion reaction. Before a transfusion, recipient and donor blood are tested (cross-matched) to see if they ...

  10. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    PubMed Central

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55–65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0–25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T. harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field. PMID:28379978

  11. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    PubMed

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T. harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field.

  12. Stem cells: science, policy, and ethics

    PubMed Central

    Fischbach, Gerald D.; Fischbach, Ruth L.

    2004-01-01

    Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc.). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell research. The profound ethical issues raised call for informed, dispassionate debate. PMID:15545983

  13. A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers.

    PubMed

    Raghavan, Raghu; Howell, Roger W; Zalutsky, Michael R

    2017-06-01

    Radionuclides conjugated to molecules that bind specifically to cancer cells are of great interest as a means to increase the specificity of radiotherapy. Currently, the methods to disseminate these targeted radiotherapeutics have been either systemic delivery or by bolus injection into the tumor or tumor resection cavity. Herein we model a potentially more efficient method of delivery, namely pressure-driven fluid flow, called convection-enhanced delivery (CED), where a device infuses the molecules in solution (or suspension) directly into the tissue of interest. In particular, we focus on the setting of primary brain cancer after debulking surgery, where the tissue margins surrounding the surgical resection cavity are infiltrated with tumor cells and the most frequent sites of tumor recurrence. We develop the combination of fluid flow, chemical kinetics, and radiation dose models needed to examine such protocols. We focus on Auger electron-emitting radionuclides (e.g. 67 Ga, 77 Br, 111 In, 125 I, 123 I, 193m Pt, 195m Pt) whose short range makes them ideal for targeted therapy in this setting of small foci of tumor spread within normal tissue. By solving these model equations, we confirm that a CED protocol is promising in allowing sufficient absorbed dose to destroy cancer cells with minimal absorbed dose to normal cells at clinically feasible activity levels. We also show that Auger emitters are ideal for this purpose while the longer range alpha particle emitters fail to meet criteria for effective therapy (as neither would energetic beta particle emitters). The model is used with simplified assumptions on the geometry and homogeneity of brain tissue to allow semi-analytic solutions to be displayed, and with the purpose of a first examination of this new delivery protocol proposed for radionuclide therapy. However, we emphasize that it is immediately extensible to personalized therapy treatment planning as we have previously shown for conventional CED, at the price of requiring a fully numerical computerized approach.

  14. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Deyneka, I. G.; Meshkovskii, I. K.; Jäger, A.; Syková, E.; Kubinová, Š.; Dejneka, A.

    2015-02-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin-stained rat skin sections from plasma-treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  15. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunov, O., E-mail: lunov@fzu.cz; Churpita, O.; Zablotskii, V.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections frommore » plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.« less

  16. Naphthalene poisoning

    MedlinePlus

    Naphthalene is a white solid substance with a strong smell. Poisoning from naphthalene destroys or changes red blood cells so they cannot carry oxygen. This can cause organ damage. This article is for information only. DO NOT use it ...

  17. Gastric cancer-derived exosomes promote peritoneal metastasis by destroying the mesothelial barrier.

    PubMed

    Deng, Guang; Qu, Jinglei; Zhang, Ye; Che, Xiaofang; Cheng, Yu; Fan, Yibo; Zhang, Simeng; Na, Di; Liu, Yunpeng; Qu, Xiujuan

    2017-07-01

    An intact mesothelium serves as a protective barrier to inhibit peritoneal carcinomatosis. Cancer-derived exosomes can mediate directional tumor metastasis; however, little is known about whether gastric cancer-derived exosomes will destroy the mesothelial barrier and promote peritoneal dissemination. Here, we demonstrate that gastric cancer-derived exosomes facilitate peritoneal metastasis by causing mesothelial barrier disruption and peritoneal fibrosis. Injury of peritoneal mesothelial cells elicited by gastric cancer-derived exosomes is through concurrent apoptosis and mesothelial-to-mesenchymal transition (MMT). Additionally, upregulation of p-ERK in peritoneal mesothelial cells is primarily responsible for the MMT while contributing little to apoptosis. Together, these data support the concept that exosomes play a crucial role in remodeling the premetastatic microenvironment and identify a novel mechanism for peritoneal metastasis of gastric carcinoma. © 2017 Federation of European Biochemical Societies.

  18. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages

    PubMed Central

    Liu, Yan-gang; Chen, Ji-kuai; Zhang, Zi-teng; Ma, Xiu-juan; Chen, Yong-chun; Du, Xiu-ming; Liu, Hong; Zong, Ying; Lu, Guo-cai

    2017-01-01

    A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation. PMID:28151471

  19. Expression changes and novel interaction partners of talin 1 in effector cells of autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Hauck, Stefanie M; Treutlein, Gudrun; Amann, Barbara; Fröhlich, Kristina J H; Kremmer, Elisabeth; Merl, Juliane; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A

    2013-12-06

    Autoimmune uveitis is characterized by crossing of blood-retinal barrier (BRB) by autoaggressive immune cells. Equine recurrent uveitis (ERU) is a valuable spontaneous model for autoimmune uveitis and analyses of differentially expressed proteins in ERU unraveled changed protein clusters in target tissues and immune system. Healthy eyes are devoid of leukocytes. In ERU, however, leukocytes enter the inner eye and subsequently destroy it. Molecular mechanisms enabling cell migration through BRB still remain elusive. Previously, we detected decreased talin 1 expression in blood-derived granulocytes of ERU cases, linking the innate immune system to ERU. Because changes in leukocyte protein expression pattern may play a role in pathological abnormalities leading to migration ability, we aimed at identifying interactors of talin 1 in leukocytes with immunoprecipitation, followed by LC-MS/MS for candidate identification. This enabled us to identify CD90 (Thy1) as novel interactor of talin 1 besides several other interactors. In blood-derived granulocytes from healthy individuals, CD90 was highly abundant and significantly reduced in ERU, especially in effector cells. Connection between talin 1 and CD90 and their expression differences in inflammation is an interesting novel finding allowing deeper insight into immune response of innate immune system and granulocyte migration ability in this organ-specific autoimmune disease.

  20. Optimal path planning for video-guided smart munitions via multitarget tracking

    NASA Astrophysics Data System (ADS)

    Borkowski, Jeffrey M.; Vasquez, Juan R.

    2006-05-01

    An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.

  1. Arleigh Burke Destroyers: Delaying Procurement of DDG 51 Flight III Ships Would Allow Time to Increase Design Knowledge

    DTIC Science & Technology

    2015-08-01

    activities for DDG 51, AMDR, Aegis, and other related programs, such as the Evolved Sea Sparrow Missile. We also reviewed DOD studies and past GAO...systems—from initial SPY-6 radar detection of a target, such as an anti- ship cruise missile, through target interception by an Evolved Sea Sparrow ...required to accredit the Aegis modeling and simulation capability, (2) the Evolved Sea Sparrow Missile Block 2—a key element of Flight III’s self

  2. Gene therapy and gastrointestinal cancer: concepts and clinical facts.

    PubMed

    Hauses, M; Schackert, H K

    1999-10-01

    Principles of the treatment of gastrointestinal cancer with gene therapy evolved from the advent of techniques in molecular biology, from increasing insights into the molecular basis of tumorigenesis and from the need to develop more efficient treatment modalities. Any gene therapy approach has to take two major tasks into consideration: the therapeutic gene has to be delivered into the target cell population with high efficiency, specificity and safety, and has to act in a way that provides a benefit to the patient. Data on 22 clinical trials on malignancies of the gastrointestinal tract are available. They utilize a variety of gene-delivery methods and target cell populations, and there is considerable variety among their strategies. Gene transfer is performed by injection of naked plasmid DNA and by use of DNA-liposome complexes and viral vectors. In some cases, the gene transfer is carried out ex vivo and the patients receive genetically modified cells, whereas other approaches deliver the vector to the target cell population in vivo. The theoretical concepts of gene therapy can be divided into three groups. One approach makes use of suicide genes comprising bacterial or viral genes that convert a nontoxic prodrug into a highly cytotoxic chemotherapeutic agent at the tumor site. This approach aims at higher therapeutic specificity and fewer side effects than with the systemic delivery of cytotoxic agents. The second strategy makes an attempt to invoke the immune system to destroy malignant cells. Different strategies, such as immunization with genetically modified tumor cells or transfer of new genes to T cells, are considered to have clinical benefits. The major advantage of these immunotherapeutic approaches is the systemic effect both on the primary tumor and on metastases. The third strategy evolved from the insight that cancer is a genetic disease caused by activation of oncogenes or inactivation of tumor-suppressor genes. Compensation of genetic defects by the downregulation of activated oncogenes or the restoration of tumor-suppressor-gene functions may be able to revert the malignant phenotype of cancer cells. Of the 22 gene-therapy trials, 17 trials focus on immunotherapy. Only two trials make use of suicide genes and, in three trials, a functional copy of the p53 tumor-suppressor gene was reintroduced into malignant cells. Modalities for gene transfer and the strategies underlying gene therapy will be discussed in the context of gastrointestinal malignancies and the potential benefits for patients.

  3. Skin cancer, basal cell carcinoma - pigmented (image)

    MedlinePlus

    ... cancer appears as a 2 to 3 centimeter skin spot. The tissue has become destroyed (forming an atrophic plaque). There is a brownish color because of increased skin pigment (hyperpigmentation) and a slightly elevated, rolled, pearl- ...

  4. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It helps ... to find and destroy them. If your immune system cannot do its job, the results can be ...

  5. Environmental Trigger(s) of Type 1 Diabetes: Why So Difficult to Identify?

    PubMed Central

    2015-01-01

    Type 1 diabetes (T1D) is one of the most common chronic diseases with childhood onset, and the disease has increased two- to fivefold over the past half century by as yet unknown means. T1D occurs when the body's immune system turns against itself so that, in a very specific and targeted way, it destroys the pancreatic β-cells. T1D results from poorly defined interactions between susceptibility genes and environmental determinants. In contrast to the rapid progress in finding T1D genes, identification and confirmation of environmental determinants remain a formidable challenge. This review article will focus on factors which have to be evaluated and decision to take before starting a new prospective cohort study. Considering all the large ongoing prospective studies, new and more conclusive data than that obtained so far should instead come from international collaboration on the ongoing cohort studies. PMID:25883954

  6. Interactive planning of cryotherapy using physics-based simulation.

    PubMed

    Talbot, Hugo; Lekkal, Myriam; Bessard-Duparc, Remi; Cotin, Stephane

    2014-01-01

    Cryotherapy is a rapidly growing minimally invasive technique for the treatment of certain tumors. It consists in destroying cancer cells by extreme cold delivered at the tip of a needle-like probe. As the resulting iceball is often smaller than the targeted tumor, a key to the success of cryotherapy is the planning of the position and orientation of the multiple probes required to treat a tumor, while avoiding any damage to the surrounding tissues. In order to provide such a planning tool, a number of challenges need to be addressed such as fast and accurate computation of the freezing process or interactive positioning of the virtual cryoprobes in the pre-operative image volume. To address these challenges, we present an approach which relies on an advanced computational framework, and a gesture-based planning system using contact-less technology to remain compatible with a use in a sterile environment.

  7. My Cousin, My Enemy: quasispecies suppression of drug resistance

    PubMed Central

    Kirkegaard, Karla; van Buuren, Nicholas J; Mateo, Roberto

    2017-01-01

    If a freshly minted genome contains a mutation that confers drug resistance, will it be selected in the presence of the drug? Not necessarily. During viral infections, newly synthesized viral genomes occupy the same cells as parent and other progeny genomes. If the antiviral target is chosen so that the drug-resistant progeny’s growth is dominantly inhibited by the drug-susceptible members of its intracellular family, its outgrowth can be suppressed. Precedent for ‘dominant drug targeting’ as a deliberate approach to suppress the outgrowth of inhibitor-resistant viruses has been established for envelope variants of vesicular stomatitis virus and for capsid variants of poliovirus and dengue virus. Small molecules that stabilize oligomeric assemblages are a promising means to an unfit family to destroy the effectiveness of a newborn drug-resistant relative due to the co-assembly of drug-susceptible and drug-resistant monomers. PMID:27764731

  8. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  9. Catumaxomab

    PubMed Central

    Linke, Rolf; Seimetz, Diane

    2010-01-01

    Catumaxomab, a monoclonal bispecific trifunctional antibody, was approved in the european Union in April 2009 for the intraperitoneal treatment of patients with malignant ascites. The marketing authorization holder Fresenius Biotech GmbH developed catumaxomab (Removab®) together with its partner TRiOn Pharma GmbH, Germany. it is the first substance worldwide with a regulatory label for the treatment of malignant ascites due to epithelial carcinomas. Since the peritoneum is of mesothelial origin and therefore lacks epCAM expression, the intraperitoneal administration of catumaxomab is an attractive targeted immunotherapeutic approach. Catumaxomab is able to destroy epCAM positive tumor cells in the peritoneal cavity known as the main cause of malignant ascites. in addition, catumaxomab is a potential therapeutic option for several primary tumors since the epCAM molecule is expressed on the majority of epithelial carcinomas. This review focuses on the clinical development of catumaxomab and indicates future directions. PMID:20190561

  10. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry.

    PubMed

    Tavares, Ana Beatriz M L A; Lima Neto, José X; Fulco, Umberto L; Albuquerque, Eudenilson L

    2018-01-30

    Much of the recent excitement in the cancer immunotherapy approach has been generated by the recognition that immune checkpoint proteins, like the receptor PD-1, can be blocked by antibody-based drugs with profound effects. Promising clinical data have already been released pointing to the efficiency of the drug pembrolizumab to block the PD-1 pathway, triggering the T-lymphocytes to destroy the cancer cells. Thus, a deep understanding of this drug/receptor complex is essential for the improvement of new drugs targeting the protein PD-1. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT), we investigate in silico the binding energy features of the receptor PD-1 in complex with its drug inhibitor. Our computational results give a better understanding of the binding mechanisms, being also an efficient alternative towards the development of antibody-based drugs, pointing to new treatments for cancer therapy.

  11. Deep-UV biological imaging by lanthanide ion molecular protection

    PubMed Central

    Kumamoto, Yasuaki; Fujita, Katsumasa; Smith, Nicholas Isaac; Kawata, Satoshi

    2015-01-01

    Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. PMID:26819825

  12. Nano-discs Destroy Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A new technique, designed with the potential to treat brain cancers, is under study at Argonne National Laboratory and the University of Chicago Medical Center. The micron-sized magnetic materials, with vortex-like arrangements of spins, were successfully interfaced with Glioblastoma multiforme (GBM) cancer cells. The microdisks are gold-coated and biofunctionalized with a cancer-targeting antibody. The antibody recognizes unique receptors on the cancer cells and attaches to them (and them alone), leaving surrounding healthy cells unaffected during treatment. Under application of an alternative magnetic field, the magnetic vortices shift, leading to oscillatory motion of the disks and causing the magneto-mechanic stimulus tomore » be transmitted directly to the cancer cell. Probably because of the damage to the cancer cell membrane, this results in cellular signal transduction and amplification, causing initiation of apoptosis (programmed cell death or "cell suicide"). Manifestation of apoptosis is of clinical significance because the malignant cells are known to be almost "immortal"; (due to suppressed apoptosis), and, consequently, highly resistant to conventional (chemo- and radio-) therapies. Due to unique properties of the vortex microdisks, an extremely high spin-vortex-induced cytotoxicity effect can be caused by application of unprecedentedly weak magnetic fields. An alternative magnetic field as slow as about 10s Hertz (for comparison, 60 Hertz in a electrical outlet) and as small as less than 90 Oersteds (which is actually less than the field produced by a magnetized razor blade) applied only for 10 minutes was sufficient to cause ~90% cancer cell destruction in vitro. The study has only been conducted in cells in a laboratory; animal trials are being planned. Watch a news clip of the story from ABC-7 News: http://abclocal.go.com/wls/storysection=news/health&id=7245605. More details on this study can be found in the original research paper: Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, by Dong-Hyun Kim, Elena A. Rozhkova, Ilya V. Ulasov, Samuel D. Bader, Tijana Rajh, Maciej S. Lesniak & Valentyn Novosad. Nature Materials (cover story), vol. 9, pp. 165 171, February 2010. http://www.nature.com/nmat/journal/v9/n2/index.html« less

  13. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus.

    PubMed

    Voisset, Cécile; Daskalogianni, Chrysoula; Contesse, Marie-Astrid; Mazars, Anne; Arbach, Hratch; Le Cann, Marie; Soubigou, Flavie; Apcher, Sébastien; Fåhraeus, Robin; Blondel, Marc

    2014-04-01

    Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.

  14. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus?

    PubMed Central

    Deligne, Claire; Milcent, Benoît; Josseaume, Nathalie; Teillaud, Jean-Luc; Sibéril, Sophie

    2017-01-01

    Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens. PMID:28855903

  15. Enzymatic Removal of Diacetyl from Beer

    PubMed Central

    Tolls, T. N.; Shovers, J.; Sandine, W. E.; Elliker, P. R.

    1970-01-01

    Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase. PMID:4315861

  16. Innate immunity and HIV-1 infection.

    PubMed

    Lehner, T; Wang, Y; Whittall, T; Seidl, T

    2011-04-01

    HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.

  17. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations.

    PubMed

    Rice, Lawrence; Alfrey, Clarence P

    2005-01-01

    We have uncovered a physiologic process which negatively regulates the red cell mass by selectively hemolyzing young circulating red blood cells. This allows fine control of the number of circulating red blood cells under steady-state conditions and relatively rapid adaptation to new environments. Neocytolysis is initiated by a fall in erythropoietin levels, so this hormone remains the major regulator of red cell mass both with anemia and with red cell excess. Physiologic situations in which there is increased neocytolysis include the emergence of newborns from the hypoxic uterine environment and the descent of polycythemic high-altitude dwellers to sea level. The process first became apparent while investigating the mechanism of the anemia that invariably occurs after spaceflight. Astronauts experience acute central plethora on entering microgravity resulting in erythropoietin suppression and neocytolysis, but the reduced blood volume and red cell mass become suddenly maladaptive on re-entry to earth's gravity. The pathologic erythropoietin deficiency of renal disease precipitates neocytolysis, which explains the prolongation of red cell survival consistently resulting from erythropoietin therapy and points to optimally efficient erythropoietin dosing schedules. Implications should extend to a number of other physiologic and pathologic situations including polycythemias, hemolytic anemias, 'blood-doping' by elite athletes, and oxygen therapy. It is likely that erythropoietin influences endothelial cells which in turn signal reticuloendothelial phagocytes to destroy or permit the survival of young red cells marked by surface molecules. Ongoing studies to identify the molecular targets and cytokine intermediaries should facilitate detection, dissection and eventual therapeutic manipulation of the process. Copyright (c) 2005 S. Karger AG, Basel.

  18. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  19. "Just not all ice users do that": investigating perceptions and potential harms of Australia's Ice Destroys Lives campaign in two studies.

    PubMed

    Douglass, Caitlin H; Early, Elizabeth C; Wright, Cassandra J C; Palmer, Anna; Higgs, Peter; Quinn, Brendan; Dietze, Paul M; Lim, Megan S C

    2017-07-14

    In 2015, the Australian government launched the media campaign Ice Destroys Lives targeting crystal methamphetamine use. Previous research indicates mass media campaigns may have harmful effects for people engaged in drug use. This study investigated perceptions and harms of Ice Destroys Lives among adults with a history of injecting drugs and young people. This analysis includes data from two studies: an online questionnaire with young people and in-depth interviews with adults who use crystal methamphetamine. Young people from Victoria, Australia, were recruited through Facebook. We collected data on drug use, campaign recognition and behaviours. Participants who recognised the campaign indicated whether they agreed with five statements related to Ice Destroys Lives. We compared campaign perceptions between young people who reported ever using crystal methamphetamine and those who did not. Adults who use crystal methamphetamine were sampled from the Melbourne injecting drug user cohort study. We asked participants if they recognised the campaign and whether it represented their experiences. One thousand twenty-nine young people completed the questionnaire; 71% were female, 4% had used crystal methamphetamine and 69% recognised Ice Destroys Lives. Three quarters agreed the campaign made them not want to use ice. Ever using crystal methamphetamine was associated with disagreeing with three statements including this campaign makes you not want to use ice (adjusted odds ratio (AOR) = 4.3, confidence interval (CI) = 1.8-10.0), this campaign accurately portrays the risks of ice use (AOR = 3.2, CI = 1.4-7.6) and this campaign makes you think that people who use ice are dangerous (AOR = 6.6, CI = 2.2-19.8). We interviewed 14 people who used crystal methamphetamine; most were male, aged 29-39 years, and most recognised the campaign. Participants believed Ice Destroys Lives misrepresented their experiences and exaggerated "the nasty side" of drug use. Participants felt the campaign exacerbated negative labels and portrayed people who use crystal methamphetamine as "violent" and "crazy". In our study, Ice Destroys Lives was widely recognised and delivered a prevention message to young people. However, for people with a history of crystal methamphetamine use, the campaign also reinforced negative stereotypes and did not encourage help seeking. Alternative evidence-based strategies are required to reduce crystal methamphetamine-related harms.

  20. Destruction of giant cluster-like vesicles by an ultrasonically activated device

    NASA Astrophysics Data System (ADS)

    Yahagi, Ryosuke; Yoshida, Kenji; Zhang, Yiting; Ebata, Masahiko; Toyota, Taro; Yamaguchi, Tadashi; Hayashi, Hideki

    2016-07-01

    In this paper, we propose a technically simple method of destroying a tissue marker composed of giant cluster-like vesicles (GCVs) to facilitate laparoscopic surgeries; the method releases various biological tracers contained in GCVs. An ultrasonically activated device (USAD) emitting 55.5 kHz ultrasound was employed for this purpose. Optical microscopy and fluorospectrophotometry revealed the destruction of GCVs after ultrasound irradiation when the blade tip was set 1.0 mm or closer to, but not directly in contact with, a GCV-containing cell. This means that USAD could be safely used for destroying this GCV tissue marker in clinical settings.

  1. Sarcoma spreads primarily through the vascular system: are there biomarkers associated with vascular spread?

    PubMed

    Pennacchioli, Elisabetta; Tosti, Giulio; Barberis, Massimo; De Pas, Tommaso M; Verrecchia, Francesco; Menicanti, Claudia; Testori, Alessandro; Mazzarol, Giovanni

    2012-10-01

    Sarcomas are a heterogeneous group of tumors with specific molecular characteristics and currently classified on the basis of their tissue of origin and histologic appearance. Except for epithelioid sarcoma, clear cell sarcoma, angiosarcoma and rhabdomyosarcoma, which may spread to regional lymph nodes, the other histotypes spread via the vascular system to the lungs most of the time. A variety of molecular approaches, including gene expression profiling, have identified candidate biomarkers and generated insights into sarcoma biology. The comprehension of the pathogenesis of this malignancy according to the mesenchymal stem cell hypothesis parallels the description of several molecular pathways deregulated in sarcoma. Individuation of vascular spread biomarkers is actually focused on the study of factors involved both in hemostasis and angiogenesis. Interestingly the microenvironment of sarcomas showed the very same mesenchymal origin of the surrounding stromal cells. The presence of circulating tumor cells and miRNAs in blood samples of sarcoma patients represents the possibility not only to better stratify patients group according to the prognosis but also to tailor new individualized therapy. So, it could be predicted that some genes expressed in a specific sarcoma might have prognostic significance or therapeutic targeting potential and molecular targets can be identified in the tumor or in the tumor microenvironment. Therefore the initial evaluation of a sarcoma patient should include in-depth genetic evaluation including karyotyping and c-DNA/protein expression profiling. The chemokine signaling demonstrated to be deeply implicated in sarcoma development as well as to have a significant role in development of metastatic disease, especially in directing tumor cells towards the preferential sites of metastases in sarcoma, lung and bone. It is unsolved if the blood stream is a more favorable environment compared to lymphatic or if lymph nodes are more efficient in destroying metastatic sarcoma cells. But the comprehension of the regulatory mechanisms of the behavior of mesenchymal malignant tumors is at its dawn.

