Science.gov

Sample records for desulfurization sorbent quarterly

  1. Hot coal gas desulfurization with manganese based sorbents. Quarterly report, June--September 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of work being performed on hot coal gas desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) appears to be a strong contender to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Eighth Quarterly Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  2. Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-01-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

  3. Hot Coal Gas Desulfurization with manganese-based sorbents. Quarterly report, April--June 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) appears to be a strong contender to zincbased sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Seventh Quarterly Report documents progress in bench-scale testing of a leading manganese-based sorbent pellets (FORM4-A). This formulation is a high-purity manganese carbonate-based material. This formulation was subjected to 20 consecutive cycles of sulfidation and regeneration at 900{degrees}C in a 2-inch fixed bed reactor. The sulfidation gas was a simulated Tampella U-gas with an increased hydrogen sulfide content of 3% by volume to accelerate the rate of breakthrough, arbitrarily taken as 500 ppmv. Consistent with thermo-gravimetric analysis (TGA) on individual pellets, the fixed bed tests show small improvement in capacity and kinetics with the sulfur-loading capacity being about 22% by weight of the original pellet, which corresponds to approximately 90% bed utilization!

  4. Hot Coal Gas Desulfurization with manganese based sorbents. Quarterly report, August 1, 1993--September 30, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-10-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This report documents progress in pelletizing and testing via thermogravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. Preliminary results indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  5. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report No. 1, October--December 1986

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  6. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 7, April--June 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  7. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 9, October--December 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  8. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report No. 3, April--June 1987

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  9. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, July 15, 1995--September 15, 1995

    SciTech Connect

    Hepworth, M.T.

    1995-09-15

    The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titinate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C. In addition, sulfate formation during regeneration leads to spalling of reactive 293 surfaces. Due to zinc-based sorbent performance, METC has shown interest in formulating and testing manganese-based sorbents. Westmoreland and Harrison evaluated numerous candidate sulfur sorbents and identified Mn as a good candidate. Later, Turkdogan and Olsson tested manganese-based sorbents which demonstrated superior desulfurization capacity under high temperatures, and reducing conditions. Recently, Ben-Slimane and Hepworth conducted several studies on formulating Mn-sorbents and desulfurizing a simulated fuel gas. Although thermodynamics predicts higher over-pressures with Mn verses Zn, under certain operating conditions Mn-based sorbents may obtain < 20 ppmv. In addition, the manganese-sulfur-oxygen (Mn-S-O) system does not reduce to the metal under even highly reducing gases at high temperatures (550-900{degrees}C). Currently, many proposed IGCC processes include a water quench prior to desulfurization. This is for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese the water quench is obviated due to sorbent loss, as Mn-based sorbents have been shown to retain reactivity under cycling testing at 900{degrees}C. This reduces system hardware, and increases thermal efficiency while decreasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent.

  10. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 4, July--September 1987

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  11. Hot Coal Gas Desulfurization with manganese-based sorbents. Second [quarterly] technical report, December 1, 1992--March 1, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-03-01

    At present, the focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicate that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a preferable alternative to zinc-based sorbents. A significant domestic source of manganese in Minnesota is being explored for an in situ leach process which has potential for producing large tonnages of solutions which may be ideal for precipitation and recovery of pure manganese as a carbonate in a reactive form. In the current program the following studies will be addressed: Preparation of manganese sorbent pellets and characterization tests on pellets for strength and surface area; analysis of the thermodynamics and kinetics of sulfur removal from hot fuel gases by individual sorbent pellets (loading tests) by thermogravimetric testing; regeneration tests via TGA on individual sorbent pellets by oxidation; and bench-scale testing on sorbent beds in a two-inch diameter reactor. The developed information will be of value to METC in its determination of whether or not a manganese-based regenerable sorbent holds real promise for sulfur cleanup of hot fuel gases. This information is necessary prior to pilot-scale testing leading to commercial development is undertaken.

  12. LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 6, January--March 1992

    SciTech Connect

    Not Available

    1992-09-01

    The LIFAC technology has similarities to other sorbent injection technologies using humidification, but employs a unique patented vertical reaction chamber located down-stream of the boiler to facilitate and control the sulfur capture and other chemical reactions. This chamber improves the overall reaction efficiency enough to allow the use of pulverized limestone rather than more expensive reagents such as lime which are often used to increase the efficiency of other sorbent injection processes. Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. In comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide - 75--85% relative to 90% or greater for conventional scrubbers - and requires more reagent material. However, if the demonstration is successful, LIFAC will offer these important advantages over wet scrubbing systems: LIFAC is relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems; LIFAC is less expensive to install than conventional wet FGD processes; LIFAC`s overall costs measured on a dollar-per-ton S0{sub 2} removed basis are less, an important advantage in a regulatory regime with trading of emission allocations. LIFAC produces a dry, readily disposable waste by-product versus a wet product; and LIFAC is relatively simple to operate.

  13. LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 9, October--December 1992

    SciTech Connect

    Not Available

    1992-12-31

    Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. In comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide - 75--85% relative to 90% or greater for conventional scrubbers -- and requires more reagent material. However, if the demonstration is wet scrubbing systems: LIFAC is relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems. LIFAC is less expensive to install than conventional wet FGD processes. LIFAC`s overall costs measured on a dollar-per-ton SO{sub 2} removed basis are less, an important advantage in a regulatory regime with trading of emission allocations. LIFAC produces a dry, readily disposable waste by-product versus a wet product. LIFAC is relatively simple to operate.

  14. LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 10, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. in comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide -- 75--85% relative to 90% or greater for conventional scrubbers and requires more reagent material. However, if the demonstration is successful, LIFAC will offer these important advantages over wet scrubbing systems: Relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems; less expensive to install than conventional wet FGD processes; overall costs measured on a dollar-per-ton SO{sub 2} removed basis are less; produces a dry, readily disposable waste by-product versus a wet product; and is relatively simple to operate. The site for the LIFAC demonstration is Richmond Power and Light`s Whitewater Valley 2 pulverized coal-fired power station (60 MW), located in Richmond, Indiana.

  15. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  16. Composition modification of zinc titanate sorbents for hot gas desulfurization. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Swisher, J.H.; Datta, R.K.

    1995-12-31

    For new coal gasification systems, zinc titanate sorbents are being developed to remove sulfur from the hot product gas prior to its use in combined cycle turbines and high temperature fuel cells. Although most of the properties of these sorbents are very attractive, there are still concerns about durability over many sulfidation-regeneration cycles and zinc losses due to vaporization. Doping the zinc titanate with other metal ions could alleviate both concerns, which are the objectives of this project. A screening study was completed during the second quarter in which Ni, Cr, Cu, Mg, and Al were evaluated as dopants in zinc titanate. Measurements that were made include solubility, crush strength, and sulfidation-regeneration behavior in a thermogravimetric analyzer. A formulation containing Cr showed the most promise. It and other formulations containing Cr will be emphasized during the remainder of the year. Fixed bed experiments will start during the third quarter.

  17. Desulfurization Sorbents for Transport-Bed Applications

    SciTech Connect

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-07-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-{micro}m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system.

  18. Sorbent for use in hot gas desulfurization

    DOEpatents

    Gasper-Galvin, Lee D.; Atimtay, Aysel T.

    1993-01-01

    A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

  19. Advanced Hot-Gas Desulfurization Sorbents

    SciTech Connect

    Jothimurugesan, K.; Adeyiga, A.; Gangwal, S.K.

    1996-12-31

    The objective of this project is to develop advanced hot-gas desulfurization sorbents for relatively low temperature application that show stable and high sulfidation reactivity at 343 to 538 {degrees}C. A number of zinc-based formulations will be prepared and screened for testing in a fixed-bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel gases. One of the superior formulations will be tested for long- term durability and chemical reactivity in the reactor. To prevent sulfation, catalyst additives will be investigated, which would promote a lower regeneration temperature.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  1. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  4. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  5. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Silaban, A.; Harrison, D.P. . Dept. of Chemical Engineering)

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  6. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research Development Center (AMAX R D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  7. Development of advanced hot-gas desulfurization sorbents. Final report

    SciTech Connect

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1997-10-01

    The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

  8. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.

    1993-06-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc ferrite and zinc titanate sorbents to be employed for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: (1) Investigating various manufacturing methods to produce zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; (2) Characterizing and screening the formulations for chemical reactivity, attrition resistance, and structural properties; (3) Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; (4) Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; (5) 100-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; (6) Addressing various reactor design issues; (7) Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems. (8) Transferring sorbent manufacturing technology to the private sector; and (9) Producing a large batch of the sorbent to demonstrate commercial feasibility of the preparation method.

  9. Core-in-shell sorbent for hot coal gas desulfurization

    DOEpatents

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  10. Kinetics of Mn-based sorbents for hot coal gas desulfurization: Quarterly progress report, December 15, 1994--March 15, 1995. Task 2 -- Exploratory experimental studies: Single pellet tests; Rate mechanism analysis

    SciTech Connect

    Hepworth, M.T.

    1995-03-15

    In earlier studies, zinc ferrite and zinc titanate were developed as regenerable sorbents capable of removing hydrogen sulfide from hot fuel gases originating from coal gasification. Manganese ore as well as manganese carbonate, precipitated from aqueous solutions, combined with alumina to form indurated pellets hold promise of being a highly-effective, inexpensive, regenerable sorbent for hot fuel gases. Although the thermodynamics for sulfur removal by manganese predicts somewhat higher hydrogen sulfide over-pressures (i.e. poorer degree of desulfurization) than can be accomplished with zinc-based sorbents, zinc tends to be reduced to the metallic state under coal gasification conditions resulting in loss of capacity and reactivity by volatilization of reactive surfaces. This volatilization phenomenon limits the temperatures for which desulfurization can be effectively accomplished to less than 500 C for zinc ferrite and 700 C for zinc titanate; whereas, manganese-based sorbents can be utilized at temperatures well in temperatures exceeding 700 C. Also the regeneration of manganese-based pellets under oxidizing conditions may be superior to that of zinc titanate since they can be loaded from a simulated reducing coal-derived gas and then be regenerated at higher temperatures (up to 1,300 C). The topics that will be addressed by this study include: preparation of an effective manganese-based sorbent, thermodynamics and kinetics of sulfur removal from hot fuel gases by this sorbent, analysis of kinetics and mechanisms by which sulfur is absorbed by the sorbent (i.e., whether by gaseous diffusion, surface-controlled reaction, ore pore diffusion), and cyclic sulfidation and regeneration of the sorbent and recovery of the sulfur.

  11. Desulfurization sorbent development activities at METC

    SciTech Connect

    Siriwardane, R.V.

    1995-06-01

    Development of a suitable regenerable sorbent is a major barrier issue in the hot gas cleanup program for integrated gasification combined-cycle (IGCC) systems. This has been a challenging problem during the last 20 years, since many of the sorbents developed in the program could not retain their reactivity and physical integrity during repeated cycles of sulfidation and regeneration reactions. A series of promising sorbents (METC 2-10), which were capable of sustaining their reactivity and physical integrity during repeated sulfidation/ regeneration cycles, have been developed at the Morgantown Energy Technology Center (METC). These sorbents were tested both in low-pressure (260 KPa/23 psig) and high-pressure (520 KPa/60.7 psig) fixed-bed reactors at 538{degrees}C (1000{degrees}F) with simulated coal gas. High-pressure testing was continued for 20 cycles with steam regeneration. A major research goal during the last year was to lower the cost of materials utilized during the sorbent preparation. The METC 9 sorbent was prepared by substituting low-cost materials for some of the materials in METC 6 sorbent. The sulfur capacity of the two sorbents were similar during the 20-cycle testing. METC 2 sorbent was exposed to coal gas in the Modular Gas Cleanup Rig and it was later tested in the high-pressure fixed-bed reactor. The reactivity of the METC 2 sorbent was unaffected by the exposure to the coal gas. Development of these sorbents will be continued for both fluid-bed and moving-bed applications.

  12. Manganese-based sorbents for coal gas desulfurization

    SciTech Connect

    Gasper-Galvin, L.D.; Fisher, E.P.; Goyette, W.J.

    1996-12-31

    The intent of this study is to perform a preliminary screening on a particular Mn-based sorbent, CST-939 (from Chemetals), for hot gas desulfurization. The purpose of the preliminary screening is to determine which temperature and type of coal gas this sorbent demonstrates the greatest capacity and efficiency for sulfur removal. The following conclusions were made from the data collected on the CST-939 sorbent: The sorbent efficiency and capacity are much greater at 343{degrees}C (650{degrees}F) than at 871{degrees}C (1,600{degrees}F). The sorbent efficiency and capacity are much greater in the presence of the more highly-reducing Shell gas than with the less-reducing KRW gas. The sorbent showed tremendous capacity for sulfur pickup, with actual loadings as high as 21 weight percent. Oxidative regeneration at 871{degrees}C (1,600{degrees}F) appeared to decompose sulfate; however, unusually high SO{sub 2} release during the second sulfidations and/or reductive regenerations indicated incomplete regeneration. The average crush strength of the reacted sorbent did not indicate any loss of strength as compared to the fresh sorbent. Superior sorbent performance was obtained in the presence of simulated Shell gas at 538{degrees}C (1,000{degrees}F).

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  14. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  15. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  16. LIFAC Sorbent Injection Desulfurization Demonstration Project

    SciTech Connect

    Not Available

    1992-01-01

    The LIFAC technology has similarities to other sorbent injection technologies using humidification, but employs a unique patented vertical reaction chamber located down-stream of the boiler to facilitate and control the sulfur capture and other chemical reactions. This chamber improves the overall reaction efficiency enough to allow the use of pulverized limestone rather than more expensive reagents such as lime which are often used to increase the efficiency of other sorbent injection processes. Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. In comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide - 75--85% relative to 90% or greater for conventional scrubbers - and requires more reagent material. However, if the demonstration is successful, LIFAC will offer these important advantages over wet scrubbing systems: LIFAC is relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems; LIFAC is less expensive to install than conventional wet FGD processes; LIFAC's overall costs measured on a dollar-per-ton S0{sub 2} removed basis are less, an important advantage in a regulatory regime with trading of emission allocations. LIFAC produces a dry, readily disposable waste by-product versus a wet product; and LIFAC is relatively simple to operate.

  17. The mechanism of coal gas desulfurization by iron oxide sorbents.

    PubMed

    Lin, Yi-Hsing; Chen, Yen-Chiao; Chu, Hsin

    2015-02-01

    This study aims to understand the roles of hydrogen and carbon monoxide during the desulfurization process in a coal gasification system that H2S of the syngas was removed by Fe2O3/SiO2 sorbents. The Fe2O3/SiO2 sorbents were prepared by incipient wetness impregnation. Through the breakthrough experiments and Fourier transform infrared spectroscopy analyses, the overall desulfurization mechanism of the Fe2O3/SiO2 sorbents was proposed in this study. The results show that the major reaction route is that Fe2O3 reacts with H2S to form FeS, and the existence of CO and H2 in the simulated gas significantly affects equilibrium concentrations of H2S and COS. The formation of COS occurs when the feeding gas is blended with CO and H2S, or CO2 and H2S. The pathways in the formation of products from the desulfurization process by the reaction of Fe2O3 with H2S have been successfully established.

  18. LIFAC Sorbent Injection Desulfurization Demonstration Project

    SciTech Connect

    Not Available

    1992-01-01

    Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. In comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide - 75--85% relative to 90% or greater for conventional scrubbers -- and requires more reagent material. However, if the demonstration is wet scrubbing systems: LIFAC is relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems. LIFAC is less expensive to install than conventional wet FGD processes. LIFAC's overall costs measured on a dollar-per-ton SO[sub 2] removed basis are less, an important advantage in a regulatory regime with trading of emission allocations. LIFAC produces a dry, readily disposable waste by-product versus a wet product. LIFAC is relatively simple to operate.

  19. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.

    1993-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the U.S. Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion for the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation give the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  20. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  1. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    SciTech Connect

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1990-11-01

    During this quarter work on zinc titanate materials as sorbents for fuel gas desulfurization continued. On the basis of the completed parametric studies of reduction and sulfidation (effects of H{sub 2}, H{sub 2}O, see quarterly reports {number sign}7, 8), ZnO and Zn-Ti-O materials were evaluated in terms of reduction-sulfidation kinetic differences. Comparative Arrhenius plots of the initial reduction and sulfidation rates are shown for the sorbents ZnO, Z2T-a (2Zn:1Ti) and Z2T3-a (2Zn:3Ti). The reduction rate is shown for a gas containing (mol) 10%H{sub 2}-3%H{sub 2}O-87%N{sub 2}, while sulfidation is for 2%H{sub 2}S-98%N2. The point at which the initial reduction rate becomes faster than sulfidation rate is 848,872 and 942{degree}C, respectively, for ZnO, Z2T-a and Z2T3-a. Therefore, Zn-Ti-O solids can be used for the desulfurization of coal-derived fuel gas at higher temperatures than single ZnO. To determine the regenerability of Zn-Ti-O solids and their sulfidation performance after regeneration, two cycles of consecutive sulfidation-regeneration were performed with ZnO and Z2T-a. 2 figs.

  2. Key factor in rice husk Ash/CaO sorbent for high flue gas desulfurization activity.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2006-10-01

    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.

  3. Key factor in rice husk ash/CaO sorbent for high flue gas desulfurization activity

    SciTech Connect

    Irvan Dahlan; Keat Teong Lee; Azlina Harun Kamaruddin; Abdul Rahman Mohamed

    2006-10-01

    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factor for high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x{sub 1} (6-16 h), amount of RHA, x{sub 2} (5-15 g), amount of CaO, x{sub 3} (2-6 g), amount of water, x{sub 4} (90-110 mL), and hydration temperature, x{sub 5} (150-250{sup o}C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO{sub 2} desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent. 31 refs., 5 figs., 3 tabs.

  4. SCALE-UP OF ADVANCED HOT-GAS DESULFURIZATION SORBENTS

    SciTech Connect

    K. JOTHIMURUGESAN; S.K. GANGWAL

    1998-03-01

    The objective of this study was to develop advanced regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective was to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high sulfidation activity at temperatures as low as 343 C (650 F). Twenty sorbents were synthesized in this work. Details of the preparation technique and the formulations are proprietary, pending a patent application, thus no details regarding the technique are divulged in this report. Sulfidations were conducted with a simulated gas containing (vol %) 10 H{sub 2}, 15 CO, 5 CO{sub 2}, 0.4-1 H{sub 2}S, 15 H{sub 2}O, and balance N{sub 2} in the temperature range of 343-538 C. Regenerations were conducted at temperatures in the range of 400-600 C with air-N{sub 2} mixtures. To prevent sulfation, catalyst additives were investigated that promote regeneration at lower temperatures. Characterization were performed for fresh, sulfided and regenerated sorbents.

  5. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This annual topical report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  6. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  7. Two-stage regeneration of zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-06-28

    The Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) is interested in the potential of using a two-step process for regenerating the zinc ferrite desulfurization sorbent. In the first regeneration step, a gas mixture consisting of 12 percent SO{sub 2}, 2 percent O{sub 2}, and 86 percent N{sub 2} is used to convert zinc and iron sulfides to their sulfate forms using a sorbent bed inlet temperature of about 850{degrees}F (454{degrees}C). For the second step, the temperature is raised to about 1400{degrees}F (760{degrees}C), and the sulfates are decomposed to oxides with the concurrent release of sulfur dioxide. The same gas composition used for first step is also used for the second step. The proposed technique would require no steam and also has the advantage of producing a regeneration gas rich in sulfur dioxide. In a commercial operation, recirculating regeneration gas would be supplemented with air as required to supply the necessary oxygen. A bleed stream from regeneration (concentrated SO{sub 2} gas in nitrogen) would constitute feed to sulfur recovery.

  8. Advanced sulfur control concepts for hot gas desulfurization technology. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-08-01

    Favorable results were achieved in the sulfidation of CeO{sub 2} by H{sub 2}S and the regeneration of Ce{sub 2}O{sub 2}S by SO{sub 2}. Successful removal of approximately 99% of the H{sub 2}S from the sulfidation gas to levels of about 100 ppmv (or lower), and the production of approximately 12% elemental sulfur (as S{sub 2}) in the regeneration product gas were highlights. Final effort in the preliminary phase included a ten-cycle test at standard sulfidation and regeneration conditions with little or no sorbent deterioration. In the initial test of the detailed experimental phase of the program, the authors investigated the effect of temperature on the regeneration reaction. Results of preliminary tests showed that the Ce{sub 2}O{sub 2}S-SO{sub 2} reaction did not occur at 350 C, and all subsequent regeneration tests were at 600 C where the reaction was rapid. Significant progress has been made on the process analysis effort during the quarter. Detailed process flow diagrams along with material and energy balance calculations for six design case studies were completed in the previous quarter. Two of the cases involved two-stage desulfurization with steam regeneration, three used two-stage desulfurization with SO{sub 2} regeneration, and the sixth was based on single-stage desulfurization with elemental sulfur recovery using the DSRP concept. In the present quarter, major process equipment was sized for each of the six cases. Preliminary annual operating and levelized total cost estimates were then completed for two design cases--one involving two-stage desulfurization with SO{sub 2} regeneration and the second based on single-stage desulfurization with DSRP.

  9. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Suwei Zhao; Changhe Chen; Haiying Qi

    2008-03-01

    The semidry flue gas desulfurization (FGD) process has many advantages over the wet FGD process for moving sulfur dioxide emissions from pulverized coal-fired power plants. Semidry FGD with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The sorbent was made from lumps of lime and coal fly ash. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH){sub 2} content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH){sub 2} particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH){sub 2} particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH){sub 2} particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray. 20 refs., 7 figs., 1 tab.

  10. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization.

    PubMed

    Li, Yuan; You, Changfu; Song, Chenxing

    2010-06-15

    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g).

  11. Pore structure and reactivity changes in hot coal gas desulfurization sorbents

    SciTech Connect

    Sotirchos, S.V.

    1991-05-01

    The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

  12. Sulfidation of a Novel Iron Sorbent Supported on Lignite Chars during Hot Coal Gas Desulfurization

    NASA Astrophysics Data System (ADS)

    Yin, Fengkui; Yu, Jianglong; Gupta, Sushil; Wang, Shaoyan; Wang, Dongmei; Yang, Li; Tahmasebi, Arash

    The sulfidation behavior of novel iron oxide sorbents supported using activated-chars during desulfurization of hot coal gases has been studied. The sulfidation of the char-supported sorbents was investigated using a fixed-bed quartz reactor in the temperature range of 673K to 873K. The product gases were analyzed using a GC equipped with a TCD and a FPD detector. The sorbent samples before and after sulfidation were examined using SEM and XRD.

  13. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  14. Characterization and fixed-bed testing of a nickel-based hot gas desulfurization sorbent

    SciTech Connect

    Gasper-Galvin, L.D.; Swisher, J.H.; Hammerbeck, K.

    1994-10-01

    The objective of this project was to (1) extend a preliminary investigation completed earlier on dispersed nickel sorbents by developing new processing methods, characterizing sorbent materials more extensively, and evaluating the materials in fixed bed reactor tests, and (2) to determine the feasibility of using dispersed nickel sorbents with reductive regeneration for hot gas desulfurization. One of the properties of nickel that is somewhat unique is that it forms a liquid sulfide at sufficiently high temperatures with high sulfur potentials or H{sub 2}S levels. A eutectic exists in the Ni-S phase diagram at 637 C and a composition of 33.4 wt% or 21.5 wt% S. Under controlled conditions, the formation of a liquid phase can be used to advantage in hot gas desulfurization. Sorbent preparation, the experimental unit, and experimental procedure are described. Results from the sorbent, 24Ni-7Cu-Al{sub 2}O{sub 3}, are given.