  2. 5-Aminolevulinic acid loaded ethosomal vesicles with high entrapment efficiency for in vitro topical transdermal delivery and photodynamic therapy of hypertrophic scars.

    PubMed

    Zhang, Zheng; Chen, Yunsheng; Xu, Heng; Wo, Yan; Zhang, Zhen; Liu, Ying; Su, Weijie; Cui, Daxiang; Zhang, Yixin

    2016-11-24

    Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for hypertrophic scars (HS), which destroys human hypertrophic scar fibroblasts (HSF). However, the poor permeability of ALA both in HS tissue and HSF significantly restricts the PDT of HS. To overcome these barriers, ALA-loaded ethosomal vesicles (ALA-ES) were developed by a pH gradient active loading method and characterized by morphology, entrapment efficiency (EE) and stability. Results show that prepared ALA-ES are homogenous spherical lamellar vesicles, 53 ± 7 nm in size, 50.6 ± 2.3% in EE and have excellent stability. In vitro transdermal delivery studies through HS tissue were carried out by using Franz diffusion cells. Compared to the traditional ALA hydroalcoholic solution (ALA-HA), ALA-ES achieve higher drug retention in less administration time, and fluorescence microscopy showed that ALA-ES penetrate into the deeper dermis of HS in a shorter time, indicating that ALA-ES can enhance the penetration of ALA into HS. Additionally, ALA-ES was visualized in HS tissue for the first time by transmission electron microscopy (TEM). The irregular and collapsed ALA-ES suggest that they can squeeze through narrow spaces to the target area and release ALA into HS. Taking HSF as the target, the transcellular delivery of ALA-ES into HSF cells was investigated by intracellular protoporphyrin IX (PpIX) accumulation. The efficiency of PDT for HSF cells, including the formation of reactive oxygen species (ROS) and cell apoptosis, were also well investigated. Furthermore, the detailed changes of HSF were observed by TEM. The results strongly indicate that ALA-ES can facilitate ALA penetration into HSF cells, and can cause a higher level of cell apoptosis or necrosis than ALA-HA. ALA-ES with high EE is therefore a promising transdermal delivery system for topical ALA administration and has great potential in ALA-PDT of HS.

  3. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  4. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity

    PubMed Central

    Venkateshaiah, Sathisha Upparahalli; Khan, Sharmin; Ling, Wen; Bam, Rakesh; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2015-01-01

    Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD+) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phos-phoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD+ biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients’ plasma cells than in healthy donors’ counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD+, APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD+ content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD+ or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD+ depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM. PMID:23435312

  5. Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings

    PubMed Central

    Toth, Robert; Sperling, Dan; Madabhushi, Anant

    2016-01-01

    Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells) without the harmful side effects (due to its precise localization). MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a) laser-induced shape-based changes, and (b) changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1) patient alignment, (2) changes due to surrounding organs such as the bladder and rectum, and (3) changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1) and (2) are first modeled and removed using a finite element model (FEM). A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate volume, which appears to manifest predominantly at the site of ablation. After spatially aligning the images, changes to MRI intensity values are clearly visible at the site of ablation. Our results suggest that our new methodology is able to capture and quantify the degree of laser-induced changes to the prostate. The quantitative measurements reflecting of the deformation changes can be used to track treatment response over time. PMID:27088600

  6. First-in-Class Drug Being Tested for Breast Cancer May Also Work in Lung Cancer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A novel agent now being tested in human clinical trials of breast and other cancers may also prove to be a candidate for treating lung cancer, the No. 1 cancer killer worldwide. The targeted treatment uses a new approach to destroy

  7. U.S. Naval Forces, Vietnam Monthly Historical Summary for May 1969

    DTIC Science & Technology

    1969-06-01

    were killed andla sanpans were destroyed. There were no U.S. casualties. Two targets of opportunity Wm , tan under fire by OV- lQA air- craft of TU...civilian, vol-=tary agencies 5;.- Average per-tent of self-help by M, civilians so *h Dy ftaenaitures (VIM~ "Econonic Devel.oprAnt 289 145,233 . - Education

  8. Using Multiattribute Utility Copulas in Support of UAV Search and Destroy Operations

    DTIC Science & Technology

    2012-03-01

    1, ..., n. (2.3) where ai = a(1 − li) and bi = 1 − ai = ali + b. This implies the same mathe- matical properties of a strictly increasing cumulative...and DTMC defined target movement. Abdelhafiz et al. [6] present several instances of the multi-objective UAV mis- sion planning problem where the

  9. Autoimmune destruction of pericytes as the cause of diabetic retinopathy.

    PubMed

    Adams, Duncan D

    2008-06-01

    In diabetic retinopathy, collapse of the retinal vasculature is associated with loss of the pericytes. These are contractile cells that together with endothelial cells form the terminal arterioles of the retina. The cause of the loss of pericytes is not known. Recently, it has been discovered that type 1 diabetes is caused by forbidden clones of cytotoxic T lymphocytes, which destroy the insulin-making cells with exquisite specificity. In the light of this, I postulate that an antigenically-related forbidden clone of cytotoxic T lymphocytes selectively destroys the pericytes and that this is the cause of the vascular collapse of diabetic retinopathy. If this is so, the therapeutic implications are immense, involving a switch from ineffectual tight glycemic control to immunotherapy. This is already used as immunosuppression to prevent organ transplant rejection, and as the immune ablation and autologous bone marrow cell reconstitution that has saved the lives of patients with lethally-severe scleroderma. Once the pericyte surface auto-antigen for the T lymphocytes has been isolated, selective destruction of the pathogenic T lymphocytes would be possible by manufacture and use of cytotoxic auto-antigen complexes, which arrests progression of the retinopathy.

  10. A dual role of extrinsic noise in coupled synthetic clock cells due to a two-steps synchronization mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yu, FengZhen; Li, ZhiHong; Xiong, Juan; Chen, JianJun; Yi, Ming

    2018-07-01

    Based on the model describing two coupled synthetic clock cells, the synchronization dynamics under stochastic noise are explored. As extrinsic noise from signal is the predominant form of noise for all gene promoters, we investigate the effects of extrinsic noise original from signal molecule by evaluating the order parameters. It is found that strong noise is beneficial for the synchronization of loose-coupling system, while it destroys the synchronization of tight-coupling system. The underlying mechanisms of these two opposite effects are clarified numerically and theoretically. Our research illustrates that (i) when the coupling strength is small, the noise mainly adjusts the period difference of two cells and the system becomes regular. Theoretical study reveals that the mean effect of noise is like to be influx while signal flow is efflux under such a situation. (ii) With the increment of coupling strength, the cells have the same frequency. It is obvious that the noise mainly changes the phase difference between the two cells and destroys the synchronization of the system. (iii) We also demonstrate that, under certain moderate noise intensities, the noise can induce the synchronization order to be the worst. This nonlinear behavior only can be observed in a very narrow region of coupling strength.

  11. Antibacterial Activity and Kinetics of Litsea cubeba Oil on Escherichia coli

    PubMed Central

    Li, Wen-Ru; Shi, Qing-Shan; Liang, Qing; Xie, Xiao-Bao; Huang, Xiao-Mo; Chen, Yi-Ben

    2014-01-01

    Litsea cubeba oil is extracted from the fresh fruits of Litsea cubeba by distillation. In this study, its chemical constituents, antibacterial activity, kinetics and effects against Escherichia coli were studied. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 0.125% (v/v) by toxic food method. Moreover, the antibacterial kinetic curves indicated 0.0625% (v/v) of litsea cubeba oil was able to prolong the growth lag phase of E. coli cells to approximate 12 hours while 0.125% (v/v) of litsea cubeba oil was able to kill the cells completely. Furthermore, transmission electron microscope (TEM) observation showed most E. coli cells treated with 0.125% (v/v) of litsea cubeba oil were killed or destroyed severely within 2 hours. The litsea cubeba oil might penetrate and destroy the outer and inner membrane of E. coli cells. Thus many holes and gaps were observed on the damaged cells, which led to their death eventually. The antibacterial effects of litsea cubeba oil mainly attributed to the presence of aldehydes, which accounted for approximately 70% in its whole components analyzed by GC/MS. Based on the antimicrobial properties, litsea cubeba oil would have a broad application in the antimicrobial industry. PMID:25372706

  12. Rapid Isolation of Viable Circulating Tumor Cells from Patient Blood Samples

    PubMed Central

    Hughes, Andrew D.; Mattison, Jeff; Powderly, John D.; Greene, Bryan T.; King, Michael R.

    2012-01-01

    Circulating tumor cells (CTC) are cells that disseminate from a primary tumor throughout the circulatory system and that can ultimately form secondary tumors at distant sites. CTC count can be used to follow disease progression based on the correlation between CTC concentration in blood and disease severity1. As a treatment tool, CTC could be studied in the laboratory to develop personalized therapies. To this end, CTC isolation must cause no cellular damage, and contamination by other cell types, particularly leukocytes, must be avoided as much as possible2. Many of the current techniques, including the sole FDA-approved device for CTC enumeration, destroy CTC as part of the isolation process (for more information see Ref. 2). A microfluidic device to capture viable CTC is described, consisting of a surface functionalized with E-selectin glycoprotein in addition to antibodies against epithelial markers3. To enhance device performance a nanoparticle coating was applied consisting of halloysite nanotubes, an aluminosilicate nanoparticle harvested from clay4. The E-selectin molecules provide a means to capture fast moving CTC that are pumped through the device, lending an advantage over alternative microfluidic devices wherein longer processing times are necessary to provide target cells with sufficient time to interact with a surface. The antibodies to epithelial targets provide CTC-specificity to the device, as well as provide a readily adjustable parameter to tune isolation. Finally, the halloysite nanotube coating allows significantly enhanced isolation compared to other techniques by helping to capture fast moving cells, providing increased surface area for protein adsorption, and repelling contaminating leukocytes3,4. This device is produced by a straightforward technique using off-the-shelf materials, and has been successfully used to capture cancer cells from the blood of metastatic cancer patients. Captured cells are maintained for up to 15 days in culture following isolation, and these samples typically consist of >50% viable primary cancer cells from each patient. This device has been used to capture viable CTC from both diluted whole blood and buffy coat samples. Ultimately, we present a technique with functionality in a clinical setting to develop personalized cancer therapies. PMID:22733259

  13. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released ismore » microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.« less

  14. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa.

    PubMed

    Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue

    2014-11-01

    Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability.

  15. C-type natriuretic peptide-modified lipid vesicles: fabrication and use for the treatment of brain glioma.

    PubMed

    Wu, Jia-Shuan; Mu, Li-Min; Bu, Ying-Zi; Liu, Lei; Yan, Yan; Hu, Ying-Jie; Bai, Jing; Zhang, Jing-Ying; Lu, Weiyue; Lu, Wan-Liang

    2017-06-20

    Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across the BBB, and for treating brain glioma along with disrupting neovasculatures. The studies were performed on brain glioma U87-MG cells in vitro and on glioma-bearing nude mice in vivo. The results showed that the CNP-modified vinorelbine lipid vesicles could transport vinorelbine across the BBB, kill the brain glioma, and destroy neovasculatures effectively. The above mechanisms could be associated with the following aspects, namely, long circulation in the blood; drug transport across the BBB via natriuretic peptide receptor B (NPRB)-mediated transcytosis; elimination of brain glioma cells and disruption of neovasculatures by targeting uptake and cytotoxic injury. Besides, CNP-modified vinorelbine lipid vesicles could induce apoptosis of the glioma cells. The mechanisms could be related to the activations of caspase 8, caspase 3, p53, and reactive oxygen species (ROS), and inhibition of survivin. Hence, CNP-modified lipid vesicles could be used as a carrier material for treating brain glioma and disabling glioma neovasculatures.

  16. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy

    PubMed Central

    Zhao, Baozhong; He, Yu-Ying

    2011-01-01

    Photodynamic therapy (PDT) is a noninvasive procedure that involves a photosensitizing drug and its subsequent activation by light to produce reactive oxygen species that specifically destroy target cells. Recently, PDT has been widely used in treating non-melanoma skin malignancies, the most common cancer in the USA, with superior cosmetic outcomes compared with conventional therapies. The topical ‘photosensitizers’ commonly used are 5-aminolevulinic acid (ALA) and its esterified derivative methyl 5-aminolevulinate, which are precursors of the endogenous photosensitizer protoporphyrin IX. After treatment with ALA or methyl 5-aminolevulinate, protoporphyrin IX preferentially accumulates in the lesion area of various skin diseases, which allows not only PDT treatment but also fluorescence diagnosis with ALA-induced porphyrins. Susceptible lesions include various forms of non-melanoma skin cancer such as actinic keratosis, basal cell carcinoma and squamous cell carcinoma. The most recent and promising developments in PDT include the discovery of new photosensitizers, the exploitation of new drug delivery systems and the combination of other modalities, which will all contribute to increasing PDT therapeutic efficacy and improving outcome. This article summarizes the main principles of PDT and its current clinical use in the management of non-melanoma skin cancers, as well as recent developments and possible future research directions. PMID:21080805

  17. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease.

    PubMed

    Galiullina, Raisa A; Kasperkiewicz, Paulina; Chichkova, Nina V; Szalek, Aleksandra; Serebryakova, Marina V; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B

    2015-10-09

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. SDF-1 is both necessary and sufficient to promote proliferative retinopathy

    PubMed Central

    Butler, Jason M.; Guthrie, Steven M.; Koc, Mehmet; Afzal, Aqeela; Caballero, Sergio; Brooks, H. Logan; Mames, Robert N.; Segal, Mark S.; Grant, Maria B.; Scott, Edward W.

    2005-01-01

    Diabetic retinopathy is the leading cause of blindness in working-age adults. It is caused by oxygen starvation in the retina inducing aberrant formation of blood vessels that destroy retinal architecture. In humans, vitreal stromal cell–derived factor–1 (SDF-1) concentration increases as proliferative diabetic retinopathy progresses. Treatment of patients with triamcinolone decreases SDF-1 levels in the vitreous, with marked disease improvement. SDF-1 induces human retinal endothelial cells to increase expression of VCAM-1, a receptor for very late antigen–4 found on many hematopoietic progenitors, and reduce tight cellular junctions by reducing occludin expression. Both changes would serve to recruit hematopoietic and endothelial progenitor cells along an SDF-1 gradient. We have shown, using a murine model of proliferative adult retinopathy, that the majority of new vessels formed in response to oxygen starvation originate from hematopoietic stem cell–derived endothelial progenitor cells. We now show that the levels of SDF-1 found in patients with proliferative retinopathy induce retinopathy in our murine model. Intravitreal injection of blocking antibodies to SDF-1 prevented retinal neovascularization in our murine model, even in the presence of exogenous VEGF. Together, these data demonstrate that SDF-1 plays a major role in proliferative retinopathy and may be an ideal target for the prevention of proliferative retinopathy. PMID:15630447

  19. Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination).

    PubMed Central

    Holmgren, J; Svennerholm, A M; Lindblad, M

    1983-01-01

    The two biotypes of Vibrio cholerae were found to have cell-associated hemagglutinins which differ with regard to binding to different species of erythrocytes and inhibition by monosaccharides. A total of 12 classical V. cholerae strains (Inaba or Ogawa) strongly agglutinated human erythrocytes in a reaction specifically inhibited by L-fucose, whereas 12 El Tor strains preferably agglutinated chicken erythrocytes, a reaction reversed by D-mannose or by higher concentrations of D-fructose, D-glucose, alpha-methyl-D-mannoside, or sucrose. Milk from Swedish women inhibited both of these adherence reactions, and the predominating inhibitory activity for each reaction resisted boiling, was destroyed by periodate treatment, and bound a concanavalin A-Sepharose column, suggesting a carbohydrate structure. Further characterization indicated that the inhibitory activity for classical V. cholerae hemagglutination was distributed about equally on glycoprotein and free oligosaccharide, but was not present on glycolipid. The El Tor inhibiting activity, on the other hand, was almost exclusively of a high-molecular-weight glycoprotein nature. These results support our previous suggestion (Holmgren et al., Infect. Immun. 33:136-141, 1981) that human milk may contain receptor-like glycocompounds which can prevent bacterial adherence by competition with receptors on target cells. PMID:6295953

  20. Cross-section measurement of 7Be + d and 7Li + d with ANASEN* and its implication in the Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Rijal, Nabin; Wiedenhover, Ingo; Baby, L. T.; Blackmon, J. C.; Rogachev, G.

    2017-09-01

    Astrophysically observed 7Li is 3 -4 times less than predicted amount by current models of Standard Big Bang Nucleosynthesis (SBBN). The nuclear reaction 7Be + d at energies relevant to SBBN, has been discussed as a possible means to destroy mass-7 nuclei. We investigated the 7Be + d and it's mirror nuclear reaction 7Li + d at SBBN energies using a radioactive 7Be and stable 7Li beam both in deuterium gas target inside ANASEN at Florida State University. ANASEN is an active target detector system which tracks the charged particles using a position sensitive proportional counter and 24-SX3 and 4-QQQ position sensitive Silicon detectors, all backed up by CsI detectors. ANASEN has wide angular coverage. The experiment measures a continuous excitation function by slowing down the beam in the target gas down to zero energy by using a single beam energy. Our set-up provides a high detection efficiency for all relevant reaction channels including (d , p) , (d , α) and/or direct breakup that can destroy mass-7 nuclei in contrast to previous measurements. The preliminary results of these experiments along with details of ANASEN detector will be presented. *ANASEN: Array for Nuclear Astrophysics and Structure with Exotic Nuclei. This work is supported by the US NSF MRI program, Grant No. PHY-0821308 and NSF Grant PHY-1401574.

  1. Hollow microspheres based on - Folic acid modified - Hydroxypropyl Cellulose and synthetic multi-responsive bio-copolymer for targeted cancer therapy: controlled release of daunorubicin, in vitro and in vivo studies.

    PubMed

    Metaxa, Aikaterini-Foteini; Efthimiadou, Eleni K; Boukos, Nikos; Fragogeorgi, Eirini A; Loudos, George; Kordas, George

    2014-12-01

    Conventional chemotherapy drugs such as anthracyclines show no specific activity. They destroy cancer cells but also and the healthy ones, and for that reason exhibit high toxicity. In order to alleviate the toxic effects of chemotherapeutic drugs, the administration dose is being minimized, while their reactivity against tumor cells is lessened. This problem can be overcome or at least reduced by using nanoscale drug delivery systems to target the pathogenic area. The present work deals with the synthesis, characterization and biological evaluation of multi-responsive hollow microspheres coated with Hydroxypropyl Cellulose (HPC)-a biocompatible and thermosensitive polysaccharide-conjugated with folic acid as well promising drug vehicles for targeted cancer therapy. The synthetic route consists of two steps. In the first step, a single layer of sensitive copolymers is ((Methacrylic acid (MAA), N-(2-Hydroxypropyl) methacrylamide (HPMA) and N,N'-(disulfanediylbis(ethane-2,1-diyl))bis(2-methylacrylamide) (DSBMA)) fabricated on a sacrificial template of SiO2 and in the second step, an additional layer of the folic acid modified HPC coat the microspheres' surface. The layers fabrication is performed through a combination of distillation precipitation co-polymerization and chemical deposition method. The loading capacity (% LC) and encapsulation efficiency (% EE) percentages of the chemotherapeutic agent daunorubicin (DNR) in the fabricated microspheres were calculated through the standard curve methodology. In addition, the releasing properties of the resulting spheres are investigated, using the above mentioned methodology. It is worth mentioning that, spheres release the entrapped drug under combined conditions such acidic and reductive environment along with conventional hyperthermia. Cytotoxic activity of the synthesized spheres was investigated by using the well-established method of MTT assay in MCF-7 (breast cancer), HeLa (cervical cancer) and HEK 293 (Human Embryonic Kidney healthy cells) cell lines. Confocal and fluorescence microscopy were used to confirm the in vitro targeted ability of folic acid modified drug loaded microspheres in HeLa, to that overexpress folate receptors, MCF-7 and 3T3 cells, as negative folate cell substrate. Finally, radiolabelling of the spheres is performed, with a gamma emitting radionuclide ((99m)Tc), to assess their in vivo profile by means of scintigraphic imaging and biodistribution studies. Hollow spheres release the encapsulated drug under acidic environment, conventional hyperthermia or in the presence of glutathione (reductive environment). The ability of modified drug carriers to target the HeLa cells, was confirmed by confocal and fluorescence microscopy. The resulting spheres are observed to be promising drug-carriers for cancer treatment due to their releasing properties under tumor's environment and high concentration in HeLa cells via endocytosis. In addition, the empty vehicles have no toxicity in healthy cells and present antimicrobial activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.

    PubMed

    Martel, Ralph R; Botros, Ihab W; Rounseville, Matthew P; Hinton, James P; Staples, Robin R; Morales, David A; Farmer, John B; Seligmann, Bruce E

    2002-11-01

    The principles and performance are described for the ArrayPlate mRNA assay, a multiplexed mRNA assay for high-throughput and high-content screening and drug development. THP-1 monocytes grown and subjected to compound treatments in 96-well plates were subjected to a multiplexed nuclease protection assay in situ. The nuclease protection assay destroyed all cell-derived mRNA, but left intact stoichiometric amounts of 16 target-specific oligonucleotide probes. Upon transfer of processed cell lysates to a microplate that contained a 16-element oligonucleotide array at the bottom of each well, the various probe species were separated by immobilization at predefined elements of the array. Quantitative detection of array-bound probes was by enzyme-mediated chemiluminescence. A high-resolution charge-coupled device imager was used for the simultaneous readout of all 1536 array elements in a 96-well plate. For the measurement of 16 genes in samples of 25000 cells, the average standard deviation from well to well within a plate was 8.6% of signal intensity and was 10.8% from plate to plate. Assay response was linear and reproducibility was constant for all detected genes in samples ranging from 1000 to 50000 cells. When THP-1 monocytes were differentiated with phorbol ester and subsequently activated with bacterial lipopolysaccharide that contained different concentrations of dexamethasone, dose-dependent effects of dexamethasone on the mRNA levels of several genes were observed.

  3. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

    PubMed

    Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2015-08-01

    We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. IL-17RA in Non-Hematopoietic Cells Controls CXCL-1 and 5 Critical to Recruit Neutrophils to the Lung of Mycobacteria-Infected Mice during the Adaptive Immune Response

    PubMed Central

    Lombard, Robin; Epardaud, Mathieu; Le Vern, Yves; Buzoni-Gatel, Dominique; Winter, Nathalie

    2016-01-01

    During chronic infection with Mycobacterium tuberculosis (Mtb), bacilli multiplication is constrained within lung granulomas until excessive inflammation destroys the lung. Neutrophils are recruited early and participate in granuloma formation, but excessive neutrophilia exacerbates the tuberculosis disease. Neutrophils thus appear as potential targets for therapeutic interventions, especially in patients for whom no antibiotic treatment is possible. Signals that regulate neutrophil recruitment to the lung during mycobacterial infection need to be better understood. We demonstrated here, in the mouse model, that neutrophils were recruited to the lung in two waves after intranasal infection with virulent Mtb or the live attenuated vaccine strain Bacillus Calmette Guérin (BCG). A first wave of neutrophils was swiftly recruited, followed by a subsequent adaptive wave that reached the lung together with IFN-γ- and IL-17A-producing T cells. Interestingly, the second neutrophil wave did not participate to mycobacteria control in the lung and established contacts with T cells. The adaptive wave was critically dependent on the expression of IL-17RA, the receptor for IL-17A, expressed in non-hematopoietic cells. In absence of this receptor, curtailed CXCL-1 and 5 production in the lung restrained neutrophil recruitment. CXCL-1 and 5 instillation reconstituted lung neutrophil recruitment in BCG-infected IL17RA-/- mice. PMID:26871571

  5. IL-17RA in Non-Hematopoietic Cells Controls CXCL-1 and 5 Critical to Recruit Neutrophils to the Lung of Mycobacteria-Infected Mice during the Adaptive Immune Response.

    PubMed

    Lombard, Robin; Doz, Emilie; Carreras, Florence; Epardaud, Mathieu; Le Vern, Yves; Buzoni-Gatel, Dominique; Winter, Nathalie

    2016-01-01

    During chronic infection with Mycobacterium tuberculosis (Mtb), bacilli multiplication is constrained within lung granulomas until excessive inflammation destroys the lung. Neutrophils are recruited early and participate in granuloma formation, but excessive neutrophilia exacerbates the tuberculosis disease. Neutrophils thus appear as potential targets for therapeutic interventions, especially in patients for whom no antibiotic treatment is possible. Signals that regulate neutrophil recruitment to the lung during mycobacterial infection need to be better understood. We demonstrated here, in the mouse model, that neutrophils were recruited to the lung in two waves after intranasal infection with virulent Mtb or the live attenuated vaccine strain Bacillus Calmette Guérin (BCG). A first wave of neutrophils was swiftly recruited, followed by a subsequent adaptive wave that reached the lung together with IFN-γ- and IL-17A-producing T cells. Interestingly, the second neutrophil wave did not participate to mycobacteria control in the lung and established contacts with T cells. The adaptive wave was critically dependent on the expression of IL-17RA, the receptor for IL-17A, expressed in non-hematopoietic cells. In absence of this receptor, curtailed CXCL-1 and 5 production in the lung restrained neutrophil recruitment. CXCL-1 and 5 instillation reconstituted lung neutrophil recruitment in BCG-infected IL17RA-/- mice.

  6. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies

    PubMed Central

    Singh, Vimal K.; Saini, Abhishek; Chandra, Ramesh

    2017-01-01

    Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives. PMID:28785557

  7. The Fate of the Red Cells: Insights from Two Models of Severe Malarial Anemia

    DTIC Science & Technology

    2011-03-07

    approximately 1%. The reticulocyte levels in these animals elevated to approximately 35% 2 days after the anemic crisis and then returned to basal...cells are destroyed for every parasitized red cell22. A prospective study in a Karen community on the western border of Thailand showed that in anemia...activation in severe Plasmodium falciparum malaria. Clin.Immunol.Immunopathol. 1997;85:166-171. 136. Facer CA, Bray RS, Brown J. Direct Coombs

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Speckle suppression using a liquid-crystal cell

    NASA Astrophysics Data System (ADS)

    Andreev, A. L.; Kompanets, I. N.; Minchenko, M. V.; Pozhidaev, E. P.; Andreeva, T. B.

    2008-12-01

    A simple method for suppressing speckles in images produced by laser projectors is proposed. The coherence of the laser beam and, therefore, speckles can be destroyed when the beam passes through an electrooptical cell in which a special ferroelectric liquid crystal is used as a modulating medium. The effect is achieved due to the spatially inhomogeneous phase modulation of light when specially shaped bipolar electric pulses are applied to the cell.

  9. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID:24628444

  10. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    PubMed Central

    Bhuvaneswari, Ramaswamy; Gan, Yik Yuen; Soo, Khee Chee; Olivo, Malini

    2009-01-01

    Background Photodynamic therapy (PDT) is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR), on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors. PMID:19878607

  11. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents.

    PubMed Central

    Knebel, A; Rahmsdorf, H J; Ullrich, A; Herrlich, P

    1996-01-01

    Several non-physiologic agents such as radiation, oxidants and alkylating agents induce ligand-independent activation of numerous receptor tyrosine kinases (RTKs) and of protein tyrosine kinases at the inner side of the plasma membrane (e.g. Dévary et al., 1992; Sachsenmaier et al., 1994; Schieven et al., 1994; Coffer et al., 1995). Here we show additional evidence for the activation of epidermal growth factor receptor (EGFR), and we show activation of v-ErbB, ErbB2 and platelet-derived growth factor receptor. As a common principle of action the inducing agents such as UVC, UVB, UVA, hydrogen peroxide and iodoacetamide inhibit receptor tyrosine dephosphorylation in a thiol-sensitive and, with the exception of the SH-alkylating agent, reversible manner. EGFR dephosphorylation can also be modulated by these non-physiologic agents in isolated plasma membranes in the presence of Triton X-100. Further, substrate (EGFR) and phosphatase have been separated: a membrane preparation of cells that have been treated with epidermal growth factor (EGF) and whose dephosphorylating enzymes have been permanently destroyed by iodoacetamide can be mixed with a membrane preparation from untreated cells which re-establishes EGFR dephosphorylation. This dephosphorylation can be modulated in vitro by UV and thiol agents. We conclude that RTKs exhibit significant spontaneous protein kinase activity; several adverse agents target (an) essential SH-group(s) carried by (a) membrane-bound protein tyrosine phosphatase(s). Images PMID:8895576

  12. The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy

    PubMed Central

    Savino, Mauro; Annibali, Daniela; Carucci, Nicoletta; Favuzzi, Emilia; Cole, Michael D.; Evan, Gerard I.; Soucek, Laura; Nasi, Sergio

    2011-01-01

    Recent evidence points to Myc – a multifaceted bHLHZip transcription factor deregulated in the majority of human cancers – as a priority target for therapy. How to target Myc is less clear, given its involvement in a variety of key functions in healthy cells. Here we report on the action mechanism of the Myc interfering molecule termed Omomyc, which demonstrated astounding therapeutic efficacy in transgenic mouse cancer models in vivo. Omomyc action is different from the one that can be obtained by gene knockout or RNA interference, approaches designed to block all functions of a gene product. This molecule – instead – appears to cause an edge-specific perturbation that destroys some protein interactions of the Myc node and keeps others intact, with the result of reshaping the Myc transcriptome. Omomyc selectively targets Myc protein interactions: it binds c- and N-Myc, Max and Miz-1, but does not bind Mad or select HLH proteins. Specifically, it prevents Myc binding to promoter E-boxes and transactivation of target genes while retaining Miz-1 dependent binding to promoters and transrepression. This is accompanied by broad epigenetic changes such as decreased acetylation and increased methylation at H3 lysine 9. In the presence of Omomyc, the Myc interactome is channeled to repression and its activity appears to switch from a pro-oncogenic to a tumor suppressive one. Given the extraordinary therapeutic impact of Omomyc in animal models, these data suggest that successfully targeting Myc for cancer therapy might require a similar twofold action, in order to prevent Myc/Max binding to E-boxes and, at the same time, keep repressing genes that would be repressed by Myc. PMID:21811581

  13. Assessment of Optical Turbulence Profiles Derived From Probabilistic Climatology

    DTIC Science & Technology

    2007-03-01

    654.3.1 Transformed Data Results . . . . . . . . . . . . 664.3.2 Untransformed Data Results . . . . . . . . . . . 704.4 Application of ...the needed repower to destroy surface based enemy targets.Courtesy of Boeing Corporation. http://www.boeing.com/news/ fea-ture/aa2004/backgrounders...medium is cornerstone to successful employ-ment of these HELs. 1.3 Introduction to Optical Turbulence Lethal application of directed energy repower

  14. Environmental Assessment for Airborne Laser Debris Management Vandenberg AFB, California

    DTIC Science & Technology

    2008-07-01

    use, aesthetics, hazardous materials management, soils and geology, noise, cultural resources, and environmental justice. The resources analyzed in...more detail include: health and safety, hazardous waste management, water resources, air quality, and biological resources. Environmental Effects Under...either intact or destroyed target missiles could result in several potential hazards . Health and Safety. Based on the debris migration modeling and

  15. Amyotrophic Lateral Sclerosis

    MedlinePlus

    ... and twitching in your arms, shoulders and tongue Difficulty holding your head up or keeping good posture ALS often starts in the hands, feet or limbs, and then spreads to other parts of your body. As the disease advances and nerve cells are destroyed, your muscles progressively ...

  16. Radiation: Still Glowing in Medicine.

    ERIC Educational Resources Information Center

    Shaw, Stanley M.

    1990-01-01

    Recent advances in the development of radionuclide labeled monoclonal antibodies as radiopharmaceuticals should result in commercially available products in the near future. This presentation describes mechanisms by which radiation can destroy cells, factors influencing the potential for successful treatment, concepts to understanding the use of…

  17. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called singlemore » guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes might be destroyed. In conclusion, we believe that the continued rapid evolution of CRISPR/Cas technology will soon have a major, possibly revolutionary, impact on the field of virology. - Highlights: • Bacterial CRISPR/Cas systems can edit specific DNA sequences in mammalian cells. • CRISPR/Cas systems could eliminate latent or persistent DNA viruses in vivo. • CRISPR/Cas could also be used to screen for viral co-factors or restriction factors.« less

  18. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.

    PubMed

    Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K

    2018-06-15

    Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors

    NASA Astrophysics Data System (ADS)

    Urbán, Patricia; Estelrich, Joan; Adeva, Alberto; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-12-01

    Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with immunoliposomes encapsulating 4 nM chloroquine and bearing an estimated 250 BM1234 units. The nanovector prototype described here can be a valuable platform amenable to modification and improvement with the objective of designing a nanostructure adequate to enter the preclinical pipeline as a new antimalarial therapy.

  20. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time. PMID:16248789

  1. Deterrence of ballistic missile systems and their effects on today's air operations

    NASA Astrophysics Data System (ADS)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  2. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings.

    PubMed

    Wen, Kejia; Liang, Chanjuan; Wang, Lihong; Hu, Gang; Zhou, Qing

    2011-07-01

    Rare earth elements (REEs) have been accumulated in the agricultural environment. Acid rain is a serious environmental issue. In the present work, the effects of lanthanum ion (La(3+)) and acid rain on the growth, photosynthesis and chloroplast ultrastructure in soybean seedlings were investigated using the gas exchange measurements system, chlorophyll fluorometer, transmission electron microscopy and some biochemical techniques. It was found that although the growth and photosynthesis of soybean seedlings treated with the low concentration of La(3+) was improved, the growth and photosynthesis of soybean seedlings were obviously inhibited in the combined treatment with the low concentration of La(3+) and acid rain. At the same time, the chloroplast ultrastructure in the cell of soybean seedlings was destroyed. Under the combined treatment with the high concentration of La(3+) and acid rain, the chloroplast ultrastructure in the cell of soybean seedlings was seriously destroyed, and the growth and of photosynthesis were greatly decreased compared with those of the control, the single treatment with the high concentration of La(3+) and the single treatment with acid rain, respectively. The degree of decrease and destruction on chloroplast ultrastructure depended on the increases in the concentration of La(3+) and acid rain (H(+)). In conclusion, the combined pollution of La(3+) and acid rain obviously destroyed the chloroplast ultrastructure of cell and aggravated the harmful effect of the single La(3+) and acid rain on soybean seedlings. As a new combined pollutant, the harmful effect of REEs ions and acid rain on plant should be paid attention to. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta

    PubMed Central

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W. M. R.

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles. PMID:26554706

  4. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    PubMed

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W M R

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  5. [Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas].

    PubMed

    Anděl, Michal; Němcová, Vlasta; Pavlíková, Nela; Urbanová, Jana; Cecháková, Marie; Havlová, Andrea; Straková, Radka; Večeřová, Livia; Mandys, Václav; Kovář, Jan; Heneberg, Petr; Trnka, Jan; Polák, Jan

    2014-09-01

    Insulin secretion in patients with manifested diabetes mellitus tends to disappear months to decades after the diagnosis, which is a clear sign of a gradual loss of pancreatic islet beta-cells. In our sample of 30 type 2 diabetic patients, whose disease manifested between 30 and 45 years of age, about a half have retained or even increased insulin secretion 30 years later, while the other half exhibit a much diminished or lost insulin secretion. Factors that can damage or destroy beta-cells can be divided into the following groups: Metabolic factors: hyperglycemia and glucotoxicity, lipotoxicity, hypoxia, reactive oxygen species; Pharmacological factors: antimicrobial medication pentamidine, SSRI antidepressants; Factors related to impaired insulin secretion: MODY type diabetes; Environmental toxic factors: rat poison Vacor, streptozotocin, polychlorinated and polybrominated hydrocarbons; Disorders of the exocrine pancreas: tumor infiltration, fibrous infiltration, chronic pancreatitis, cystic fibrosis; Infections, inflammation, autoimmunity, viral factors: Coxsackie viruses, H1N1 influenza, enteroviruses. We are currently working on finding other factors leading to beta-cell damage, studying their effect on apoptosis and necrosis and looking for possible protective factors to prevent this damage. We our increasing knowledge about the mechanisms of beta-cell damage and destruction we come ever closer to suggest measures for their prevention. In this review we offer a brief and simplified summary of some of the findings related to this area.Key words: pancreatic islet beta-cells of Langerhans - factors damaging or destroying beta-cells - insulin secretion.

  6. Cryptotanshinone, a novel tumor angiogenesis inhibitor, destabilizes tumor necrosis factor-α mRNA via decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR.

    PubMed

    Zhu, Zhijie; Zhao, Yang; Li, Junbo; Tao, Li; Shi, Peiliang; Wei, Zhonghong; Sheng, Xiaobo; Shen, Dandan; Liu, Zhaoguo; Zhou, Liang; Tian, Chao; Fan, Fangtian; Shen, Cunsi; Zhu, Pingting; Wang, Aiyun; Chen, Wenxing; Zhao, Qingshun; Lu, Yin

    2016-10-01

    Cryptotanshinone (CT), one major lipophilic component isolated from Salvia miltiorrhiza Bunge, has shown to possess chemopreventive properties against various types of cancer cells. In this study, CT was shown to be a potent anti-angiogenic agent in zebrafish, and mouse models and could limit tumor growth by inhibiting tumor angiogenesis. We further found that CT could inhibit the proliferation, migration, angiogenic sprouting, and tube formation of HUVECs. In addition, we demonstrated that CT could lower the level of TNF-α due to the destabilization of TNF-α mRNA, which associated with regulating 3'-untranslated region (3'-UTR) of TNF-α and preventing the translocation of RNA binding protein, HuR, from the nucleus to the cytoplasm. Moreover, the underlying mechanism responsible for the regulation in angiogenesis by CT was partially related to the suppression of NF-κB, and STAT3 activity. Based on the abilities of CT in targeting tumor cells, inhibiting angiogenesis, and destroying tumor vasculature, CT is worthy of further investigation for preventive, and therapeutic purposes in cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  8. Fungicidal efficiency of electrolyzed oxidizing water on Candida albicans and its biochemical mechanism.

    PubMed

    Zeng, Xinping; Ye, Guoqing; Tang, Wenwei; Ouyang, Ting; Tian, Lin; Ni, Yaming; Li, Ping

    2011-07-01

    The fungicidal influencing factors of electrolyzed oxidizing water (EOW) on Candida albicans were investigated by suspension quantitative germicidal tests. Results showed that EOW possessed predominant fungicidal rate on C. albican, as high as consumately 100% after 0.5min duration of 65.5mg/L active available chlorine concentration (ACC). The fungicidal effect was promoted proportionally along with ACC but was inhibited by organic interferential bovine serum albumin (BSA). The fungicidal mechanism was also investigated at a biological molecular level by detecting series of biochemical indices. Fluorescent microscopy showed that almost all C. albicans cells were stained red in 1min, suggesting that cell membrane was one of EOW's action targets. Transmission electron microscopy (TEM) showed that EOW destroyed the cellular protective barriers and imposed some damage upon the nucleus area, which verified EOW's effects on microbial ultra-structures. EOW improved membrane permeabilities with the result that the leakages of cellular inclusions (K(+), proteins and DNA) and the conductivity increased rapidly. The dehydrogenase relative activities of C. albicans decreased by 44.0% after 10min, indicating that EOW also had a destructive effect on cellular dehydrogenase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Tissue Photolithography

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with chrome metallization) on which there is a thin layer of photoresist. The laser transfers the digital mask onto the photoresist by direct writing, with typical best resolution of 2 micrometers. The plate is then developed to remove the exposed photoresist, which leaves the exposed areas susceptible to chemical chrome etch. The etch removes the unprotected chrome. The rest of the photoresist is then removed, by either ultraviolet organic solvent or over-development. The remaining chrome pattern is quickly oxidized by atmospheric exposure (typically within 30 seconds). The ready chrome mask is now applied to the tissue slide and aligned manually, or using automatic software and pre-designed alignment marks. The slide plate sandwich is then exposed to UV to destroy the DNA of the unwanted cells. The slide and plate are separated and the slide is processed in a standard way to prepare for polymerase chain reaction (PCR) and potential identification of cancer sequences.

  10. Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside

    PubMed Central

    Saburi, Ehsan; Saburi, Amin; Ghanei, Mostafa

    2017-01-01

    Immunotherapy has been used for years in many types of cancer therapy. Recently, cancer immunotherapy has focused on mechanisms which can enhance the development of cell-mediated immunity. Anticancer medications are administered to inhibit immunosuppressive factors such as nagalase enzyme, which is produced by neoplastic cells and destroys macrophage activating factor (Gc-MAF). Anti-neoplastics medications can also enhance immune-cell activity against tumors. Such medications show great potential in cancer immunotherapy using natural human mechanisms against neoplasms. PMID:29201312

  11. Pelargonic acid as a herbicide in sweet bell peppers

    USDA-ARS?s Scientific Manuscript database

    Pelargonic acid, although not certified as organic, is naturally occurring in many plants, animals, and foods. It is also phytotoxic to plants as a contact herbicide, injuring and killing plants by destroying the cell membrane. Vegetable producers would benefit from additional herbicide options tha...

  12. A Parallel 2D Numerical Simulation of Tumor Cells Necrosis by Local Hyperthermia

    NASA Astrophysics Data System (ADS)

    Reis, R. F.; Loureiro, F. S.; Lobosco, M.

    2014-03-01

    Hyperthermia has been widely used in cancer treatment to destroy tumors. The main idea of the hyperthermia is to heat a specific region like a tumor so that above a threshold temperature the tumor cells are destroyed. This can be accomplished by many heat supply techniques and the use of magnetic nanoparticles that generate heat when an alternating magnetic field is applied has emerged as a promise technique. In the present paper, the Pennes bioheat transfer equation is adopted to model the thermal tumor ablation in the context of magnetic nanoparticles. Numerical simulations are carried out considering different injection sites for the nanoparticles in an attempt to achieve better hyperthermia conditions. Explicit finite difference method is employed to solve the equations. However, a large amount of computation is required for this purpose. Therefore, this work also presents an initial attempt to improve performance using OpenMP, a parallel programming API. Experimental results were quite encouraging: speedups around 35 were obtained on a 64-core machine.

  13. Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo1

    PubMed Central

    Kawahara, Masahiro; York, Ian A.; Hearn, Arron; Farfan, Diego; Rock, Kenneth L.

    2015-01-01

    Previous experiments using enzyme inhibitors and RNAi in cell lysates and cultured cells have suggested that tripeptidyl peptidase II (TPPII) plays a role in creating and destroying MHC class I-presented peptides. However, its precise contribution to these processes has been controversial. To elucidate the importance of TPPII in MHC class I antigen presentation, we analyzed TPPII-deficient gene-trapped mice and cell lines from these animals. In these mice, the expression level of TPPII was reduced by >90% compared to wild-type mice. Thymocytes from TPPII gene-trapped mice displayed more MHC class I on the cell surface, suggesting that TPPII normally limits antigen presentation by destroying peptides overall. TPPII gene-trapped mice responded as well as did wild-type mice to four epitopes from lymphocytic choriomeningitis virus (LCMV). The processing and presentation of peptide precursors with long N-terminal extensions in TPPII gene-trapped embryonic fibroblasts was modestly reduced, but in vivo immunization with recombinant lentiviral or vaccinia virus vectors revealed that such peptide precursors induced an equivalent CD8 T cell response in wild type and TPPII-deficient mice. These data indicate while TPPII contributes to the trimming of peptides with very long N-terminal extensions, TPPII is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several antigens in vivo. PMID:19841172

  14. Nuclear Deterrence in Cyber-ia: Challenges and Controversies

    DTIC Science & Technology

    2016-09-01

    acceptance of possible opponents. In short, the task of managing a nuclear crisis demands clear thinking and good information. But the employment of...economy, and social infrastructure. (Stuxnet was an exceptional, purpose-built destroyer of targeted nuclear facilities.) Failure of deterrence can...lead to historically unprecedented and socially catastrophic damage even in the case of a “limited” nuclear war by Cold War standards. 58 | Air

  15. Company profile: labceutics.

    PubMed

    Reis, Mark; Fe Paz, Maria; Olson, Tiffany

    2012-11-01

    Laboratories are often the forgotten partners in the delivery of personalized therapies to physicians worldwide, yet the research and quality of their service in delivering seamless test results to physicians can either enhance the value proposition of a targeted therapy or destroy it. The need for integrated highest quality laboratory networks in fragmented markets such as Europe and Asia are needed to truly leverage the power of companion diagnostics.

  16. Germany and NATO

    DTIC Science & Technology

    1987-01-01

    its force targets, with 12 Army divi- sions, 15 naval squadrons, 10 air force wings, and two Nike antiaircraft battalions. -7 Equipping the Bundeswehr...replacement of nuclear- armed Nike r-,issiles with conventional Patriot and Roland Air Defen;e Systems that have no offensive capability whatsoever...that would intercept and destroy attacking aircraft penetrating NATO’s air defense missile belts. By 1980, the Nike high-altitude component of the NATO

  17. Taking Guns to a Knife Fight: Effective Military Support to COIN

    DTIC Science & Technology

    2008-03-31

    generating superior “relative combat power” at decisive times and places in order to destroy, disrupt and dislocate the enemies they confront. Under...employ forces capable of striking targets of opportunity decisively with minimal collateral damage. When government counterinsurgency efforts are...The COIN force must seize such opportunities decisively . However, applying firepower with the precision needed to avoid non-combatant casualties is

  18. A dynamic vulnerability evaluation model to smart grid for the emergency response

    NASA Astrophysics Data System (ADS)

    Yu, Zhen; Wu, Xiaowei; Fang, Diange

    2018-01-01

    Smart grid shows more significant vulnerability to natural disasters and external destroy. According to the influence characteristics of important facilities suffered from typical kinds of natural disaster and external destroy, this paper built a vulnerability evaluation index system of important facilities in smart grid based on eight typical natural disasters, including three levels of static and dynamic indicators, totally forty indicators. Then a smart grid vulnerability evaluation method was proposed based on the index system, including determining the value range of each index, classifying the evaluation grade standard and giving the evaluation process and integrated index calculation rules. Using the proposed evaluation model, it can identify the most vulnerable parts of smart grid, and then help adopting targeted emergency response measures, developing emergency plans and increasing its capacity of disaster prevention and mitigation, which guarantee its safe and stable operation.

  19. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats.

    PubMed

    Gabr, Hala; Rateb, Moshira Abdelhakiim; El Sissy, Maha Hamdi; Ahmed Seddiek, Hanan; Ali Abdelhameed Gouda, Sarah

    2016-10-01

    Chemotherapy targets rapidly dividing tissues in the body. It destroys the progenitor cells in gonads resulting in premature ovarian failure. Studies have suggested that bone marrow-derived stem cells can generate oocytes in chemotherapy treated female rats after transplantation. The present study aimed to assess mechanism of homing, the action of injected BM-MSCs on ovarian function after ovarian damage. Seventy two female albino rats were randomly allocated into Control and CTX group, The Experimental protocol was lasted for 12 weeks during which serum FSH and E2 were monitored twice at the end of the 2nd week (12 rats) and 8th week (6 rats). Stem cells identification and homing were evaluated by Flowcytometry and tagging of stem cells with iron oxide particles respectively. Also, histopathological examination was done to evaluate both degeneration (6 rats at 4th week) and regeneration (6 rats at 12th week) of ovarian tissue together with assessment of the levels of TNF-α in ovarian homogenate and IGF-I as a growth factor in ovarian tissue. Partial improvement of E2 and FSH levels as well as ovarian architecture. Elevation of ovarian TNF- α levels and of IGF-I immunohistochemical expressions in ovarian tissues of BM-MSCs injected rats were noticed following homing of BM- MSCs in the ovarian stroma in both control and chemotherapy groups. Injected BM- MSCs can home in the stroma of the injured ovaries. IGF-I and TNF- α may have a role in the attraction of stem cells in vivo. © 2016 Wiley Periodicals, Inc.