  15. Enhanced durability of high-temperature desulfurization sorbents for fluidized-bed applications. [Zinc titanate

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-01-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc ferrite and zinc titanate sorbents to be employed for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluid-bed reactor. The sorbent formulation specified for study during the base period of this project was zinc ferrite. Zinc titanate sorbents are being studied under two options to the base contract. Specific objectives of the zinc titanate sorbent development work are the following: The effect of following process variables was investigated o the performance of zinc titanate sorbents: Method of sorbent preparation, Composition of fuel gas, Zn to Ti ratio of the sorbent, Sulfidation temperature, and Superficial gas velocity. The effect of first three variables has been covered in RTI's 1991 paper (Gupta and Gangwal, 1991b), while the effect of temperature and superficial gas velocity is described here.

  16. Enhanced durability of high-temperature desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc ferrite and zinc titanate sorbents to be employed for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluid-bed reactor. The sorbent formulation specified for study during the base period of this project was zinc ferrite. Zinc titanate sorbents are being studied under two options to the base contract. Specific objectives of the zinc titanate sorbent development work are the following: The effect of following process variables was investigated o the performance of zinc titanate sorbents: Method of sorbent preparation, Composition of fuel gas, Zn to Ti ratio of the sorbent, Sulfidation temperature, and Superficial gas velocity. The effect of first three variables has been covered in RTI`s 1991 paper (Gupta and Gangwal, 1991b), while the effect of temperature and superficial gas velocity is described here.

  17. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.

    PubMed

    Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle

    2012-09-30

    A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  18. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization.

    PubMed

    Lee, K T; Bhatia, S; Mohamed, A R; Chu, K H

    2006-01-01

    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 2, Single particle kinetic studies of sulfidation and regeneration reactions of candidate zinc ferrite sorbents

    SciTech Connect

    Silaban, A.; Harrison, D.P.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  20. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.; Rockey, John M.

    1994-01-01

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  1. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  2. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    PubMed

    Liu, Chiung-Fang; Shih, Shin-Min

    2004-08-15

    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas.

  3. An investigation into Cu-Mn based sorbent for hot gas desulfurization

    SciTech Connect

    Wan Chen; Sha Xingzhong; Shen Wenqin; Xiong Lihong

    1998-12-31

    In the integrated gasification combined cycle for generation of electricity from coal, the efficient removal of sulfur is essential for improvement in thermal efficiency and process simplification. A family of copper manganese oxide sorbents has been studied. They show better strength and higher sulfur capacity than zinc based sorbents. The integrated gasification combined cycle (IGCC) is one of the most attractive technologies for advanced electricity generation. The coal gas cleanup process is necessary not only for the protection of gas turbine hardware, but also in compliance with the environmental requirements. In order to improve the efficiency of the overall cycle and simplify the process, the coal gas is purified at high temperature. For removal of hydrogen sulfide, the focus of much current work on hot coal gas desulfurization is primarily on the usage of zinc ferrite and zinc titanate sorbents. Zinc titanate is a promising sorbent and displays better strength than zinc ferrite, but its sulfur capacity is low. Therefore novel sorbents are still being searched for which can show improved properties. A family of copper manganese oxide sorbents has been studied and then their desulfurization properties are introduced here.

  4. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications

    SciTech Connect

    Ayala, R.E.

    1991-08-01

    The objective of this contract was to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical strength of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Desired properties to be enhanced for moving-bed sorbent materials are: (1) high chemical reactivity (sulfur absorption rate and total sulfur capacity), (2) high mechanical strength (pellet crush strength and attrition resistance), and (3) suitable pellet morphology (e.g., pellet size, shape, surface area, and average specific pore volume). In addition, it is desired to maintain the sorbent properties over extended cyclic use in moving- bed systems.

  5. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1993-08-01

    To the most important findings of this 100-cycle test, ZT-4 consistently reduced the H{sub 2}S content of coal gas from 11,400 ppmv to less than 20 ppmv at 750{degree}C. The sorbent exhibited deactivation over 100 cycles with most of the activity decline occurring in the first 50 cycles. This deactivation was found to correlate with decreases in the BET area, pore volume, and internal porosity. The best correlation, as expected with small particles, was with the BET surface area. Formation of zinc silicate in the sorbent structure is believed to be a potential cause of deactivation. Despite deactivation, the sorbent became more attrition-resistant after 100 cycles of testing with negligible material loss from the reactor. No evidence of zinc loss from the sorbent was found despite its operation at 750{degree}C for 100 cycles.

  6. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  7. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOEpatents

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  8. Microbial stabilization of sulfur-laden sorbents. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Miller, K.W.

    1993-09-01

    Clean coal technologies that involve limestone for in situ sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur frequently results in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are the following: (1) to optimize conditions for sulfate generation from sulfide, thiosulfate, and sulfite; (2) to test and optimize the effectiveness of microbial processing on spent sorbents from flue gas desulfurization, coal gasification, and fluidized bed combustion; (3) to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11. This quarter, temperature, nitrogen, and phosphate requirements for sulfate generation on thiosulfate were optimized with respect to two named strains and two promising isolates. Spent sorbents from three different power plants were tested for sulfite and thiosulfate contents, in preparation for bioprocessing.

  9. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  10. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  11. Glass fiber entrapped sorbent for reformates desulfurization for logistic PEM fuel cell power systems

    NASA Astrophysics Data System (ADS)

    Yang, HongYun; Lu, Yong; Tatarchuk, Bruce J.

    Glass fiber entrapped ZnO/SiO 2 sorbent (GFES) was developed to remove sulfur species (mainly hydrogen sulfide, H 2S) from reformates for logistic PEM fuel cell power systems. Due to the use of microfibrous media and nanosized ZnO grains on highly porous SiO 2 support, GFES demonstrated excellent desulfurization performance and potential to miniaturize the desulfurization reactors. In the thin bed test, GFES (2.5 mm bed thickness) attained a breakthrough time of 540 min with up to 75% ZnO utilization at 1 ppm breakthrough. At equivalent ZnO loading, GFES yielded a breakthrough time twice as long as the ZnO/SiO 2 sorbent; at equivalent bed volume, GFES provided a three times longer breakthrough time (with 67% reduction in ZnO loading) than packed beds of 1-2 mm commercial extrudates. GFES is highly regenerable compared with the commercial extrudates, and can easily be regenerated in situ in air at 500 °C. During 50 regeneration/desulfurization cycles, GFES maintained its desulfurization performance and structural integrity. A composite bed consisting of a packed bed of large extrudates followed by a polishing layer of GFES demonstrated a great extension in gas life and overall bed utilization. This approach synergistically combines the high volume loading of packed beds with the overall contacting efficiency of small particulates.

  12. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  13. Development of advanced hot-gas desulfurization sorbents

    SciTech Connect

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1995-11-01

    The objective of this study is to develop hot-gas cleanup sorbents for relatively lower temperature application, with emphasis on the temperature applications, with emphasis on the temperature range from 343--538 C. A number of formulations will be prepared and screened for testing in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343 C to 538 C. Each formulation will be tested for up to 5 cycles of absorption and regeneration. To prevent sulfation, catalyst additives will be investigated, which would promote a lower ignition of the regeneration. Selected superior formulation will be tested for long term (up to at least 30 cycles) durability and chemical reactivity in the reactor. Zinc oxide based sorbents were prepared and characterized as fresh, sulfided, and regenerated sorbents. Results are presented.

  14. Dry injection flue gas desulfurization process using absorptive soda ash sorbent

    SciTech Connect

    Cyran, M.J.; Copenhafer, W.C.

    1986-05-13

    A dry injection flue gas desulfurization process is described which comprises injecting a dry soda ash sorbent, which is a particulate solid derived from calcination under non-sintering conditions of a NaHCO/sub 3/-containing compound, into a SO/sub 2/-contaminated flue gas stream that contains moisture in an amount of 0.5-10 wt% H/sub 2/O and is at a temperature of 100/sup 0/-175/sup 0/C; providing an amount of injected sorbent and sufficient gas-sorbent contact time such that a substantial portion, at least 40%, of the sorbent sodium content is utilized at NSR=1, in reducing the concentration of SO/sub 2/ in the gas stream, collecting the sorbent in a solids-collection device which is a fabric filter baghouse or an electrostatic precipitator; discharging collected sorbent from the solids-collection device; the dry soda ash sorbent being a porous calcine obtained from calcination of sodium sesquicarbonate, sodium bicarbonate, Wegscheider's salt or mixtures of these, and further characterized by having a minimum surface area of at least 2 m/sup 2//g and a residual bicarbonate content of less than 10 wt% NaHCO/sub 3/.

  15. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  16. Pore structure and reactivity changes in hot coal gas desulfurization sorbents. Final report, September 1987--January 1991

    SciTech Connect

    Sotirchos, S.V.

    1991-05-01

    The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

  17. Elemental sulfur recovery from desulfurization sorbents in advanced power systems

    SciTech Connect

    Dorchak, T.P.; Gangwal, S.K.; Turk, B.S.

    1995-12-31

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur with limited use of coal gas. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) SO{sub 2} regeneration, (2) substoichiometric oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Experimental results at high temperature and high pressure demonstrate that, with simple sorbent modifications, direct regeneration to elemental sulfur is feasible without the use of coal gas.

  18. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    SciTech Connect

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  19. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOEpatents

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  20. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    SciTech Connect

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  1. Durable zinc oxide-containing sorbents for coal gas desulfurization

    DOEpatents

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  2. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  3. High H2O-resistance CaO-MnOx/MSU-H sorbents for hot coal gas desulfurization.

    PubMed

    Xia, Hong; Liu, Bingsi

    2017-02-15

    A series of xMnyCa/MSU-H sorbents with various Mn/Ca molar ratio were first designed and synthesized with a sol-gel method. The desulfurization performance of the new sorbent was investigated at 600-800°C in hot coal gas. 90Mn10Ca/MSU-H exhibited better desulfurization performance at 750°C with a breakthrough sulfur capacity (BSC) of 18.69g S/100g sorbent compared to other supported Mn-based sorbents (13.2g S/100g sorbent) in similar desulfurization condition, and strong durability in multiple sulfidation-regeneration cycles using oxidation/reduction regeneration method which resolved the scientific issue of that CaSO4 is hardly decomposed to CaO. The introduction of Ca species effectively promoted the dispersion of active constituents, which improved the desulfurization activity. More importantly, 90Mn10Ca/MSU-H showed excellent H2O-resistance ability due to the fact that CaO enhanced the sorption of H2O. Moreover, the utilization of MSU-H with large pore size and excellent thermal stability effectively assured fast mass-transfer and confined the migration of active particles, which led to long lifetime stability of sorbents.

  4. Development of sorbents for high-temperature desulfurization in moving-bed systems

    SciTech Connect

    Ayala, R.E.; Chuck, T.; Gal, E.; Gupta, R.P.

    1994-10-01

    The objective of the option 3 program within this contract is to develop chemically reactive and mechanically durable mixed-metal oxide sorbent formulations that are suitable for moving-bed, high-temperature, desulfurization of coal gas. One optimum formulation will be evaluated in a pressurized 50-cycle bench-scale test. Work on zinc titanate formulations was initiated under the option 2 program and is continued under the present option 3 program along with testing of other mixed-metal oxides. One of the major limitations for large-scale use of mixed-metal oxides is the observed weakening and physical deterioration of the pellet and spalling during repetitive use in cycles of absorption and regeneration. A need exists to determine best operating conditions that minimize sulfate formation and prevent mechanical degradation. Results from materials tests on 5 zinc-based sorbents are given.

  5. Advanced sulfur control concepts in hot-gas desulfurization technology: Phase 1, Feasibility of the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents

    SciTech Connect

    Lopez, A.; White, J.; Groves, F.R.; Harrison, D.P.

    1994-10-01

    This topical report de-scribes the results of Phase 1 research performed during the first six months of a three-year contract to study the feasibility of the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Much effort has gone into the development of a high-temperature meal oxide sorbent process for removal of H{sub 2}S from the coal gas. A number of sorbents based upon metals such as zinc, iron, manganese and others have been studied. In order for high temperature desulfurization to be economical it is necessary that the sorbents be regenerated to permit multicycle operation. Current methods of sorbent regeneration involve oxidation of the metal sulfide to reform the metal oxide and free the sulfur as SO{sub 2}. An alternate regeneration process in which the sulfur is liberated in elemental form is preferable. The overall objective of the current research is to study simpler and economically superior processing of known sorbents capable of producing elemental sulfur during regeneration. This topical report summarizes the first steps of this effort. A literature search has been completed to identify possible regeneration concepts and to collect relevant thermodynamic, kinetic, and process data. Three concepts involving reaction with SO{sub 2}, partial oxidation using an O{sub 2} {minus} H{sub 2}O mixture, and steam regeneration have been identified. The first two concepts result in the direct production of elemental sulfur while H{sub 2}S is the product of steam regeneration. This concept is of potential interest, however, since existing Claus technology can be used to convert H{sub 2}S to elemental sulfur. Following the literature search, a thermodynamic analysis, based upon free-energy minimization was carried out to evaluate candidate sorbents for possible use with the three regeneration concepts.

  6. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Base Program: Development and testing of zinc ferrite sorbents

    SciTech Connect

    Ayala, R.E.

    1991-08-01

    The objective of this contract was to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical strength of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Desired properties to be enhanced for moving-bed sorbent materials are: (1) high chemical reactivity (sulfur absorption rate and total sulfur capacity), (2) high mechanical strength (pellet crush strength and attrition resistance), and (3) suitable pellet morphology (e.g., pellet size, shape, surface area, and average specific pore volume). In addition, it is desired to maintain the sorbent properties over extended cyclic use in moving- bed systems.

  7. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents

    SciTech Connect

    Ayala, R.E.

    1993-04-01

    One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

  8. Development and testing of regenerable hot-coal-gas desulfurization sorbents

    SciTech Connect

    Grindley, T.; Steinfeld, G.

    1981-10-01

    Investigations over several years at the Morgantown Energy Technology Center have been concerned with the development of a regenerable metal oxide desulfurization sorbent which would function on hot coal-derived fuel gas. In the latest phase of testing, a combination of zinc oxide with iron oxide as zinc ferrite has produced a sorbent which has demonstrated regenerability and capability of removing sulfur from simulated hot coal gas to a level of 1 to 10 ppM by volume. The principal finding at this stage of the project is that the compound zinc ferrite and also iron oxide containing some zinc ferrite have hydrogen sulfide absorption performances very similar to those of zinc oxide. Extruded sorbents made from these compounds have been demonstrated to perform with varying ability in the temperature range 800/sup 0/F (427/sup 0/C) to 1400/sup 0/F (760/sup 0/C) at a space velocity of 2000 hourly and a hydrogen sulfide concentration of 2.7 percent. They have also been shown to be regenerable with a 50/50 percent v/v steam-air mixture at 1000/sup 0/F (538/sup 0/C) and 600 hourly space velocity with no loss of absorptive power. Both zinc ferrite and zinc oxide appear to perform optimally in the middle of the temperature range, where absorption capacity is greatest. Surprisingly, the experimental results indicate no trend to a lower degree of hydrogen sulfide removal with rise in temperature. Zinc ferrite appears to be superior to zinc oxide in terms of its absorption capacity and resistance to sintering at higher temperatures.

  9. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents. Final report, July 1988--July 1991

    SciTech Connect

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  10. Enhanced durability for high-temperature desulfurization sorbents for moving-bed applications -- Option 3 program: Development and testing of additional zinc titanate sorbents. Final report, September 1992--May 1996

    SciTech Connect

    Ayala, R.E.; Chuck, T.L.

    1996-12-31

    GE is developing a moving-bed, high-temperature desulfurization system for the integrated gasification combined-cycle (IGCC) power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.`s Polk Power Station. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The objective of this contract is to identify and test sorbent fabrication methods and chemical compositions that enhance the long-term chemical reactivity and mechanical strength of zinc titanate and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. A parametric study on the use of calcium sulfate additives to zinc titanate was conducted for zinc titanates having a 2:1 and 1.5:1 zinc-to-titanium molar ratio, and they showed a beneficial effect on crush strength of fresh 2:1 zinc titanate sorbents. In addition, a test procedure was developed to screen sorbent formulations based on resistance to spalling and pellet breakage induced by zinc sulfate formation in the presence of sulfur dioxide and excess oxygen conditions.

  11. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae. Eleventh quarterly report

    SciTech Connect

    Krawiec, S.

    1992-08-01

    Research continues on desulfurization of coal using microorganisms. Topics reported on this quarter include: desulfurization with N1-36 (presumptively identified as Rhodochrous erythropolis), pulsed-field gel electrophoresis of chromosomal DNA`s of Thiobacillus spp., and fresh isolates with the presumptive capacity to desulfurize dibenzothiophenes.

  12. Advanced sulfur control concepts in hot-gas desulfurization technology: Phase 2. Exploratory studies on the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Topical report

    SciTech Connect

    Lopez, A.; Huang, W.; White, J.

    1997-07-01

    The topical report describes the results of Phase 2 research to determine the feasibility of the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Many of the contaminants present in coal emerge from the gasification process in the product gas. Much effort has gone into the development of high temperature metal oxide sorbents for removal of H{sub 2}S from coal gas. The oxides of zinc, iron, manganese, and others have been studied. In order for high temperature desulfurization to be economical it is necessary that the sorbents be regenerated to permit multicycle operation. Current methods of sorbent regeneration involve oxidation of the metal sulfide to reform the metal oxide and free the sulfur as SO{sub 2}. An alternate regeneration process in which the sulfur is liberated in elemental form is desired. Elemental sulfur, which is the typical feed to sulfuric acid plants, may be easily separated, stored, and transported. Although research to convert SO{sub 2} produced during sorbent regeneration to elemental sulfur is on-going, additional processing steps are required and the overall process will be more complex. Clearly, the direct production of elemental sulfur is preferred. Desulfurization utilizing a cerium oxide based sorbent is discussed.

  13. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    PubMed

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Bench-scale development of mild gasification char desulfurization; [Quarterly] report, September 1--November 30, 1993

    SciTech Connect

    Knight, R.A.

    1994-03-01

    This goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650{degree}--760{degree}C and 7-15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt % sulfur was converted to chars with less than 1.0 wt % sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. During the first quarter, 180 lb (82 kg) of IBC-105 coal was obtained and subjected to crushing, and sizing to prepare 49 lb (22 kg) of material for test operation.

  15. [TDA`s hot gas desulfurization sorbent]. TDA Inc./FETC CRADA No. 97-F003, final report

    SciTech Connect

    Berry, D A

    1997-11-14

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) between TDA Incorporated and the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The objective of this CRADA was to evaluate the performance of TDA`s hot gas desulfurization (HGD) sorbent for use in fossil fuel gasification processes. This particular sorbent, TNT-MB was developed for use in moving-bed HGD reactors in an integrated gasification combined cycle (IGCC) power plant. Two separate tests were conducted; a 10-cycle test, and a low-temperature scoping test. All 10 cycles absorbed H{sub 2}S for the prescribed 125 minutes without breakthrough. The H{sub 2}S concentration remained below 50 ppmv throughout the 125 minute test period. The sorbent showed an increase in attrition resistance from 1.8% (fresh) to 0.87% (reactor inlet) and 0.64% (reactor outlet) after 10 cycles. The results of an additional attrition test are also contained in this report.

  16. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    SciTech Connect

    J.J. BERNS; K.A. SADECKI; M.T. HEPWORTH

    1997-09-15

    Mixed manganese oxide sorbents have been investigated for high-temperature removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. The sorbents were screened by thermodynamic equilibrium considerations for sulfidation. Preliminary experimental work using thermogravimetric analysis (TGA) indicated titania to be a superior substrate than alumina. Four formulations showing superior reactivity in a TGA were then tested in an ambient pressure fixed-bed reactor to determine steady state H 2 S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. Eight tests were conducted with each test consisting of five cycles of sulfidation and regeneration. Sulfidation occurred at 600 o C using a simulated coal gas at an empty-bed space velocity of approximately 12,000 per hour. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H 2 S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 o C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in an air/steam mixture at 750 o C with minimal sulfate formation. The leading formulation (designated C6-2) from the fixed-bed tests was then further tested under varying sorbent induration temperature, sulfidation temperature and superficial gas velocity. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H 2 S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Testing showed that the sorbent's strength was a strong function of the sorbent induration

  17. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-06-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. UTSI has completed the batch mode experiments to locate the position of the CO{sub 3}{sup 2} and SO{sub 4}{sup 2} ions in the affinity chart. Also, the reviews of the ASPEN Code`s capabilities and EPRI-TAG document`s methodology are in progress for developing the Best Process Schematic and related economics. The fixed-bed experiments are also in progress to evaluate the cycle efficiency of the candidate resins. So far we have completed ten consecutive cycles of exhaustion/carbonation and regeneration for IRA-35 resin. Because of the past problems (now resolved) with the fixed-bed system, the addition of batch mode screening experiments, Christmas holidays and spring break, and the moving of UTSI`s Chemistry Laboratory to a new location, the program is about 6--8 weeks behind schedule, but well within the budget.

  18. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    SciTech Connect

    K.A. SADECKI; M.T. HEPWORTH

    1997-06-15

    Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H2S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In previous reports, the sulfidation and regeneration results from cyclic testing done at 550 and 600 °C were presented. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H2S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 °C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in air/steam mixture at 750 °C with minimal sulfate formation. In this report, the performance of the leading formulation (designated C6-2) was investigated for high temperature removal of H2S from simulated coal-derived fuel gas under varying sorbent induration temperature, reaction temperature, and superficial gas velocity. Sulfidation experiments were performed in an ambient pressure fixed-bed reactor between 500 °C and 600 °C. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H2S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Sorbent also showed 30 to 53% loss of its strength over four cycles of sulfidation and regeneration. The former being sorbent indurated at 1115 °C and the prior being sorbent indurated at 1100 °C.

  19. Testing of zinc titanate desulfurization sorbents for moving-bed applications

    SciTech Connect

    Ayala, R.E.; Gal, E.; Gupta, R.P.

    1993-09-01

    Sorbents developed for moving-bed systems must comply with a minimum of chemical and mechanical durability performance characteristics in order to be considered acceptable for long-term operation. Among the desired properties, a sorbent must have: (1) High chemical reactivity, as measured by the rate of sulfur absorption and the total sulfur loading on the sorbent. (2) High mechanical strength, as measured by the pellet crush strength and the attrition resistance; (3) Suitable pellet morphology, as given by pellet size and shape to promote good bulk flow ability and seasonable porosity to increase reactivity. Formulation 2A1.7M (UCI designation L-3787M) was selected by DOE as the baseline formulation for performance evaluation of Option 3 sorbents. This baseline formulation is a rounded zinc titanate sorbent containing a 2:1 Zn:Ti molar ratio, 1.7% molybdenum (equivalent to 2.5% MoO{sub 3}), and 3% bentonite binder that had been previously tested under the Option 2 program. Zinc titanate sorbents were prepared by UCI as rounded spherical or ellipsoidal pellets. The fabrication procedure is targeted at achieving a balance of mechanical strength (crush strength and attrition resistance) and chemical reactivity by controlling the pellet internal porosity.

  20. Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents

    DTIC Science & Technology

    2009-06-01

    of-the-art SOFC electrode material is improving, the gas phase desulfurization step at high temperature is still essential to SOFCs . Our report ...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...the use thereof. Destroy this report when it is no longer needed. Do not return it to the originator. Army Research Laboratory Adelphi, MD

  1. Bench-scale testing of novel high-temperature desulfurization sorbents: Final report

    SciTech Connect

    Gangwal, S.K.; Harkins, S.M.; Stogner, J.M.; Woods, M.C.; Rogers, T.N.