  20. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white

    USDA-ARS?s Scientific Manuscript database

    Thermal pasteurization used by the egg industry for controlling vegetative cells of pathogens is ineffective for destroying endospores. There is a strong need in the agri-industries to develop effective intervention strategies to eliminate the possible bioterrorism threat from spore forming bacteria...

  1. Carbon nanotubes as cancer therapeutic carriers and mediators

    PubMed Central

    Son, Kuk Hui; Hong, Jeong Hee; Lee, Jin Woo

    2016-01-01

    Carbon nanotubes (CNTs) have received increasing attention in biomedical fields because of their unique structures and properties, including high aspect ratios, large surface areas, rich surface chemical functionalities, and size stability on the nanoscale. Particularly, they are attractive as carriers and mediators for cancer therapy. Through appropriate functionalization, CNTs have been used as nanocarriers for anticancer drugs including doxorubicin, camptothecin, carboplatin, cisplatin, paclitaxel, Pt(II), and Pt(IV), and genes including plasmid DNA, small-interfering RNA, oligonucleotides, and RNA/DNA aptamers. CNTs can also deliver proteins and immunotherapy components. Using combinations of light energy, they have also been applied as mediators for photothermal therapy and photodynamic therapy to directly destroy cancer cells without severely damaging normal tissue. If limitations such as a long-term cytotoxicity in the body, lack of size uniformity during the synthetic process, loading deviations for drug–CNT complexes, and release controllability at the target point are overcome, CNTs will become one of the strongest tools that are available for various other biomedical fields as well as for cancer therapy. PMID:27785021

  2. Inducing trauma into neuroblastoma cells and synthetic neural networks using optical tweezers

    NASA Astrophysics Data System (ADS)

    Schneider, Patrick William

    The laser tweezers have become a very useful tool in the fields of physics, chemistry, and biology. My intent is to use the laser tweezers to induce trauma into neuroblastoma cells, cells that resemble neural cells when treated with retinoic acid, to try to surmise what happens when neural cells and networks are disrupted or destroyed. The issues presented will deal with the obtaining, maintenance, and differentiation of the cells, as well as the inner operations of the laser tweezers themselves, and what kind of applications it has been applied to, as well as to my work in this project.

  3. Strategies for the identification of T cell-recognized tumor antigens in hematological malignancies for improved graft-versus-tumor responses after allogeneic blood and marrow transplantation.

    PubMed

    Zilberberg, Jenny; Feinman, Rena; Korngold, Robert

    2015-06-01

    Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient's cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient's existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic immunological studies for their ability to produce effective T cell responses. The first step towards this goal is the identification of targetable tumor antigens. In this review, we will highlight some of the technologies currently used to identify tumor antigens and anti-tumor T cell clones in hematological malignancies. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Social network fragmentation and community health.

    PubMed

    Chami, Goylette F; Ahnert, Sebastian E; Kabatereine, Narcis B; Tukahebwa, Edridah M

    2017-09-05

    Community health interventions often seek to intentionally destroy paths between individuals to prevent the spread of infectious diseases. Immunizing individuals through direct vaccination or the provision of health education prevents pathogen transmission and the propagation of misinformation concerning medical treatments. However, it remains an open question whether network-based strategies should be used in place of conventional field approaches to target individuals for medical treatment in low-income countries. We collected complete friendship and health advice networks in 17 rural villages of Mayuge District, Uganda. Here we show that acquaintance algorithms, i.e., selecting neighbors of randomly selected nodes, were systematically more efficient in fragmenting all networks than targeting well-established community roles, i.e., health workers, village government members, and schoolteachers. Additionally, community roles were not good proxy indicators of physical proximity to other households or connections to many sick people. We also show that acquaintance algorithms were effective in offsetting potential noncompliance with deworming treatments for 16,357 individuals during mass drug administration (MDA). Health advice networks were destroyed more easily than friendship networks. Only an average of 32% of nodes were removed from health advice networks to reduce the percentage of nodes at risk for refusing treatment in MDA to below 25%. Treatment compliance of at least 75% is needed in MDA to control human morbidity attributable to parasitic worms and progress toward elimination. Our findings point toward the potential use of network-based approaches as an alternative to role-based strategies for targeting individuals in rural health interventions.

  5. Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization.

    PubMed

    Batté, M; Mathieu, L; Laurent, P; Prévost, M

    2003-12-01

    Biofilms were grown in annular reactors supplied with drinking water enriched with 235 microg C/L. Changes in the biofilms with ageing, disinfection, and phosphate treatment were monitored using fluorescence in situ hybridization. EUB338, BET42a, GAM42a, and ALF1b probes were used to target most bacteria and the alpha (alpha), beta (beta), and gamma (gamma) subclasses of Proteobacteria, respectively. The stability of biofilm composition was checked after the onset of colonization between T = 42 days and T = 113 days. From 56.0% to 75.9% of the cells detected through total direct counts with DAPI (4'-6-diamidino-2-phenylindole) were also detected with the EUB338 probe, which targets the 16S rRNA of most bacteria. Among these cells, 16.9%-24.7% were targeted with the BET42a probe, 1.8%-18.3% with the ALF1b probe, and <2.5% with the GAM42a probe. Phosphate treatment induced a significant enhancement to the proportion of gamma-Proteobacteria (detected with the GAM42a probe), a group that contains many health-related bacteria. Disinfection with monochloramine for 1 month or chlorine for 3 days induced a reduction in the percentage of DAPI-stained cells that hybridized with the EUB338 probe (as expressed by percentages of EUB338 counts/DAPI) and with any of the ALF1b, BET42a, and GAM42a probes. The percentage of cells detected by any of the three probes (ALF1b+BET42a+GAM42a) tended to decrease, and reached in total less than 30% of the EUB338-hybridized cells. Disinfection with chlorine for 7 days induced a reverse shift; an increase in the percentage of EUB338 counts targeted by any of these three probes was noted, which reached up to 87%. However, it should be noted that the global bacterial densities (heterotrophic plate counts and total direct counts) tended to decrease over the duration of the experiment. Therefore, those bacteria that could be considered to resist 7 days of chlorination constituted a small part of the initial biofilm community, up to the point at which the other bacterial groups were destroyed by chlorination. The results suggest that there were variations in the kinetics of inactivation by disinfectant, depending on the bacterial populations involved.

  6. Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    DTIC Science & Technology

    2010-12-30

    collected after challenges were gamma- irradiated (6 Mrad) to destroy any infectious virus. Previous results indicated minimal damage to serum immuno...in Sf9 insect cells using Gateway baculovirus expression (Invitrogen). All ORF clones were fully sequenced. Recombinant proteins carried GST-tags and... insect cell expression, increased the likelihood that all products were correctly folded and functional. Successfully cloned, expressed and size

  7. A parametrical study of disinfection with hydrodynamic cavitation.

    PubMed

    Arrojo, S; Benito, Y; Tarifa, A Martínez

    2008-07-01

    The physical and chemical conditions generated by cavitation bubbles can be used to destroy microorganisms and disinfect wastewater. The effect of different cavitation chamber designs and diverse operational parameters on the inactivation rate of Escherichia coli have been studied and used to understand the mechanisms involved in cell disruption.

  8. Impact of acetic acid concentration, application volume, and adjuvants on weed control efficacy

    USDA-ARS?s Scientific Manuscript database

    Vinegar has been identified as a potential organic herbicide, yet additional information is needed to determine the influence of acetic acid concentration, application volume, and adjuvants on weed control. Acetic acid is a contact herbicide, injuring and killing plants by first destroying the cell ...

  9. What to Know about Brachytherapy (A Type of Internal Radiation Therapy)

    MedlinePlus

    ... understand what was going to happen.” About the treatment: ■ ■ Brachytherapy uses radiation to destroy cancer cells and shrink tumors. ■ ■ The ... may have. These differ depending on where the radiation is ... starting treatment. During treatment: ■ ■ Your doctor will place a small ...

  10. 9 CFR 50.6 - Identification of animals to be destroyed because of tuberculosis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... destroyed because of tuberculosis. 50.6 Section 50.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... DISEASES ANIMALS DESTROYED BECAUSE OF TUBERCULOSIS General Indemnity § 50.6 Identification of animals to be destroyed because of tuberculosis. (a) Livestock to be destroyed because of tuberculosis must be identified...

  11. 9 CFR 50.6 - Identification of animals to be destroyed because of tuberculosis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... destroyed because of tuberculosis. 50.6 Section 50.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... DISEASES ANIMALS DESTROYED BECAUSE OF TUBERCULOSIS General Indemnity § 50.6 Identification of animals to be destroyed because of tuberculosis. (a) Livestock to be destroyed because of tuberculosis must be identified...

  12. 9 CFR 50.6 - Identification of animals to be destroyed because of tuberculosis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... destroyed because of tuberculosis. 50.6 Section 50.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... DISEASES ANIMALS DESTROYED BECAUSE OF TUBERCULOSIS General Indemnity § 50.6 Identification of animals to be destroyed because of tuberculosis. (a) Livestock to be destroyed because of tuberculosis must be identified...

  13. 9 CFR 50.6 - Identification of animals to be destroyed because of tuberculosis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... destroyed because of tuberculosis. 50.6 Section 50.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... DISEASES ANIMALS DESTROYED BECAUSE OF TUBERCULOSIS General Indemnity § 50.6 Identification of animals to be destroyed because of tuberculosis. (a) Livestock to be destroyed because of tuberculosis must be identified...

  14. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma.

    PubMed

    Shen, Chan-Juan; Yang, Yu-Xiu; Han, Ethan Q; Cao, Na; Wang, Yun-Fei; Wang, Yi; Zhao, Ying-Ying; Zhao, Li-Ming; Cui, Jian; Gupta, Puja; Wong, Albert J; Han, Shuang-Yin

    2013-05-09

    Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells' ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment.

  15. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

    PubMed

    Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A

    2014-11-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.

  16. Strategies for the Identification of T Cell–Recognized Tumor Antigens in Hematological Malignancies for Improved Graft-versus-Tumor Responses after Allogeneic Blood and Marrow Transplantation

    PubMed Central

    Zilberberg, Jenny; Feinman, Rena; Korngold, Robert

    2015-01-01

    Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient’s cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient’s existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic immunological studies for their ability to produce effective T cell responses. The first step towards this goal is the identification of targetable tumor antigens. In this review, we will highlight some of the technologies currently used to identify tumor antigens and anti-tumor T cell clones in hematological malignancies. PMID:25459643

  17. High-resolution laser spectroscopy of hot Cs and Rb vapor confined in a thin optical cell

    NASA Astrophysics Data System (ADS)

    Todorov, P.; Krasteva, A.; Vartanyan, T.; Todorov, G.; Sarkisyan, D.; Cartaleva, S.

    2018-03-01

    We propose a novel use of an optical cell of micrometer thickness filled with Cs vapor in view of studying the collisions between two different alkali atoms of strongly different densities. We demonstrate narrow and good-contrast sub-Doppler resonances at the Rb D2 line for a mean-free-path of the Cs atoms comparable to the optical cell longitudinal dimension; the resonances are completely destroyed when the mean-free-path of the Cs atoms is more than two orders of magnitude shorter than the longitudinal dimension of the thin cell.

  18. Roles of proteolysis in regulation of GPCR function

    PubMed Central

    Cottrell, GS

    2013-01-01

    The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signalling in disease. PMID:23043558

  19. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction ― A Roadway To Multiple Therapeutic Opportunities

    PubMed Central

    Padmanabhan, Jagannath; Gonzalez, Anjelica L.

    2012-01-01

    Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized. PMID:22737047

  20. Divergent Kinetics of Proliferating T Cell Subsets in Simian Immunodeficiency Virus (SIV) Infection: SIV Eliminates the “First Responder” CD4+ T Cells in Primary Infection

    PubMed Central

    Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Lackner, Andrew A.

    2013-01-01

    Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4+ and CD8+ T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4+ and CD8+ T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4+ T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8+ T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4+ T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens. PMID:23596288

  1. Divergent kinetics of proliferating T cell subsets in simian immunodeficiency virus (SIV) infection: SIV eliminates the "first responder" CD4+ T cells in primary infection.

    PubMed

    Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Lackner, Andrew A; Veazey, Ronald S

    2013-06-01

    Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4(+) and CD8(+) T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4(+) and CD8(+) T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4(+) T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8(+) T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4(+) T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens.

  2. Real-time garbage collection for list processing

    NASA Technical Reports Server (NTRS)

    Shuler, R. L., Jr. (Inventor)

    1986-01-01

    In a list processing system, small reference counters are maintained in conjunction with memory cells for the purpose of identifying memory cells that become available for re-use. The counters are updated as references to the cells are created and destroyed, and when a counter of a cell is decremented to logical zero the cell is immediately returned to a list of free cells. In those cases where a counter must be incremented beyond the maximum value that can be represented in a small counter, the cell is restructured so that the additional reference count can be represented. The restructuring involves allocating an additional cell, distributing counter, tag, and pointer information among the two cells, and linking both cells appropriately into the existing list structure.

  3. Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology.

    PubMed

    Schmelas, Carolin; Grimm, Dirk

    2018-01-05

    The discovery that the bacterial CRISPR/Cas9 system can be translated into mammalian cells continues to have an unprecedented impact on the biomedical research community, as it largely facilitates efforts to experimentally interrogate or therapeutically modify the cellular genome. In particular, CRISPR promises the ability to correct disease-associated genetic defects, or to target and destroy invading foreign DNA, in a simple, efficient, and selective manner directly in affected human cells or tissues. Here, we highlight a set of exciting new strategies that aim at further increasing the therapeutic index of CRISPR technologies, by reducing the size of Cas9 expression cassettes and thus enhancing their compatibility with viral gene delivery vectors. Specifically, we discuss the concept of splitCas9 whereby the Cas9 holo-protein is segregated into two parts that are expressed individually and reunited in the cell by various means, including use of 1) the gRNA as a scaffold for Cas9 assembly; 2) the rapamycin-controlled FKBP/FRB system; 3) the light-regulated Magnet system; or 4) inteins. We describe how these avenues, despite pursuing the identical aim, differ in critical features comprising the extent of spatio-temporal control of CRISPR activity, and discuss additional improvements to their efficiency or specificity that should foster their clinical translation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma

    PubMed Central

    2013-01-01

    Background Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells’ ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. Methods A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. Results Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. Conclusions Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment. PMID:23656794

  5. Survival of plant tissue at super-low temperatures v. An electron microscope study of ice in cortical cells cooled rapidly.

    PubMed

    Sakai, A; Otsuka, K

    1967-12-01

    Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.

  6. Reduced in vitro T-cell responses induced by glutaraldehyde-modified allergen extracts are caused mainly by retarded internalization of dendritic cells

    PubMed Central

    Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim

    2012-01-01

    Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4+ T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4+ T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4+ T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. PMID:22348538

  7. Reduced in vitro T-cell responses induced by glutaraldehyde-modified allergen extracts are caused mainly by retarded internalization of dendritic cells.

    PubMed

    Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim

    2012-06-01

    Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4(+) T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4(+) T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4(+) T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  8. Naval Tactical Decision Aids

    DTIC Science & Technology

    1989-09-01

    station the output. But a maneuvering board solution is based on instantaneous course and speed changes . One woni end up on station without taking the...instance I observed, the maneuvering destroyer was darkened on an ink-black night off Korea and both she and the guide were changing course simultaneously...correlation, tracking, targeting, and delivery of ordnance on the enemy and the avoidance of the same by the enemy. It will take a change of

  9. Is the Department of State Accountability Review Board Process adequate

    DTIC Science & Technology

    2017-05-25

    of calculated terror campaigns, psychological conflict waged by nation or sub- group against nation, with an ever- broadening range of targets...the attack.11 However, the most politically significant attack occurred on November 4, when a large group of students and militants again stormed...the terrorist group Islamic Jihad carried out an attack against the US Embassy in Beirut, Lebanon. The bomb partially destroyed the U.S. Embassy and

  10. History of Laser Weapon Research

    DTIC Science & Technology

    2012-01-01

    designed to damage, disable, or destroy targets with little or no collateral damage. Airborne Laser (ABL) (CO2) Chemical Oxygen The ABL C-130H aircraft ...mirrors. Weapons systems based on lasers and “ray guns,” long a staple of science fiction, have captured the imagination of people everywhere. But...waves (millimeters to centimeters), with wavelengths 10,000 times longer than lasers. Diffraction of any electromagnetic radia- tion beam is based

  11. A Novel Approach to Managing Invasive Termite Species Using Genetically Engineered Bacteria

    DTIC Science & Technology

    2008-08-01

    the United States and in many other countries. These wood-destroying insects are a major concern for the Department of Defense because it has...would provide a highly specific approach to control insects in urban and agricultural environments without the use of conventional pesticides. Bait...target surface receptors of the protozoa. Termite specific bacteria were previously identified using culture independent 16S rRNA gene sequencing of

  12. Defense AT and L. Volume 41, Number 4

    DTIC Science & Technology

    2012-08-01

    From R&D, begun before World War II, came deck- piercing bombs that destroyed enemy ships at Midway; Naval gunfire that devastated beach defenses...detection means , working with intelligence agencies to target threat materials requiring detection. For example, 80 percent of IEDs use certain homemade...propellant may seem Defense AT&L: July–August 2012 14 insignificant, but to energetics experts it means launching missiles will be harder to detect, thus

  13. Understanding the Form, Function, and Logic of Clandestine Insurgent and Terrorist Networks: The First Step in Effective Counternetwork Operations

    DTIC Science & Technology

    2012-04-01

    are examples of this external non- professional genre . These groups function much like the U.S. Army Special Forces conducting unconventional warfare...security force vehicle the IED was built to destroy, and conducts the operation. If he films the event, then he drops off the film at a drop-off point...and notifies the cell leader that the operation is complete. The cell leader directs the media cell to pick up the film from the drop-off site, and

  14. Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulepati, Sabin; Heroux, Annie; Bailey, Scott

    In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of proteinmore » subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.« less

  15. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target

    PubMed Central

    Mulepati, Sabin; Héroux, Annie; Bailey, Scott

    2015-01-01

    In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kDa complex is called Cascade. Here we report the 3.03Å crystal structure of Cascade bound to a single-stranded DNA target. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This non-canonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding. PMID:25123481

  16. Replication ability of three highly protective Marek's disease vaccines: implications in lymphoid organ atrophy and protection.

    PubMed

    Gimeno, Isabel M; Witter, Richard L; Cortes, Aneg L; Reed, Willie M

    2011-12-01

    The present work is a chronological study of the pathogenesis of three attenuated serotype 1 Marek's disease (MD) virus strains (RM1, CVI988 and 648A80) that provide high protection against MD but have been attenuated by different procedures and induce different degrees of lymphoid organ atrophy. All studied strains replicated in the lymphoid organs (bursa,x thymus and spleen) and a peak of replication was detected at 6 days post inoculation (d.p.i.). Differences, however, were observed among vaccine strains. RM1 strain replicates more in all lymphoid organs compared with CVI988 and 648A80 strains. In addition, replication of RM1 in the thymus did not decrease after 6 d.p.i. but continued at high levels at 14 d.p.i. and until the thymus was completely destroyed. Lung infection occurred very early after infection with all of the three vaccines and the level of replication was similar to that found in the lymphoid organs. Infected cells were very large and appeared scattered in the lung parenchyma and in the parabronchial lining. The study of the target cells for the early infection in cell suspensions of blood and spleen showed that both non-adherent cell populations (enriched in lymphoid cells) and adherent cells (enriched in monocytes/macrophages) supported MD virus infection. Infection in adherent cells was especially high at very early stages of the infection (3 to 6 d.p.i.). Atrophy of lymphoid organs is a major drawback in the production of highly protective vaccines against MD. A better understanding of the mechanisms associated with lymphoid organ atrophy will aid in overcoming this problem.

  17. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer

    PubMed Central

    Wang, Xiaofeng; Liu, Xinyang; Huang, Mingzhu; Gan, Lu; Cheng, Yufan; Li, Jin

    2016-01-01

    Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy. PMID:27009837

  18. Hexokinase-2 bound to mitochondria: Cancer's stygian link to the “Warburg effect” and a pivotal target for effective therapy☆

    PubMed Central

    Mathupala, Saroj P.; Ko, Young H.; Pedersen, Peter L.

    2009-01-01

    The most common metabolic hallmark of malignant tumors, i.e., the “Warburg effect” is their propensity to metabolize glucose to lactic acid at a high rate even in the presence of oxygen. The pivotal player in this frequent cancer phenotype is mitochondrial-bound hexokinase [Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 1977;74(9):3735−9; Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 1981;256(16):8699−704]. Now, in clinics worldwide this prominent phenotype forms the basis of one of the most common detection systems for cancer, i.e., positron emission tomography (PET). Significantly, HK-2 is the major bound hexokinase isoform expressed in cancers that exhibit a “Warburg effect”. This includes most cancers that metastasize and kill their human host. By stationing itself on the outer mitochondrial membrane, HK-2 also helps immortalize cancer cells, escapes product inhibition and gains preferential access to newly synthesized ATP for phosphorylating glucose. The latter event traps this essential nutrient inside the tumor cells as glucose-6-P, some of which is funneled off to serve as carbon precursors to help promote the production of new cancer cells while much is converted to lactic acid that exits the cells. The resultant acidity likely wards off an immune response while preparing surrounding tissues for invasion. With the re-emergence and acceptance of both the “Warburg effect” as a prominent phenotype of most clinical cancers, and “metabolic targeting” as a rational therapeutic strategy, a number of laboratories are focusing on metabolite entry or exit steps. One remarkable success story [Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004;324(1):269−75] is the use of the small molecule 3-bromopyruvate (3-BP) that selectively enters and destroys the cells of large tumors in animals by targeting both HK-2 and the mitochondrial ATP synthasome. This leads to very rapid ATP depletion and tumor destruction without harm to the animals. This review focuses on the multiple roles played by HK-2 in cancer and its potential as a metabolic target for complete cancer destruction. PMID:19101634

  19. Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones.

    PubMed

    Chen, M; Zhai, L; Christensen, S B; Theander, T G; Kharazmi, A

    2001-07-01

    Our previous studies have shown that chalcones exhibit potent antileishmanial and antimalarial activities in vitro and in vivo. Preliminary studies showed that these compounds destroyed the ultrastructure of Leishmania parasite mitochondria and inhibited the respiration and the activity of mitochondrial dehydrogenases of Leishmania parasites. The present study was designed to further investigate the mechanism of action of chalcones, focusing on the parasite respiratory chain. The data show that licochalcone A inhibited the activity of fumarate reductase (FRD) in the permeabilized Leishmania major promastigote and in the parasite mitochondria, and it also inhibited solubilized FRD and a purified FRD from L. donovani. Two other chalcones, 2,4-dimethoxy-4'-allyloxychalcone (24m4ac) and 2,4-dimethoxy-4'-butoxychalcone (24mbc), also exhibited inhibitory effects on the activity of solubilized FRD in L. major promastigotes. Although licochalcone A inhibited the activities of succinate dehydrogenase (SDH), NADH dehydrogenase (NDH), and succinate- and NADH-cytochrome c reductases in the parasite mitochondria, the 50% inhibitory concentrations (IC(50)) of licochalcone A for these enzymes were at least 20 times higher than that for FRD. The IC(50) of licochalcone A for SDH and NDH in human peripheral blood mononuclear cells were at least 70 times higher than that for FRD. These findings indicate that FRD, one of the enzymes of the parasite respiratory chain, might be the specific target for the chalcones tested. Since FRD exists in the Leishmania parasite and does not exist in mammalian cells, it could be an excellent target for antiprotozoal drugs.

  20. Inhibition of Fumarate Reductase in Leishmania major and L. donovani by Chalcones

    PubMed Central

    Chen, Ming; Zhai, Lin; Christensen, Søren Brøgger; Theander, Thor G.; Kharazmi, Arsalan

    2001-01-01

    Our previous studies have shown that chalcones exhibit potent antileishmanial and antimalarial activities in vitro and in vivo. Preliminary studies showed that these compounds destroyed the ultrastructure of Leishmania parasite mitochondria and inhibited the respiration and the activity of mitochondrial dehydrogenases of Leishmania parasites. The present study was designed to further investigate the mechanism of action of chalcones, focusing on the parasite respiratory chain. The data show that licochalcone A inhibited the activity of fumarate reductase (FRD) in the permeabilized Leishmania major promastigote and in the parasite mitochondria, and it also inhibited solubilized FRD and a purified FRD from L. donovani. Two other chalcones, 2,4-dimethoxy-4′-allyloxychalcone (24m4ac) and 2,4-dimethoxy-4′-butoxychalcone (24mbc), also exhibited inhibitory effects on the activity of solubilized FRD in L. major promastigotes. Although licochalcone A inhibited the activities of succinate dehydrogenase (SDH), NADH dehydrogenase (NDH), and succinate- and NADH-cytochrome c reductases in the parasite mitochondria, the 50% inhibitory concentrations (IC50) of licochalcone A for these enzymes were at least 20 times higher than that for FRD. The IC50 of licochalcone A for SDH and NDH in human peripheral blood mononuclear cells were at least 70 times higher than that for FRD. These findings indicate that FRD, one of the enzymes of the parasite respiratory chain, might be the specific target for the chalcones tested. Since FRD exists in the Leishmania parasite and does not exist in mammalian cells, it could be an excellent target for antiprotozoal drugs. PMID:11408218

  1. Structural basis of lentiviral subversion of a cellular protein degradation pathway

    NASA Astrophysics Data System (ADS)

    Schwefel, David; Groom, Harriet C. T.; Boucherit, Virginie C.; Christodoulou, Evangelos; Walker, Philip A.; Stoye, Jonathan P.; Bishop, Kate N.; Taylor, Ian A.

    2014-01-01

    Lentiviruses contain accessory genes that have evolved to counteract the effects of host cellular defence proteins that inhibit productive infection. One such restriction factor, SAMHD1, inhibits human immunodeficiency virus (HIV)-1 infection of myeloid-lineage cells as well as resting CD4+ T cells by reducing the cellular deoxynucleoside 5'-triphosphate (dNTP) concentration to a level at which the viral reverse transcriptase cannot function. In other lentiviruses, including HIV-2 and related simian immunodeficiency viruses (SIVs), SAMHD1 restriction is overcome by the action of viral accessory protein x (Vpx) or the related viral protein r (Vpr) that target and recruit SAMHD1 for proteasomal degradation. The molecular mechanism by which these viral proteins are able to usurp the host cell's ubiquitination machinery to destroy the cell's protection against these viruses has not been defined. Here we present the crystal structure of a ternary complex of Vpx with the human E3 ligase substrate adaptor DCAF1 and the carboxy-terminal region of human SAMHD1. Vpx is made up of a three-helical bundle stabilized by a zinc finger motif, and wraps tightly around the disc-shaped DCAF1 molecule to present a new molecular surface. This adapted surface is then able to recruit SAMHD1 via its C terminus, making it a competent substrate for the E3 ligase to mark for proteasomal degradation. The structure reported here provides a molecular description of how a lentiviral accessory protein is able to subvert the cell's normal protein degradation pathway to inactivate the cellular viral defence system.

  2. Immunoelectrophoretic study of cell surface antigens from different Streptococcus mutans serotypes and Streptococcus sanguis.

    PubMed

    Ogier, J A; Klein, J P; Niddam, R; Frank, R M

    1985-06-01

    Antigens prepared from culture supernatants or whole cells of several cariogenic strains were examined by immunoelectrophoresis for their crossed antigenicity, with reference to Streptococcus mutans OMZ175, serotype f. Crossed immunoelectrophoresis revealed a crossreactivity between soluble extracellular and wall associated antigens of six strains of Streptococcus mutans and one strain of Streptococcus sanguis. Protease destroyed the immunoreactivity of crossreactive antigens. One of them was shown to be localized on the bacterial surface.

  3. 9 CFR 51.28 - Moving goats, sheep, and horses to be destroyed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Sheep, Goats, and Horses § 51.28 Moving goats, sheep, and horses to be destroyed. Goats, sheep, and horses to be destroyed because of brucellosis must be...

  4. 9 CFR 51.28 - Moving goats, sheep, and horses to be destroyed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Sheep, Goats, and Horses § 51.28 Moving goats, sheep, and horses to be destroyed. Goats, sheep, and horses to be destroyed because of brucellosis must be...

  5. 9 CFR 51.28 - Moving goats, sheep, and horses to be destroyed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Sheep, Goats, and Horses § 51.28 Moving goats, sheep, and horses to be destroyed. Goats, sheep, and horses to be destroyed because of brucellosis must be...

  6. Bacterial killing in macrophages and amoeba: do they all use a brass dagger?

    PubMed

    German, Nadezhda; Doyscher, Dominik; Rensing, Christopher

    2013-10-01

    Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.

  7. The next target of bioterrorism: your food.

    PubMed Central

    Pellerin, C

    2000-01-01

    One of the many forms that biological warfare may take is the targeting of major food crops. In a poor country where millions of citizens depend on staple crops such as rice, an act of bioterrorism that destroys the crop would create a famine, resulting not only in malnutrition and starvation but also in reduced immune resistance to a range of common illnesses. To reduce the potential of deliberate introductions of crop pathogens as acts of terrorism, researchers must be able to "fingerprint" pathogens at the molecular level and discriminate between naturally occurring and deliberately introduced outbreaks. Several domestic and international surveillance, tracking, and reporting efforts are under way. PMID:10706540

  8. Laser immunotherapy for metastatic pancreatic cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan

    2017-02-01

    Pancreatic cancer is an extremely malignant disease with high mortality rate. Currently there is no effective therapeutic strategy for highly metastatic pancreatic cancers. Laser immunotherapy (LIT) is a combination therapeutic approach of targeted phototherapy and immunotherapy, which could destroy treated primary tumors with elimination of untreated metastases. LIT affords a remarkable efficacy in suppressing tumor growth in pancreatic tumors in mice, and results in complete tumor regression in many cases. LIT could synergize targeted phototherapy and immunological effects of immunoadjuvant, which represent a promising treatment modality to induce systemic antitumor response through a local intervention, paving the way for the treatment of highly metastatic pancreatic cancers.

  9. 76 FR 29245 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... United States. When diabetes strikes during childhood, it is routinely assumed to be type 1, or juvenile-onset, diabetes. Type 1 diabetes (T1D) develops when the body's immune system destroys pancreatic cells... of both type 1 and type 2 diabetes in youth have been among the most concerning aspects of the...

  10. Nerve fibres are required to evoke a contact sensitivity response in mice

    PubMed Central

    Beresford, Lorna; Orange, Oliver; Bell, Eric B; Miyan, Jaleel A

    2004-01-01

    Previous work has indicated that the dermis and epidermis of skin contains abundant nerve fibres closely associated with Langerhans' cells. We have investigated whether these nerve endings are necessary for inducing and evoking a contact sensitivity (CS) response. Topical application of a general or a peptide (calcitonin gene-related peptide and substance P)-specific neurotoxin was employed to destroy the nerve fibres at skin sites subsequently used to induce or evoke the CS response. Elimination of nerve fibres abolished both induction and effector stages of the specific CS response. Denervation did not destroy the local Langerhans' cells, which were observed in increased numbers, or prevent them from migrating to lymph nodes. The local CS response was also abolished by systemic deletion of capsaicin-sensitive nerve fibres, suggesting that the loss of response was not non-specific but associated with the loss of specific nerve fibres. The results indicate that peptidergic nerve fibres are required to elicit a CS response and may be vital to the normal function of the immune system. PMID:14678206

  11. Involvement of the immune response in the cure of metastatic murine CT-26 colon carcinoma by low electric field-enhanced chemotherapy.

    PubMed

    Plotnikov, Alexander; Tichler, Thomas; Korenstein, Rafi; Keisari, Yona

    2005-12-10

    Low electric field cancer treatment-enhanced chemotherapy (LEFCT-EC) is a new treatment modality that combines chemotherapeutic agents and low electric field stimulation. LEFCT-EC was found to destroy malignant mouse tumors and cause massive death of tumor cells. This may enable the immune system cells to efficiently recognize and eliminate tumor cells at the primary tumor site and at metastatic foci. Mice with 15 mm diameter intracutaneous colon carcinomas (CT-26) were injected with BCNU (35 mg/kg), and 2 min later the tumors were exposed to low electric fields (intensity 40 V/cm, pulse duration 180 micros, frequency 500 Hz) for 12 min (LEFCT-EC). We found that treatment with LEFCT-EC achieved complete cure of 93% of the animals. In comparison, electric fields alone (13% cure), chemotherapy alone (0%), surgery (15%) or a combination of surgery and bis-chloroethyl-nitrosurea, carmustine (BCNU; 84%) treatments resulted in lower cure rates. After treatment and cure with LEFCT-EC, 50% of the cured mice developed resistance to a tumor challenge (surgery + BCNU only 15%). Furthermore, splenocytes from cured animals protected naive animals from a tumorigenic dose of tumor cells. Separation of spleen cells into lymphocyte subpopulations indicated a major role for CD4 and CD8 T cells in this protection. FACS analysis revealed restoration of normal splenocyte subpopulation proportions impaired by cytotoxic chemotherapy. Our results suggest that LEFCT-EC can directly destroy primary tumors and facilitate the destruction of metastatic disease by enforcement of antitumor immune responses. Copyright 2005 Wiley-Liss, Inc

  12. Watching the action unfold: New cryo-EM images capture CRISPR’s interaction with target DNA | Center for Cancer Research

    Cancer.gov

    Using the Nobel-prize winning technique of cryo-EM, researchers led by CCR Senior Investigator Sriram Subramaniam, Ph.D., have captured a series of highly detailed images of a protein complex belonging to the CRISPR system that can be used by bacteria to recognize and destroy foreign DNA. The images reveal the molecule’s form before and after its interaction with DNA and help

  13. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa.

    PubMed

    Yang, Ke; Chen, Qiuliang; Zhang, Danyang; Zhang, Huajun; Lei, Xueqian; Chen, Zhangran; Li, Yi; Hong, Yaling; Ma, Xiaohong; Zheng, Wei; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-08-10

    In recent years, Microcystis aeruginosa blooms have occurred throughout the world, causing huge economic losses and destroying aquatic ecosystems. It is necessary to develop effective and ecofriendly methods to control M. aeruginosa blooms. Here, we report a high algicidal activity of prodigiosin (PG) against M. aeruginosa as well as the algicidal mechanism. PG showed high algicidal activity against M. aeruginosa, with a 50% lethal dose (LD 50 ) of 5.87 μg/mL in 72 h. A combination of methods, including propidium iodide and Annexin V-fluorescein staining assays and light and electron microscopy indicated the existence of two modes of cell death with features similar to those in eukaryotic programmed cell death: necrotic-like and apoptotic-like. Biochemical and physiological analyses showed that PG generates reactive oxygen species (ROS), which induce lipid peroxidation, damage the membrane system and destroy the function of the photosystem. A proteomics analysis revealed that many proteins were differentially expressed in response to PG stress and that most of these proteins were involved in important metabolic processes, which may trigger necrotic-like or apoptotic-like cell death. The present study sheds light on the multiple toxicity mechanisms of PG on M. aeruginosa and its potential for controlling the occurrence of M. aeruginosa blooms in lakes.

  14. From centriole biogenesis to cellular function: centrioles are essential for cell division at critical developmental stages.

    PubMed

    Rodrigues-Martins, Ana; Riparbelli, Maria; Callaini, Giuliano; Glover, David M; Bettencourt-Dias, Monica

    2008-01-01

    Centrioles are essential for the formation of cilia, flagella and centrosome organization. Abnormalities in centrosome structure and number in many cancers can be associated with aberrant cell division and genomic instability.(1,2) Canonical centriole duplication occurs in coordination with the cell division cycle, such that a single new "daughter" centriole arises next to each "mother" centriole. If destroyed, or eliminated during development, centrioles can form de novo.(3-5) Here we discuss our recent data demonstrating a molecular pathway that operates in both de novo and canonical centriole biogenesis involving SAK/PLK4, SAS-6 and SAS-4.(6) We showed that centriole biogenesis is a self-assembly process locally triggered by high SAK/PLK4 activity that may or not be associated with an existing centriole. SAS-6 acts downstream of SAK/PLK4 to organize nine precentriolar units, which we call here enatosomes, fitting together laterally and longitudinally, specifying a tube-like centriole precursor.(7,8) The identification of mutants impaired in centriole biogenesis has permitted the study of the physiological consequences of their absence in the whole organism. In Drosophila, centrioles are not necessary for somatic cell divisions.(9,10) However, we show here that mitotic abnormalities arise in syncytial SAK/PLK4-derived mutant embryos resulting in lethality. Moreover male meiosis fails in both SAK/PLK4 and DSAS-4 mutant spermatids that have no centrioles. These results show diversity in the need for centrioles in cell division. This suggests that tissue specific constraints selected for different contributions of centrosome-independent and dependent mechanisms in spindle function. This heterogeneity should be taken into account both in reaching an understanding of spindle function and when designing drugs that target cell division.

  15. Tailored ß-Cyclodextrin Blocks the Translocation Pores of Binary Exotoxins from C. Botulinum and C. Perfringens and Protects Cells from Intoxication

    PubMed Central

    Nestorovich, Ekaterina M.; Karginov, Vladimir A.; Popoff, Michel R.; Bezrukov, Sergey M.; Barth, Holger

    2011-01-01

    Background Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components. Methodology/Principal Findings Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component. Conclusions/Significance The described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria. PMID:21887348

  16. The pathogenesis of bornaviral diseases in mammals.

    PubMed

    Tizard, Ian; Ball, Judith; Stoica, George; Payne, Susan

    2016-12-01

    Natural bornavirus infections and their resulting diseases are largely restricted to horses and sheep in Central Europe. The disease also occurs naturally in cats, and can be induced experimentally in laboratory rodents and numerous other mammals. Borna disease virus-1 (BoDV-1), the cause of most cases of mammalian Borna disease, is a negative-stranded RNA virus that replicates within the nucleus of target cells. It causes severe, often lethal, encephalitis in susceptible species. Recent events, especially the discovery of numerous new species of bornaviruses in birds and a report of an acute, lethal bornaviral encephalitis in humans, apparently acquired from squirrels, have revived interest in this remarkable family of viruses. The clinical manifestations of the bornaviral diseases are highly variable. Thus, in addition to acute lethal encephalitis, they can cause persistent neurologic disease associated with diverse behavioral changes. They also cause a severe retinitis resulting in blindness. In this review, we discuss both the pathological lesions observed in mammalian bornaviral disease and the complex pathogenesis of the neurologic disease. Thus infected neurons may be destroyed by T-cell-mediated cytotoxicity. They may die as a result of excessive inflammatory cytokine release from microglia. They may also die as a result of a 'glutaminergic storm' due to a failure of infected astrocytes to regulate brain glutamate levels.

  17. Novel colchicine-site binders with a cyclohexanedione scaffold identified through a ligand-based virtual screening approach.

    PubMed

    Canela, María-Dolores; Pérez-Pérez, María-Jesús; Noppen, Sam; Sáez-Calvo, Gonzalo; Díaz, J Fernando; Camarasa, María-José; Liekens, Sandra; Priego, Eva-María

    2014-05-22

    Vascular disrupting agents (VDAs) constitute an innovative anticancer therapy that targets the tumor endothelium, leading to tumor necrosis. Our approach for the identification of new VDAs has relied on a ligand 3-D shape similarity virtual screening (VS) approach using the ROCS program as the VS tool and as query colchicine and TN-16, which both bind the α,β-tubulin dimer. One of the hits identified, using TN-16 as query, has been explored by the synthesis of its structural analogues, leading to 2-(1-((2-methoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (compound 16c) with an IC50 = 0.09 ± 0.01 μM in HMEC-1 and BAEC, being 100-fold more potent than the initial hit. Compound 16c caused cell cycle arrest in the G2/M phase and interacted with the colchicine-binding site in tubulin, as confirmed by a competition assay with N,N'-ethylenebis(iodoacetamide) and by fluorescence spectroscopy. Moreover, 16c destroyed an established endothelial tubular network at 1 μM and inhibited the migration and invasion of human breast carcinoma cells at 0.4 μM. In conclusion, our approach has led to a new chemotype of promising antiproliferative compounds with antimitotic and potential VDA properties.

  18. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases

    PubMed Central

    Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.

    2014-01-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355

  19. Holoprosencephaly and Pure Red Cell Aplasia in a Feline Leukaemia Virus-Positive Kitten.

    PubMed

    Southard, T L; Rodriguez-Ramos Fernandez, J; Priest, H; Stokol, T

    2016-01-01

    A 9-month-old, female, domestic longhair cat with severe anaemia tested positive for feline leukaemia virus (FeLV) and was humanely destroyed and submitted for necropsy examination. Gross findings included a non-divided rostral telencephalon, consistent with semilobar holoprosencephaly. Histological examination of the bone marrow revealed an almost complete absence of erythroid precursor cells, consistent with pure red cell aplasia, and mild to moderate myelofibrosis. This case demonstrates a very unusual central nervous system defect, as well as an atypical presentation of pure red cell aplasia, in a FeLV-positive kitten. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Minimally invasive ultrasound thermal therapy with MR thermal monitoring and guidance

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Stafford, R. Jason; Price, Roger E.; Nau, William H.; Tyreus, Per Daniel; Rivera, Belinda; Schomer, Donald; Olsson, Lars; Hazle, John D.

    2001-06-01

    In this study both transurethral and interstitial ultrasound thermal therapy were applied to thermally coagulate targeted portions of the canine prostate or brain and implanted TVT tumors while using MRI-based thermal mapping techniques to monitor the therapy. MRI was also used for target definition, positioning of the applicator, and evaluation of target viability post-therapy. The complex phase-difference mapping technique using an iGE-EPI sequence with lipid suppression was used for determining temperature elevations within the in vivo prostate or brain and surrounding structures. Calculated temperature distributions, thermal dose exposures, T2-wieghted & T1-contrast enhanced images, gross inspection, and histology of sectioned prostates and brains were in good agreement with each other in defining destroyed tissue zones. Interstitial and transurethral ultrasound applicators produce directed zones of thermal coagulation within targeted tissue and implanted tumor, which can be accurately monitored and evaluated by MRI.

  1. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOEpatents

    Balazs, G. Bryan; Lewis, Patricia R.

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

  2. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOEpatents

    Balazs, G.B.; Lewis, P.R.

    1999-07-06

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

  3. Alcohol, other Drugs, and Obesity: Plan-Of-The-Day-Notes, Volume 2

    DTIC Science & Technology

    1993-08-11

    concentrations.’ In recent studies done on rats, it was shown that alcohol increased cancer spread by suppressing the ability of "natural killer...34 cells to destroy cancer cells traveling in the blood- stream. The findings are particularly important for women because previous studies suggest women...who drink as little as one to two drinks a day have an incidence of breast cancer anywhere from 10% to 100% higher than nondrinkers. 2 According to the

  4. Immunophototherapy for the treatment of AIDS and AIDS-related infections

    NASA Astrophysics Data System (ADS)

    Schlager, Kenneth J.

    1992-06-01

    Immunophototherapy (IPT) is an experimental method of medical treatment that seeks to provide for the selective destruction of diseased cells and microbes such as human immunodeficiency virus (HIV)-T4 cells and the rapid elimination of their toxic by-products from the human body. Photosensitive monoclonal or polyclonal antibody fragments, which are specific to the diseased cell or microbe, will be used to treat acquired immunodeficiency syndrome (AIDS) and related infections. These antibody fragments are tagged with photosensitive compounds and metal colloids and then intravenously injected into the patient. The tagged antibodies quickly and selectively bind to the diseased cells or microbes in the blood stream and affected organs. These cells or microbes are then selectively destroyed by irradiation of these complexes with light of the proper wavelength. This light activates the photosensitive material which then creates singlet oxygen that destroys the microbe or cell. Toxic products of lysis are quickly discharged from the body by activation of the reticuloendothelial system. IPT has been demonstrated by Biotronics to be very effective in the in vitro selective destruction of specified cell types. In a proposed AIDS-treatment research program, IPT will be first demonstrated in vitro for a set of infected blood samples using commercially-available antibodies labeled with appropriate photosensitizers. Efficacy will be determined by a p24 antigen immunodiagnostic test that will indicate the % inhibition in comparison to controls and samples treated with the drug AZT. Subcontracted animal efficacy studies will use a SCID-hu mouse model and PCR/DNA-RNA for endpoint analysis. Toxicity studies of animal (rat) models will be based on post-treatment investigations of lymph nodes, spleen, liver and other organs.

  5. Polymer Formulations for Cartilage Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis ofmore » aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.« less

  6. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles

    PubMed Central

    Orza, Anamaria; Soriţău, Olga; Tomuleasa, Ciprian; Olenic, Liliana; Florea, Adrian; Pana, Ovidiu; Bratu, Ioan; Pall, Emoke; Florian, Stefan; Casciano, Dan; Biris, Alexandru S

    2013-01-01

    The low rate of survival for patients diagnosed with glioblastoma may be attributed to the existence of a subpopulation of cancer stem cells. These stem cells have certain properties that enable them to resist chemotherapeutic agents and ionizing radiation. Herein, we show that temozolomide-loaded gold nanostructures are efficient in reducing chemoresistance and destroy 82.7% of cancer stem cells compared with a 42% destruction rate using temozolomide alone. Measurements of in vitro cytotoxicity and apoptosis indicate that combination with gold facilitated the ability of temozolomide, an alkylating drug, to alter the resistance of these cancer stem cells, suggesting a new chemotherapy strategy for patients diagnosed with inoperable recurrent malignant glioma. PMID:23467447

  7. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  8. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  9. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  10. Vision, Education and Experimentation: Marine Corps Organizational Behavior and Innovation during the Interwar Period

    DTIC Science & Technology

    2013-06-13

    Hepburn Attack Force, commanded by Rear Admiral A. W. Johnson. The Navy force included the New York, Arkansas, Wyoming, Atares , Destroyer Squadron...force included the New York, Arkansas, Wyoming, Atares , Destroyer Squadron Ten (8 destroyers), Cruiser Division Eight, Destroyer Division Four, five

  11. Studies on the cellular localization of spinal cord substance P receptors.

    PubMed

    Helke, C J; Charlton, C G; Wiley, R G

    1986-10-01

    Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal root ganglia and increased the density of substance P binding in the dorsal horn. Capsaicin, which destroys small diameter primary sensory neurons, similarly increased the substance P binding in the dorsal horn. These studies show that the cellular localization of substance P binding sites can be determined by analysis of changes in substance P binding to discrete regions of spinal cord after selective lesions of specific groups of neurons. The data show the presence of substance P binding sites on preganglionic sympathetic neurons in the intermediolateral cell column and on somatic motor neurons in the ventral horn, including the phrenic motor nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Exploring Hydrogen Fuel Cell Technology

    ERIC Educational Resources Information Center

    Brus, David; Hotek, Doug

    2010-01-01

    One of the most significant technological issues of the 21st Century is finding a way to fulfill the energy demands without destroying the environment through global warming and climate change. Worldwide human population is on the rise, and with it, the demand for more energy in pursuit of a higher quality of life. In the meantime, as people use…

  13. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80a lysin

    USDA-ARS?s Scientific Manuscript database

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phage phi11 (LysPhi11) and phi80a (LysPhi80a) can lyse (destroy) biofilms and cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The obj...