    1988-12-01

    Extrudates of regenerable mixed-metal oxide sorbents including zinc ferrite, copper-modified zinc ferrite, zinc titanate, copper aluminate, copper-iron aluminate, and copper manganate were prepared and tested for their potential to remove hydrogen sulfide (H/sub 2/S) from coal gasifier gas in a high-temperature high-pressure (HTHP) fixed-bed reactor. The zinc containing sorbents were found to be more promising than those containing combinations of copper, aluminum, iron, and manganese. Reductions in H/sub 2/S concentration were achieved depending on sorbent, reactor temperature, and steam concentration. The copper-modified zinc ferrite sorbent reduced the H/sub 2/S concentration to less than 1 ppmv at up to 1100/degree/F with 20 volume % steam in the gas. The zinc ferrite sorbent showed no apparent loss in capacity over 15 sulfidation-regeneration cycles but underwent significant strength reduction in a coal-derived gas with 15% or less steam due to soot formation. Zinc titanate exhibited excellent strength and capacity retention at steam levels as low as 5% and temperatures as high as 1350/degree/F. 13 refs., 64 figs., 75 tabs.

  2. Screening of zinc-based sorbents for hot-gas desulfurization

    SciTech Connect

    Joong B. Lee; Chong K. Ryu; Chang K. Yi; Sung H. Jo; Sung H. Kim

    2008-03-15

    Highly reactive and attrition-resistant ZnO-based sorbents that are suitable for bubbling fluidized-bed reactors can be produced using the spray-drying method. Most of the ZnO-based sorbents prepared here (ZAC-X, X = 18N-25N) satisfy the physical and chemical criteria for bubbling fluidized-bed application (spherical shape, average particle size, 90-110 {mu}m; size distribution, 40-230 {mu}m; bulk density, 0.9-1.0 g/mL; attrition index (AI), 40-80%; sulfur sorption capacity, 14-17 wt %; sorbent use, 70-80%). The performance test of the ZAC-C sorbent at Korea Institute of Energy Research (KIER) with a bubbling fluidized-bed for 70 h also demonstrated that it had good sulfidation and regeneration performance (11 wt % sorption capacity and 52% sorbent use) as well as reasonable attrition resistance (1.1% attrition loss for 70 h). 14 refs., 7 figs., 6 tabs.

  3. Using high temperature baghouses to enhance desulfurization following economizer sorbent injection

    SciTech Connect

    Li, G.; Keener, T.C.

    1995-12-31

    In order to explore the potential of using high temperature baghouses to enhance SO{sub 2} removal following upstream sorbent injection, an integrated two-stage reactor system has been built. It consists of an injection stage and a filtration stage. Distinct from one-stage fixed-bed reactors, sorbent particles in this system are initially converted under controlled injection conditions before entering the filtration reactor chamber. By the aid of the system, several unique features regarding the gas-solid reactions in the baghouse after economizer zone sorbent injection have been revealed. Results have shown that the appropriate usage of a high temperature baghouse may substantially enhance the performance of the process. The further SO{sub 2} removal in the baghouse is comprehensively affected by both the conditions in the injection zone and those in the baghouse.

  4. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994

    SciTech Connect

    1994-12-31

    The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

  5. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, April--June 1995

    SciTech Connect

    Kwon, K.C.

    1995-07-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute, a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results.

  6. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    SciTech Connect

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  7. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun

    1994-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that EBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During this first quarter the requirement of an added photosensitizer has been eliminated, the catalytic effect of coal has been confirmed, and the existence of a complex set of reactions revealed. These reactions between the oxygen, oil, hydroperoxides, and coal are hydroperoxide formation, which is catalyzed by the coal surface and by heat, an unknown coal-hydroperoxide reaction, and oil polymerization. Additionally, diffusion phenomena must be playing a role because oil polymerization occurs, but the importance of diffusion is difficult to assess because less polymerization occurs when coal is present. The first task has been completed and we are now ready to determine the ability of linseed oil hydroperoxides to oxidize organic sulfur in EBC 108 coal.

  8. Reaction kinetics and simulation models for novel high-temperature desulfurization sorbents: Final report

    SciTech Connect

    Woods, M.C.; Leese, K.E.; Gangwall, S.K.; Harrison, D.P.; Jothimurugesan, K.

    1989-02-01

    A kinetic study of two mixed-metal oxide sorbents (zinc ferrite and zinc titanate) was conducted to obtain kinetic data at the temperatures and pressures typically encountered in coal gasifiers. These sorbents are used to remove H/sub 2/S from the hot coal- derived gases and can be subsequently regenerated for use in a cyclical operation. The qualitative behavior of zinc titanate was found to be quite similar. Sulfidation kinetic rate increased with H/sub 2/S concentration, slightly increased with temperature, increased with pressure at a constant H/sub 2/S mol fraction with pressure at a constant H/sub 2/S partial pressure, and increased with decreasing pellet diameter. The regeneration rates of both zinc ferrite and zinc titanate increased with temperature, O/sub 2/ concentration, and pressure at a constant O/sub 2/ mole fraction. The formation of zinc sulfate was found to be significant during regeneration of zinc ferrite at sufficiently low temperatures, high pressures, and high O/sub 2/ concentrations. Reducing gas concentrations of 65-75% (H/sub 2/ + CO) simulating the output from the Texaco gasifier operated in the oxygen-blown mode were used to assess the impact on sorbent performance. The shrinking core kinetic model was found to fit the experimental data very well. Correlations were made using a priori estimates of all parameters including diffusivity and mass transfer coefficients. Quantitative agreement was best obtained by treating the diffusivity term and/or the mass transfer term as best fit parameters. 22 refs., 69 figs., 18 tabs.

  9. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications

    SciTech Connect

    Ayala, R.E.; Gal, E.; Gupta, R.P.

    1992-01-01

    Chemical reactivity was determined at GECRD by measuring sorbent sulfur loading (defined as grams of sulfur absorbed per 100 g of fresh sorbent) in fresh and in cycled samples from a bench-scale reactor. Only formulations that exhibited a good balance of chemical and mechanical performance as fresh pellets were selected for further cyclic testing in the benchscale reactor system. Details of the bench-scale reactor and procedures have been given before (Ayala, 1991). The important aspect of the benchscale testing is that both absorption and regeneration were conducted in a packed-bed reactor simulating the time/temperature environment to which the sorbent would be exposed in a typical cycle of the full-scale moving-bed system. Absorption was carried out at 1000[degrees]F using any of three gas compositions, all having a deliberately high H[sub 2]S concentration (1 %) to accelerate testing. The oxidative regeneration was carried out between 1000 and 1250[degrees]F and 1--21% oxygen during the early phases of regeneration, and at 1400[degrees]F during the final phase simulating the temperature rise of the sorbent bed. Sixteen zinc titanate formulations were prepared as cylindrical extrudates. For all formulations, the calcination time was held constant at 2 hours. The following results were obtained: Formulations containing a 0.8 Zn:Ti ratio produced mixtures of several stoichiometric titanates: Zn[sub 2]Ti[sub 3]O[sub 8], ZnTiO[sub 3], and Zn[sub 2]TiO[sub 4], with the relative amount of each depending on temperature. Formulations containing a 2.0 Zn:Ti ratio exhibited exclusively the Zn[sub 2]TiO[sub 4] structure. The higher calcination temperature of 1800[degrees]F significantly reduced the porosity available for chemical reactivity, while the lower calcination temperature of 1400[degrees]F produced, in some cases, formulations with traces of residual unreacted zinc oxide and anatase titanium dioxide.

  10. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications

    SciTech Connect

    Ayala, R.E.; Gal, E.; Gupta, R.P.

    1992-11-01

    Chemical reactivity was determined at GECRD by measuring sorbent sulfur loading (defined as grams of sulfur absorbed per 100 g of fresh sorbent) in fresh and in cycled samples from a bench-scale reactor. Only formulations that exhibited a good balance of chemical and mechanical performance as fresh pellets were selected for further cyclic testing in the benchscale reactor system. Details of the bench-scale reactor and procedures have been given before (Ayala, 1991). The important aspect of the benchscale testing is that both absorption and regeneration were conducted in a packed-bed reactor simulating the time/temperature environment to which the sorbent would be exposed in a typical cycle of the full-scale moving-bed system. Absorption was carried out at 1000{degrees}F using any of three gas compositions, all having a deliberately high H{sub 2}S concentration (1 %) to accelerate testing. The oxidative regeneration was carried out between 1000 and 1250{degrees}F and 1--21% oxygen during the early phases of regeneration, and at 1400{degrees}F during the final phase simulating the temperature rise of the sorbent bed. Sixteen zinc titanate formulations were prepared as cylindrical extrudates. For all formulations, the calcination time was held constant at 2 hours. The following results were obtained: Formulations containing a 0.8 Zn:Ti ratio produced mixtures of several stoichiometric titanates: Zn{sub 2}Ti{sub 3}O{sub 8}, ZnTiO{sub 3}, and Zn{sub 2}TiO{sub 4}, with the relative amount of each depending on temperature. Formulations containing a 2.0 Zn:Ti ratio exhibited exclusively the Zn{sub 2}TiO{sub 4} structure. The higher calcination temperature of 1800{degrees}F significantly reduced the porosity available for chemical reactivity, while the lower calcination temperature of 1400{degrees}F produced, in some cases, formulations with traces of residual unreacted zinc oxide and anatase titanium dioxide.

  11. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    The US Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose is to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently the leading sorbent. The sulfidation/regeneration cycle can be carried out in fixed-bed, moving-bed, or fluidized-bed reactor configuration, and all three types of reactors are slated for demonstration in the DOE Clean Coal Technology program. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  12. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    SciTech Connect

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  13. Moving-bed sorbents

    SciTech Connect

    Ayala, R.E.; Gupta, R.P.; Chuck, T.

    1995-12-01

    The objective of this program is to develop mixed-metal oxide sorbent formulations that are suitable for moving-bed, high-temperature, desulfurization of coal gas. Work continues on zinc titanates formulations and Z-sorb III sorbent.

  14. Porous desulfurization sorbent pellets containing a reactive metal oxide and an inert zirconium compound

    SciTech Connect

    Gardner, Todd H.; Gasper-Galvin, Lee D.

    1996-12-01

    Sorbent pellets for removing hydrogen sulfide from coal gas are prepared by combining a reactive oxide, in particular zinc oxide, with a zirconium compound such as an oxide, silicate, or aluminate of zirconium, and an inorganic binder and pelletizing and calcining the mixture. Alternately, the zinc oxide may be replaced by copper oxide or a combination of copper, molybdenum, and manganese oxides. The pellet components may be mixed in dry form, moistened to produce a paste, and converted to pellets by forming an aqueous slurry of the components and spray drying the slurry, or the reactive oxide may be formed on existing zirconium-containing catalyst-carrier pellets by infusing a solution of a salt of the active metal onto the existing pellets and firing at a high temperature to produce the oxide. Pellets made according to this invention show a high reactivity with hydrogen sulfide and durability such as to be useful over repeated cycles of sorption and regeneration.

  15. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, January--March 1995

    SciTech Connect

    Kwon, K.C.

    1995-03-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  16. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, October--December 1994

    SciTech Connect

    Kwon, K.C.

    1995-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbent for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  17. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1994-04-01

    Research Triangle Institute (RTI) with DOE/METC sponsorship has been developing zinc titanate sorbent technology since 1986. In addition, RTI has been developing the Direct Sulfur Recovery Process (DSRP) with DOE/METC sponsorship since 1988. Fluidized-bed zinc titanate desulfurization coupled to the DSRP is currently the most advanced and attractive technology for sulfur removal/recovery for IGCC systems, and it has recently been proposed in a Clean Coal Technology project. The goal of this project is to continue further development of the zinc titanate desulfurization and DSRP technologies by: scaling up the zinc titanate reactor system; developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; testing the integrated system over an extended period with real coal-gas from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in coal gas; developing an engineering database suitable for system scaleup; and designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. During this reporting period the Construction Permit Application was completed and approved by the Process Safety Committee, and a final revised Application has been submitted to DOE/METC. A draft Test Plan for the field test was formulated. Finally, progress was made in the reactor system fabrication with the submission of purchase orders for nearly all major equipment, and with the final design of the trailer (mobile laboratory).

  18. LIFAC sorbent injection desulfurization demonstration project. Quarterly report No. 3, April--June 1991

    SciTech Connect

    Not Available

    1991-12-31

    LIFAC combines upper-furnace limestone injection followed by post-furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP.

  19. LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 5, October--December 1991

    SciTech Connect

    Not Available

    1991-12-31

    LIFAC combines upper-furnace limestone injection followed by post- furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the fifth Technical Progress Report covering the period October 1, 1991 through the end of December 1991. Due to the power plant`s planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

  20. Molecular biology of coal bio-desulfurization. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1992-04-30

    Genes cloned from Rhodococcus rhodochrous IGTS8 can transfer the DBT desulfurization phenotype to a different species (R. Fascians). The product was identified as 2-phenylphenol by gas chromatography. This result parallels the results we have previously reported for the activity of these genes in a DBT-negative mutant of IGTS8. Thus, the evidence is strong that we have identified and cloned the entire set of genes that are responsible for this very specific desulfurization reaction. Sequencing of these genes has commenced. A genomic library was constructed from the bacterium, Besulfovibrio desulfuricans. Screening has not yet identified a clone that carries the desulfurization genes from that organism. Two open reading frames, doxH and doxJ, in the C18 DBT degradation pathway were mutated and are now believed to be dispensable to that pathway. Finally, progress was made toward beginning to sequence the DBT dixoygenase genes from strain A15.

  1. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.

    PubMed

    Zhang, Y; Liu, B S; Zhang, F M; Zhang, Z F

    2013-03-15

    Several MCM-41 materials were synthesized at different conditions by hydrothermal procedure using cheap and easily available industrial water glass as silica source. Fe doped manganese-based oxide/MCM-41 sorbents were prepared by a sol-gel method. The effects of loadings of metal oxide, Fe/Mn molar ratios over MCM-41 and reaction temperature on the performance of sorbent for hot coal gas desulfurization were investigated. Various techniques such as BET, XRD, XPS, LRS and HRTEM were used to characterize the sorbents. The result indicated Fe(3+) ions could occupy a position of Mn(3+) in cubic lattice of Mn2O3 and the (FexMn2-x)O3 solid solution is mainly active phase of sorbent. Moreover, the result of nine successive sulfurization-regeneration cycles of sorbent showed high sulfur adsorption capacity and endurable stability of FeMn4Ox/MCM-41 for H2S removal.

  2. Hot gas desulfurization with sorbents containing mixed metal oxides. Final report, October 1, 1990--December 31, 1992

    SciTech Connect

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-12-31

    In this project the sulfidation and regeneration behavior of vanadium-promoted zinc ferrite sorbents was investigated by microreactor studies and physical characterization of the promoted sorbents. The discussion of results are presented for the fresh and used sorbent characterizations Zn-Fe-V-O, and standard sulfidation and regeneration experiments followed by the discussion of the effects of sulfidation temperature, calcination temperature, and the water vapor content of the simulated fuel gas.

  3. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report 19, January--March, 1994

    SciTech Connect

    Harrison, D.P.

    1994-04-01

    This research project is investigating the technical feasibility of a high-temperature, high-pressure (HTHP) process for the bulk separation of CO{sub 2} from coal-derived gas. Indirect evidence which suggested that the water-gas shift reaction occurred simultaneously with CO{sub 2} removal was found. Occurrence of the simultaneous reactions created the possibility of a direct one-step process for the manufacture of hydrogen from coal-gas while at the same time separating a concentrated stream of CO{sub 2}. Previous quarterly reports have described the design, construction, and commissioning of the fixed-bed reactor, development of analytical procedures, and results of a number of tests using dolomite sorbent precursor. During the current quarter, additional tests were carried out to study the effects of calcination gas composition, temperature, and space velocity using the standard dolomite sorbents. Alternate sorbents were tested to provide direct comparison of dolomite and limestone performance. Tests were performed using an empty reactor and reactor packed with commercial shift catalyst to learn more of the characteristics of the shift reaction in the absence of carbonation. Toward the end of the quarter, emphasis changed to sorbent durability and a number of multicycle tests were completed.

  4. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    SciTech Connect

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N.

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite was generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.

  5. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  6. Enzymatic desulfurization of coal. Second quarterly report, October 1--December 15, 1988

    SciTech Connect

    Marquis, J.K.; Kitchell, J.P.

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  7. Enzymatic desulfurization of coal. First quarterly report, May 5--September 30, 1988

    SciTech Connect

    Marquis, J.K.; Kitchell, J.P.

    1988-10-07

    Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  8. Enzymatic desulfurization of coal. Fourth quarterly report, March 16--June 15, 1989

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.; Marquis, J.K.

    1989-06-16

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  9. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 5, October 1, 1995--December 30, 1995

    SciTech Connect

    Wendt, J.O.L.; Davis, S.

    1996-06-01

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures,which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined. The research is divided into the following five tasks: (1) combustor modifications; (2) screening experiments; (3) mechanisms; (4) applications and (5) mathematical modelling. Accomplishments for this past quarter are briefly described for tasks 1 and 2.

  10. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, July 1 - September 30, 1995

    SciTech Connect

    1995-12-31

    Hot-gas desulfurization for the integrated gasification combined cycle process has been investigated by many to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur- absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results. 1 ref., 10 figs., 11 tabs.

  11. Hot coal gas desulfurization with manganese-based sorbents. Progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-07-15

    Focus of work is primarily in use of zinc ferrite and zinc titanate sorbents; however, an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc, hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. Thermodynamic analysis of the system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or titanate. This report gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work is limited to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and enduration to produce reactive pellets.

  12. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly progress report], December 1, 1994--February 28, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun; Shi, Feng; Gholson, K.L.; Ho, K.K.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During this second quarter working with IBC-108 coal (2.3% organic S. 0.4% pyrite S), the effects of different ratios of oil:coal, different extraction solvents, and different temperatures were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 1OO{degree}C. BTU loses can be kept to a minimum of 3% with proper use of solvents.

  13. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994

    SciTech Connect

    Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1995-01-01

    On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

  14. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  15. Kinetics of MN-based sorbents for hot coal gas desulfurization. Semiannual report, December 15, 1996--March 15, 1997

    SciTech Connect

    Hepworth, M.T.

    1997-03-01

    Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases prior to its use in combined cycle turbines. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H{sub 2}S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In previous reports, the sulfidation and regeneration results from cyclic testing done at 600{degrees}C were presented. Manganese-based sorbents with molar ratios >1:1 Mn:substrate were effective in reducing the H{sub 2}S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent. Regeneration tests determined that loaded pellets can be fully regenerated in air/steam mixture at 750{degrees}C with minimal sulfate formation. In this report, the results from the cyclic crush strength tests, sulfur profile test, and cyclic testing done after 5 cycles showed decreases in strength from 12.6% to 57.9%. Cyclic testing at 550{degrees}C showed pre-breakthrough concentrations as low as 10 ppmv. Cyclic testing done at 2 L/min and 3 L/min did not show any significant difference in pre-breakthrough concentrations or capacity.

  16. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April 1--June 30, 1998

    SciTech Connect

    Harrison, D.P.

    1998-09-01

    Twenty-five reduction/sulfidation tests plus one sulfidation/regeneration test were completed during the quarter. The reduction/sulfidation tests examined the behavior of six cerium oxide sorbents from different sources with reaction variables of temperature, pressure, gas composition and flow rate. Most significantly, steam was added to the sulfidation feed gas for the first time. Tests using pre-reduced sorbents and tests in which reduction and sulfidation occurred simultaneously were performed. Prebreakthrough H{sub 2}S concentrations less than 10 ppmv were obtained over a range of reaction conditions with prebreakthrough concentrations as low as 1 ppmv achieved at the most favorable conditions. The general response to reaction variables was as expected except when feed rate was varied. In some of these cases the FPD breakthrough time did not correspond to expectation. The single regeneration run was conducted at 600 C and 2 atm using 12% SO{sub 2} in N{sub 2} at a feet rate of 400 sccm. This was the first regeneration test at other than 1 atm pressure; favorable results were obtained. The only experimental objective remaining is additional high pressure regeneration testing.

  17. Enzymatic desulfurization of coal. Seventh quarterly report, December 16, 1989--March 15, 1990

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1990-03-23

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  18. Enzymatic desulfurization of coal. Fifth quarterly report, June 16--September 15, 1989

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.; Marquis, J.K.

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  19. Enzymatic desulfurization of coal. Sixth quarterly report, September 16--December 15, 1989

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  20. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  1. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  2. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1997-05-01

    On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

  3. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Seventh quarterly technical progress report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R&D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  4. Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, [April--June 1995

    SciTech Connect

    Akyurtlu, A.; Akyurtlu, J.F.

    1995-07-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. In this quarter runs for methane regeneration were completed. The data obtained were evaluated and interpreted. When the sulfated sorbent was regenerated with methane coke formation on the sorbent was observed. Treatment of fresh sorbent with methane also resulted in coking. Coke formed on the sorbent disappeared very rapidly after the methane flow was replaced with nitrogen. The order of the regeneration reaction with respect to methane was estimated as 0:76 and the activation energy of the reaction was estimated as 130 kJ/mol. During repeated sulfation-regeneration cycles the decrease in the sulfur capacity after the first cycle was slightly more when regeneration was done with methane compared to that observed with hydrogen regeneration. In the subsequent 4 cycles, the ceria sorbent preserved its sulfur capacity. The regenerated sorbent was able to capture 1.5 sulfur atoms per cerium atom in less than an hour of sulfation, compared to S/Ce of 2.5 for fresh sorbents and 2 for sorbents regenerated with hydrogen.

  5. Fluidized-bed sorbents

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  6. Kinetics of MN based sorbents for hot coal gas. Quarterly report, September--December 1996

    SciTech Connect

    1996-12-31

    Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases prior to its use in combined cycle turbines. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H{sub 2}S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In a previous report, the sulfidation results were presented. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H{sub 2}S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent. In this report, the regeneration results will be presented. Regeneration tests determined that loaded pellets can be fully regenerated in air/steam mixture at 750{degrees}C with minimal sulfate formation. 16 refs., 9 figs., 5 tabs.

  7. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, April 1--June 30, 1996

    SciTech Connect

    Hunt, T.; Sjostrom, S.; Smith, J.; Chang, R.

    1996-07-27

    The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase 11 effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. An extensive work plan has been developed for the project. Three sorbents will be selected for evaluation at the facility through investigation, presentation, and discussion among team members: PSCO, EPRI, ADA, and DOE. The selected sorbents will be tested in the five primary bench-scale configurations: pulse `et baghouse, TOXECON, reverse-gas baghouse, electrostatic precipitator, and an ESP or fabric filter `with no Comanche ash in the flue gas stream. In the EPRI TOXECON system, mercury sorbents will be injected downstream of a primary particulate control device, and collected in a pulse-jet baghouse operated at air-to-cloth ratios of 12 to 16 ft/min, thus separating the mercury and sorbent from the captured flyash. In the no-ash configuration, an external flyash sample will be injected into a clean gas stream to investigate possible variations in sorbent effectiveness in the presence of different ashes. The use of an existing test facility, a versatile design for the test fixture, and installation of a continuous mercury analyzer will allow for the completion of this ambitious test plan. The primary activity during the quarter was to complete fabrication and installation of the facility.

  8. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, July 1 - September 30, 1995

    SciTech Connect

    1995-12-31

    The goal of this project is to continue further development of the zinc titanate desulfurization and Direct Sulfur Recovery (DSRP) technologies by: scaling up the zinc titanate reactor system; developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; testing the integrated system over an extended period with real coal-gas from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in coal gas; developing an engineering database suitable for system scaleup; and designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. This report discusses the field testing of the Zinc Titanate Fluid Bed Desulfurization/DSRP at the Morgantown Energy Technology Center.

  9. Development of regenerable copper-based sorbents for hot gas cleanup. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect

    Abbasian, J.; Slimane, R.B.; Hill, A.H.