  14. Neoplasia in Three Aye-Ayes (Daubentonia madagascariensis).

    PubMed

    Rodriguez Barbon, A; Cowen, R; Knott, C; Hughes, K; Allinson, K; Williams, C V; Routh, A

    2018-02-01

    Tumours diagnosed in three aged captive aye-ayes (Daubentonia madagascariensis), held in two different institutions, are described. A cerebral glioblastoma was diagnosed based on histological and immunohistochemical findings in one of the animals following initial presentation with bilateral mydriasis, absent pupillary reflex, head tilt and ataxia. A second animal was humanely destroyed due to impaired locomotion associated with spondylosis and a post-mortem diagnosis of cholangiocarcinoma was made based on histology with further confirmation with immunohistochemical labelling for cytokeratin 7. A third aye-aye suffering from dental disease was diagnosed with an oral squamous cell carcinoma following an excisional biopsy from a non-healing wound in the lip. Due to progression of the neoplasia the animal was humanely destroyed and post-mortem examination revealed the presence on an additional unilateral phaeochromocytoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Lasers, the Price of Admission in 2045

    DTIC Science & Technology

    2015-04-01

    weapon research. High power lasers have commercial applications in welding metal, cutting steel , drilling through rocks, and fiber communications.92...demonstrated against three representative targets. First, the beam cut through a 15mm steel girder at 1 km distance. Second, the beam shot down a UAV at a...range of 2 km. Third, an 82mm steel ball was destroyed in a simulated mortar attack.161 The German company also claims that weather was a AU/ACSC

  16. Time Sensitive Termination: Prompt Global Strike in the War on Terror

    DTIC Science & Technology

    2009-10-25

    field both near and long term solutions to the problem of rapidly destroying fleeting targets halfway around the world when forces are not forward...endeavors to field the near term capability not later than 2015, with an initial fielding objective potentially as early as 2012. 5 The program will...patrolling ballistic missile submarines, the CSM took center stage in the effort to field a near -term solution to the problem. The CSM weapon system

  17. Joint Force Quarterly: The Greater Middle East. Number 24. Spring 2000.

    DTIC Science & Technology

    2000-01-01

    plans would manifest. In November 1947 the chiefs approved war Was the bomb delivered by strategic bombers in a plan Broiler . Like its predecessor it...was to treat strategic airpower be met, Broiler reflected the reduced resources and the bomb first and foremost as a means to available in 1948...destroy the industrial base-an operational in- The Broiler target lists still emphasized in- strument of war, not a deterrent weapon of terror. dustrial

  18. Mitigating the Shortage of Special Operations Aviation By an Unconventional Approach

    DTIC Science & Technology

    2017-12-01

    Second World War, and the majority of air power theorists suggested that when technology finally caught up with the inherent ability of aviation, air...assessment of an American expert [Richard D. Newton, Joint Special Operations University] in air special operations at the Air Force’s annual Air Power ...scope and time in order to “seize, destroy, disrupt, capture, exploit, recover, or damage high value or high pay-off targets.”48 When these operations

  19. Sensor Orientation Effects on UXO Geophysical Target Discrimination

    DTIC Science & Technology

    2006-12-01

    parts with close tolerances; they break easily. As the ball bearings that support the high-speed wheel and the gimbals begin to wear, they contribute...to precession errors. Compounding the issue with vacuum gyros, is that dirt and dust in the vacuum line that destroys the bearings . A second class...38.83 centimeters [cm]) below the top of the platform. A PIG is a cylindrical steel container measuring 40-inches in length, 6.625-inches in

  20. Vehicle security encryption based on unlicensed encryption

    NASA Astrophysics Data System (ADS)

    Huang, Haomin; Song, Jing; Xu, Zhijia; Ding, Xiaoke; Deng, Wei

    2018-03-01

    The current vehicle key is easy to be destroyed and damage, proposing the use of elliptical encryption algorithm is improving the reliability of vehicle security system. Based on the encryption rules of elliptic curve, the chip's framework and hardware structure are designed, then the chip calculation process simulation has been analyzed by software. The simulation has been achieved the expected target. Finally, some issues pointed out in the data calculation about the chip's storage control and other modules.

  1. Lieutenant General Pete Quesada and Generalfeldmarschall Wolfram Von Richthofen: What Made Them Great

    DTIC Science & Technology

    2009-06-01

    targets as oil was always in short supply. By “destroying his air force, and disrupting his supply lines,” NACAF would prevent the Nazis from evacuating...to NACAF.106 After a long, arduous, yet ultimately successful struggle to dislodge the Nazis from Tunisia, the Allies finally began making their...supremacy camouflage is second in importance to performance.” They stopped painting everything except the insignia and tail numbers.149 Although not

  2. An Argument for the Keyhole Template for Close Air Support on the Urban Battlefield

    DTIC Science & Technology

    2009-03-04

    An Argument for the Keyhole Template for Close Air Support on the Urban Battlefield Captain BT Taggart Major RC... Keyhole Template for Close Air Support on the Urban Battlefield 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...graphic (GRG). Using the target building as the keyhole , or center of the engagement area, Lightning 62 requested a laser guided Maverick to destroy

  3. Field tests of an acephate baiting system designed for eradicating undesirable honey bees (Hymenoptera: Apidae).

    PubMed

    Danka, R G; Williams, J L; Sugden, E A; Rivera, R

    1992-08-01

    Field evaluations were made of a baiting system designed for use by regulatory agencies in suppressing populations of undesirable feral honey bees, Apis mellifera L. (e.g., bees posing hazards [especially Africanized bees] and colonies infested with parasitic mites). Bees from feral or simulated feral (hived) colonies were lured with honey and Nasonov pheromone components to feeders dispensing sucrose-honey syrup. After 1-3 wk of passive training to feeders, colonies were treated during active foraging by replacing untreated syrup with syrup containing 500 ppm (mg/liter) acephate (Orthene 75 S). In four trials using hived colonies on Grant Terre Island, LA., 21 of 29 colonies foraged actively enough at baits to be treated, and 20 of the 22 treated were destroyed. In the lower Rio Grande Valley of Texas (two trials at each of two trials), treatments killed 11 of 16 colonies (6 of 10 hived; 50 of 6 feral). Overall results showed that all 11 colonies that collected greater than 25 mg acephate died, whereas 3 of 10 colonies receiving less than 25 mg survived. Delivering adequate doses required a minimum of approximately 100 bees per target colony simultaneously collecting treated syrup. The system destroyed target colonies located up to nearly 700 m away from baits. Major factors limiting efficacy were conditions inhibiting foraging at baits (e.g., competing natural nectar sources and temperatures and winds that restricted bee flight).

  4. 36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... § 223.12 Permission to cut, damage, or destroy trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System...

  5. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death.

    PubMed

    Brauweiler, Anne M; Bin, Lianghua; Kim, Byung Eui; Oyoshi, Michiko K; Geha, Raif S; Goleva, Elena; Leung, Donald Y M

    2013-02-01

    The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins. We investigated whether keratinocyte differentiation and filaggrin expression protect against cell death induced by staphylococcal α-toxin. Filaggrin-deficient primary keratinocytes were generated through small interfering RNA gene knockdown. RNA expression was determined by using real-time PCR. Cell death was determined by using the lactate dehydrogenase assay. Keratinocyte cell survival in filaggrin-deficient (ft/ft) mouse skin biopsies was determined based on Keratin 5 staining. α-Toxin heptamer formation and acid sphingomyelinase expression were determined by means of immunoblotting. We found that filaggrin expression, occurring as the result of keratinocyte differentiation, significantly inhibits staphylococcal α-toxin-mediated pathogenicity. Furthermore, filaggrin plays a crucial role in protecting cells by mediating the secretion of sphingomyelinase, an enzyme that reduces the number of α-toxin binding sites on the keratinocyte surface. Finally, we determined that sphingomyelinase enzymatic activity directly prevents α-toxin binding and protects keratinocytes against α-toxin-induced cytotoxicity. The current study introduces the novel concept that S aureus α-toxin preferentially targets and destroys filaggrin-deficient keratinocytes. It also provides a mechanism to explain the increased propensity for S aureus-mediated exacerbation of AD skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. How cells engulf: a review of theoretical approaches to phagocytosis

    NASA Astrophysics Data System (ADS)

    Richards, David M.; Endres, Robert G.

    2017-12-01

    Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.

  7. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires CRFR1 to establish normal hair cell innervation and cochlear sensitivity

    PubMed Central

    Graham, Christine E.; Vetter, Douglas E.

    2011-01-01

    Cells of the inner ear face constant metabolic and structural stress. Exposure to intense sound or certain drugs destroys cochlea hair cells, which in mammals do not regenerate. Thus, an endogenous stress response system may exist within the cochlea to protect it from everyday stressors. We recently described the existence of Corticotropin-Releasing Factor (CRF) in the mouse cochlea. The CRFR1 receptor is considered the primary and canonical target of CRF signaling, and systemically it plays an essential role in coordinating the body-wide stress response via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Here we describe an essential role for CRFR1 in auditory system development and function, and offer the first description of a complete HPA equivalent signaling system resident within the cochlea. To reveal the role of CRFR1 activation in the cochlea, we have used mice carrying a null ablation of the CRFR1 gene. CRFR1−/− mice exhibited elevated auditory thresholds at all frequencies tested, indicating reduced sensitivity. Furthermore, our results suggest that CRFR1 has a developmental role affecting inner hair cell morphology and afferent and efferent synapse distribution. Given the role of HPA signaling in maintaining local homeostasis in other tissues, the presence of a cochlear HPA signaling system suggests important roles for CRFR1 activity in setting cochlear sensitivity, perhaps both neural and non-neural mechanisms. These data highlight the complex pleiotropic mechanisms modulated by CRFR1 signaling in the cochlea. PMID:21273411

  8. RESISTANCE TO X-IRRADIATION BY EMBRYONIC CELLS OF THE LIMB-BUDS OF TADPOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, B.M.; Ewell, L.M.

    1959-01-01

    Both total-body irradiation and shielding of the trunk were used to study the effects of x irradiation from 1000 to 30000 r upon the limb-buds of Bufo boreas and Hyla regilla tadpoles. The object was to test the view that the younger the cells the more sensitive they are to irradiation. The answer is negative. If there is any special susceptibility of these undifferentiated cells it should appear at levels far below the 30000 r maximum employed. A sharp distinction is made between the very susceptible mitotic cells and the resistant non-dividing embryonic cells that have been accumulated in suchmore » numbers that they may rapidly differentiate into the characteristic limb tissues under the stimulus of the thyroid hormone. Many irradiated ectoderm cells were changed to form bizarre excrescences but were not destroyed. Unicellular cuthneous gland cells continued to arise even after the heaviest irradiation. Irradiated tadpoles with hind limb-buds from 0.6 mm down to 0.2 mm length were unable to develop normal limbs. This capacity was propontional to the number of non-dividing embryonic cells stored at the time of irradiation. Irradiation of 5000, equal degree but the rapidity was greatest in the cases of higher dosage. Not only did these levels of irradiation fail to destroy the non-dividing embryonic cells but they did not effect their pre-deterrmined specificity nor modify their capacity for subsequent differentiation and growth. Exposure to a thyroxin solution caused the hind limb-buds without visible differentiation of cells to grow from a length of 0.8 or 0.9 mm or 1.0 mm at the time of irradiation to a length of as much as 5.0 mm in the course of 7 days. Development of thigh, shank, ankle, and toes was complete. Microscopic studies showed characteristic tissues such as cartilage, connective tissue, and muscle, developed to a comparable degree in control and irradiated specimens. (auth)« less

  9. Multispectral therapeutic endoscopy imaging and intervention

    NASA Astrophysics Data System (ADS)

    Bala, John L.; Schwaitzberg, Steven D.

    2007-02-01

    With the debut of antibiotic drug therapy, and as a result of its ease of use and general success in treating infection, drugs have become the treatment of choice for most bacterial infections. However, the advent of multiple, very aggressive drug-resistant bacteria, an increasing population which cannot tolerate drugs, and the high cost of drug therapy suggest that a new modality for treating infections is needed. The complex interplay of clonal spread, persistence, transfer of resistance elements and cell-to-cell interaction all contribute to the difficulty in developing drugs to treat new antibiotic-resistant bacterial strains. A dynamic non-drug system, using extant pulsed ultraviolet lightwave technology to kill infection, is being developed to destroy pathogens. This paper theorizes that the shock effect of pulsed xenon's high energy ultraviolet pulses at wavelengths between 250-270nm separates the bacteria's DNA bands, and, subsequently, destroys them. Preliminary laboratory tests have demonstrated the ability of the technology to destroy Staphylococcus aureus, Pseudomonas aeruginosa Escherichia coli, Helicobacter pylori, Acinetobacter baumannii, Klebsiella punemonia, Bacillus subtillis, and Aspergillus fumigates at penetration depths of greater than 3mm in fluids with 100% effectiveness in less than five seconds of exposure to pulsed xenon lightwaves. Micro Invasive Technology, Inc is developing .pulsed xenon therapeutic catheters and endoscopic instruments for internal antimicrobial eradication and topographical devices for prophylactic wound, burn and surgical entrance/exit site sterilization. Pulsed Xenon light sources have a broad optical spectrum (190-1200nm), and can generate light pulses with sufficient energy for combined imaging and therapeutic intervention by multiplexing a fiber optic pathway into the body. In addition, Pulsed Xenon has proven ability to activate photo reactive dyes; share endoscopic lightguides with lasers while, simultaneously, capturing high quality visual and activated video images.

  10. Novel CD44 receptor targeting multifunctional "nano-eggs" based on double pH-sensitive nanoparticles for co-delivery of curcumin and paclitaxel to cancer cells and cancer stem cells

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Wang, Guohua; Song, Weiguo; Zhang, Qiang

    2015-10-01

    Most anticancer drugs cannot kill cancer stem cells (CSCs) effectively, which lead to the failure of anticancer chemotherapy, such as relapse and metastasis. In this study, we prepared a multifunctional oligosaccharides of hyaluronan (oHA) conjugates, oHA-histidine-menthone 1,2-glycerol ketal (oHM). The oHM conjugates possess pH-sensitive menthone 1,2-glycerol ketal (MGK) as hydrophobic moieties and oHA as the target of CD44 receptor. Anticancer drugs, curcumin(Cur) and paclitaxel(PTX), were loaded into oHM micelles via self-assembly. Then, oHM micelles were mineralized through controlled deposition of inorganic calcium and phosphate ions on the nanoparticular shell via a sequential addition method to fabricate the "nano-eggs." The formed nano-eggs had a smaller size (120.6 ± 4.5 nm) than oHM micelles (158.6 ± 6.4 nm), indicating that mineralization made the appearance of compact nanoparticles. Interestingly, when the nano-eggs were put into the acidic conditions (pH 6.5), their outer shell(inorganic minerals) will be destroyed with the larger size, while the "nano-eggs" were stable under pH 7.4. For both nano-eggs and oHM micelles, the Cur and PTX were released in a sustained manner depending on the pH of the solution. However, the nano-eggs showed much lower released than the oHM micelles due to the dissolution of the inorganic minerals and pH-sensitive ketal at mildly acidic environments (pH 6.5). In vivo study, the nano-eggs could get to the tumor site more effectively than oHM micelles. CSCs were sorted by a side population assay from MDA-MB-231 breast cancer cell lines over-expressing CD44 receptors. Antitumor activity was also evaluated on MDA-MB-231 xenografts in nude mice. The antitumor efficacy indicated that nano-eggs with co-delivery of Cur and PTX produced the strongest antitumor efficacy, and nano-eggs showed strong activity against cancer stem cells. These double pH-sensitive nano-eggs may provide a promising strategy for drug delivery to both cancer cells and cancer stem cells.

  11. Unlocking hidden genomic sequence

    PubMed Central

    Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.

    2004-01-01

    Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330

  12. Interactions of the plasma needle with cells in culture

    NASA Astrophysics Data System (ADS)

    Stoffels, E.; Broers, J. L. V.; Kunts, S.; Cornelis, R. A. A.; Caubet, V.; Ramaekers, F. C. S.

    2002-10-01

    A non-thermal atmospheric plasma source (plasma needle) has been developed. This plasma operates at room temperature, low voltages and power levels, so it can be applied for fine treatment of organic material. In this work the impact of the plasma needle on living cells is explored. For this purpose CHO-K1 (Chinese hamster ovary) cells in culture have been plasma-treated and their responses have been recorded by means of propidium iodide staining. Plasma treatment at low to intermediate power levels leads to damage of the DNA in the cell nucleus, which causes cell death. Characteristic features are high precision of plasma action (influenced cells are strictly localized) and induction of cell death without destroying the cell integrity. Possibilities of using plasma treatment for removal of unwanted cells (e.g. cancer cells) will be investigated.

  13. THE PERMEABILITY OF RAT TRANSITIONAL EPITHELIUM

    PubMed Central

    Hicks, R. M.

    1966-01-01

    Permeability barriers must exist in transitional epithelium to prevent the free flow of water from underlying blood capillaries through the epithelium into the hypertonic urine, and such a barrier has now been demonstrated in isolated bladders. This barrier is passive in function and can be destroyed by damaging the luminal surface of the transitional epithelium with sodium hydroxide and 8 M urea solutions, by digesting it with trypsin, lecithinase C, and lecithinase D, or by treating it with lipid solvents such as Triton x 100 and saponin. From this it is concluded that the barrier depends on the integrity of lipoprotein cell membranes. The barrier function is also destroyed by sodium thioglycollate solutions, and electron microscope investigations show that sodium thioglycollate damages the thick asymmetric membrane which limits the luminal face of the superficial squamous cell. Cytochemical staining shows the epithelium to contain disulfide and thiol groups and to have a concentration of these groups at the luminal margin of the superficial cells. It thus appears that the permeability barrier also depends on the presence of disulfide bridges in the epithelium, and it is presumed that these links are located in keratin. Because of the effect of thioglycollates, both on the barrier function and on the morphology of the membrane, it is suggested that keratin may be incorporated in the thick barrier membrane. It is proposed that the cells lining the urinary bladder and ureters should be regarded as a keratinizing epitheluim. PMID:5901498

  14. Simultaneous and Dose Dependent Melanoma Cytotoxic and Immune Stimulatory Activity of Betulin

    PubMed Central

    Arlt, Olga; Neske, Christina; Dehelean, Cristina; Pfeilschifter, Josef M.; Radeke, Heinfried H.

    2015-01-01

    Conventional cytostatic cancer treatments rarely result in the complete eradication of tumor cells. Therefore, new therapeutic strategies focus on antagonizing the immunosuppressive activity of established tumors. In particular, recent studies of antigen-loaded dendritic cells (DCs) eliciting a specific antitumor immune response has raised the hopes of achieving the complete elimination of tumor tissue. Genistein, fingolimod and betulin have already been described as active compounds in different types of cancer. Herein, we applied an integrated screening approach to characterize both their cytostatic and their immune-modulating properties side-by-side. As will be described in detail, our data confirmed that all three compounds exerted proapoptotic and antiproliferative activity in different B16 melanoma cell lines to a given extent, as revealed by an MTT assay, CFSE and DAPI staining. However, while genistein and fingolimod also affected the survival of primary bone marrow (BM) derived DCs of C57BL/6 mice, betulin exhibited a lower cytotoxicity for BMDCs in comparison to the melanoma cells. Moreover, we could show for the first time, that only betulin caused a simultaneous, highly specific immune-stimulating activity, as measured by the IL-12p70 release of Toll-like receptor 4-stimulated BMDCs by ELISA, which was due to increased IL-12p35 mRNA expression. Interestingly, the activation of DCs resulted in enhanced T lymphocyte stimulation, indicated by increased IL-2 and IFN-γ production of cytotoxic T cells in spleen cell co-culture assays which led to a decreased viability of B16 cells in an antigen specific model system. This may overcome the immunosuppressive environment of a tumor and destroy tumor cells more effectively in vivo if the immune response is specific targeted against the tumor tissue by antigen-loaded dendritic cells. In summary, cytostatic agents, such as betulin, that simultaneously exhibit immune stimulatory activity may serve as lead compounds and hold great promise as a novel approach for an integrated cancer therapy. PMID:25756279

  15. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    PubMed

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  16. Understanding high endothelial venules: Lessons for cancer immunology

    PubMed Central

    Ager, Ann; May, Michael J

    2015-01-01

    High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity. PMID:26155419

  17. Stress and developmental regulation of the yeast C-type cyclin Ume3p (Srb11p/Ssn8p).

    PubMed Central

    Cooper, K F; Mallory, M J; Smith, J B; Strich, R

    1997-01-01

    The ume3-1 allele was identified as a mutation that allowed the aberrant expression of several meiotic genes (e.g. SPO11, SPO13) during mitotic cell division in Saccharomyces cerevisiae. Here we report that UME3 is also required for the full repression of the HSP70 family member SSA1. UME3 encodes a non-essential C-type cyclin (Ume3p) whose levels do not vary through the mitotic cell cycle. However, Ume3p is destroyed during meiosis or when cultures are subjected to heat shock. Ume3p mutants resistant to degradation resulted in a 2-fold reduction in SPO13 mRNA levels during meiosis, indicating that the down-regulation of this cyclin is important for normal meiotic gene expression. Mutational analysis identified two regions (PEST-rich and RXXL) that mediate Ume3p degradation. A third destruction signal lies within the highly conserved cyclin box, a region that mediates cyclin-cyclin-dependent kinase (Cdk) interactions. However, the Cdk activated by Ume3p (Ume5p) is not required for the rapid destruction of this cyclin. Finally, Ume3p destruction was not affected in mutants defective for ubiquitin-dependent proteolysis. These results support a model in which Ume3p, when exposed to heat shock or sporulation conditions, is targeted for destruction to allow the expression of genes necessary for the cell to respond correctly to these environmental cues. PMID:9303311

  18. Cancer nanomedicine: a review of recent success in drug delivery.

    PubMed

    Tran, Stephanie; DeGiovanni, Peter-Joseph; Piel, Brandon; Rai, Prakash

    2017-12-11

    Cancer continues to be one of the most difficult global healthcare problems. Although there is a large library of drugs that can be used in cancer treatment, the problem is selectively killing all the cancer cells while reducing collateral toxicity to healthy cells. There are several biological barriers to effective drug delivery in cancer such as renal, hepatic, or immune clearance. Nanoparticles loaded with drugs can be designed to overcome these biological barriers to improve efficacy while reducing morbidity. Nanomedicine has ushered in a new era for drug delivery by improving the therapeutic indices of the active pharmaceutical ingredients engineered within nanoparticles. First generation nanomedicines have received widespread clinical approval over the past two decades, from Doxil ® (liposomal doxorubicin) in 1995 to Onivyde ® (liposomal irinotecan) in 2015. This review highlights the biological barriers to effective drug delivery in cancer, emphasizing the need for nanoparticles for improving therapeutic outcomes. A summary of different nanoparticles used for drug delivery applications in cancer are presented. The review summarizes recent successes in cancer nanomedicine in the clinic. The clinical trials of Onivyde leading to its approval in 2015 by the Food and Drug Adminstration are highlighted as a case study in the recent clinical success of nanomedicine against cancer. Next generation nanomedicines need to be better targeted to specifically destroy cancerous tissue, but face several obstacles in their clinical development, including identification of appropriate biomarkers to target, scale-up of synthesis, and reproducible characterization. These hurdles need to be overcome through multidisciplinary collaborations across academia, pharmaceutical industry, and regulatory agencies in order to achieve the goal of eradicating cancer. This review discusses the current use of clinically approved nanomedicines, the investigation of nanomedicines in clinical trials, and the challenges that may hinder development of the nanomedicines for cancer treatment.

  19. The road to LOAD: late-onset Alzheimer's disease and a possible way to block it.

    PubMed

    Whitfield, James F

    2007-10-01

    The ageing brain becomes increasingly less able to destroy or eject toxic amyloid (A) beta42 peptide byproducts of normal neuronal activity that consequently accumulate to induce Alzheimer's disease (AD). Therefore, the various components of the Abeta-clearing machinery are prime targets for AD therapeutics. In this connection, there are reports that taking statins to lower circulating cholesterol to prevent cardiovascular disease can also prevent late-onset AD (LOAD) the most common form of the disease. However, it seems unlikely that statins would prevent LOAD by lowering the very long-lived brain cholesterol that is controlled independently from the very much shorter-lived circulating cholesterol. In fact, reducing the ability of the brain astrocytes to make cholesterol for their closely associated neuron clients' synaptogenesis could damage the brain rather than protect it. However, a plausible way statins might prevent LOAD is to target a main component of the clearance machinery, low-density lipoprotein receptor-related protein 1 (LRP1), the brain's powerful Abeta-efflux driver. This is indicated by a reported ability of micromolar concentrations of lovastatin and simvastatin to strongly stimulate brain vascular endothelial cells to make this Abeta ejector. Therefore, if this holds up, taking a statin over the years would prevent the normal decline of LRP1 in the ageing brain and a LOAD-driving accumulation of Abeta.

  20. Laser Microsurgery in the GFP Era: A Cell Biologist's Perspective

    PubMed Central

    Magidson, Valentin; Lončarek, Jadranka; Hergert, Polla; Rieder, Conly L.; Khodjakov, Alexey

    2008-01-01

    Modern biology is based largely on a reductionistic “dissection” approach—most cell biologists try to determine how complex biological systems work by removing their individual parts and studying the effects of this removal on the system. A variety of enzymatic and mechanical methods have been developed to dissect large cell assemblies like tissues and organs. Further, individual proteins can be inactivated or removed within a cell by genetic manipulations (e.g., RNAi or gene knockouts). However, there is a growing demand for tools that allow intracellular manipulations at the level of individual organelles. Laser microsurgery is ideally suited for this purpose and the popularity of this approach is on the rise among cell biologists. In this chapter, we review some of the applications for laser microsurgery at the subcellular level and describe practical requirements for laser microsurgery instrumentation demanded in the field. We also outline a relatively inexpensive but versatile laser microsurgery workstation that is being used in our laboratory. Our major thesis is that the limitations of the technology are no longer at the level of the laser, microscope, or software, but instead only in defining creative questions and in visualizing the target to be destroyed. At last in an incredible manner he [Archimedes] burned up the whole Roman fleet. For by tilting a kind of mirror toward the sun he concentrated the sun's beam upon it; and owing to the thickness and smoothness of the mirror he ignited the air from this beam and kindled a great flame, the whole of which he directed upon the ships that lay at anchor in the path of the fire, until he consumed them all.1 PMID:17586259

  1. [The mechanism of phenoptosis: 2. Hayflick limit is caused by the programmed attenuation of bioenergetics].

    PubMed

    Trubitsin, A G

    2010-01-01

    This article continues earlier started theme on a substantiation of the programmed aging mechanism (phenoptosis). The concept underlying this mechanism is that the life represents a lot of the interconnected physical and chemical processes moving by the bioenergetics. The gradual programmed decrease of the level of bioenergetics causes the slow and coordinated attenuation of all physiological functions, i.e. aging. For a convincing substantiation of such mechanism it is necessary to show, how attenuation of bioenergetics causes the basic nocuous processes accompanying aging. It is shown earlier that the age dependent decrease in level of bioenergetics causes increase in production of reactive oxygen species by mitochondria and decrease in overall level of protein synthesis. The proof that Hayflick limit is also caused by the decrease in level of bioenergetics is presented in this article. Decrease in level of bioenergetics below certain critical level deprives a cell the ability to pass the restriction point of G1-phase of proliferative cycle. The inhibitor of cyclin-dependent kinase, p27, prevents the passage through this critical point in all normal cells. During division of normal somatic cells p27 is removed by cyclin E-Cdk2 complex. Interaction p27 with cyclin E-Cdk2 complex can have two consequences. At the normal physiological level of bioenergetics the cyclin E-Cdk2 phosphorylates p27, then the latter is destroyed by proteolytic enzymes--the cell enters in S-phase. When the programme decreases the bioenergetics level below certain value the cyclin E-Cdk2 becomes the target for p27. As a result the inhibitor evacuation stops and restriction point becomes closed--a cell enters irreversible proliferative rest.

  2. Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers

    PubMed Central

    Abdo, Joe; Cornell, David L.; Mittal, Sumeet K.; Agrawal, Devendra K.

    2018-01-01

    Since the 1920s the gold standard for treating cancer has been surgery, which is typically preceded or followed with chemotherapy and/or radiation, a process that perhaps contributes to the destruction of a patient’s immune defense system. Cryosurgery ablation of a solid tumor is mechanistically similar to a vaccination where hundreds of unique antigens from a heterogeneous population of tumor cells derived from the invading cancer are released. However, releasing tumor-derived self-antigens into circulation may not be sufficient enough to overcome the checkpoint escape mechanisms some cancers have evolved to avoid immune responses. The potentiated immune response caused by blocking tumor checkpoints designed to prevent programmed cell death may be the optimal treatment method for the immune system to recognize these new circulating cryoablated self-antigens. Preclinical and clinical evidence exists for the complementary roles for Cytotoxic T-lymphocyte-associated protein (CTLA-4) and PD-1 antagonists in regulating adaptive immunity, demonstrating that combination immunotherapy followed by cryosurgery provides a more targeted immune response to distant lesions, a phenomenon known as the abscopal effect. We propose that when the host’s immune system has been “primed” with combined anti-CTLA-4 and anti-PD-1 adjuvants prior to cryosurgery, the preserved cryoablated tumor antigens will be presented and processed by the host’s immune system resulting in a robust cytotoxic CD8+ T-cell response. Based on recent investigations and well-described biochemical mechanisms presented herein, a polyvalent autoinoculation of many tumor-specific antigens, derived from a heterogeneous population of tumor cancer cells, would present to an unhindered yet pre-sensitized immune system yielding a superior advantage in locating, recognizing, and destroying tumor cells throughout the body. PMID:29644213

  3. Smallpox still haunts scientists: results of a questionnaire-based inquiry on the views of health care and life science experts and students on preserving the remaining variola virus stocks.

    PubMed

    Srinivasan, Thangavelu; Dedeepiya, Vidyasagar Devaprasad; John, Sudhakar; Senthilkumar, Rajappa; Reena, Helen C; Rajendran, Paramasivam; Balamurugan, Madasamy; Kurosawa, Gene; Iwasaki, Masaru; Preethy, Senthilkumar; Abraham, Samuel J K

    2013-01-01

    The World Health Organization (WHO) declared eradication of the dreadful disease "smallpox" in 1980. Though the disease has died down, the causative virus "variola" has not, as it has been well preserved in two high security laboratories-one in USA and another in Russia. The debate on whether the remaining stocks of the smallpox virus should be destroyed or not is ongoing, and the World Health Assembly (WHA) in 2011 has decided to postpone the review on this debate to the 67th WHA in 2014. A short questionnaire-based inquiry was organized during a one-day stem cell meeting to explore the views of various health care and life science specialists especially students on this aspect. Among the 200 participants of the meeting, only 66 had answered the questionnaire. 60.6% of participants who responded to the questionnaire were for preserving the virus for future reference, while 36.4% of the participants were for destroying the virus considering the magnitude with which it killed millions. However, 3% of the respondents were not able to decide on any verdict. Therefore, this inquiry expresses the view that "what we cannot create, we do not have the right to destroy."

  4. A proposal of utilization of penetrators as a quick deployment system of instruments in an emergency

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Kobayashi, N.; Tanaka, S.; Shiraishi, H.; Hayakawa, M.; Yamada, R.; Takeuchi, N.; Okamoto, T.; Ishihara, Y.; Hayakawa, H.; Working Group, T.

    2011-12-01

    In the 2011 Tohoku Great earthquake, towns and lifelines were completely destroyed mainly by the mega Tsunami-waves induced by the earthquake. Many people were killed and injured. In addition to the direct destroy of seismic stations, cut-off of electronic power and communication lines made a seismic measurement impossible after the earthquake. The data of seismicity near the destroyed area had been lacked. The quake also destroyed the Fukushima atomic plant that emitted a lot of radioactive elements such as iodine 131 and cesium 137 around the plant. The area of the inside of a circle with a distance of 20 km from the plant has been kept out soon after the failure, where people exactly desire to know what happens and exact quantities of some geophysical and geochemical measurements. In this presentation, we propose a penetrator system as an efficient way to deploy measurement stations for an emergent event such as the 2011 Tohoku Great earthquake. The penetrator technique has been developed in the former Japanese lunar exploration project LUNAR-A and after the cancelation of the project. The penetrator was planned to carry seismic sensors and heat flow probes into the surface regolith of the moon in the project. It collides with the lunar surface with a speed of 300 m/s. We have established a technique to survive the sensors in the penetrator throughout the hard landing. The technique is of course applicable for terrestrial measurements. A measurement in an emergent area is suitable for the penetrator system. Using penetrators, we can deploy sensors in a kept-out area by throwing them into target sites from a flying boat. Penetrators can be used to establish communication lines in a damaged area by carrying a translator of radio waves. Because of the easiness of deployment of sensors, utilization of penetrators as a quick deployment device in an emergent event is expected.

  5. Laser-induced thermal ablation of cancerous cell organelles.

    PubMed

    Letfullin, Renat R; Szatkowski, Scott A

    2017-07-01

    By exploiting the physical changes experienced by cancerous organelles, we investigate the feasibility of destroying cancerous cells by single and multipulse modes of laser heating. Our procedure consists of two primary steps: determining the normal and cancerous organelles optical properties and simulating the heating of all of the major organelles in the cell to find the treatment modes for the laser ablation of cancerous organelles without harming healthy cells. Our simulations show that the cancerous nucleus can be selectively heated to damaging temperatures, making this nucleus a feasible therapeutic particle and removing the need for nanoparticle injection. Because of the removal of this extra step, the procedure we propose is simpler and safer for the patient.

  6. The nature of the virus receptors of red cells; evidence on the chemical nature of the virus receptors of red cells and of the existence of a closely analogous substance in normal serum.

    PubMed

    HIRST, G K

    1948-04-01

    THE INFLUENZA VIRUS RECEPTORS OF FOWL RED CELLS AND THE INFLUENZA VIRUS INHIBITOR OF NORMAL RABBIT SERUM HAVE THE FOLLOWING ATTRIBUTES IN COMMON: They are stable at high temperatures and in solutions of pH as high as 10.0. They both resist destruction by a number of oxidizing agents but are readily destroyed by sodium periodate, trypsin, and influenza virus. These facts suggest that the red cell receptor and the normal serum inhibitor are either the same or analogous substances and that they may belong to the mucoprotein class of compounds.

  7. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    PubMed

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  8. Photoinactivation of Latent Herpes Simplex Virus in Rabbit Kidney Cells

    PubMed Central

    Kelleher, J. J.; Varani, J.

    1976-01-01

    The photoinactivation of actively and nonactively growing herpes simplex virus by neutral red and proflavine was studied in rabbit kidney cells. Active virus growth was inhibited by both dyes under conditions which did not destroy the cells. Neutral red caused a much greater inhibition than proflavine. Neutral red also caused a reduction in the reactivation rate of latent virus when the infected cells were treated during the latent period. In the treated cultures that did reactivate virus, the average length of the latent period was increased over the control value. Proflavine treatment did not reduce the rate of reactivation of latent virus and did not increase the average latent period of the treated cultures. PMID:185948

  9. Modeling of porous concrete elements under load

    NASA Astrophysics Data System (ADS)

    Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.

    2017-12-01

    It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  10. Evolution of Gravity Receptors in the Ear

    NASA Technical Reports Server (NTRS)

    Popper, Arthur N. (Principal Investigator)

    1996-01-01

    The general status of a grant to investigate the origins and evolution of two hair cell types in the ears of a teleost fish, Astronotus ocellatus (the oscar), is presented. First, it was demonstrated that the cells in the rostral end of the saccule of the , Carassius auratus, are type 1-like, while those at the caudal end are type 2 cells. It was demonstrated that the dichotomy of hair cell types found in the utricle of the oscar is also found in the goldfish. Second, the lateral line system of the oscar was examined using gentamicin sulphate, an ototocix drug that destroys type 1- like hair cells but does not appear to damage type 2 hair cells. It was demonstrated that the hair cells found in neuromasts of lateral line canal organs were totally destroyed within 1 day of treatment, while the hair cells in free neuromasts were undamaged after 12 days of treatment. Third, it was demonstrated that the calyx, the specialized nerve ending, is not unique to amniotes and that it is present at least in the cristae of semicirular canals in goldfish. These results have demonstrated that: (1) there are multiple hair cell types in the vestibular endorgans of the ear of fishes, (2) these hair cell types are very similar to those found in the mammalian vestibular endorgans, (3) the nerve calyx is also present in fishes, and (4) multiple hair cell types and the calyx have evolved far earlier in the course of vertebrate evolution than heretofore thought. Understanding the structure of the vestibular endorgans has important implications for being able to understand how these organs respond to gravistatic, acceleration and acoustic input. The vestibular endorgans of fishes may provide an ideal system in which to analyze functional differences in hair cells. Not only are the two hair cell types similar to those found in mammals, they are located in very discrete regions in each endorgan. Thus, it is relatively easy to gain access to cells of one or the other type. The presence of two cell types in the lateral line have equally significant implications for studies of the vestibular system.

  11. Airliner cabin ozone: An updated review. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, C.E.

    1989-12-01

    The recent literature pertaining to ozone contamination of airliner cabins is reviewed. Measurements in airliner cabins without filters showed that ozone levels were about 50 percent of atmospheric ozone. Filters were about 90 percent effective in destroying ozone. Ozone (0.12 to 0.14 ppmv) caused mild subjective respiratory irritation in exercising men, but 0.20 to 0.30 ppmv did not have adverse effects on patients with chronic heart or lung disease. Ozone (1.0 to 2.0 ppmv) decreased survival time of influenza-infected rats and mice and suppressed the capacity of lung macrophages to destroy Listeria. Airway responses to ozone are divided into anmore » early parasympathetically mediated bronchoconstrictive phase and a later histamine-mediated congestive phase. Evidence indicates that intracellular free radicals are responsible for ozone damage and that the damage may be spread to other cells by toxic intermediate products: Antioxidants provide some protection to cells in vitro from ozone but dietary intake of antioxidant vitamins by humans has only a weak effect, if any. This review indicates that earlier findings regarding ozone toxicity do not need to be corrected. Compliance with existing FAA ozone standards appears to provide adequate protection to aircrews and passengers.« less

  12. Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe

    PubMed Central

    Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen

    2013-01-01

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280

  13. A Conformational Change of C Fragment of Tetanus Neurotoxin Reduces Its Ganglioside-Binding Activity but Does Not Destroy Its Immunogenicity ▿

    PubMed Central

    Yu, Rui; Yi, Shaoqiong; Yu, Changming; Fang, Ting; Liu, Shuling; Yu, Ting; Song, Xiaohong; Fu, Ling; Hou, Lihua; Chen, Wei

    2011-01-01

    The C fragment of tetanus neurotoxin (TeNT-Hc) with different conformations was observed due to the four cysteine residues within it which could form different intramolecular disulfide bonds. In this study, we prepared and compared three types of monomeric TeNT-Hc with different conformational components: free sulfhydryls (50 kDa), bound sulfhydryls (44 kDa), and a mixture of the two conformational proteins (half 50 kDa and half 44 kDa). TeNT-Hc with bound sulfhydryls reduced its binding activity to ganglioside GT1b and neuronal PC-12 cells compared to what was seen for TeNT-Hc with free sulfhydryls. However, there was no significant difference among their immunogenicities in mice, including induction of antitetanus toxoid IgG titers, antibody types, and protective capacities against tetanus neurotoxin challenge. Our results showed that the conformational changes of TeNT-Hc resulting from disulfide bond formation reduced its ganglioside-binding activity but did not destroy its immunogenicity, and the protein still retained continuous B cell and T cell epitopes; that is, the presence of the ganglioside-binding site within TeNT-Hc may be not essential for the induction of a fully protective antitetanus response. TeNT-Hc with bound sulfhydryls may be developed into an ideal human vaccine with a lower potential for side effects. PMID:21813664

  14. Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors.

    PubMed

    Piao, Ji-Gang; Gao, Feng; Yang, Lihua

    2016-01-13

    How to destroy drug-resistant tumor cells remains an ongoing challenge for cancer treatment. We herein report on a therapeutic nanoparticle, aHLP-PDA, which has an acid-activated hemolytic polymer (aHLP) grafted onto photothermal polydopamine (PDA) nanosphere via boronate ester bond, in efforts to ablate drug-resistant tumors. Upon exposure to oxidative stress and/or near-infrared laser irradiation, aHLP-PDA nanoparticle responsively releases aHLP, likely via responsive cleavage of boronate ester bond, and thus responsively exhibits acid-facilitated mammalian-membrane-disruptive activity. In vitro cell studies with drug-resistant and/or thermo-tolerant cancer cells show that the aHLP-PDA nanoparticle demonstrates preferential cytotoxicity at acidic pH over physiological pH. When administered intravenously, the aHLP-PDA nanoparticle exhibits significantly prolonged blood circulation lifetime and enhanced tumor uptake compared to bare PDA nanosphere, likely owing to aHLP's stealth effects conferred by its zwitterionic nature at blood pH. As a result, the aHLP-PDA nanoparticle effectively ablates drug-resistant tumors, leading to 100% mouse survival even on the 32nd day after suspension of photothermal treatment, as demonstrated with the mouse model. This work suggests that a combination of nanotechnology with lessons learned in bacterial antibiotic resistance may offer a feasible and effective strategy for treating drug-resistant cancers often found in relapsing patients.

  15. A Venom-derived Neurotoxin, CsTx-1, from the Spider Cupiennius salei Exhibits Cytolytic Activities*

    PubMed Central

    Kuhn-Nentwig, Lucia; Fedorova, Irina M.; Lüscher, Benjamin P.; Kopp, Lukas S.; Trachsel, Christian; Schaller, Johann; Vu, Xuan Lan; Seebeck, Thomas; Streitberger, Kathrin; Nentwig, Wolfgang; Sigel, Erwin; Magazanik, Lev G.

    2012-01-01

    CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45–Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca2+ channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides. PMID:22613721

  16. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.

    PubMed

    Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B

    2008-10-03

    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.

  17. Development vs. Deployment: How Mature Should a Technology be Before it is Considered for Inclusion in an Acquisition Program?

    DTIC Science & Technology

    2007-04-30

    surface combatant. Take, for instance, the tumblehome hull design of the new Zumwalt-class destroyer. If some critical issues were to arise with the ...more aggressive target is selected, there will be a greater increase in capability for each new system deployed. However, the expected duration of...push for the most advanced technology they can get into each new system. • This behavior exacerbates the problem and leads to even longer acquisition

  18. Literature Review on Demilitarization of Munitions: Document Prepared for the RIGHTTRAC Technology Demonstration Project

    DTIC Science & Technology

    2010-11-01

    shock, fire and impact by shrapnel or bullets but is still able to explode as intended in order to destroy its target. Two main charge explosives...involves the opening of the munitions by using a highly pressurized water jet and some abrasive material, like garnet. It was disclosed in US Patents...noise and spread of abrasive and debris around the area [23] and also avoid the production of sparks due to metal to metal contact. The water

  19. KSC-08pd1888

    NASA Image and Video Library

    2008-07-08

    CAPE CANAVERAL, Fla. – Crews remove bricks from the damaged walls of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the STS-125 mission. Photo credit: NASA/Jack Pfaller

  20. KSC-08pd1889

    NASA Image and Video Library

    2008-07-08

    CAPE CANAVERAL, Fla. – Crews remove bricks from the damaged walls of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the STS-125 mission. Photo credit: NASA/Jack Pfaller

  1. Pollution Permanent Monitoring PANEL--2013 Annual Report

    NASA Astrophysics Data System (ADS)

    Everett, Lorne G.

    2014-07-01

    The following sections are included: * POLLUTION PANEL ACTIVITIES 2013 * NATIONAL ACADEMY OF SCIENCES 2013 * MTBE NEW HAMPSHIRE LITIGATION--APRIL 12, 2013 * ALTERNATIVES FOR MANAGING THE NATION's COMPLEX CONTAMINATED GROUNDWATER SITES--NATIONAL ACADEMY OF SCIENCES, 2013 * HUMAN HEALTH EFFECTS OF TRICHLOROETHYLENE: KEY FINDINGS AND SCIENTIFIC ISSUES. MARCH 1, 2013 REVIEWS * BAROMETRIC PRESSURE DRIVES SOIL-GAS CONCENTRATIONS * WATER RESOURCES--TERRORISM TARGETS * WITH A LITTLE INGENUITY THE PROBLEM IS NOT INSOLUBLE * HIGH RISE BUILDINGS * TERRORIST MATERIAL MAY DESTROY WATER TRANSMISSION INFRASTRUCTURE * WATER THREAT CONCLUSIONS * MULTINATIONAL REPOSITORIES

  2. Lucrative Targets: The U.S. Air Force in the Kuwaiti Theater of Operations

    DTIC Science & Technology

    2001-01-01

    led initially by Brig. Gen. Frederic N. Buckingham and, after November 11, by Brig. Gen. Edwin E. Tenoso—had the same responsibility for MAC/Commander...117s destroying vital C2 centers and the Navy’s Tomahawk Land Attack Missiles (TLAMs) hitting electrical powerplants, the presidential palace , the Ba‘ath...By the opening of the Iran-Iraq War in September 1980, the Iraqi dictator had increased his elite force to two brigades of palace guards, and during

  3. Making the Case: What is the Problem with Targeted Killing?

    DTIC Science & Technology

    2009-12-01

    lpg=PA67&dq= Sharm -el- Sheikh+negotiations+to+end+the+second+intifada&source=bl&ots=yGaaSEJVty&sig=zWLzFW0WaBdn ZqSMtU7Bux7lpDA&hl=en&ei...election of Abbas, the Sharm el-Sheikh Summit in February 2005 opened an opportunity for a negotiated truce between Sharon and Abbas. Sharon made...Homes Destroyed (2001-2008).115 In February 2005, following the Sharm el-Sheikh Summit, Defense Minister Shaul Mofaz put a halt to punitive home

  4. KSC-08pd2108

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – Workers weld a steel grid structure to the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd2107

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – Workers weld a steel grid structure to the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  6. siRNA-loaded cationic liposomes for cancer therapy: Development, characterization and efficacy evaluation

    NASA Astrophysics Data System (ADS)

    Ying, Bo

    Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body). The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population. Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics. In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth). We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models. Pegylated cationic liposomes (PCLs) were selected as carriers for siRNA. Based on the silencing efficiency of siRNA formulated with different PCLs, DOPC based cationic liposomes, over DOPE based nanosystems, with a modest amount of polyetheleneglycol was selected to deliver KSP siRNA to tumor-bearing mice. Efficacy studies revealed that tumor suppression was observed when KSP siRNA was delivered using PCLs, but not in mice that received naked KSP siRNA or KSP siRNA in commercially available transfecting agents. The results were further supported by MRI (magnetic resonance imaging) analysis. To evaluate the role that vasculature supply plays in the development of the tumor, we also performed tumor response studies using a tumor model consisting of tumor cells which are resistant to KSP siRNA. The results showed that a prolonged suppression of tumor growth was achieved only when a large dose (5mg/kg) KSP siRNA was administered, but not with the administration of a relatively low dose (2mg/kg) of siRNA, suggesting that a combined treatment approach containing both anti-vasculature and anti-cancer agents should be considered to achieve the best treatment outcome. Finally, it was confirmed by qRT-PCR that the tumor growth inhibition was due to the successful knock-down of KSP mRNA.