    1995-12-31

    The overall objective of this study is to determine the effectiveness of the copper-chromite sorbent (developed in previous ICCI-funded projects) for longer duration application under optimum conditions in the temperature range of 550{degrees}-650{degrees}C to minimize sorbent reduction and degradation during the cyclic process. To achieve this objective, several formulations of copper chromite sorbents are prepared. These sorbent formulations are screened for their desulfurization and regeneration capability at predetermined temperatures and gas residence times. The durability of the best sorbent formulation identified in the screening tests is evaluated in ``long-term`` durability tests conducted at the optimum operating conditions. This includes testing the sorbent in pellet and granular forms in packed- and fluidized-bed reactors. During this quarter, twenty one copper chromite-based sorbent formulations were prepared. Two sorbent formulations that have acceptable crush strength, designated as CuCr-10 and CuCr-21, were tested over 5 and 6 cycles respectively. The results indicate that both sorbents are reactive toward H{sub 2}S at 650{degrees}C and that the reactivity of the sorbents are relatively constant over the first 5 to 6 cycles. The H{sub 2}S prebreakthrough concentrations were generally about 20 to 30 ppm, making them suitable for IGCC application.

  10. Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2009-01-15

    This paper examines the effectiveness of 10 additives toward improving SO2 sorption capacities (SSC) of rice husk ash (RHA)/lime (CaO) sorbent. The additives examined are NaOH, CaCl2, LiCl, NaHCO3, NaBr, BaCl2, KOH, K2HPO4, FeCl3 and MgCl2. Most of the additives tested increased the SSC of RHA/CaO sorbent, whereby NaOH gave highest SSC (30mg SO2/g sorbent) at optimum concentration (0.25mol/l) compared to other additives examined. The SSC of RHA/CaO sorbent prepared with NaOH addition was also increases from 17.2 to 39.5mg SO2/g sorbent as the water vapor increases from 0% RH to 80% RH. This is probably due to the fact that most of additives tested act as deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, which played an important role in the reaction between the dry-type sorbent and SO2. Although most of the additives were shown to have positive effect on the SSC of the RHA/CaO sorbent, some were found to have negative or insignificant effect. Thus, this study demonstrates that proper selection of additives can improve the SSC of RHA/CaO sorbent significantly.

  11. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1995

    SciTech Connect

    1995-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurization and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-gas from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in coal gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the October 1 through December 31, 1995 is described.

  12. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, April 1 - June 30, 1996

    SciTech Connect

    1996-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurization and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.

  13. Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, October--December, 1994

    SciTech Connect

    Akyurtlu, A.; Akyurtlu, J.F.

    1995-01-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. The sulfation experiments indicated that 100% conversion of ceria could be attained. Activation energy for the sulfation reaction was found to be 19 kJ/mol. The rate of sulfation reaction is first order with respect to SO{sub 2} and solid reactant concentrations. For regeneration with hydrogen, the activation energy and the reaction order with respect to hydrogen was found to be 114 kJ/mol and 0.56, respectively. The ceria sorbent preserved its activity and structural stability after 6 cycles. The information obtained from these studies will be used to develop models for reactor-regenerator configurations. Subsequently, the SO{sub 2}/NO{sub x} removal facility will be integrated into the power production process using a commercial process simulation software. In this quarter of the project, the main focus was on the performance of the experimental program for the regeneration of the ceria sorbent by hydrogen and evaluation of experimental results.

  14. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-09-01

    Under the current grant (No. DE-FG22-90PC90309), the University of Tennessee Space Institute (UTSI) will perform the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. During this reporting period, April 1, 1993 to June 30, 1993, the procedure to evaluate the cycle efficiency of candidate resins in the fixed-bed mode was slightly modified to ensure complete regeneration of the exhausted resin. Using this revised procedure, ten consecutive cycles for all the three resins have been completed and the results are being analyzed.

  15. Development of durable mixed-metal oxide sorbents for high-temperature desulfurization of coal gases in moving-bed reactors

    SciTech Connect

    Ayala, R.E.; Jain, S.C.

    1993-06-01

    Mixed-metal oxide sorbents, particularly zinc ferrite and zinc titanate, are being developed for use in hot gas cleanup of coal gas in the integrated gasification combined-cycle (IGCC). For the case of moving-bed systems, the pelletized sorbent moves between the absorber and regenerator as it absorbs H{sub 2}S from coal gas and is regenerated under diluted air. Therefore a mechanically strong and chemically active sorbent is necessary for proper long-term operation of the system. These desired properties depend on the active components in the sorbent, the type and concentration of the binder material, and the sorbent preparation procedure. In the current program, several zinc titanate sorbent formulations have been prepared using a new rounding fabrication procedure, and varying the types of additives/binders (e.g., bentonite and molybdenum) and calcination temperature (1450-1800 {degree}F, 788-982 {degree}C). Comparison with baseline cylindrical formulations was made by measuring attrition resistance, crush strength, thermogravimetric reactivity and bench-scale reactor performance.

  16. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes. Volume 1, Dry sorbent injection: Final report

    SciTech Connect

    Jozewicz, W.; Rochelle, G.T.

    1992-01-29

    This report presents the results of fundamental mass transfer testing for in-duct removal of SO{sub 2}. Following this initial part of an experimental program, it became clear that the amount of initial moisture on the sorbent strongly affected the extent of Ca(OH){sub 2} conversion. Novel techniques aimed at increasing sorbent utilization were investigated and are described. Major novel technique investigated and reported on here was the reaction with SO{sub 2} of sorbents with initial free moisture (damp sorbents). The duct injection process using damp solids has the following steps: preparation of sorbent as a slurry, blending of the slurry with dry recycle materials to create damp solids, injection of the solids into the duct, reaction and drying of the solids with flue gas in the duct, collection in particulate control equipment, and finally recycle of dry solids with some bleed to disposal. The moisture content of the solids at each step affects system performance. Various factors favor high moisture whereas others favor low moisture. (VC)

  17. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 4, July 1, 1995--September 30, 1995

    SciTech Connect

    Wendt, J.O.L.; Davis, S.

    1995-10-15

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

  18. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 3, April 1, 1995--June 30, 1995

    SciTech Connect

    Wendt, J.O.L.

    1995-09-06

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

  19. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes: Quarterly report No. 4, April 1, 1989--June 30, 1989

    SciTech Connect

    Tischer, R. E.

    1989-06-14

    This quarter, bench-scale experiments have been conducted to measure the mass transfer and kinetic rates at simulated duct injection conditions. Section 2 summarizes the tank reactor test results. The stirred tank reactor (Task 2.1) was designed to simulate the gas/liquid interface of a slurry droplet exposed to SO/sub 2/. The measurements of the gas and liquid mass transfer coefficients were completed. Preliminary tests were run with chemically inert solids present in the solution of hydrochloric acid. Section 3 reports results from a differential reactor (Task 2.2). Mississippi hydrated lime was prehumidified for 4 min prior to contract with synthetic flue gas in a packed bed reactor. The reaction times tested ranged from 10-7,200 s. The differential apparatus and method are being modified to determine the effect of initial after content on the solids reactivity. Solids containing varying amount of moisture will be investigated. Experimental results from a Short-Time Differential Reactor (STDR) (Task 2.3) are presented in Section 4. Gas phase mass transfer and chemical reaction steps could be excluded as rate limiting, leaving the solid phase diffusion as a rate limiting step in the reaction of dry Ca(OH)/sub 2/ with SO/sub 2/. Higher relative humidity promoted conversion of the sorbent. Sorbents with high surface area will be produced and used for future solid phase diffusion experiments. The progress of slurry injection computer modeling (Task 3.1) is presented in Section 5. The computer code was transferred from the VAX to a CRAY computer to reduce the computation time. Results are presented in Section 5 to illustrate the effects of CA(OH)/sub 2/ reactivity and concentration on relative gas/liquid mass transfer resistance. Results are also presented that desceibe gas film resistance as a function of SO/sub 2/. 13 refs., 42 figs., 7 tabs.

  20. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali, Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1996-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method is being investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. During the first quarter the selection of base fro pretreatment and extraction was completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. During the second quarter the effectiveness of linseed oil and NaOH for sulfur removal from IBC-108 coal was further tested by pretreating the coal with two base concentrations at four different times followed by treatment with linseed oil at 125{degrees}C for three different times and finally washing with 5% Na{sub 2}CO{sub 3} and methanol. During this third quarter more experimental parameters were systematically varied in order to study the effectiveness of linseed oil and NaOH for sulfur removal from IBC- 108 coal.

  1. Development of novel copper-based sorbents for hot gas cleanup

    SciTech Connect

    Hill, A.H.; Abbasian, J. ); Flytzani-Stephanopoulos, M.; Bo, L.; Li, Li. ); Honea, F.I. )

    1993-01-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650[degree] to 850[degree]C. New sorbent compositions from the selected Cu-Cr-O and Cu-Ce-O binary oxides were prepared and characterized by BET N[sub 2]-desorption surface area measurement following various calcination/time-temperature exposures. The general trends reported last quarter (on 11 different compositions) were validated this quarter in that both binary oxides lose surface area as the amount of CuO is increased. Time-resolved sulfidation tests were conducted at 850[degree]C using the equimolar CuO.Cr[sub 2]O[sub 3] composition. The two selected binary oxides prepared in larger qauntities (for testing in a two-inch reactor) have physical properties typical of the sorbents prepared in past programs. Two multicycle desulfurization tests, conducted this quarter on the Cu-Ce-O sorbent at 850[degree]C, using a feed gas containing 5000 ppm H[sub 2]S, 10 vol % H[sub 2] and 10 vol % H[sub 2]O at a space velocity (STP) of 2000 h[sup [minus]1], demonstrated high sulfur removal efficiency for the first one or two cycles, and a significant reduction in efficiency in the following cycles.

  2. Coal desulfurization in a rotary kiln combustor. Quarterly report No. 1, April 16, 1990--July 15, 1990

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  3. High volume-high value usage of flue gas desulfurization (FGD) by- products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1996-12-31

    The target for the project has been shifted from filling, highwall mine adits to filling auger holes with FGD material to provide a stable highwall for automated highwall mining. As reported previously, this shift in emphasis is economically desirable and practical, as the filling operation is safer and permits access to ``locked in`` high quality coal behind existing auger holes. As also reported previously, the fill material was shifted from dry FGD materials to a Fluidized Bed Combustion fly ash from the Archer Daniel Midland No. 6 facility in Illinois. Previous reports have summarized the characterization of this material for the project. However, due mostly to economic concerns with prehydration and transport of the Archer Daniel Midland (ADM6) material, several new desulfurization by-products stored at the Costain facility in Allen, Kentucky were considered during, this quarter. At this stage of the project, the change in fill material required rapid assessment in much the same way an applied working project would demand quick evaluation. This change thus provided an opportunity to demonstrate a rapid assessment of material suitability. The results described below were obtained in a short time frame, and with the exception of characterizing the long term swell and durability of the products, the rapid assessment was a success. No rapid assessment methodology for long term behavior has been developed at this time. The mineralogical characteristics of the two Costain materials will not be summarized in detail here. Unlike the ADM6 ash, the spray dryer and FBC materials currently under review do not include the large percentages of free lime (CaO) that was shown to cause high mixing temperatures in the nonprehydrated ADM6 product. This absence of free lime in the raw by-products is immediately evident when mixing with water, as no significant heating of the mixture is observed.

  4. High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2, Field investigations. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    1996-12-31

    In this quarter, activity focused on the placement of Flue Gas Desulfurization (FGD) grout into auger holes at the Sunny Ridge Mining Co. site. As discussed in previous reports, the grout was prepared using fluidized bed combustion (FBC) by-product obtained from the Costain Coal Company. The grout was thoroughly mixed with water and transferred to a concrete pumping truck. The nozzle on the pumper truck was attached to PVC pipe through which the grout was pumped into the auger holes. The first field test involved the placement of a very high slump, flowable grout into auger holes sing a simple, earthern bulkhead. These tests were conducted to explore the flowability of the grout. The second series of test was conducted with a lower-slump, higher-viscosity material pumped at high pressure and using sandbags as a bulkhead. The goal of these tests was to examine the feasibility of pressure grouting to completely fill auger holes with a material that will exhibit high long-term strength because of this low initial water content. Although there were many problems encountered during the field demonstration, these initial tests were, overall, successful. It was shown that a high-slump grout can be pumped the length of the auger holes, and can be successfully placed in holes containing standing water. Furthermore, this can be accomplished using available concrete emplacement equipment. In contrast, the pressure grouting proved more challenging than emplacement of the flowable grout mainly because of pipe-joint failures and difficulties in working the stiff, high-viscosity grout; the amount of water added to the mix is critical when placing this type of material. Cylinders of grout for compressive strength testing were prepared during field demonstration, and cores of the in situ hardened grout will be recovered after a minimum of 30 days. Additional field demonstration will focus on improving the procedure for placement of the flowable grout.

  5. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Ninth quarterly technical progress report, September 1, 1992-- December 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-12-31

    This is the 9th quarterly technical progress report for the project entitled ``Pyrite surface characterization and control for advanced fine coal desulfurization technologies``, DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS{sub 2} + B(OH){sub 4}{sup =} ------> [S{sub 2}Fe-B(OH){sub 4}]{sub surf} + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results.

  6. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 1 -- Laboratory investigations. Quarterly report, July--September 1995

    SciTech Connect

    1996-01-01

    Efforts primarily focused on Subtask 2.2, Chemical and Mineralogical Characterization and Subtask 4.3, Selection and Testing of Transport System. As part of Subtask 2.2, samples were collected from the Freeman United Crown Mine III FBC disposal facility representing a verity of ages and weathering. A laboratory scale transport system has been built at the CAER to evaluate the potential of pneumatic transport for flue gas desulfurization material (FGDM) emplacement and to provide essential data for the mine emplacement demonstration as part of the Subtask 4.3 effort. The system is modeled after shotcreting systems and has the advantage that the material can be remotely placed without the need for forms. The test program is focusing on determining the pneumatic conditions necessary to maximize the strength of the emplaced FGDM under anticipated mine curing conditions while minimizing dust formation. Work on Subtask 4.1, Mine Selection, also proceeded during the quarter. A new mine site, located in the south-central section of the Pikeville quadrangle, Pike County, Kentucky, was examined for the field study. The proposed fill site is in the Middle Pennsylvanian Breathitt Formation Middle Amburgy coal bed, a coal previously mined by Costain elsewhere on the property. Efforts on Subtask 4.2, Hydrologic Monitoring Plan, focused primarily on theoretical issues concerning the effects of the mining and backfill activity on the ground water and surface water due to uncertainties in the location of the final field site. There are three major concerns about the effects of the mining activity: changes in the ground water flow field, changes in ground water quality, and consequential induced changes on stream flow.

  7. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly technical progress report, July--September 1995

    SciTech Connect

    Harrison, D.P.

    1995-10-01

    Both the Antek total sulfur analyzer and the modifications to the Shimadzu GC-14A gas chromatograph to be used for analysis for SO{sub 2} and H{sub 2}S were delivered during the quarter. Problems were faced during the installation and calibration phases of both instruments. By the end of the quarter we believe that the GC problems have been solved, but problems remain with the Antek analyzer. It appears that too much sulfur (as SO{sub 2}) reaches the UV detector and causes it to become saturated. This shows up as a maximum in the instrument calibration curve. At 200 psia, the capillary flow restrictor allows a total flow rate of about 180 sccm, and the maximum occurs at about 1 % H{sub 2}S in the calibration gas. Reducing the pressure so that the total flow is reduced to about 25 sccm shifts the calibration curve maximum to about 5.7% H{sub 2}S. It appears that we must reduce the total flow rate to the detector or provide additional dilution. This may be accomplished by increasing the resistance of the capillary restrictor, by diverting a portion of the flow leaving the pyrotube to vent, or adding an inert such as N{sub 2} to the gases exiting the pyrotube. We are in contact with Antek representatives about the problem. Both the atmospheric pressure and high pressure electrobalances were used during the quarter to study the regeneration of FeS in atmospheres of O{sub 2}/N{sub 2} or H{sub 2}O/N{sub 2}. In the atmospheric pressure unit the effects of temperature (600 - 800{degrees}C), flow rate (130 - 500 sccm), and reactive gas mol fraction (0.005 to 0.03 O{sub 2} and 0.1 to 0.5 H{sub 2}O) are being studied. Regeneration tests completed to date in the high pressure unit have utilized only O{sub 2}/N. and the parameters studied include temperature (600 - 800{degrees}C), flow rate (500 - 1000 sccm), pressure (1 - 15 atm) ad O{sub 2} mol fraction (0.005 - 0.03).

  8. Desulfurization of hydrocarbons

    SciTech Connect

    Eberly, P.E. Jr.

    1986-06-03

    A process is described for reforming a sulfur-containing naphtha feed, wherein is included in combination, a hydrofiner which contains a metal catalyst, the metallic component of which is selected from Group VIB and Group VIII, with which the sulfur-containing naphtha feed is contacted with hydrogen, at reaction conditions inclusive of temperatures ranging from about 400/sup 0/F to about 850/sup 0/F to remove sulfur and provide a product naphtha which contains from about 5 wppm to about 50 wppm, and higher, sulfur, a guard chamber filled with a sorbent into which the partially desulfurized hydrofined naphtha is injected to flow therethrough to effect further removal of sulfur, and a reforming unit which contains a plurality of sulfur sensitive catalyst-containing on-stream reactors connected in series, the naphtha feed to which flows in sequence from one reactor of the series of another to contact the catalyst contained therein at reforming conditions, the improvement comprising maintaining within the guard chamber a sorbent comprised of nickel in concentration ranging from about 10 percent to about 70 percent, calculated as metallic nickel based on the total weight of the sorbent, iron in concentration ranging from about 1 percent to about 15 percent, calculated as metallic iron based on the total weight of the sorbent, and a porous, refractory inorganic oxide, at temperatures ranging above about 350/sup 0/F, to produce a reformer feedstock containing no more than about 2 wppm sulfur.

  9. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect

    Chugh, Y.P.

    1997-12-31

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  10. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 1, October 1, 1994--December 31, 1994

    SciTech Connect

    Wendt, J.O.L.

    1995-02-22

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined. The research is divided into five tasks: Task 1, combustor modifications; Task 2, screening experiments; Task 3, mechanisms; Tasks 4, applications; and Task 5, mathematical modelling. Work on this research grant has commenced, with efforts on Task 1 (Combustor Modifications) and on Task 5 (Mathematical Modelling).

  11. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 8, August 17, 1992--November 16, 1992

    SciTech Connect

    Not Available

    1993-09-27

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2} removal at lower capital and O&M costs than other systems. To achieve its objectives, the project is divided into the following three phases: Phase 1: Design and Permitting, Phase 2: Construction and Start-up, Phase 3: Operation and Disposition. Phase 1 activities were completed on January 31, 1991. Phase 2 activities were essentially concluded on July 31, 1991, and Phase 3a, Parametric Testing, was initiated on July 1, 1991. This Quarterly Technical Progress Report covers Phase 3b activities from August 17, 1992 through November 16, 1992.

  12. Confined zone dispersion flue gas desulfurization demonstration. Volume 1, Quarterly report No. 6, February 1, 1992--April 30, 1992

    SciTech Connect

    Not Available

    1993-01-15

    This is the sixth quarterly report for this project and it covers work performed on Phase 3a of the project from February 1, 1992 through April 30, 1992. Extension of the parametric test period through June 1992 provides an opportunity to regain most of the schedule slippage, but only if the modifications needed for continuous operation of the CZD system are installed concurrent with the extended test period. These modifications include automation of the lime preparation and transfer system, automatic injection control, and related instrumentation and controls as necessary to integrate the operation of the CZD system with Seward Station Boiler No. 15. Early installation of these modifications would permit testing, debugging and adjustment of the automatic control system during the parametric test period. Results of current testing indicate that considerable testing and adjustment will be required to optimize operation of the CZD system after it is automated for continuous operation. Therefore, we intend to incorporate in Phase 3a(parametric testing) the system modifications needed for continuous automatic operation that were originally included in Phase 3b. Phase 3b would then be limited only to the one-year continuous demonstration.

  13. Confined zone dispersion flue gas desulfurization demonstration. Volume 1, Quarterly report No. 5, November 1, 1991--January 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO{sub 2} and NO{sub x} Reduction - Preliminary confirmation of 50% SO{sub 2} reduction has been achieved, but the NO{sub x} reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO{sub 2} reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO{sub 2} Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel`s original cost estimates (capital and operating) were prepared. Therefore, SO{sub 2} removal costs are still expected to be in the range of $300/ton or less.

  14. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 2, September 1, 1987--November 30, 1987

    SciTech Connect

    Not Available

    1987-12-15

    The objective of this project is to demonstrate gas reburning-sorbent injection (GR-SI) emission control technology on three pre-NSPS coal-fired utility boilers in Illinois. The goals are to achieve NO{sub x} and SO{sub x} emission reductions of 60 and 50% respectively. During this quarter, work progressed on all tasks of this project, except for Task 3, Engineering Design, which awaits NEPA approval. The selection of the three primary host sites was confirmed through site characterization and SO{sub x}/NO{sub x} control performance predictions. All three boilers selected (tangentially, wall and cyclone fired units) can meet the NO{sub x} and SO{sub 2} targets of 60% and 50% respectively. Internal and external communications were established and meetings to be held in December were planned. EER continued its dialogue with potential boiler manufacturer subcontractors and electrostatic precipitator specialists. The latter area was necessitated by the need to upgrade ESP performance when using sorbent injection. Process design studies are in progress to achieve the process specifications required for detailed engineering design. In the environmental area, good progress was made in generating Environmental Information Volumes for each site, the Environmental Monitoring Outline and defining the permitting assistance to be provided to the host sites.

  15. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report 14, July--October 1997

    SciTech Connect

    Harrison, D.P.

    1997-10-01

    Experimental work during the quarter was limited to a series of CeO{sub 2} reduction tests using an atmospheric pressure electrobalance reactor. Both Rhonc-Poulenc and Molycorp CeO{sub 2} were tested over a temperature range of 600 to 1000{degrees}C in various reducing gas compositions. Experimental results are in reasonable agreement with equilibrium calculations of the oxygen partial pressure from CHEMQ coupled with earlier experimental results from Bevan and Kordis. Weight loss corresponding to the reduction of CeO{sub 2} to CeO{sub 1.86} was observed at 1000{degrees} in an atmosphere of 40% H{sub 2}, 3.5% CO{sub 2}, balance He. Helium was used as the carrier gas instead of nitrogen to reduce aerodynamic noise, and the H{sub 2} and CO{sub 2} concentrations were chosen since this mixture results in oxygen partial pressure similar to those expected in Shell gas. The experimental value of CeO{sub 1.86} compares quite favorably to the predicted value of CeO{sub 1.83}. One unexpected results was a weight loss of about 9% from Rhone-Poulenc CeO{sub 2} in an inert atmosphere at 600{degrees}C. BET surface area measurements of nine samples were performed consisting of as-received CeO{sub 2} (both Rhone Poulenc and Molycorp), as-received Al{sub 2}O{sub 3}, both CeO{sub 2} samples with Al{sub 2}O{sub 3} as initially charged to the reactor, and both CeO{sub 2}-Al{sub 2}O{sub 3} mixtures after multicycle sulfidation-regeneration tests. The BET surface area of the Rhone-Poulenc CeO{sub 2} was about 20 times larger than the surface area of Molycorp CeO{sub 2} which explains differences in sulfidation performance reported earlier. Finally a more complete search of the literature for thermodynamic data for cerium compounds was carried out. It appears that the free energy of formation of CeO{sub 2} as a function of temperature is well defined.

  16. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report, October--December 1991

    SciTech Connect

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  17. Hot Gas Desulfurization Using Transport Reactors

    SciTech Connect

    Moorehead, E.L.