  7. Selective photodestruction of alpha-amino acids. [in carbonaceous chondrites and chemical evolution experiments

    NASA Technical Reports Server (NTRS)

    Levi, N.; Lawless, J. G.

    1978-01-01

    A problem encountered in the analysis of amino acids in chemical evolution experiments and in extracts of meteorites is the large number present. A method for selectively destroying the alpha-amino acids, with only the beta- and gamma-amino acids remaining in the solution, is described. The amino acids used were racemic, with one milliliter of solution containing 0.0000025 mol of each acid irradiated in a 1-cm quartz cell having 254-nm monochromatic light in the presence of CuCl2. Excess H2S was added to precipitate the Cu (2+) as CuS. A gas chromatographic analysis was used to observe that irradiation with 254-nm light in the presence of Cu (2+) destroyed all the amino acids except the beta and the gamma types. It is concluded that with such a procedure, complex mixtures of amino acids can be simplified to make identification by GC mass spectrometry easier.

  8. Autoimmunity in narcolepsy.

    PubMed

    Bonvalet, Melodie; Ollila, Hanna M; Ambati, Aditya; Mignot, Emmanuel

    2017-11-01

    Summarize the recent findings in narcolepsy focusing on the environmental and genetic risk factors in disease development. Both genetic and epidemiological evidence point towards an autoimmune mechanism in the destruction of orexin/hypocretin neurons. Recent studies suggest both humoral and cellular immune responses in the disease development. Narcolepsy is a severe sleep disorder, in which neurons producing orexin/hypocretin in the hypothalamus are destroyed. The core symptoms of narcolepsy are debilitating, extreme sleepiness, cataplexy, and abnormalities in the structure of sleep. Both genetic and epidemiological evidence point towards an autoimmune mechanism in the destruction of orexin/hypocretin neurons. Importantly, the highest environmental risk is seen with influenza-A infection and immunization. However, how the cells are destroyed is currently unknown. In this review we summarize the disease symptoms, and focus on the immunological findings in narcolepsy. We also discuss the environmental and genetic risk factors as well as propose a model for disease development.

  9. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  10. Preorbital carcinoma in two Kirk's dik-diks (Madoqua kirkii).

    PubMed

    Junginger, J; Kummerfeld, M; Kummrow, M; Grützmacher, K; Dziallas, P; Wohlsein, P

    2013-05-01

    Two Kirk's dik-diks suffered from chronic, unilateral, therapy-resistant enlargement of the preorbital gland. Computed tomographic imaging revealed a homogenous preorbital mass destroying the adjacent maxillary bone in one animal. Squamous cell carcinoma was diagnosed microscopically in both cases. Immunohistochemically, the neoplastic cells uniformly expressed cytokeratin (CK) 5/6 and CK14. Additionally, tumour cells were strongly labelled for p53 suggesting a possible role of this tumour suppressor gene in tumorigenesis. Chronic obstruction of the preorbital gland due to excessive accumulation of secretory products is considered as a likely cause of glandular and periglandular inflammation with subsequent malignant transformation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Responses of enzymatically isolated mammalian vascular smooth muscle cells to pharmacological and electrical stimuli.

    PubMed

    DeFeo, T T; Morgan, K G

    1985-05-01

    A modified method for enzymatically isolating mammalian vascular smooth muscle cells has been developed and tested for ferret portal vein smooth muscle. This method produces a high proportion of fully relaxed cells and these cells appear to have normal pharmacological responsiveness. The ED50 values for both alpha stimulation and potassium depolarization are not significantly different in the isolated cells from those obtained from intact strips of ferret portal vein, suggesting that the enzymatic treatment does not destroy receptors or alter the electrical responsiveness of the cells. It was also possible to demonstrate a vasodilatory action of papaverine, nitroprusside and adenosine directly on the isolated cells indicating that the pathways involved are intact in the isolated cells. This method should be of considerable usefulness, particularly in combination with the new fluorescent indicators and cell sorter techniques which require isolated cells.

  12. Optimal cost for strengthening or destroying a given network

    NASA Astrophysics Data System (ADS)

    Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo

    2017-05-01

    Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c (k ) , which is the cost of strengthening or destroying a node with degree k . Using the degrees k in a network and the cost function c (k ) , we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their pc, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.

  13. Optimal cost for strengthening or destroying a given network.

    PubMed

    Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo

    2017-05-01

    Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c(k), which is the cost of strengthening or destroying a node with degree k. Using the degrees k in a network and the cost function c(k), we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their p_{c}, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.

  14. Characteristics of a Virus Isolated from a Feline Fibrosarcoma

    PubMed Central

    McKissick, G. E.; Lamont, P. H.

    1970-01-01

    A virus was isolated from a radioresistant feline fibrosarcoma. It induced multi-nucleated giant-cell formation and lysis in a cell line derived from a canine fibro-sarcoma, which was used to characterize the virus. End-point titrations in these cells required 28 days. The virus was sensitive to ether and heat and was destroyed at pH 3. Replication was not inhibited by 5-bromodeoxyuridine. Electron microscopy revealed assembly by a budding process from the plasma membrane of infected cells. The average diameter of the virion was 106 nm. Intracisternal particles with an average diameter of 45 nm were present within infected cells. In two instances secondary monolayers of feline renal cells underwent morphological transformation after inoculation of the virus. The two strains of transformed cells are now in continuous culture and do not yield infectious virus. Images PMID:4194169

  15. Challenges of laser beam propagation near/within marine boundary layer

    NASA Astrophysics Data System (ADS)

    Manzur, Tariq; Katz, Richard A.; Olson, Joshua

    2015-05-01

    Marine atmospheric condition plays a critical role on imaging, laser beam propagation, and optical communication of the commercial and military platform. In Military platforms, ships and sailors must be able to defend and communicate with other maritime platform in sometimes volatile and hostile regions around the globe. Naval combatants need defensive and offensive capabilities against a variety of potential threats - many coming at low altitude, UAV, USV etc. High energy lasers (HELs) are currently in development, which have sufficient power levels (~100 kW) to destroy/disable most types of threats. Though target engagement and energy delivery are challenging, a HEL weapon can engage targets at the speed of light, does not require physical ammunition, and is able to run for hours at a time.

  16. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production.

    PubMed

    Li, Fengmin; Liang, Zhi; Zheng, Xiang; Zhao, Wei; Wu, Miao; Wang, Zhenyu

    2015-01-01

    Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO2 (anatase, average particle size of 5-10 nm, specific surface area of 210±10 m(2) g(-1)) to assess the effects of nano-TiO2 on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO2 in the algal suspension. Nano-TiO2 was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO2 exposure. The 72 h EC50 values of nano-TiO2 to K. brevis and S. costatum were 10.69 and 7.37 mg L(-1), respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO2 exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (p<0.05). Meanwhile, superoxide dismutase (SOD) and catalase activities (CAT) of K. brevis and S. costatum changed in different ways. The reactive oxygen species (ROS) levels in both species were significantly higher than those of the control (p<0.05). The site of ROS production and accumulation in K. brevis and S. costatum under nano-TiO2 exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO2 in algal suspensions inhibited the growth of K. brevis and S. costatum. This effect was attributed to oxidative stress caused by ROS production inside algal cells. The levels of anti-oxidative enzymes changed, which destroyed the balance between oxidation and anti-oxidation. Thus, algae were damaged by ROS accumulation, resulting in lipid oxidation and inhibited algae growth. The inhibitors of the electron transfer chain showed that the site of ROS production and accumulation in K. brevis cells was the chloroplast. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis

    PubMed Central

    Liu, Qi; Hu, Cheng-Hu; Zhou, Cui-Hong; Cui, Xiao-Xia; Yang, Kun; Deng, Chao; Xia, Jia-Jia; Wu, Yan; Liu, Lu-Chuan; Jin, Yan

    2015-01-01

    Multiple studies have shown that diabetes mellitus is an established risk factor for periodontitis. Recently mesenchymal stem cells derived from periodontal ligament (PDLSCs) have been utilized to reconstruct tissues destroyed by chronic inflammation. However, impact of periodontitis with diabetes mellitus on PDLSCs and mechanisms mediating effects of complex microenvironments remain poorly understood. In this study, we found multiple differentiation potential of PDLSCs from chronic periodontitis with diabetes mellitus donors (D-PDLSCs) was damaged significantly. Inhibition of NF-κB signaling could rescue osteogenic potential of PDLSCs from simple chronic periodontitis patients (P-PDLSCs), whereas did not promote D-PDLSCs osteogenesis. In addition, we found expression of DKK1 in D-PDLSCs did not respond to osteogenic signal and decreased osteogenic potential of D-PDLSCs treated with DKK1 could be reversed. To further elucidate different character between P-PDLSCs and D-PDLSCs, we treated PDLSCs with TNF-α and advanced glycation end products (AGEs), and find out AGEs which enhance effect of TNF-α in PDLSCs might mediate special personality of D-PDLSCs. The adverse effect of AGEs in PDLSCs could be reversed when PDLSCs were treated with DKK1. These results suggested DKK1 mediating WNT signaling might be a therapy target to rescue potential of PDLSCs in periodontitis with diabetes mellitus. PMID:26278788

  18. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  19. Gastrointestinal Viral Load and Enteroendocrine Cell Number Are Associated with Altered Survival in HIV-1 Infected Individuals

    PubMed Central

    van Marle, Guido; Sharkey, Keith A.; Gill, M. John; Church, Deirdre L.

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS). The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI) dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM) enrolled pre-HAART (Highly Active Antiretroviral Therapy). We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon) biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum) and somatostatin (duodenum and colon) immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis. PMID:24146801

  20. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod.

    PubMed

    Zhao, Ruifang; Han, Xuexiang; Li, Yiye; Wang, Hai; Ji, Tianjiao; Zhao, Yuliang; Nie, Guangjun

    2017-08-22

    Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of <8%. To overcome the severe resistance of pancreatic cancer to conventional therapies, we synthesized gold nanoshell-coated rod-like mesoporous silica (GNRS) nanoparticles which integrated cascade tumor targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.

  1. Research Help

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Electrosynthesis Co. Inc.'s Electrocinerator System integrates a highly effective air scrubber with an electrochemical cell to provide an apparatus capable of destroying virtually all toxic chemicals and airborne bacteria. Project (funded by DOD) is prospective means of decontaminating airborne chemicals and biological warfare agents. Also has broad civil use applicable to hospitals for destruction of airborne viruses and bacteria, and industrial use for elimination of toxic solvent vapors and malodorous emissions.

  2. Neutralization of Bacterial Aerosols by Aerodynamic Shocks in a Novel Impactor System: An Integrated Computational and Experimental Study

    DTIC Science & Technology

    2010-10-15

    phenylalanine dehydrogenase activity [56]. At 14 MPa, 15% of the E. coli cells were destroyed [56]. The researchers mentioned the importance of the...losses (1 - nout/nin) were calculated for circular tubes using the following expression [23]: ’ DL \\2/3 fDL\\ [—J +377(g-J (5-2) where n^ and nin

  3. Survival of Microorganisms in Nature.

    DTIC Science & Technology

    1982-04-07

    number) Survival of bacteria; Death of bacteria; Cysts; Dormancy; Pseudomonas aeruginosa; Azotobacter; Chemotaxis; Micrococcus luteus; Predation...attracted to and rapidly destroys (lyses) added Micrococcus luteus cells. There is also attack of predator on predator in this system. DO 1 DIT1 473 Oor I OV...and on laboratory media. 4 1 SUMMARY OF IMPORTANT RESULTS Micrococcus luteus was shown to survive only poorly in soil (Casida, 1980a). This was

  4. INFLUENCE OF ANESTHESIA ON EXPERIMENTAL NEUROTROPIC VIRUS INFECTIONS

    PubMed Central

    Sulkin, S. Edward; Zarafonetis, Christine; Goth, Andres

    1946-01-01

    Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell. PMID:19871570

  5. Hematology and biochemical findings of Spacelab 1 flight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Chen, J. P.; Crosby, W.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1988-01-01

    The changes in erythropoiesis in astronauts caused by weightlessness was experimentally studied during the Spacelab 1 flight. Immediately after landing showed a mean decrease of 9,3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate caused the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. The space flight-induced decrease in red cell mass may result from a failure of erythropoesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  6. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases.

    PubMed

    Wilhelm, Imola; Fazakas, Csilla; Molnár, Kinga; Végh, Attila G; Haskó, János; Krizbai, István A

    2018-04-01

    Despite the potential obstacle represented by the blood-brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.

  7. Translations on USSR Military Affairs. Number 1251

    DTIC Science & Technology

    1976-10-20

    destroyers " Kotlin "-Class destroyers "Kruplin"-Class destroyers submarines, completion "M-XV"-Class submarines "Whiskey"-Class submarines "Quebec...leaders (with the exception of one prototype vessel) and some units of the even more modern " Kotlin " Class. Most hard-hit however was the submarine...first improvisation stage. They included primarily four " Kotlin " destroyer hulls which—equipped with an "SS-N-1" missile system— were completed as

  8. Investigation of Structural, Compositional and Anti-Microbial Properties of Copper Thin Film Using Direct Current Magnetron Sputtering for Surgical Instruments

    NASA Astrophysics Data System (ADS)

    Kalaiselvam, S.; Sandhya, J.; Krishnan, K. V. Hari; Kedharnath, A.; Arulkumar, G.; Roseline, A. Ameelia

    Surgical instruments and other bioimplant devices, owing to their importance in the biomedical industry require high biocompatibility to be used in the human body. Nevertheless, issues of compatibility, bacterial infections are quite common in such devices. Hence development of surface coatings on various substrates for implant applications is a promising technique to combat the issues arising in these implant materials. The present investigation aims at coating copper on stainless steel substrate using DC Magnetron sputtering which is used to achieve film of required thickness (0.5-8μm). The deposition pressure, substrate temperature, power supply, distance between the specimen and target are optimized and maintained constant, while the sputtering time (30-110min) is varied. The sputtered copper thin film’s morphology, composition are characterized by SEM and EDAX. X-ray diffraction analysis shows copper oriented on (111) and (002) and copper oxide on (111) planes. The contact angle of copper thin film is 92∘ while AISI 316L shows 73∘. The antimicrobial studies carried in Staphylococcus aureus, Escherichia Coli, Klebsiella pneumonia and Candida albicans show that the maximum reduction was seen upto 35, 26, 54, 39CFU/mL, respectively after 24h. The cell viability is studied by MTT assay test on Vero cell line for 24h, 48h and 72h and average cell viability is 43.85%. The copper release from the thin film to the culture medium is 6691μg/L (maximum) is estimated from AAS studies. The copper coated substrate does not show much reaction with living Vero cells whereas the bacteria and fungi are found to be destroyed.

  9. Cooperative effect between immunotherapy and antiangiogenic therapy leads to effective tumor rejection in tolerant Her-2/neu mice.

    PubMed

    Cuadros, Camilo; Dominguez, Ana Lucia; Frost, Gregory I; Borgstrom, Per; Lustgarten, Joseph

    2003-09-15

    Immunotherapy is an attractive strategy for cancer treatment. However, self-tolerance is one of the major mechanisms that dampen immune responses against self-tumor antigens. We have demonstrated that Her-2/neu transgenic mice (neu mice) are tolerant to neu antigens and contain only a low avidity repertoire for neu. However, this repertoire has antitumor activity. Immunizations of neu mice are capable of activating the low-avidity T cells that, at best, retard the tumor growth. To increase the efficacy of the antitumor responses in neu mice, we hypothesized that immunotherapy in combination with antiangiogenic therapy would be a more efficient strategy for tumor eradication. The rationale for using this combination was that by decreasing the growth rate of the tumor with an antiangiogenic therapy, the low-avidity repertoire of neu mice stimulated by immunotherapeutic intervention would be more effective in destroying the slow growing tumor. To test this hypothesis, we stably expressed a soluble form of the Flt-1 vascular endothelial growth factor receptor (sFlt-1) on N202.1A cells, using a retrovirus vector. Expression of sFlt-1 on N202.1A (N202-Flt) cells significantly inhibited the tumor growth compared with N202.1A parental cells. In contrast to the application of immunotherapy alone or antiangiogenic therapy alone, which delayed the tumor growth, the combination of the two therapies provided complete inhibition of tumor growth in Her-2/neu mice. These results indicate that the use of tumor targeting with immunotherapy in simultaneous combination with antiangiogenic therapy provides a more efficient strategy for the treatment of solid tumors.

  10. Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

    PubMed Central

    Kim, Yeong Hoon; Bhatt, Lokraj; Ahn, Hye-Jin; Yang, Zhaoshou; Lee, Won-Kyu; Nam, Ho-Woo

    2017-01-01

    The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine (5 μM) at 20 μM and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at 1–5 μM, but host cells were destroyed at 10–20 μM. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells. PMID:29103264

  11. Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells.

    PubMed

    Kim, Yeong Hoon; Bhatt, Lokraj; Ahn, Hye-Jin; Yang, Zhaoshou; Lee, Won-Kyu; Nam, Ho-Woo

    2017-10-01

    The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine (5 μM) at 20 μM and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at 1-5 μM, but host cells were destroyed at 10-20 μM. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

  12. Smallpox Still Haunts Scientists: Results of a Questionnaire-Based Inquiry on the Views of Health Care and Life Science Experts and Students on Preserving the Remaining Variola Virus Stocks

    PubMed Central

    Srinivasan, Thangavelu; Dedeepiya, Vidyasagar Devaprasad; John, Sudhakar; Senthilkumar, Rajappa; Reena, Helen C.; Rajendran, Paramasivam; Balamurugan, Madasamy; Kurosawa, Gene; Iwasaki, Masaru; Abraham, Samuel J. K.

    2013-01-01

    The World Health Organization (WHO) declared eradication of the dreadful disease “smallpox” in 1980. Though the disease has died down, the causative virus “variola” has not, as it has been well preserved in two high security laboratories—one in USA and another in Russia. The debate on whether the remaining stocks of the smallpox virus should be destroyed or not is ongoing, and the World Health Assembly (WHA) in 2011 has decided to postpone the review on this debate to the 67th WHA in 2014. A short questionnaire-based inquiry was organized during a one-day stem cell meeting to explore the views of various health care and life science specialists especially students on this aspect. Among the 200 participants of the meeting, only 66 had answered the questionnaire. 60.6% of participants who responded to the questionnaire were for preserving the virus for future reference, while 36.4% of the participants were for destroying the virus considering the magnitude with which it killed millions. However, 3% of the respondents were not able to decide on any verdict. Therefore, this inquiry expresses the view that “what we cannot create, we do not have the right to destroy.” PMID:23970838

  13. Canadian Vehicle Protection Program (EO considerations)

    DTIC Science & Technology

    2012-10-09

    HFI); EO and Acoustic Sensing. – Situational Awareness Technologies Evaluation (SITUATE). – Urban Gated Laser Retro -reflection Scanner (UGLARES...llery Rockets Terminal Defeat of VSRBM 1 Destroy Soft Destroy Soft UAVs Destroy In-Flight Artillery Shells UAVs at at Long Range Short Range

  14. GLOBULAR CLUSTERS AS CRADLES OF LIFE AND ADVANCED CIVILIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano, R. Di; Ray, A., E-mail: rdistefano@cfa.harvard.edu, E-mail: akr@tifr.res.in

    2016-08-10

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions canmore » destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.« less

  15. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  16. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhu; Ma, Man; Pang, Xiaojuan; Tan, Fengping; Li, Nan

    2015-09-01

    The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer.The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04353k

  17. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells

    PubMed Central

    Edwards, Adrianne N.; Karim, Samiha T.; Pascual, Ricardo A.; Jowhar, Lina M.; Anderson, Sarah E.; McBride, Shonna M.

    2016-01-01

    Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60–75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands. PMID:27833595

  18. Mother Centriole Distal Appendages Mediate Centrosome Docking at the Immunological Synapse and Reveal Mechanistic Parallels with Ciliogenesis.

    PubMed

    Stinchcombe, Jane C; Randzavola, Lyra O; Angus, Karen L; Mantell, Judith M; Verkade, Paul; Griffiths, Gillian M

    2015-12-21

    Cytotoxic T lymphocytes (CTLs) are highly effective serial killers capable of destroying virally infected and cancerous targets by polarized release from secretory lysosomes. Upon target contact, the CTL centrosome rapidly moves to the immunological synapse, focusing microtubule-directed release at this point [1-3]. Striking similarities have been noted between centrosome polarization at the synapse and basal body docking during ciliogenesis [1, 4-8], suggesting that CTL centrosomes might dock with the plasma membrane during killing, in a manner analogous to primary cilia formation [1, 4]. However, questions remain regarding the extent and function of centrosome polarization at the synapse, and recent reports have challenged its role [9, 10]. Here, we use high-resolution transmission electron microscopy (TEM) tomography analysis to show that, as in ciliogenesis, the distal appendages of the CTL mother centriole contact the plasma membrane directly during synapse formation. This is functionally important as small interfering RNA (siRNA) targeting of the distal appendage protein, Cep83, required for membrane contact during ciliogenesis [11], impairs CTL secretion. Furthermore, the regulatory proteins CP110 and Cep97, which must dissociate from the mother centriole to allow cilia formation [12], remain associated with the mother centriole in CTLs, and neither axoneme nor transition zone ciliary structures form. Moreover, complete centrosome docking can occur in proliferating CTLs with multiple centriole pairs. Thus, in CTLs, centrosomes dock transiently with the membrane, within the cell cycle and without progression into ciliogenesis. We propose that this transient centrosome docking without cilia formation is important for CTLs to deliver rapid, repeated polarized secretion directed by the centrosome. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network.

    PubMed

    Wang, Yearnchee Curtis; Chan, Terence Chee-Hung; Sahakian, Alan Varteres

    2018-01-04

    Radiofrequency ablation (RFA), a method of inducing thermal ablation (cell death), is often used to destroy tumours or potentially cancerous tissue. Current techniques for RFA estimation (electrical impedance tomography, Nakagami ultrasound, etc.) require long compute times (≥ 2 s) and measurement devices other than the RFA device. This study aims to determine if a neural network (NN) can estimate ablation lesion depth for control of bipolar RFA using complex electrical impedance - since tissue electrical conductivity varies as a function of tissue temperature - in real time using only the RFA therapy device's electrodes. Three-dimensional, cubic models comprised of beef liver, pork loin or pork belly represented target tissue. Temperature and complex electrical impedance from 72 data generation ablations in pork loin and belly were used for training the NN (403 s on Xeon processor). NN inputs were inquiry depth, starting complex impedance and current complex impedance. Training-validation-test splits were 70%-0%-30% and 80%-10%-10% (overfit test). Once the NN-estimated lesion depth for a margin reached the target lesion depth, RFA was stopped for that margin of tissue. The NN trained to 93% accuracy and an NN-integrated control ablated tissue to within 1.0 mm of the target lesion depth on average. Full 15-mm depth maps were calculated in 0.2 s on a single-core ARMv7 processor. The results show that a NN could make lesion depth estimations in real-time using less in situ devices than current techniques. With the NN-based technique, physicians could deliver quicker and more precise ablation therapy.

  20. Protein aggregation as a cellular response to oxidative stress induced by heme and iron

    PubMed Central

    Vasconcellos, Luiz R. C.; Dutra, Fabianno F.; Siqueira, Mariana S.; Paula-Neto, Heitor A.; Dahan, Jennifer; Kiarely, Ellen; Carneiro, Leticia A. M.; Bozza, Marcelo T.; Travassos, Leonardo H.

    2016-01-01

    Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis. PMID:27821769

Top