    1996-12-31

    Sierra Pacific Power Company is building a 100 MW, IGCC power plant based on KRW fluid bed gasifier technology that utilizes transport reactors for hot gas desulfurization and sorbent regeneration. Use of a transport absorber avoids the need for pre-filtration of dust-laden gasifier effluent, while a transport regenerator allows for the use of 100% air without the need for heat exchange equipment. Selection of transport reactors for hot gas desulfurization using a proprietary sorbent, based on testing performed in a transport reactor test unit (TRTU) at the M. W. Kellogg Technology Development Center and in a fixed bed reactor at Morgantown Energy Technology Center (METC), is outlined. The results obtained in these two test facilities and reasons for selecting transport reactors for the IGCC power plant in preference to either fixed bed or fluidized bed reactors are discussed. This paper reviews the evolution of the hot gas desulfurization system designs and includes selected results on H{sub 2}S absorption and regeneration of sulfided sorbent over several absorption/regeneration cycles conducted in the TRTU and the METC fixed bed reactor. The original design for the Sierra Pacific Project was based on fixed bed reactors with zinc ferrite as the sorbent. Owing to the high steam requirements of this sorbent, zinc titanate was selected and tested in a fixed bed reactor and was found unacceptable due to loss of strength on cyclic absorption/regeneration operation. Another sorbent evaluated was Z-Sorb{reg_sign}, a proprietary sorbent developed by Phillips Petroleum Company, was found to have excellent sulfur capacity, structural strength and regenerability. Steam was found unsuitable as fixed bed regenerator diluent, this results in a requirement for a large amount of inert gas, whereas a transport regenerator requires no diluent. The final Sierra design features transport reactors for both desulfurization and regeneration steps using neat air. 3 refs., 3 figs., 2 tabs.

  18. Development of novel copper-based sorbents for hot gas cleanup. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Hill, A.H.; Abbasian, J.; Flytzani-Stephanopoulos, M.; Bo, L.; Li, Li.; Honea, F.I.

    1993-05-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degree} to 850{degree}C. New sorbent compositions from the selected Cu-Cr-O and Cu-Ce-O binary oxides were prepared and characterized by BET N{sub 2}-desorption surface area measurement following various calcination/time-temperature exposures. The general trends reported last quarter (on 11 different compositions) were validated this quarter in that both binary oxides lose surface area as the amount of CuO is increased. Time-resolved sulfidation tests were conducted at 850{degree}C using the equimolar CuO.Cr{sub 2}O{sub 3} composition. The two selected binary oxides prepared in larger qauntities (for testing in a two-inch reactor) have physical properties typical of the sorbents prepared in past programs. Two multicycle desulfurization tests, conducted this quarter on the Cu-Ce-O sorbent at 850{degree}C, using a feed gas containing 5000 ppm H{sub 2}S, 10 vol % H{sub 2} and 10 vol % H{sub 2}O at a space velocity (STP) of 2000 h{sup {minus}1}, demonstrated high sulfur removal efficiency for the first one or two cycles, and a significant reduction in efficiency in the following cycles.

  19. An attrition-resistant zinc titanate sorbent for sulfur. Technical report, 1 March--31 May 1994

    SciTech Connect

    Swisher, J.H.; O`Brien, W.S.; Gupta, R.P.

    1994-09-01

    In the continuing search for good sorbent materials to remove sulfur from hot, coal-derived gases, zinc titanate sorbents have shown great promise. The objective of this project is to extend the effort started last year on sorbents with little or no loss in chemical reactivity. The principle is to contain Zn{sub 2}TiO{sub 4} in a structural matrix of excess TiO{sub 2}. Progress on several tasks was made during the third quarter. The new fixed bed apparatus at SIUC was made operational, and experiments in it have started. The feasibility of using turbine exhaust gas diluted with N{sub 2} for sorbent regeneration was demonstrated through experiments at both SIUC and RTI. The third of four ten-cycle tests was completed at RTI. It was a fixed bed test on one to two promising formulations developed last year. The results followed the pattern of the fluidized bed tests completed earlier in that the chemical reactivity was good, except for the first few cycles. Lastly the undergraduate student design project on hot gas desulfurization hardware was completed this quarter.

  20. Hot gas desulfurization with oxides of zinc, iron, and vanadium

    SciTech Connect

    Akyurtlu, J.F.; Akyurtlu, A.

    1992-08-01

    The objective of this study is to develop an improved sorbent which can reduce H{sub 2}S levels up to 1 ppmv or less, which can stabilize zinc, and produce economically recoverable amounts of elemental sulfur during regeneration. For this purpose, the desulfurization performance of sorbents prepared by the addition of various amounts of V{sub 2}O{sub 5} to the zinc ferrite sorbent is investigated.

  1. Hot gas desulfurization with oxides of zinc, iron, and vanadium

    SciTech Connect

    Akyurtlu, J.F.; Akyurtlu, A.

    1992-01-01

    The objective of this study is to develop an improved sorbent which can reduce H{sub 2}S levels up to 1 ppmv or less, which can stabilize zinc, and produce economically recoverable amounts of elemental sulfur during regeneration. For this purpose, the desulfurization performance of sorbents prepared by the addition of various amounts of V{sub 2}O{sub 5} to the zinc ferrite sorbent is investigated.

  2. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  3. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  4. Comprehensive report to Congress: Clean Coal Technology Program: LIFAC sorbent injection desulfurization demonstration project: A project proposed by: LIFAC North America, Inc

    SciTech Connect

    Not Available

    1990-10-01

    This report describes a project proposed by LIFAC North America, Inc., (LIFAC NA). The host site will be a coal-fired powerplant of Richmond Power Light in Indiana. LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In the LIFAC process, limestone is injected into the upper part of the furnace where the temperatures are sufficiently high to calcine the calcium carbonate (CaCO{sub 3}) to lime (CaO), which reacts with the SO{sub 2} in the flue gas to form calcium sulfite (CaSO{sub 3}), some of which oxidizes to form calcium sulfate (CaSO{sub 4}). The flue gas leaving the boiler then enters LIFAC's unique humidification chamber which increases the water content of the flue gas and activates the lime to enhance SO{sub 2} removal. Reduction of SO{sub 2} emissions are approximately 75--80%. Spent sorbent is then removed, along with the fly ash by an existing electrostatic precipitator (ESP) or baghouse. 6 figs., 1 tab.

  5. Molten iron oxysulfide as a superior sulfur sorbent. Third quarter technical progress report, March 1, 1990--June 1, 1990

    SciTech Connect

    Hepworth, M.T.

    1990-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions are determined for the operation of the first stage of a combustor which would have as its feed six types of coals. The calculations are made for the four phase equilibrium: FeO(wustite)/Fe/Liquid/Gas over the temperature range 950{degrees} to 1300{degrees}C. The minimum dosage of iron oxide required at equilibrium an the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of S0{sub 2} per million Btu of heat evolution calculated for complete combustion. These preliminary results indicate in the Fe-O-S system that higher temperatures give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. In the prior reporting period, a comparison is made between iron oxide and lime as a desulfurizing agent. With lime, the thermodynamic conditions were chosen: a set of conditions where the compound calcium sulfide is the product and a set of conditions where calcium sulfate is the product. The temperature limits of the sulfate forming and sulfide forming reactions were defined.

  6. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 30, January 1--March 31, 1995

    SciTech Connect

    1995-05-16

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x} and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2.} The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Technology transfer to industry is accomplished through the formation of an industry panel. Phase I of the project commenced on June 5, 1987. Phases I, II and III for the Illinois Power Project have been completed; Phases I and II for the CWLP project have been completed; Phase III is in progress. All site activities have been completed with the exception of restoration at CWLP.

  7. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 26, January 1--March 31, 1994

    SciTech Connect

    Not Available

    1994-04-15

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x}, emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80-85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Phase III is now in progress at both sites. In phase AIII at Hennepin - Testing, Data Collection, Reporting and Disposition - Gas Reburning runs were made that indicate as high as 77% reduction in NO{sub x} emission using about 18% gas. Gas Reburning - Sorbent Injection test results indicated as high as 62% reduction in S0{sub 2}. These results are significantly higher than the project emission reduction goals of 60% NO{sub x} and 50% S0{sub 2} and provided a wide safety margin for maintaining the 60% and 50% emission reductions during long term routine testing. A year of long term testing was completed in October, 1992.

  8. Characterization and optimization of sorbents utilized for emission control during coal gasification. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    1995-12-31

    Research activities during this quarter on ceramic candle filters involved characterization of gas flow properties, development of a technique to seal the filter surface, modification of the filter sealing flanges assembly, measurement of permeability distribution of unused filters, and planning of other facilities for data acquisition during the testing.

  9. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 6, October 1--December 31, 1991

    SciTech Connect

    Not Available

    1992-02-07

    Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (SO{sub x}) and oxides of nitrogen (NO{sub x}). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Because of cost growth and lack of available funding, no further work has been done after Phase 1 at site B; the wall fired unit.

  10. Enhancing the use of coals by gas reburning-sorbent injection; Quarterly report No. 25, October 1--December 31, 1993

    SciTech Connect

    1994-01-21

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reduction of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Phases 1 and 2 have been completed and Phase 3 is now in progress at both sites. A description of the project and status of the tasks are summarized.

  11. Zirconia-silica based mesoporous desulfurization adsorbents

    NASA Astrophysics Data System (ADS)

    Palomino, Jessica M.; Tran, Dat T.; Kareh, Ana R.; Miller, Christopher A.; Gardner, Joshua M. V.; Dong, Hong; Oliver, Scott R. J.

    2015-03-01

    We report a series of mesoporous silicate sorbent materials templated by long-chain primary alkylamines that display record level of desulfurization of the jet fuel JP-8. Pure silica frameworks and those with a Si:Zr synthesis molar ratio ranging from 44:1 to 11:1 were investigated. The optimum sorbent was identified as dodecylamine-templated silica-zirconia synthesized from a gel with Si:Zr molar ratio of 15:1. With an optimized silver loading of 11 wt.%, a saturation adsorption capacity of 39.4 mgS g-1 and a silver efficiency of 1.21 molS mol Ag-1 were observed for JP-8. This sorbent displayed exceptional regenerability, maintaining 86% of its initial capacity in model fuel after solvent regeneration with diethyl ether. Low-cost, portable and reusable sorbents for the desulfurization of JP-8 jet fuel are needed to make solid oxide fuel cells (SOFCs) a reality for military power needs. SOFCs require ultra-low sulfur content fuel, which traditional desulfurization methods cannot achieve.

  12. Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C.

    1992-08-01

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. To achieve this objective, several novel copper-based binary oxide sorbents will be prepared. Experimental tests will be conducted at ambient pressure to determine the stability, sulfidation capacity, regenerability, and sulfidation kinetics of the novel sorbents. Tests will also be conducted at high pressure for the determination of the sulfidation reactivity, regenerability, and durability of the sorbents. The attrition characteristics of the sorbents will also be determined.

  13. Advanced sulfur control concepts for hot gas desulfurization technology

    SciTech Connect

    1998-09-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  14. Adsorption and Ultrasound-Assisted Sorbent Regeneration

    SciTech Connect

    Yuhe Wang; Liping Ma; Ralph T. Yang

    2006-09-30

    This work was conducted for the department of Energy. In this work, we developed a class of new sorbents that were highly sulfur selective and had high sulfur capacities. The study consisted of two sections. Development of the new sorbents is described in Section 1, and Section was a fundamental study, conducted for a better understanding for desulfurization of jet fuels. More details of the results are given blow separately for the two sections.

  15. Enhancing the use of coals by Gas Reburning: Sorbent injection. [Quarterly report], July 28--October 1, 1993

    SciTech Connect

    1995-02-01

    Energy and Environmental Research Corporation (EER) has completed demonstrations of Gas Reburning-Sorbent Injection (GR-SI) at two field sites. The discussions which follow pertain to measurements taken from the demonstration at City Water, Light and Power`s (CWLP) Lakeside Station Unit 7 in Springfield, Illinois. Environmental monitoring was conducted for two purposes, to satisfy the requirements of operating permits granted by the Illinois Environmental Protection Agency (IEPA) and to verify environmental acceptability of the GR-SI process. The GR-SI demonstration program at Lakeside Unit 7 was performed in three phases. Phase I -- Design and Permitting, entailed characterization of the host boiler, then finalization of process and engineering, design of the GR-SI system. Phase I was initiated in June 1987 and completed in March 1989. Phase II -- Construction and Startup, was initiated upon completion of design tasks and was completed in February 1993. Phase III -- Operation, Data Collection, Reporting and Disposition, was conducted from July 1993 to June 1994. In Phase III, the GR-SI system performance was evaluated initially through optimization tests, which are short-term tests in which specific operating parameters are varied to determine their impact on emissions and boiler performance. The optimization testing included GR only tests, SI only tests, and GR-SI tests. Results from these tests, carried out from July 28 to October 1, 1993, are presented in this report. Following Optimization testing, long-term GR-SI operation was initiated to demonstrate the combined technology over an extended period with the unit under dispatch load control. Long-term GR-SI testing was conducted from October 4, 1993 to June 3, 1994. The long-term environmental monitoring data are presented in a separate report.

  16. LIFAC Sorbent Injection Desulfurization Demonstration Project

    SciTech Connect

    Not Available

    1991-01-01

    LIFAC combines upper-furnace limestone injection followed by post- furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the fifth Technical Progress Report covering the period October 1, 1991 through the end of December 1991. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

  17. LIFAC sorbent injection desulfurization demonstration project

    SciTech Connect

    Not Available

    1991-01-01

    LIFAC combines upper-furnace limestone injection followed by post-furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP.

  18. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Bo Hou; Changhe Chen; Xuchang Xu

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters. Structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. 16 refs., 9 figs.

  19. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Qi, Haiying; Hou, Bo; Chen, Changhe; Xu, Xuchang

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 degrees C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters, such as bed temperature, CO2 concentration, and solids concentration. In addition, structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 degrees C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area.

  20. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    SciTech Connect

    Lee, S.K.; Keener, T.C.

    1994-10-10

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  1. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    1998-09-30

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H2S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO2 ; (ii) partial oxidation of sulfided sorbent in an O2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H2S followed by direct oxidation of H2S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out.

  2. Cooperative research in coal liquefaction infratechnology and generic technology development: Quarterly report, October 1, 1986-January 1, 1987. [Desulfurization with sulfolobus brierleyi

    SciTech Connect

    Sendlein, L.V.A.; Huffman, G.P.

    1987-01-01

    Progress reports are presented for the following tasks: (1) biologically improved coal structure for better liquefaction of coal, and (2) basic process/resource evaluation. Under task 1 experiments were conducted for: microbial desulfurization of high-sulfur coal by Sulfolobus brierleyi; optimization of pH for sulfur oxidation by Sulfolobus brierleyi; development and isolation of pure colonies of sulfolobus brierleyi, Thiobacillus ferroxidans and Thiobacillus thiooxidans; determination of protein concentration with Coomassie Blue and the modified Lowry's method in a 0.1N NaOH solution; and preparation and characterization of catalysts for coal liquefaction. For task 2, thirty-five coal samples have been collected from eastern Kentucky and these have been prepared for analysis. 2 figs., 3 tabs.

  3. Aerogel sorbents

    DOEpatents

    Begag, Redouane; Rhine, Wendell E; Dong, Wenting

    2016-04-05

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  4. CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...

  5. CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...

  6. High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines Phase 1: Laboratory investigations. Quarterly report, July 1994--September 1994

    SciTech Connect

    1994-12-01

    During the quarter a second series of samples were collected and partially characterized chemically and mineralogically. The samples were collected at the disposal site operated by Freeman United Coal Co. The second collection was necessary because of deterioration due to hydration of the original samples. A study of the hydration characteristics was completed during the quarter. Important reactions included the immediate formation of ettringite and portlandite. The hydration and transformation was found to be a slow process. A second phase of gypsum formation from ettringite deterioration was identified. The slow hydration of anhydrite with its resultant swell is a potential problem which will be addressed further. Geotechnical characterization, during the quarter included completion of the preliminary characterization, analysis of the findings, experimentation with sample preparation for the final characterization/mix design, and design of the final experimental program. The analysis of the coals collected during the core drilling and hydrologic planning were completed. Also during the quarter a meeting was held with representatives of the shotcrete industry to discuss transport systems for emplacement. The pros and cons of pneumatic and hydraulic systems were discussed and plans formulated for further investigations.

  7. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly report, November 1, 1995--December 31, 1995

    SciTech Connect

    Hunt, T.; Sjostrom, S.

    1996-02-05

    The overall objective to this two phase program is to investigate dry carbon-based sorbents for mercury control. During Phase I, a bench-scale field test device that can simulate an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse will be designed and integrated with an existing pilot-scale facility at Public Service Company of Colorado`s (PSCo`s) Comanche station. Various sorbents will then be injected to determine the mercury removal efficiency for each. During Phase II effort, component integration of the most promising technologies shall be tested at the 5000 acfm pilot-scale. The primary task currently underway is the facility design. The design is expected to be finished in January, 1996. The facility, regardless of the particulate control module configuration, will be fitted with supply line injection port, through which mercury sorbents and SO{sub 2} control sorbents can be added to the flue gas stream.

  8. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    SciTech Connect

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  9. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Sixth quarterly technical progress report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1991-08-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  10. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  11. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    1996-12-31

    Research activities and efforts of this research project were concentrated on conducting experiments on initial reaction rates of hydrogen sulfide with the formulated sorbents, and developing a reaction rate equation containing a reaction rate constant in terms of disappearance of H{sub 2}S, a reaction order with respect to hydrogen sulfide, and a reaction order with respect to the TU-24 metal oxide sorbent.

  12. Advanced low-temperature sorbents

    SciTech Connect

    Ayala, R.E.; Venkataramani, V.S.; Abbasian, J.; Hill, A.H.

    1995-12-01

    A number of promising technologies are currently being optimized for coal-based power generation, including the Integrated-Gasification Combined Cycle (IGCC) system. If IGCC is to be used successfully for power generation, an economic and efficient way must be found to remove the contaminants, particularly sulfur species, found in coal gas. Except for the hot gas desulfurization system, all major components of IGCC are commercially available or have been shown to meet system requirements. Over the last two decades, the U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) has sponsored development of various configurations of high-temperature desulfurization systems including fixed-bed, moving-bed, transport-bed, and fluidized-bed systems. Because of their mode of operation and requirements for sorbent manufacturing, the fixed-bed systems can generally use the same materials as moving-bed configurations, i.e., pelletized or extruded sorbents, while fluidized-bed (circulating or bubbling configurations) and transport reactor configurations use materials generally described as agglomerated or granulated.The objective of this program is to remove hydrogen sulfides from coal gas using sorbent materials.

  13. High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Phase 1 -- Laboratory Investigations. Quarterly report, January 1995--March 1995

    SciTech Connect

    1995-06-01

    The study of the kinetics of the mineral transformations which take place after the FGD materials are hydrated was continued this quarter (Task 2, Subtask 2.2). Based on X-ray diffraction data, the anhydrite was found to have essentially disappeared by the fifth day of the study, while gypsum was found to maximize in the first 14 days of the study. The relative abundance of ettringite increased throughout the period of observation (40 days). Ettringite was found to nucleate primarily on or near fly ash particles, while gypsum was found to be more mobile, readily filling in cracks and fractures. A second kinetic study was initiated during the period with an experimental setup which is similar to the current effort. The focus of this study will be to determine the effect of moisture conditions on the rate and types of mineralogical reactions which occur. Column leaching studies (Task 2, Subtask 2.4) on the ADM material were initiated during the quarter. Two columns were packed with fly ash and one with bottom ash. One of the columns was blanketed with CO{sub 2} (2.5%) to model the effects of soil gas on the leachate. The samples are being moisturized to model field conditions. Leachate analysis will be available during the next quarter. Work on the field site (Task 6) to establish background data for the demonstration continued. The proposed demonstration site at the Pleasant Valley mine was found to be displaying the effects of severe weathering. An alternate mine site will be explored.

  14. Sorbent suppliers

    SciTech Connect

    Vedder, M.

    1994-03-01

    Sorbents are used to absorb or contain spilled and leaking chemicals, oils, lubricants and other process fluids. They are commonly used around the base of machinery in industrial applications, and in remediating oil spills on land and water. Sorbents are made from biodegradable, inorganic or synthetic materials. Organic materials include corn cobs, wood pulp, paper fiber and cotton. Inorganic materials include clay, perlite, expanded silicates and expanded mica. Synthetic sorbents are made from petroleum- or plastic-based materials such as polyurethane, polyethylene or polypropylene. Sorbents are available in a variety of forms, including pads, rolls, booms, pillows and loose particulate.

  15. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae. [Rhodococcus erythropolis, Thiobacillus acidophilus, Thiobacillus novellus

    SciTech Connect

    Krawiec, S.

    1992-01-01

    Research continues on desulfurization of coal using microorganisms. Topics reported on this quarter include: desulfurization with N1-36 (presumptively identified as Rhodochrous erythropolis), pulsed-field gel electrophoresis of chromosomal DNA's of Thiobacillus spp., and fresh isolates with the presumptive capacity to desulfurize dibenzothiophenes.

  16. Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. First quarterly report, 1996

    SciTech Connect

    Gong, Sung-Yong; Jiang, Xueyu; Khang, Soon-Jai; Keener, T.C.

    1997-09-01

    During the tenth quarter of the project, bench scale experiments were performed to investigate the adsorption ability of different kinds of materials within sulfur vapor environment. Four kinds of adsorbents have been tested. The experimental results indicated that activated carbon was the beet of four adsorbents tested. In addition to the baseline tests, several designs of activated carbon feed system have been tested. Under an inert environment, bench scale experiments were performed to investigate the characteristics and efficiency of activated carbon passing through the Co-Mo-Alumina catalyst bed. The results showed that activated carbon powder could easily be transported through the catalytic bed. The adsorption process may be applicable to promote conversion of H{sub 2}S in the H{sub 2}S and CO{sub 2} rea system.

  17. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. First quarterly technical progress report, 1990

    SciTech Connect

    Not Available

    1990-03-01

    This synopsis describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  18. High-volume, high-value usage of flue gas desulfurization (FGD) by- products in underground mines: Phase 1, Laboratory investigations. Quarterly report, April--June 1995

    SciTech Connect

    1995-09-01

    The kinetics study which is investigating hydration reactions of the ADM by-product (Subtask 2.2) was continued this quarter. This study further aided in gaining information on mineral precipitation and dissolution reactions during hydration of the ADM materials. The information is of importance for a comprehensive understanding of the factors that control strength and long-term stability during aging of FGD materials. The decision was made by Addington, Inc., DOE, and the University of Kentucky that the originally selected mine site for the emplacement demonstration must be changed, mainly for safety reasons. Mine selection will be a priority for the next quarter (Jul--Sep, 1995). Another activity during this reporting period was related to Subtask 4.3, the selection and testing of the transport system for the FGD material. A laboratory-scale pneumatic emplacement test unit (ETU) for dry FGD materials was built at the CAER to generate data so that a final selection of the field demonstration technology can be made. A dry pneumatic system was chosen for laboratory testing because the equipment and expertise available at the CAER matched this sort of technology best. While the design of the laboratory system was based on shotcrete technology, the physical properties of the emplaced FGD material is expected to be similar for other transport techniques, either pneumatic or hydraulic. In other words, the selection of a dry pneumatic transport system for laboratory testing does not necessarily imply that a scaled-up version will be used for the field demonstration. The ETU is a convenient means of producing samples for subsequent chemical and physical testing by a representative emplacement technology. Ultimately, the field demonstration technology will be chosen based on the laboratory data and the suitability of locally available equipment.

  19. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  20. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  1. Flue gas desulfurization wastewater treatment primer

    SciTech Connect

    Higgins, T.E.; Sandy, A.T.; Givens, S.W.

    2009-03-15

    Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

  2. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas: activated bauxite sorbent regeneration. Quarterly report, October-December 1980

    SciTech Connect

    Johnson, I.; Lee, S.H.D.

    1981-05-01

    This work supports the program to develop methods for the cleanup of combustion gases from pressurized fluidized-bed coal combustors so that the cleaned gases can be used to power downstream gas turbines. Presented here are the results of studies to develop granular sorbents for removing gaseous alkali metal compounds from these combustion gases in a granular-bed filter. Activated bauxite bed material can be reused after the alkali compound is removed by a water-leaching process. In experiments to study the kinetics of leaching, the effects of adsorbed NaCl loading, leaching temperature, and the leaching water to sorbent ratio on the rate of leaching are reported. Also reported are water retention in bauxite after leaching and the effect of volatile alkalis in makeup activated bauxite on the alkali level in flue gas expanded in the gas turbine.

  3. High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2 -- Field investigations. Quarterly report, July 1--September 30, 1997

    SciTech Connect

    1997-12-31

    During this quarter, the majority of activity focused on grout emplacement at the Lodestar Energy Inc. (formerly Costain Coal Co.) surface mine auger holes described in the previous report. Specifically, two different types of grout pumps were investigated: a piston pump used in previous demonstrations, and a progressive cavity pump. The latter is currently utilized for grouting in underground coal mines, is relatively small and portable, and is capable of receiving dry material (e.g., fly ash) and water, mixing it to produce a grout, and pumping the grout at high pressure. It is therefore worthwhile to investigate it`s potential use in auger mine filling. Several field demonstrations were conducted using the different pumps. Numerous problems were encountered when using the progressive cavity pump, all of which were related to its inability to handle the highly reactive and heterogeneous FBC fly ash. Even relatively small ash agglomerates (<1 in. in diameter), which were not a problem for the larger piston pump, caused blockages in the progressive cavity pump which not only proved extremely difficult to clear, but also resulted in significant mechanical failures. Furthermore, mixing of dry fly ash with water within the progressive cavity pump was inconsistent and difficult to control. Consequently, the pump was unable to completely fill even a single auger hole. It was found that a large proportion of bed ash in the grout generated a large amount of heat and caused early stiffening of the material. During the experiments, cylinders of grout were prepared for compressive strength testing, and moisture contents were determined on-site. A thermocouple assembly was also constructed to record grout temperatures within an auger hole.

  4. High Volume - High Value Usage of Flue Dry Gas Desulfurization (FGD) By-Products in Underground Mines: Quarterly report, January 1-March 31, 1997

    SciTech Connect

    1997-12-31

    Activities during the quarter focused on two areas: monitoring of grout strength from the field demonstration (Subtask 1.4) and construction of laboratory lysimeters to examine the leaching characteristics of the waste materials used in that demonstration (Subtask 2.4). Two of the auger holes filled in October 1996 at the demonstration site were sampled and returned to the laboratory for compressive strength, mineralogic, and chemical testing. Construction and packing of eight laboratory leaching columns (lysimeters) was also initiated. Four columns were packed with samples of grout taken from cement-mixer trucks during the emplacement (October, 1996). A fifth column was loaded with crushed material cored from borehole {number_sign}10 two months after emplacement. Samples of dry FGD material were used to prepare water/FGD waste blends that were loaded to the final three columns. Two of these latter columns were loaded with a slurry produced by blending water with the FOD waste at levels similar to those used during emplacement (approx. 38 wt%). Differing amounts of slurry was loaded to each these columns and permitted to harden prior to initiating water additions. The final column was loaded with a blend of the dry FGD waste and a lesser amount of water (27.5 wt%) to both facilitate the percolation of water through the lysimeter and to permit subsequent comparisons to previous studies of the leaching behavior of dry FOD materials.1 Weekly additions of 100 mL of distilled water have been initiated. However, due to a significant lag time between the initiation of water feed and leachate-water breakthrough, leaching data are not available for presentation at this time.

  5. Enchancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 17, October 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1992-01-15

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  6. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 8-A, June 1--August 31, 1989

    SciTech Connect

    Not Available

    1989-09-27

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  7. Kinetics and structural evolution of sorbents at high temperatures. Final report, September 1, 1994--February 29, 1996

    SciTech Connect

    Fan, Liang-Shih; Ghosh-Dastidar, A.; Mahuli, S.; Agnihotri, R.

    1996-03-01

    The focus of this project is on furnace sorbent injection technology using dry calcium-based sorbents for the flue gas desulfurization. The goal is to provide fundamental research kinetics and effects of sorbent properties, aimed at improving SO{sub 2} removal and increasing sorbent utilization in a cost-effective manner. The fifth year project work has been carried out in two phases: (1) modified sorbent studies to understand the influence of sorbent modifications (both physical and chemical) on reaction mechanisms, and (2) development of a comprehensive sulfation model to interpret and predict short-time simultaneous calcination, sulfation and sintering processes. This report discusses these two phases of research.

  8. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment

  9. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect

    AYALA, R E; VENKATARAMANI, V S

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  10. Flue gas desulfurization: Physicochemical and biotechnological approaches

    SciTech Connect

    Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S.

    2005-07-01

    Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

  11. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  12. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 27, April 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-07-15

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal-fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone-fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions through a combination of two technologies, gas reburning and sorbent injection.

  13. METC hot gas desulfurization program overview

    SciTech Connect

    Cicero, D.C.

    1994-10-01

    This overview provides a frame of reference for the Morgantown Energy Technology Center`s (METC`S) on-going hot gas desulfurization research. Although there are several methods to separate contaminant gases from fuel gases, that method receiving primary development is absorption through the use of metal oxides. Research into high-temperature and high-pressure control of sulfur species includes primarily those sorbents made of mixed-metal oxides, which offer the advantages of regenerability. These are predominantly composed of zinc and are made into media that can be utilized in reactors of either fixed-bed, moving-bed, fluidized-bed, or transport configurations. Zinc Ferrite (ZnO-Fe{sub 2}O{sub 3}), Zinc Titanate (ZnO-TiO{sub 2}), Z-SORP{reg_sign}, and METC-2/METC-6 are the current mixed-metal sorbents being investigated. The METC desulfurization program is composed of three major components: bench-scale research, pilot-plant operation, and demonstration that is a portion of the Clean Coal Demonstration projects.

  14. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2002-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full testing in our desulfurization reactor. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations ({approx}< 10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Characterization and desulfurization

  15. Crude oil desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B. (Inventor)

    1982-01-01

    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.

  16. Laboratory evaluation of high-temperature sulfur removal sorbents for direct coal-fired turbines: Final report

    SciTech Connect

    Newby, R.A.; DeZubay, E.A.; Chamberlin, R.M.

    1987-06-01

    Direct coal-fired turbine concepts currently being developed require substantial levels of sulfur removal from high-temperature gas streams. Calcium-based sorbents, limestones, dolomites, limes and lime hydrates, are capable of sulfur removal in direct coal-fired turbine combustor environments at temperature up to 1200/degree/C. Two types of desulfurizer processes are considered in this report using calcium- based sorbents: fluidized bed desulfurizer using coarse sorbent particles (300-1000 ..mu..m), and entrained desulfurizer using fine sorbent particles (1-40 ..mu..m). Small-scale laboratory tests were performed on a variety of calcium-based sorbents to determine the kinetics of sulfation and sulfidation over ranges of conditions applicable to both types of desulfurizer processes. Correlations are developed in the report for the effect of pressure; temperature, and particle size. Engineering models are also developed for both desulfurizer types that incorporate the laboratory reaction kinetics and predict potential commercial performance and performance trends. It is concluded that both desulfurizer concepts can be effective in direct coal-fired turbines, with calcium-to-sulfur molar feed ratios ranging from 1.5 to 3.0, if the correct calcium-based sorbent is selected, and if applicable design and operating conditions are identified. Both desulfurizer concepts have limitations and key development requirements, and site and fuel specific engineering assessment is required to select the best concept for a given combustor system. The influence of the desulfurizer concepts on turbine protection, through their influence on particle loading and alkali release must also be assessed. 51 refs., 73 figs., 9 tabs.

  17. Study of fluidized-bed desulfurization with zinc ferrite

    SciTech Connect

    Grindley, T

    1991-01-01

    Previous work established the technical feasibility of desulfurizing the hot product gases of coal gasification with fixed beds of a regenerable zinc ferrite sorbent. This process, intended for integration with coal gasifiers and gas turbines, has been tested and studied in considerable detail in a process development unit. Though possessing the advantages of high-sulfur absorption at low-sulfur breakthrough and the lack of sorbent attrition characteristic of a stationary bed, fixed beds also have inherent disadvantages: susceptibility to plugging by particles and a large diluent requirement during regeneration to control the reaction zone temperature. Therefore, METC conducted a scoping laboratory test program to determine the desulfurizing capability of fluid beds of zinc ferrite. Results from this program are presented. The results generally demonstrated that fluid beds of zinc ferrite have the potential to lower the H{sub 2}S level in hot gas from 10,000 to 10 ppmv. To achieve this at a high-sorbent sulfur loading would require two fluid-bed stages. Sorbent attrition appears to be acceptably low. Planned future activities include tests at high pressure with both simulated gas and in a gasifier sidestream.

  18. Elemental sulfur-producing high-temperature fuel gas desulfurization process

    SciTech Connect

    Anderson, G.L.; Garrigan, P.C.; Berry, F.O.

    1980-01-01

    Preliminary studies have shown that certain materials when added to air-regenerable, high-temperature, fuel gas desulfurization sorbents, such as iron oxide or zinc oxide, significantly increase elemental sulfur formation during regeneration. Although the full range of conditions under which these materials can be applied remains to be determined, successful applications could eliminate a costly SO/sub 2/ reduction step.

  19. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  20. Characterization of calcium carbonate sorbent particle in furnace environment.

    PubMed

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO₂ and NO(x) emissions. Furthermore, sulfation reaction mechanism under CO₂-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO₃) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO₃, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO₃ sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO₂ atmosphere due to the higher CO₂ partial pressure. Instead, the sintering effect was dominant in the CO₂ atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO₂ atmospheres. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  1. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2003-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations (<{approx}10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Much of the work during year 02 consisted of

  2. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  3. High temperature removal of hydrogen sulfide using an N-150 sorbent.

    PubMed

    Ko, T H; Chu, H; Chaung, L K; Tseng, T K

    2004-10-18

    In this study, an N-150 sorbent was used as a high temperature desulfurization sorbent for the removal of hydrogen sulfide from coal gas in a fixed bed reactor. The results indicate that the N-150 sorbent could be used for H(2)S removal in the tested temperature ranges. Regeneration test also reveals that utilization of the N-150 sorbent maintains up to 85% compared to the fresh sorbent. No significant degeneration occurs on the N-150 sorbent. In addition, various concentrations of H(2)S, H(2) and CO were also considered in the performance test of the N-150 sorbent. Except for H(2)S, H(2) and CO act the important roles in the high temperature desulfurization. By increasing the H(2) concentration, the sulfur capacity of the sorbent decreases and an adverse result is observed in the case of increasing CO concentration. This can be explained via water-shift reaction. On the basis of the instrument analysis, X-ray powder diffraction determination and SEM images with EDS spectrum characterization, residual sulfur is found in the regenerated N-150 sorbent and this sulfur species is sulfate which resulted by incomplete regeneration. The sulfate formation and sintering effect are major reasons to cause activity loss in the sulfidation/regeneration cycles.

  4. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  5. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  6. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  7. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  8. Novel Sorbent to Clean Up Biogas for CHPs

    SciTech Connect

    Alptekin, Gökhan O.; Jayataman, Ambalavanan; Schaefer, Matthew; Ware, Michael; Hunt, Jennifer; Dobek, Frank

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  9. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  10. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  11. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  12. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  13. Pilot plant tests of Z-Sorb{trademark} sorbent

    SciTech Connect

    Greenwood, G.J.; Khare, G.P.; Kubicek, D.H.; Delzer, G.A.; Kinsinger, D.L.

    1995-06-01

    The objective of this work is to determine the long-term chemical reactivity and mechanical durability of Phillips Petroleum Company`s (PPCo`s) proprietary Z-Sorb{trademark} sorbent. Materials developed for fixed-, moving- and fluid bed desulfurization of coal derived gases at high pressure (5-20 atm) and moderate operating temperatures (600-1000{degrees}F) will be discussed.

  14. DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES

    SciTech Connect

    K. Jothimurugesan; Santosh K. Gangwal

    2000-12-01

    The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

  15. Desulfurization with a modified limestone formulation in an industrial CFBC boiler

    SciTech Connect

    Young Goo Park; Seung Ho Kim

    2006-02-01

    This work presents a practical result of experimental investigation of the limestone particle size effect on de-SOx from a circulating fluidized bed combustion (CFBC) boiler that burns domestic anthracite and is the first industrial scale in Korea. Because of combustion problems such as clinker formation, fine limestone has not been used as a desulfurization agent. The present test, however, showed that higher content (up to 50%) of the particles under 0.1 mm did not entail any malfunction in a modern CFBC system. In addition, the desulfurization efficiency was found to be comparable to the old mode of limestone sorbents. 17 refs., 4 figs., 3 tabs.

  16. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  17. Development of advanced hot-gas desulfurization processes

    SciTech Connect

    Jothimurugesan, K.

    1999-04-26

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3% of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to development of optimized low-cost zinc-oxide-based sorbents for Sierra-Pacific. The sorbent surface were modified to prevent

  18. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M.; Gidaspow, D.; Gupta, R.; Wasan, D.T.; Pfister, R.M.: Krieger, E.J.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  19. Methods, systems, and devices for deep desulfurization of fuel gases

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA; Liu, Jun [Richland, WA; Huo, Qisheng [Richland, WA

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  20. Effect of sorbent attrition on utilization. Final report

    SciTech Connect

    Keener, T.C.; Khang, S.J.; Li, G.

    1993-09-30

    The overall objective for 1992-1993 was to investigate ways of using chemical attrition to improve dolomitic sorbent utilization for duct injection processes. It is known that one of the primary mechanisms for poor sorbent utilization lies in the fact that the products of SO{sub 2}-sorbent reactions have such large molar volumes that they plug the pores necessary for SO{sub 2} to diffuse into the particle interior. Any method that may cause the fracture of used sorbent particles will thus expose fresh un-reacted surface of sorbent and result in available sorbent recovery. There are several mechanisms that may cause the breakage of particles. External mechanical stress may be exerted on a particle and cause particle fracture when it exceeds the cohesive forces to prevent the breakage. Heat and pressure can also induce particle fracture. In addition, chemical reaction is also a very important factor in leading to particle fracture. Among many sorbents currently used in desulfurization processes, dolomitic lime may be a good candidate for use in medium temperature duct injection. Dolomites are characterized by a large portion of magnesium (instead of high calcium) in the crystal structure of common limestones. Because of the special composition of dolomitic lime and its reactions with flue gas constituents under medium temperature duct injection conditions, a unique structure is formed for spent dolomitic particles that provides for the potential of recovering available sorbent just by hydration-induced particle fracture. By re-injecting the recovered sorbent, it is expected that a high sorbent utilization can be obtained.

  1. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  2. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  3. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-10-07

    Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  4. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  5. Coal Liquefaction desulfurization process

    DOEpatents

    Givens, Edwin N.

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  6. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. ); Marquis, J.K. . School of Medicine)

    1989-06-16

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  7. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-04-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}, TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents.

  8. Ultra-deep adsorptive desulfurization of a model diesel fuel on regenerable Ni-Cu/γ-Al₂O₃ at low temperatures in absence of hydrogen.

    PubMed

    Mansouri, Ali; Khodadadi, Abbas Ali; Mortazavi, Yadollah

    2014-04-30

    A model diesel fuel containing 250 ppmw sulfur (as dibenzothiophene) in n-hexadecane was desulfurized at low temperatures in absence of hydrogen, down to about zero ppmwS on a novel adsorbent of well dispersed 3-12 nm Nix-Cu10-x (x=Ni wt%) nanoparticles formed by impregnation on γ-Al2O3 and reduced in H2 at 275 or 450°C. The sorbents were characterized by XRD, TEM-EDX, FESEM-EDS, H2-TPR, TPO, BJH and BET surface area measurement techniques. Effects of various parameters comprising Cu content, reduction and desulfurization temperatures, inhibition by naphthalene, and regeneration of spent sorbents were investigated. As copper is added to nickel: (a) the sorbent reduction temperature shifts to dramatically lower values, (b) sulfur adsorption capacity of the sorbents at lower reduction and desulfurization temperatures is significantly improved, and when 14 wt% Ni5Cu5 sorbent is added to the fuel, the sulfur content reduces from 250 ppmwS to about zero in less than 1 min, (c) loss of adsorption capacity after the regeneration of the spent sorbent reduced at 275°C is significantly diminished, and (d) the selectivity of the sorbents to dibenzothiophene in the presence of naphthalene is improved. A higher reduction temperature tends to agglomerate nickel nanoparticles and reduce the sulfur adsorption capacity.

  9. Coal desulfurization by cyclonic whirl

    SciTech Connect

    Jianguo, Y.; Wenjun, Z.; Yuling, W.

    1999-07-01

    The crux of coal desulfurization is how to improve separation efficiency for 3--0.1mm materials. Cyclonic whirl produce centrifugal force and shearing force, heavy medium cyclone uses former, and cyclone flotation column uses both of them. A new system with heavy medium cyclone and cyclone flotation column is provided and testified to be very efficient in commercial desulfurization.

  10. Coal desulfurization with iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Coal desulfurization with iron pentacarbonyl treatment under mild conditions removes up to eighty percent of organic sulfur. Preliminary tests on treatment process suggest it may be economical enough to encourage investigation of use for coal desulfurization. With mild operating conditions, process produces environmentally-acceptable clean coal at reasonable cost.

  11. Coal desulfurization with iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Coal desulfurization with iron pentacarbonyl treatment under mild conditions removes up to eighty percent of organic sulfur. Preliminary tests on treatment process suggest it may be economical enough to encourage investigation of use for coal desulfurization. With mild operating conditions, process produces environmentally-acceptable clean coal at reasonable cost.

  12. Handling, transport and dispersion of sorbent powder for in-furnace injection. Final report

    SciTech Connect

    Fan, Liang-Shih; Abou-Zeida, E.; Liang, Shu-Chien; Luo, Xukun

    1996-02-01

    The focus of this project is on sorbent injection technologies using dry, calcium-based sorbents for high-sulfur coal flue gas desulfurization. The goal is to provide research findings on handling, transport and dispersion of sorbent powder, aimed at improving SO{sub 2} (to at least 90%) removal and increasing sorbent utilization in a cost-effective fashion. With this goal, the purpose of this project is to investigate the fundamental aspects of powder technology relevant to the fine sorbent powders, and to provide means of improving sorbent performance through superior dispersion and reduced dispersed particle size. The fifth year`s project contains three phases, Phase I ``Characterization of Electrostatic Properties``, Phase II ``Cohesive Strength of Modified Sorbents``. and Phase III ``Modeling of Powder Dispersion``. Work under Phase I involves characterization of the sorbents in terms of their electrostatic properties. Phase II investigates the flow properties of several calcium-based sorbents under different handling and transporting conditions. In Phase III, experimental studies are performed to measure the sorbent powder size distribution in different apparatuses and under different conditions. The population balance model proposed in previous studies can reasonably simulate these experiment results. These three areas of investigations are discussed in this report.

  13. Evaluation of sorbent materials

    SciTech Connect

    Rankin, W.N.; Gomillion, S.L.; Luckenbach, R.L.

    1989-01-01

    The sorption efficiency of different types of liquid sorbent materials was determined under carefully controlled laboratory conditions. Results show that the sorption capacity is affected both by the type of material and by the form of the material. Attractive alternate sorbents to ''atomic wipes'' and Oil-Dry were identified. Small pillows of shredded synthetic sorbents are an attractive alternative to Oil-Dry as a sorbent and to ''atomic wipes'' as both a sorbent and in decontamination by wiping. Synthetic sorbents in cloth form offer an attractive alternative to ''atomic wipes'' in decontamination by wiping because these materials are compatible with nitric acid and they may be more fire resistant. A larger-scale evaluation is planned with the most promising sorbents. In addition, development is planned of a sorbent that will be efficient, compatible with nitric acid and fire resistant. 6 refs., 2 tabs.

  14. Evaluation of sorbent materials

    SciTech Connect

    Rankin, W N; Gomillion, S L; Luckenbach, R L

    1989-01-01

    The sorption efficiency of different types of liquid sorbent materials was determined under carefully controlled laboratory conditions. Results show that the sorption capacity is affected both by the type of material and by the form of the material. Attractive alternate sorbents to atomic wipes'' and Oil-Dry were identified. Small pillows of shredded synthetic sorbents are an attractive alternative to Oil-Dry as a sorbent and to atomic wipes'' as both a sorbent and in decontamination by wiping. Synthetic sorbents in cloth form offer an attractive alternative to atomic wipes'' in decontamination by wiping because theses materials are compatible with nitric acid and they may be more fire resistant. A larger-scale evaluation is planned with the most promising sorbents. In addition, development is planned of a sorbent that will be efficient, compatible with nitric acid, fire resistant. 6 refs., 2 tabs.

  15. Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1994--February 29, 1996

    SciTech Connect

    Lin, Y.S.; Deng, S.G.

    1996-08-05

    A sol-gel granulation method was developed to prepare spherical {gamma}-alumina granular supports and supported CuO granular sorbents for flue gas desulfurization. The prepared {gamma}-alumina supported CuO sorbents exhibit desirable pore structure and excellent mechanical properties. The sorbents contain higher loading (30-40 wt. %) of CuO dispersed in the monolayer or sub-monolayer form, giving rise to a larger SO{sub 2} sorption capacity ({gt}20 wt.%) and a faster sorption rate as compared to similar sorbents reported in the literature. With these excellent sulfation and mechanical properties, the sol-gel derived {gamma}-alumina supported CuO granular sorbents offer great potential for use in the dry, regenerative flue gas desulfurization process. Research efforts were also made to prepare DAY zeolite supported sorbents with various CuO contents by the microwave and conventional thermal dispersion methods at different conditions. Monolayer or sub-monolayer coating of Cu(NO{sub 3})sub 2 or CuO was achieved on several DAY supported sorbents by the microwave heating method but not by the conventional thermal dispersion method. The DAY zeolite supported CuO sorbents prepared by the microwave heating method can adsorb up to 15 wt.% of SO{sub 2}. The results obtained have demonstrated the feasibility of effective preparation of zeolite supported CuO sorbents by the microwave heating method.

  16. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes

    SciTech Connect

    1989-08-21

    Mass transfer investigation experiments were performed to determine the controlling physical and chemical processes that limit Ca(OH){sub 2} sorbent utilization in flue gas desulfurization. A computer model has been established to estimate the relative contribution of gas- and liquid-phase mass transfer and inherent sorbent reactivity. Currently, the mass transfer investigation tests are on schedule and will be continued next year. More pilot-plant tests are planned to support field tests and mass transfer enhancement evaluations. 48 figs., 7 tabs.

  17. Flue gas desulfurization process

    SciTech Connect

    Yoon, H.

    1986-08-05

    The method of reducing sulfur dioxide content of a flue gas resulting from combustion of sulfur-containing fuel is described. The method comprises: (a) mixing into the flue gas, at a point where its temperature is between about 120/sup 0/ and about 230/sup 0/ C., a finely divided dry sorbent comprising alkaline earth metal oxide slaked with an aqueous solution of solubilizing agent, the sorbent being added in amount sufficient to provide a metal salt:sulfur ratio of at least about 0.5, the alkaline earth metal being selected from calcium and magnesium and the solubilizing agent selected from sodium hydroxide, sodium carbonate, calcium chloride, adipic acid and glycerol; (b) spraying into the resulting suspension of sorbent in flue gas a humidifying agent selected from water and steam; (c) providing a contact time between the flue gas and droplets resulting from the spraying of at least about 1 second; (d) subsequently separating from the flue gas solids resulting from addition of the sorbent and solids resulting from combustion of the fuel; (e) discharging from the separating a flue gas of substantially diminished sulfur dioxide content; and (f) regulating the rate of the spraying relative to the rate of the flue gas such that the temperature of the flue gas at the point of the separating is between about 10/sup 0/ C. and about 30/sup 0/C. above its saturation temperature.

  18. Flue gas desulfurization process

    SciTech Connect

    Yoon, H.; Statnick, R.M.

    1986-07-15

    The method is described for reducing sulfur dioxide content of a flue gas resulting from combustion of a sulfur-containing fuel. The method consists of: (a) mixing into the flue gas, at a point where its temperature is between about 120/sup 0/ and about 230/sup 0/ C., a finely divided dry sorbent comprising alkaline earth metal oxide or hydroxide in amount sufficient to provide a metal salt: sulfur ratio of at least about 0.5, the alkaline earth metal being selected from calcium and magnesium; (b) spraying into the resulting suspension of sorbent in flue gas an aqueous solution of solubilizing agent, such agent being selected from sodium hydroxide, sodium carbonate, calcium chloride, adipic acid and glycerol; (c) providing a contact time between the sorbent in flue gas and droplets resulting from the spraying of at least about 1 second; (d) subsequently separating from the flue gas solids comprising sorbent and solids resulting from combustion of the fuel; (e) discharging from the separating a flue gas of substantially diminished sulfur dioxide content; and (f) regulating the rate of the spraying relative to the rate of the flue gas such that the temperature of the flue gas at the point of the separating is between about 10/sup 0/ C. and about 35/sup 0/ C. above its saturation temperature.

  19. Nanocarbons for Catalytic Desulfurization.

    PubMed

    Gu, Qingqing; Lin, Yangming; Heumann, Saskia; Su, Dangsheng

    2017-08-24

    Nanocarbon catalysts are green and sustainable alternatives to the metal-based catalysts for numerous catalytic transformations. The application of nanocarbons for environmental catalysis is an emerging research discipline and has undergone rapid development in recent years. In this focus review, we provide a critical analysis on the state-of-the-art nanocarbon catalysts for three different catalytic desulfurization processes. And the focus is on the advantage and limitation as well as the reaction mechanism of the nanocarbon catalysts at molecular level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    2000-09-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  1. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-07-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  2. Two-stage coal gasification and desulfurization apparatus

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.

    1991-01-01

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  3. Development of advanced hot-gas desulfurization processes

    SciTech Connect

    Jothimurugesan, K.

    2000-04-17

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

  4. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    SciTech Connect

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  5. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization

    SciTech Connect

    Rongjun Zhang; Jiejie Huang; Jiantao Zhao; Zhiqiang Sun; Yang Wang

    2007-09-15

    Zinc ferrite as a desulfurization sorbent with an average crystallite size of about 36 nm was synthesized by a sol-gel auto-combustion method. The precursor for the sorbent was a gel obtained from metal nitrates and citric acid by a sol process. The nitrate-citrate gel exhibits a self-propagating combustion behavior, and after combustion, it can transform into a nanosized spinel structured zinc ferrite directly. The prepared sorbent has a larger specific surface area and higher reactivity when compared with the sorbent achieved by a solid mixing method, and it could efficiently reduce the H{sub 2}S concentration from 6000 ppm to less than 2 ppm at a moderate temperature range. The sulfur capacity at 400{sup o}C reaches about 38.5 g of sulfur/100 g of sorbent, which corresponds to 96.4% of the theoretical value. The temperature programmed oxidation test for the sulfided sorbent shows that the most sulfur is desorbed before 500{sup o}C. XRD results confirm that the sulfided sample after exposure to a 5% O{sub 2}/N{sub 2} gas mixture at 500{sup o}C can be regenerated completely, which indicates that the regeneration temperature of the sorbent prepared by the sol-gel auto-combustion method could be greatly reduced. 40 refs., 10 figs., 2 tabs.

  6. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  7. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  8. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 3, Effect/fate of chlorides in the zinc titanate hot-gas desulfurization process

    SciTech Connect

    Gangwal, S.K.; Paar, T.M.; McMichael, W.J.

    1991-09-01

    The objective of this project was to support Texaco`s effort to develop the zinc titanate hot-gas desulfurization process for gases produced from their oxygen-blown coal gasifier by answering two key questions that had remained unanswered to date. These questions were: Will chloride in the coal gas affect the performance of the sorbent? Where would the chloride end up following sulfidation and regeneration? Previously, Research Triangle Institute (RTI) completed a bench-scale test series, under a subcontract to Texaco, Inc., for their contract with the US Department of Energy/Morgantown Energy Technology Center (DOE/METC), in which zinc titanate was shown to be a highly promising sorbent for desulfurizing the Texaco O{sub 2}-blown simulated coal gas. The next step was to evaluate the effect of coal gas contaminants, particularly chloride, on the sorbent. No tests have been carried out in the past that evaluate the effect of chloride on zinc titanate. If ZnO in the sorbent reacts with the chloride, zinc chloride may form which may evaporate causing accelerated zinc loss. Zinc chloride may revert back to the oxide during oxidative regeneration. This may be enhanced in the presence of steam. This report provides results of a three-test series which was designed to give some definitive answers about the fate of chloride in the hot-gas desulfurization process and the effect of chloride on the performance of zinc titanate.

  9. New regents for coal desulfurization

    SciTech Connect

    Buchanan, D.H.; Kalembasa, S.; Olson, D.; Wang, S.; Warfel, L.

    1991-01-01

    The primary goal of this project was development and exploration of potential new desulfurization reagents for the removal of organic sulfur'' from Illinois coals by mild chemical methods. Potential new desulfurization reagents were investigated using organic sulfur compounds of the types thought to be present in coals. Reagents included low-valent metal complexes based on nickel and on iron as well as possible Single Electron Transfer reagents. Soluble coal extracts served as second generation model compounds during this reagent development project.

  10. Development of advanced hot-gas desulfurization processes

    SciTech Connect

    Jothimurugesan, K.

    1999-10-14

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur

  11. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1990-03-23

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  12. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. ); Marquis, J.K. . School of Medicine)

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  13. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  14. Process of desulfurization

    SciTech Connect

    Colley, J.D.

    1989-10-24

    This patent describes an improvement in a process for the desulfurization of flue gas utilizing limestone as absorbent in a double loop system, wherein the flue gas is introduced into a quenching zone for contact with a first slurry of the limestone, and thereafter passes to an absorbing zone for further contact with a second slurry of the limestone. The second slurry being supplied from a mixing zone into which water and limestone are charged. The first slurry being supplied from the solids rich stream from a solid-liquid separator which is supplied from the mixing zone, and wherein air is introduced into the quenching zone to convert the calcium sulfite present therein to gypsum. The improvement comprises supplying air to the mixing zone to convert calcium sulfite therein to large gypsum crystals which are preferentially separated into the first slurry.

  15. The Biocatalytic Desulfurization Project

    SciTech Connect

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  16. Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Jiang, Xueyu; Khang, Soon-Jai; Keener, T.C.

    1996-12-31

    During the eleventh quarter of the project, new flowmeters were replaced in the reaction system and calibrated to control the flowrate of HS, CO{sub 2}, H{sub 2} and N{sub 2}. The experimental results from quartz tube reactor were summarized in tabular form. The results showed that H{sub 2}S conversion increased with increasing temperature from 500 to 600{degrees}C when used with the CoO-MoO{sub 3}-Alumina catalyst. Bench scale experiments were set and performed to further investigate the adsorption ability of activated carbon which was the best of four adsorbents tested last quarter. At the same time, several designs of activated carbon feed system were tested. Under both an inert and a real reaction environment, bench scale experiments were performed to investigate the characteristics and efficiency of activated carbon passing through the CoO-MoO{sub 3}-Alumina catalyst bed. The results showed that activated carbon powder could easily be transported through the catalytic bed. The adsorption process may be applicable to promote conversion of H{sub 2}S in the H{sub 2}S and CO{sub 2} reaction system.

  17. Development of a hot-gas desulfurization system for IGCC applications

    SciTech Connect

    Gupta, R.; McMichael, W.J.; Gangwal, S.K.; Jain, S.C.; Dorchak, T.P.

    1992-12-31

    Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal because of their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. One key component of an advanced IGCC power plant is a hot-gas desulfurization system employing regenerable sorbents. To carry out hot-gas desulfurization in a fluidized-bed reactor, it is necessary that the sorbents have high attrition resistance, while still maintaining high chemical reactivity and sulfur absorption capacity. Also, efficient processes are needed for the treatment of SO{sub 2}-containing regeneration off-gas to produce environmentally benign waste or useful byproducts. A series of durable zinc titanate sorbents were formulated and tested in a bench-scale fluidized-bed reactor system. Reactive sorbents were developed with addition resistance comparable to fluid-bed cracking (FCC) catalysts used in petroleum refineries. In addition, progress continues on the development of the Direct Sulfur Recovery Process (DSRP) for converting SO{sub 2} in the regeneration off-gas to elemental sulfur. Plans are under way to test these bench-scale systems at gasifier sites with coal gas. This paper describes the status and future plans for the demonstration of these technologies.

  18. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  19. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  20. Mild pyrolysis of selectively oxidized coals. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Hippo, E.J.; Palmer, S.R.

    1992-08-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter primarily concerned establishing the level of selective oxidation required for successful desulfurization in subsequent treatments. Many desulfurization reactions were performed on pretreated as well as unoxidized coal. The results obtained support the following new conclusions: (1) The extent of selective oxidation in the pretreatment step does not effect the level of desulfurization obtained by pyrolysis alone. However this factor was important in the desulfurization obtained with supercritical methanol (SCM)/base. (2) Up to 84% of the sulfur in the IBC 106 coal and 86% of the sulfur in the IBC 106 coal has been removed by combining selective oxidation and SCM/base reactions. (3) Most desulfurizations at 250{degree}C did not produce significant levels of desulfurization. However as the temperature was increased levels of desulfurization increased considerably. (4) Although aqueous base was successful in removing sulfur from both pretreated and untreated samples, the most pronounced desulfurizations were obtained for the untreated samples. This is explained primarily by the dissolution of pyrite in the untreated samples. (5) The best desulfurizations involved SCM and base. Possible synergistic interactions between the methanol and the base are suspected. (6) Overall, selective oxidation pretreatment always led to a lower sulfur product. The severity of desulfurization is reduced by selective oxidation pretreatment.

  1. Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Jiang, X.; Khang, S.J.

    1995-08-01

    During the sixth quarter of the project, simulations were carried out to investigate the feasibility of producing elemental sulfur and methane from hydrogen sulfide and carbon dioxide by using the overall reaction of H{sub 2}S and CO{sub 2} based on the following equation: 4 H{sub 2}S + CO{sub 2} {l_equilibrium} 2 S{sub 2} + CH{sub 4}+2 H{sub 2}O. The results indicate that two reaction zones are required to realize the above reaction. The first reaction zone should be composed of multiple stages to recover the elemental sulfur without the equilibrium limitations. With optimum temperatures in each zone, the conversion can be increased significantly. The simulation also indicates less amounts of by-products, such as COS, CS{sub 2} and SO{sub 2}. The limitation on the extraction of sulfur is directly related to the sulfur vapor pressure.

  2. Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Gong, S.Y.; Jiang, X.; Khang, S.J.; Keener, T.C.

    1996-12-31

    During the tenth quarter of the project, bench scale experiments were performed to investigate the adsorption ability of different kinds of materials within sulfur vapor environment. Four kinds of adsorbents have been tested. The experimental results indicated that activated carbon was the best of four adsorbents tested. In addition to the baseline tests, several designs of activated carbon feed system have been tested. Under an inert environment, bench scale experiments were performed to investigate the characteristics and efficiency of activated carbon passing through the Co-Mo-Alumina catalyst bed. The results showed that activated carbon powder could easily be transported through the catalytic bed. The adsorption process may be applicable to promote conversion of H{sub 2}S in the H{sub 2}S and CO{sub 2} reaction system.

  3. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: optimization study.

    PubMed

    Lau, Lee Chung; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-11-15

    In order to reduce the negative impact of coal utilization for energy generation, the pollutants present in the flue gas of coal combustion such as sulfur dioxide (SO(2)) and nitrogen oxide (NO) must be effectively removed before releasing to the atmosphere. Thus in this study, sorbent prepared from rice husk ash that is impregnated with copper is tested for simultaneous removal of SO(2) and NO from simulated flue gas. The effect of various sorbent preparation parameters; copper loading, RHA/CaO ratio, hydration period and NaOH concentration on the sorbent desulfurization/denitrification capacity was studied using Design-Expert Version 6.0.6 software. Specifically, Central Composite Design (CCD) coupled with Response Surface Method (RSM) was used. Significant individual parameters that affect the sorbent capacity are copper loading and NaOH concentration. Apart from that, interaction between the following parameters was also found to have significant effect; copper loading, RHA/CaO ratio and NaOH concentration. The optimum sorbent preparation condition for this study was found to be 3.06% CuO loading, RHA/CaO ratio of 1.41, 8.05 h of hydration period and NaOH concentration of 0.80 M. Sorbent characterization using SEM, XRD and surface area analysis were used to describe the effect of sorbent preparation parameters on the desulfurization/denitrification activity.

  4. Flue gas desulfurization process

    SciTech Connect

    Yoon, H.; Statnick, R.M.

    1986-09-23

    The method is described for reducing sulfur dioxide content of a flue gas resulting from combustion in a combustion zone of a sulfur-containing fuel, which method comprises: (a) injecting into the combustion zone a finely divided dry sorbent comprising calcium carbonate in amount sufficient to provide a metal salt:sulfur ratio of at least about 0.5:1; (b) spraying into the resulting suspension of sorbent in flue gas at a point where the flue gas has a temperature of between about 120/sup 0/ and about 230/sup 0/C. an aqueous solution of solubilizing agent, such agent being selected from sodium hydroxide, sodium carbonate, calcium chloride, adipic acid and glycerol; (c) providing a contact time between the flue gas and droplets resulting from the spraying of at least about 1 second; (d) subsequently separating from the flue gas solids resulting from drying of the droplets and solids resulting from combustion of the fuel; (c) discharging from the separating a flue gas of substantially diminished sulfur dioxide content; and (f) regulating the rate of the spraying relative to the rate of the flue gas such that the temperature of the flue gas at the point of the separating is between about 10/sup 0/C. and about 35/sup 0/C. above its saturation temperature.

  5. Detoxification and generation of useful products from coal combustion wastes: Quarterly technical report, (October--December 1988)

    SciTech Connect

    Not Available

    1988-01-01

    This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)

  6. Investigation on the sulfur state and phase transformation of spent and regenerated S zorb sorbents using XPS and XRD

    NASA Astrophysics Data System (ADS)

    Qiu, Limei; Zou, Kang; Xu, Guangtong

    2013-02-01

    A series of industrial S zorb sorbents extracted from production line were characterized by XPS and XRD. The formation of ZnAl2O4 and Zn2SiO4 is the major reason for the deactivation of spent sorbent. The stability of the Zn-containing spinel species leads to the decrease of the desulfurization efficiency of regenerated sorbent. The chemical states of sulfur atom were examined by XPS. The depth distribution of sulfur species and the reductive behavior of sulfate in H2 atmosphere were explored using Ar+ etching XPS and in situ XPS. The formation of sulfate species in the regeneration process decreases the content of ZnO in the surface significantly and should be avoided. XPS and XRD are excellent tools to follow the sulfur chemical states and phase evolution of S zorb sorbent, respectively, which provide important information for the investigation of deactivation pathways and regenerated mechanisms for S zorb sorbent.

  7. Bench-scale testing of fluidized-bed sorbents -- ZT-4

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: {sm_bullet} Investigating various manufacturing methods to produce fluidizable zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; Characterizating and screening the formulations for chemical reactivity, attrition resistance, and structural properties; Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; Life-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; Addressing various reactor design issues; Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems; Transferring sorbent manufacturing technology to the private sector; Producing large batches (in tonnage quantities) of the sorbent to demonstrate commercial feasibility of the preparation method; and Coordinate testing of superior formulations in pilot plants with real and/or simulated coal gas.

  8. Desulfurization apparatus and method

    DOEpatents

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  9. Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Quarterly technical progress report, April, 1995--June 30, 1995

    SciTech Connect

    Jiang, X.; Khang, S-J

    1995-12-31

    During the seventh quarter of the project, further simulations were performed to investigate the feasibility of producing elemental sulfur and methane from hydrogen sulfide and carbon dioxide by using the overall reaction of H{sub 2}S and CO{sub 2} based on the following stoichiometry: 4H{sub 2}S + CO{sub 2} {l_equilibrium} 2S{sub 2} + CH{sub 4} + 2H{sub 2}O. The results indicate that the number of stages needed to reach the final system equilibrium for recovering sulfur can be greatly affected by the factor of sulfur vapor pressure. Sulfur vapor pressure versus the system temperature follows a logarithmic relationship. The H{sub 2}S conversion and sulfur yield do not increase proportionally with the number of stages. The simulation indicates that a multiple stage system is more effective at a high reaction temperature range in raising the H{sub 2}S conversion and sulfur yield.

  10. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Steven E. Bonde; David Nunn

    2003-04-01

    Research activities in the second quarter have largely been a continuation of efforts previously described in the first quarterly report as well as a degree of redirection of effort as a result of discussions during the first quarterly meeting held in San Diego. Chemical synthesis efforts have been refined and are currently being used to support generation of substrates for evaluation and evolution of enzymes for their oxidation. Analysis of the sulfur species in Petro Star diesel, CED extract and refinement of the speciation data is nearly complete. Molecular biology efforts continue with the cloning, expression and characterization of the DszA and DszC proteins as well as the flavin reductases to support regeneration of the essential FMN cofactors. In addition, we have initiated an evolution effort for the extension and improvement of DszA enzyme activity using Diversa's Gene Site Saturation Mutagenesis (GSSM{trademark}) technology. To support the evolution effort as well as of characterization of enzyme activities on a variety of substrates, a high-throughput mass spectroscopy-based assay has been developed. Two selection/screen strategies for the discovery and evolution of biocatalyst enzyme have been developed and are being evaluated for performance using gene libraries constructed from known biodesulfurization strains and environmental libraries.

  11. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  12. ABB wet flue gas desulfurization

    SciTech Connect

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  13. High volume--high value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Phase 1: Laboratory Investigations. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    Not Available

    1997-01-01

    The principal focus of the project during the quarter was the location of a suitable mine site for the field demonstration. The Ivy Creek Mine operated by the Costain Coal Co. was chosen for the study. The mine, located in Floyd County, Kentucky has an extensive body of environmentally relevant background information. Most importantly, it also has suitable strata of previously augered coal, as well as a mine plane which will allow access to emplaced FGD fill at a later date. A finite element analysis of the fill scenario for highwall mine adits, was also conducted to analyze the variation of stresses and displacements for this system due to backfilling of FGD materials. The engineering properties of the rock and the optimum mix proportioning of the FGD material (12% prehydrated FGD mix with 31 % water) were obtained from laboratory tests. The supporting effects of backfilled FGD mixtures appear after FGD mixtures get some stiffness, and the surrounding rocks deform sufficiently and squeeze into the backfilled highwall mine adits. The analyses show that for the case in question, after removal of the coal web, the displacement increases from 2.86 cm before backfilling to 3.31 cm. This slight increase in the roof displacement is within a reasonable range. According to the maximal principal failure criteria, the safety level of backfilled FGD mixture is evaluated by comparing the strength of FGD mixtures with the maximum compressive stress. The factor of safety calculated is much greater than 1.0 and it is concluded that, after backfilling, the coal pillar could be removed. Although original design guidance suggested 1000 psi unconfined compressive strength was required for the FGD material, it appears that much lower strength is acceptable. However, significant deformations are found to occur, and it would appear that material stiffness is the important parameter.

  14. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    SciTech Connect

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  15. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Dick, W.; Chen, L.; Nelson, S. Jr.

    1998-12-31

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called Fluesorbent has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable soil amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGD by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved. Detailed yield and chemical data are presented.

  16. Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993

    SciTech Connect

    Hepworth, M.T.

    1993-03-31

    The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

  17. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  18. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1992--September 30, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.; Strevel, S.D.

    1993-11-01

    Under the DOE Grant No. DE-FG22-90PC90309, the University of Tennessee Space Institute (UTSI) has been directed to further develop an anion-exchange, resin-based desulfurization concept that has been developed and tested on a limited scope for feasibility. From environmental as well as the economic viewpoints, it is necessary that the soluble sulfates of alkali metal sorbents be desulfurized (regenerated) and recycled to make regenerative flue gas desulfurization and MHD spent seed regeneration options more attractive. In order to achieve this, a low-temperature, low-cost desulfurization process to reactivate spent alkali metal sorbents is necessary. UTSI`s anion-exchange, resin-based concept uses the available technology and is believed to satisfy this requirement. In this DOE-sponsored project, UTSI, will perform the following investigations: Screening of commercially available resins; process variables study and improving resin performance; optimization of resin-regeneration step; evaluation of performance enhancers; development of Best-Process Schematic and related economics, and planning for proof-of-concept (POC) scale testing. The above activities have been grouped into five major tasks and the entire project is expected to take thirty-six months to complete.

  19. Sorbent Scoping Studies

    SciTech Connect

    Chancellor, Christopher John

    2016-11-14

    The Los Alamos National Laboratory – Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to: • Perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams. • Conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing. • Conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for: 1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, 2) determining waste that will require treatment, and 3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-11-01

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  1. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

    2004-09-30

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  2. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-10-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2} TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2} TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn{sub 2} TiO{sub 4} + 2H{sub 2}S {yields} 2ZnS + TiO{sub 2} + 2H{sub 2}O; Regeneration: 2ZnS + TiO{sub 2} + 3O{sub 2} {yields} Zn{sub 2} TiO{sub 4} + 2SO{sub 2} The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  3. Desulfurization chemistry on tungsten surfaces

    SciTech Connect

    Benziger, J.B.; Preston, R.E.

    1985-01-01

    Desulfurization on tungsten surfaces was studied by Auger spectroscopy, temperature programmed desorption, and infrared spectroscopy. Aliphatic compounds reacted by electrophilic interaction of sulfur with the surface. On sulfided surfaces adsorption occurred by disulfide linkages, but C-S bond scission required vacant metal sites. Thiophene underwent electrophilic attack on the ring at the ..cap alpha..-carbon by metal sites.

  4. Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite

    SciTech Connect

    Steinfeld, G.

    1984-03-01

    This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

  5. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Knox, James C.; Long, David A.; Miller, Lee; Cmaric, Gregory; Thomas, John

    2016-01-01

    The Long Duration Sorbent Testbed (LDST) is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to Earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  6. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.

    PubMed

    Głomba, Michał

    2010-08-01

    As a result of the large limestone deposits available in Poland, the low cost of reagent acquisition for the largescale technological use and relatively well-documented processes of flue gas desulfurization (FGD) technologies based on limestone sorbent slurry, wet scrubbing desulfurization is a method of choice in Poland for flue gas treatment in energy production facilities, including power plants and industrial systems. The efficiency of FGD using the above method depends on several technological and kinetic parameters, particularly on the pH value of the sorbent (i.e., ground limestone suspended in water). Consequently, many studies in Poland and abroad address the impact of various parameters on the pH value of the sorbent suspension, such as the average diameter of sorbent particles (related to the limestone pulverization degree), sorbent quality (in terms of pure calcium carbonate [CaCO3] content of the sorbent material), stoichiometric surfeit of CaCO3 in relation to sulfur dioxide (SO2) absorbed from flue gas circulating in the absorption node, time of absorption slurry retention in the absorber tank, chlorine ion concentration in sorbent slurry, and concentration of dissolved metal salts (Na, K, Mg, Fe, Al, and others). This study discusses the results of laboratory-scale tests conducted to establish the effect of the above parameters on the pH value of limestone slurry circulating in the SO2 absorption node. On the basis of the test results, a correlation equation was postulated to help maintain the desirable pH value at the design phase of the wet FGD process. The postulated equation displays good coincidence between calculated pH values and those obtained using laboratory measurements.

  7. Study on a novel semidry flue gas desulfurization with multifluid alkaline spray generator

    SciTech Connect

    Zhou, Y.G.; Zhang, M.C.; Wang, D.F.; Wang, L.

    2005-11-09

    The advantages and disadvantages of the typical semidry flue gas desulfurization (FGD) processes are analyzed, and a novel semidry FGD process with multifluid alkaline spray generator is first proposed to improve the colliding contact efficiency between sorbent particles and spray water droplets, and to form a large amount of aqueous lime slurry. The experimental results show that the colliding contact efficiency between lime particles and water droplets in the prefix alkaline spray generator may reach about 70%, which is significantly higher than the colliding contact efficiency of 25% in duct sorbent injection. The SO{sub 2} removal efficiency can reach 64.5% when the Ca/S molar ratio is 1.5, the approach to the saturation temperature is 10.3{sup o}C, and the flue gas residence time is 2.25 s. It is higher than that of in-duct sorbent injection under similar conditions, and the sorbent utilization is improved to 43%. Therefore, the FGD process with a prefix alkaline spray generator can greatly improve SO{sub 2} removal efficiency and sorbent utilization and it will be a new, simple and efficient semidry FGD process for industrial application in the future.

  8. Fixed bed testing of a molybdenum-promoted zinc titanate for hot gas desulfurization

    SciTech Connect

    Gasper-Galvin, L.D.; Mei, J.S.; Everitt, C.E.; Katta, S.

    1993-09-01

    The following conclusions were made, based upon this study of T-2535 molybdenum-promoted zinc titanate: (1) Results of the half-cycle sulfidation experiments showed that sorbent efficiency and capacity of this formulation of zinc titanate were weak functions of operating-bed temperature. Evidence of diffusion limitations on the sulfidation reaction were observed, particularly at superficial velocities greater than 30 cm/s (1 ft/s). Sorbent performance appeared to be affected by the concentration of reducing gases and/or water content of the simulated coal gas mixtures. Sorbent capacity and efficiency deteriorated during the first three cycles, but stabilized thereafter. (2) Sorbent spalling was observed and appeared to increase with sulfur loading. Possible causes of spalling may be attributed to the induced crystal lattice stresses due to the formation of ZnS and especially ZnSO{sub 4}, which have relative molar volumes that are approximately 1-1/2 and 3 times larger, respectively, than that of the original ZnO. (3) Based on these results, it is apparent that the molybdenum-promoted zinc titanate with Zn/Ti molar ratio of 1.91 may not be a suitable sorbent for hot gas desulfurization in the fixed bed reactor for the Pinon Pine project, due to problems with spalling and loss of reactivity during sulfidation/regeneration cycling.

  9. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate derivatives of the entire IGTS8 BDS plasmid

  10. Mercury removal sorbents

    DOEpatents

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  11. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  13. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    O`Brien, W.S.; Gupta, R.P.

    1992-12-31

    In this project, simulated gasifier-product streams were contacted with the zinc titanate desulfurization sorbent in a bench-scale atmospheric fluidized-bed reactor at temperatures ranging from 538 to 750 {degree}C (1000 to 1382 {degree}F). The first set of experiments involved treating a medium-Btu fuel gas (simulating that of a ``Texaco`` oxygen-blown, entrained-bed gasifier) containing 1.4 percent H{sub 2}S and HCl concentrations of 0, 200, and 1500 ppmv. The second experimental set evaluated hot-gas desulfurization of a low-Btu fuel gas (simulating the product of the ``U-Gas`` air-blown gasifier), with HCl concentrations of 0, 200, and 800 ppmv. These operating conditions were typical of the gas-treatment requirements of gasifiers fueled by Illinois basin coals containing up to 0.6 percent chlorine. The results of the experiments at 538 and 650 {degree}C at all the HCl concentrations revealed no deleterious effects on the capability of the sorbent to remove H{sub 2}S from the fuel gas mixtures. In most cases, the presence of the HCl significantly enhanced the desulfurization reaction rate. Some zinc loss, however, was encountered in certain situations at 750 {degree}C when low-steam operating conditions were present. Also of interest, a portion of the incoming HCl was removed from the gas stream and was retained permanently by the sorbent. This behavior was examined in more detail in a limited set of experiments aimed at identifying ways to modify the sorbents composition so that the sorbent could act as a simultaneous desulfurization and dechlorination agent in the hot-gas cleanup process.

  14. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  15. Microbial stabilization of sulfur-laden sorbents. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Miller, K.W.; Hillyer, D.

    1993-12-31

    Clean coal technologies that involve limestone for sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur can result in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are the following: (1) to optimize conditions for sulfate generation from sulfide, thiosulfate, and sulfite; (2) to test and optimize the effectiveness of microbial processing on spent sorbents from flue gas desulfurization, coal gasification, and fluidized bed combustion; (3) to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11.

  16. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Knox, James; Long, David; Miller, Lee; Thomas, John; Cmarik, Greg; Howard, David

    2016-01-01

    The LDST is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  17. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  18. An attrition-resistant zinc titanate sorbent for sulfur. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Swisher, J.H.

    1993-05-01

    In the continuing search for good sorbent materials to remove sulfur from hot, coal-derived gases, zinc titanate sorbents have shown great promise. The objective of this project is to extend the work of prior investigators to obtain improvements in the compressive strength and, therefore, the cycle life of these sorbents without a significant loss in chemical reactivity. During the second quarter, parametric data were obtained on the percent porosity, crush strength, and chemical reactivity for a sorbent composition of 75% Zn{sub 2}TiO{sub 4} - 25% TiO{sub 2}. This material was sintered at temperatures ranging from 700 to 1100{degree}C. Although more extensive reactivity tests are still needed, results to date indicate that the best combination of properties is obtained with a sintering temperature of 800 or 850{degree}C. Also planned for the next quarter are evaluations of other sorbent formulations.

  19. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  20. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  1. Handling, transport and dispersion of sorbent powder for in-furnace injection. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Fan, L.S.; Abou-Zeida, E.; Liang, S.C.; Luo, Xukun

    1995-02-01

    The focus of this project is on sorbent injection technologies using dry, calcium-based sorbents for high-sulfur coal flue gas desulfurization. The goal is to provide research findings on handling, transport and dispersion of sorbent powder, aimed at improving SO{sub 2} (to at least 90%) removal and increasing sorbent utilization in a cost-effective fashion. The purpose of this project is to investigate the fundamental aspects of powder technology relevant to the fine sorbent powders, and to provide means of improving sorbent performance through superior dispersion and reduced dispersed particle size. This project is in two phases, Phase 1 ``Powder Characterization`` and Phase 2 ``Powder Mechanical Properties``. Phase 1 involves characterization of the sorbents in terms of their electrostatic properties. The triboelectric charging of powders are studied in detail by measuring sorbent charging as a function of material properties as well as transport conditions. A variety of sorbents are tested, including laboratory-made lignohydrates, calcite, dolomite, dolomitic hydrate and hydrated lime. The effects of transport tube material and gas properties, specifically humidity and velocity on the extent of sorbent charging are also investigated. A population balance model is developed to account for the particle size distribution for powder dispersion through gas-solid injection nozzles. The variations of the transition probability with the booster air velocities is examined. Simulation of particle size distributions under some operating conditions is conducted. Phase 2 investigates the flow properties of several calcium-based sorbents under different handling and transporting conditions. Effect of moisture content, as an important handling condition, on these properties is examined. Determined properties has been analyzed to study their effect on the transport and handling processes.

  2. Inorganic ion sorbent method

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2007-07-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  3. Inorganic ion sorbents

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  4. Global evaluation of mass transfer effects: In-duct injection flue gas desulfurization

    SciTech Connect

    Cole, J.A.; Newton, G.H.; Kramlich, J.C.; Payne, R.

    1990-09-30

    Sorbent injection is a low capital cost, low operating cost approach to SO{sub 2} control targeted primarily at older boilers for which conventional fuel gas desulfurization is not economically viable. Duct injection is one variation of this concept in which the sorbent, either a dry powder or a slurry, is injected into the cooler regions of the boiler, generally downstream of the air heaters. The attractiveness of duct injection is tied to the fact that it avoids much of the boiler heat transfer equipment and thus has minimal impact of boiler performance. Both capital and operating cost are low. This program has as its objectives three performance related issues to address: (1) experimentally identify limits on sorbent performance. (2) identify and test sorbent performance enhancement strategies. (3) develop a compute model of the duct injection process. Two major tasks are described: a laboratory-scale global experiment and development of process model. Both are aimed at understanding and quantifying the rate-limiting processes which control SO{sub 2} capture by lime slurry during boiler duct injection. 29 refs., 35 figs., 4 tabs.

  5. Bench-scale development of mild gasification char desulfurization. Technical report, 1 March--31 May 1994

    SciTech Connect

    Knight, R.A.

    1994-09-01

    The goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650--760 C and 7--15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt% sulfur was converted to chars with less than 1.0 wt% sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. This quarter, 2,500 g of mild gasification char was produced from untreated IBC-105 coal in the bench-scale reactor. Half of this char will be subjected to sulfuric acid treatment to enhance subsequent desulfurization. Char-producing runs were also initiated with acid-pretreated coal, which will produce about 1,250 g of char.

  6. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  8. Preparation and analysis of high reactive Zn-Ti-O hot gas sulfur sorbents

    SciTech Connect

    Xu Deping

    1997-12-31

    Three hot gas desulfurization sorbents (HGSS) was prepared by plain mixing of powder ZnCO{sub 3} and TiO{sub 2} in a conical agitator, by vibrating, grinding and mixing of the same material, and by co-precipitating of ZnCO{sub 3} and Ti(SO{sub 4}){sub 2} using NH{sub 3}H{sub 2}O or (NH{sub 4}){sub 2}CO{sub 3} as precipitating agent. Calcining temperature was 1,030 K, and Zn/Ti atom ratio was 2/1. Sulfidation performance was tested in a quartz tube at 923 K, space speed being 10,000 h{sup {minus}1} , H{sub 2}S being 0.5% (v/v). The author found that the desulfurization activity of co-precipitating HGSS was two times that of plain mixing HGSS; the grinding mixing HGSS was similar to co-precipitating HGSS. The three sorbents were characterized by XRD and SEM analysis. The breakthrough curve and solid conversion are discussed in terms of grain size, crystalline state, inactive nucleus of crystallization, and the generating course of zinc titanate of each sorbent.

  9. ADVANCED SORBENT DEVELOPMENT PROGRAM

    SciTech Connect

    Unknown

    1998-06-16

    The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical characteristics that are compatible with the fluidized bed application.

  10. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  11. Measurement of mercury in flue gas based on an aluminum matrix sorbent.

    PubMed

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg(0) on the sorbent media, the analytical bias test on tube 3 spiked with Hg(0) was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field.

  12. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    PubMed

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  14. Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent

    PubMed Central

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  15. Special Issue on Powering the Future Force: New Power & Energy Technologies for the Warfighter (AMMTIAC Quarterly, Volume 4, Number 1 / WSTIAC Quarterly, Volume 9, Number 1)

    DTIC Science & Technology

    2009-04-27

    clinoptilolite (zeolitic clay) were used as inert support materials for synthesizing the sulfur sorbents. Scanning electron microscope (SEM) micrographs...gas chromatograph. It was found that the sulfur capture propensity of these formu- Figure 1. SEM images of clinoptilolite (left) and diatomite (right...desulfurizer on 1 x 9 inch corrugated stainless steel foils to enhance the surface area. The time dependence of sulfur capture by the clinoptilolite -based

  16. Reactivity of target compounds for chemical coal desulfurization. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Buchanan, D.H.; Amin, M.; Cunningham, R.; Galyen, J.; Ho, K.K.

    1994-09-01

    This project seeks to identify representative organosulfur compounds which are removed by known coal desulfurization reactions. Demineralized coals are solvent extracted and the extracts fractionated to concentrate organosulfur compounds for analysis by Gas Chromatography/Mass Spectroscopy. After sulfur compounds are characterized, the parent extracts are subjected to reactions previously shown to reduce the organic sulfur content of Illinois coals, fractionated and again analyzed for organosulfur content to determine if the identified compounds reacted during the chemical treatment. The original coal also will be subjected to chemical desulfurization, extraction, fractionation and analysis in order to correlate changes in organic sulfur content of the coal with reactions of specific sulfur compounds. These compounds can thus be reliably considered as target molecules for the next generation of desulfurization processes. Work during this quarter has shown that fractionation and chromatography of pyridine extracts to isolate suitable samples for GC/MS analysis, although time-consuming, appears to be better than direct toluene extraction in terms of providing a representative set of compounds for analysis. The toluene soluble fractions prepared by this route contain aromatic sulfur compounds and O, N, S-containing hetrocycles. A set of these compounds has been identified and their fate following desulfurization of the parent coal extracts is under investigation. Previously studied desulfurization reactions using the single electron transfer reagent, K/THF/naphthalene, and the reactive nickel boride reagent have been repeated and analyzed by GC/MS. SET and nickel boride reactions of the THF soluble portions of pyridine coal are currently in progress.

  17. Scale control in flue gas desulfurization

    SciTech Connect

    Crump, D. K.; Gatton, G. D.; Wilson, D. A.

    1984-09-04

    An improvement in a process for flue gas desulfurization in which particular phosphonomethylated derivatives of aminoethylpiperazine, employed as threshold agents, prevent calcium scale formation in the contacting section but permit precipitation of calcium compounds at a later stage.

  18. Production of elemental sulfur from spent sorbent and CO{sub 2}. Final report, April 1, 1992--October 31, 1994

    SciTech Connect

    Khang, Soon-Jai; Soriano, D.; Zhao, Lingqing

    1994-10-31

    This proof of concept project studied the feasibility of producing elemental sulfur from a spent solid sorbent and carbon dioxide (CO{sub 2}) gas. The objectives were to research (1) producing H{sub 2}S gas from an aqueous solution produced from spent sorbent solid consisting of primarily CaS, and (2) research the potential of producing elemental sulfur at temperatures below 600{degrees}C by means of a novel reaction between H{sub 2}S with CO{sub 2}. The spent sorbent derives from a novel coal desulfurization process currently under development by the Ohio Coal Development Office (OCDO) and the US DOE that provides for up to 80% desulfurization of the coal before combustion. The spent sorbent consists mainly of calcium sulfide with minor quantities of unreacted lime (CaO) and limestone (CaCO{sub 3}). In this study, CaS is dissolved in a solution of acetic acid forming a solution containing primarily hydrogen sulfide, calcium ions and acetate ions. The hydrogen sulfide is subsequently stripped from the solution by carbon dioxide (available from stack gas) and the H{sub 2}S-CO{sub 2} mixture is catalytically converted to form elemental sulfur. This conversion is aided by the reaction between CO{sub 2} and H{sub 2}(water-gas shift reaction) to produce water vapor and carbon monoxide.

  19. A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL

    SciTech Connect

    B.S. Turk; R.P. Gupta; S.K. Gangwal

    2003-06-30

    Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry

  20. Sorbents for mercury removal from flue gas

    SciTech Connect

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  1. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  2. Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Lin, Y.S.

    1995-02-01

    Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface area of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.

  3. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    NASA Astrophysics Data System (ADS)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  4. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  5. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Benedek, K. , Inc., Cambridge, MA ); Flytzani-Stephanopoulos, M. )

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  6. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2005-02-02

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this

  7. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2004-10-29

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at four plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and a site burning a blend of bituminous and subbituminous coals with a cold-side ESP. This is the fourth quarterly report for this project. Long-term testing was completed at Holcomb during this reporting period and baseline testing at Meramec was begun. Preliminary results from long-term testing at Holcomb are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used

  8. Chemical kinetic studies on dry sorbents. Final report. [Sodium bicarbonate

    SciTech Connect

    Davis, W.T.; Keener, T.C.

    1982-02-15

    The scope of this research investigation has included a review of potential additives suitable for dry flue-gas desulfurization (FGD) and a bench scale laboratory study to determine the chemical kinetics for the reaction of five different sorbents with sulfur dioxide. The sorbents chosen included sodium bicarbonate (NaHCO/sub 3/), soda ash (Na/sub 2/CO/sub 3/), trona, lime (CaO) and hydrated lime (Ca(OH)/sub 2/). This study has shown that: (1) The reaction rate increases with temperature for soda ash and calcium oxide. The reaction temperature has an inverse effect on sodium bicarbonate and trona due, primarily, to the simultaneous thermal activation reaction. The calcium hydroxide-SO/sub 2/ reaction increased up to 550/sup 0/F, and then decreased, due to uneven gas flow distribution. (2) The reaction rates for soda ash, calcium oxide and calcium hydroxide were increased by decreasing their particle size. This effect was not confirmed for sodium bicarbonate and trona where reaction temperature was the most important reaction parameter. (3) Reaction with soda ash was found to be limited by the presence of an impervious ash layer which prevented interparticle gaseous diffusion. Calcium oxide and calcium hydroxide were found to be limited by a slow chemical reaction rate. Results on the rate-limiting steps for sodium bicarbonate and trona were inconclusive because of the simultaneous thermal activation reaction. (4) The effect of thermal activation was to increase the reaction rate for sodium bicarbonate and trona at lower temperatures. This effect was less pronounced at higher temperatures. (5) Results obtained for nitric oxide show limited adsorption for the five sorbents tested as compared to the finding for sulfur dioxide.

  9. Solid-Sorbent Air Sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J.

    1986-01-01

    Portable unit takes eight 24-hour samples. Volatile organic compounds in air collected for analysis by portable, self-contained sampling apparatus. Sampled air drawn through sorbent material, commercial porous polymer of 2, 3-diphenyl-p-phenylene oxide. High-boiling-point organic compounds adsorbed onto polymer, while low-boiling-point organics pass through and returned to atmosphere. Sampler includes eight sample tubes filled with polymeric sorbent. Organic compounds in atmosphere absorbed when air pumped through sorbent. Designed for checking air in spacecraft, sampler adaptable to other applications as leak detection, gas-mixture analysis, and ambient-air monitoring.

  10. Solid-Sorbent Air Sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J.

    1986-01-01

    Portable unit takes eight 24-hour samples. Volatile organic compounds in air collected for analysis by portable, self-contained sampling apparatus. Sampled air drawn through sorbent material, commercial porous polymer of 2, 3-diphenyl-p-phenylene oxide. High-boiling-point organic compounds adsorbed onto polymer, while low-boiling-point organics pass through and returned to atmosphere. Sampler includes eight sample tubes filled with polymeric sorbent. Organic compounds in atmosphere absorbed when air pumped through sorbent. Designed for checking air in spacecraft, sampler adaptable to other applications as leak detection, gas-mixture analysis, and ambient-air monitoring.

  11. Method for desulfurization of coal

    DOEpatents

    Kelland, David R.

    1987-01-01

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  12. Method for desulfurization of coal

    DOEpatents

    Kelland, D.R.

    1987-07-07

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  13. Coal desulfurization by low-temperature chlorinolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Kalvinskas, J. J.; Ganguli, P. S.; Gavalas, G. R.

    1977-01-01

    Among the three principal methods for precombustion desulfurization of coal, which include physical depyriting, chemical desulfurization, and coal conversion to low-sulfur liquid and gaseous fuels, the potential of chemical methods looks promising in terms of both total sulfur removal and processing cost. The principal chemical methods for coal desulfurization involve treatment with either oxidizing agents or basic media at elevated temperature and pressure. A description is given of some recent experimental results which show the feasibility of removing sulfur, particularly organic sulfur, from high-sulfur coals by a simple method of low-temperature chlorinolysis followed by hydrolysis and dechlorination. The chemical feasibility of sulfur removal by chlorinolysis rather than the detailed engineering process is emphasized.

  14. Desulfurization of flue gas from multiple boilers

    SciTech Connect

    Yoon, H.

    1986-07-29

    The method is described for reducing sulfur dioxide content of flue gas resulting from combustion of sulfur-containing fuel in a plurality of combustion zones, which method comprises: (a) injecting into a first of the combustion zones a finely divided sorbent comprising calcium carbonate; (b) recovering from the first combustion zone a first flue gas having suspended therein particles of spent sorbent and particles of calcined sorbent; (c) separating from the first flue gas a mixture of particles comprising the spent sorbent and the calcined sorbent; (d) reacting a portion of the mixture with water to provide a finely divided dry slaked sorbent; (e) combusting a portion of the sulfur-containing fuel in a second combustion zone to produce a second flue gas containing sulfur dioxide; (f) mixing into the second flue gas at a point where its temperature is between about 120/sup 0/ and about 230/sup 0/ C. slaked sorbent from step (d) to produce a suspension of slaked sorbent in flue gas wherein water is added to the suspension of slaked sorbent in flue gas of step (f) in amount sufficient to reduce the temperature of the suspension to between about 10/sup 0/ and about 30/sup 0/C. above its dew point wherein the water comprises an aqueous solution of at least one solubilizing agent selected from the group consisting of sodium hydroxide, sodium carbonate, calcium chloride, adipic acid and glycerol; (g) separating solids from the suspension of slaked sorbent in flue gas; and (h) collecting from the separating of steps (c) and (g) flue gases of reduced sulfur dioxide content.

  15. Process for desulfurizing an exhaust gas

    SciTech Connect

    Shinoda, N.; Okino, S.; Oshima, M.; Shigeta, S.; Tatani, A.; Ukawa, N.

    1983-12-13

    A process is disclosed for desulfurizing an exhaust gas which comprises desulfurizing an exhaust gas containing SO/sub 2/ by bringing it into contact with a slurry containing calcium compounds and aluminum compounds, characterized in that the concentration of the dissolved aluminum ion in said slurry is detected and a manganese compound is supplied into said slurry in such a manner that the ratio of the concentration of manganese (including both solid and liquid) to said concentration of the dissolved aluminum ion may be maintained in a molar ratio of less than 1 in said slurry.

  16. Ultrasound-assisted oxidative desulfurization of bitumen

    NASA Astrophysics Data System (ADS)

    Kamal, Wan Mohamad Ikhwan bin Wan; Okawa, Hirokazu; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    Bitumen contains a high percentage of sulfur (about 4.6 wt %). A hydrodesulfurization method is used to remove sulfur from bitumen. The drawback of this method is the requirement for a high temperature of >300 °C. Most of the sulfur in bitumen exists as thiophene. Oxidative desulfurization (ODS), involving oxidizing sulfur using H2O2, then removing it using NaOH, allows the removal of sulfur in thiophene at low temperatures. We removed sulfur from bitumen using ODS treatment under ultrasound irradiation, and 52% of sulfur was successfully removed. Additionally, the physical action of ultrasound assisted the desulfurization of bitumen, even at low H2O2 concentrations.

  17. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  18. CFB sorbent selection enhances performance

    SciTech Connect

    Buecker, B.; Wofford, J.; DuBose, R.; Ray, D.

    1997-07-01

    The quality and particle size of the sorbent has a direct influence on the efficiency of sulfur dioxide (SO{sub 2}) removal in a circulating fluidized bed (CFB) boiler. This report outlines tests and subsequent operation of a CFB unit at the University of North Carolina at Chapel Hill Cogeneration Facility (UNC-CH) that proved how dramatically a change in sorbent can change the efficiency of performance.

  19. Pilot-plant technical assessment of wet flue gas desulfurization using limestone

    SciTech Connect

    Ortiz, F.J.G.; Vidal, F.; Ollero, P.; Salvador, L.; Cortes, V.; Gimenez, A.

    2006-02-15

    An experimental study was performed on a countercurrent pilot-scale packed scrubber for wet flue gas desulfurization (FGD). The flow rate of the treated flue gas was around 300 Nm{sup 3}/h, so the pilot-plant capacity is one of the largest with respect to other published studies on a pilot-plant wet FGD. The tests were carried out at an SO{sub 2} inlet concentration of 2000 ppm by changing the recycle slurry pH to around 4.8 and the L/G ratio to between 7.5 and 15. Three types of limestone were tested, obtaining desulfurization efficiencies from 59 to 99%. We show the importance of choosing an appropriate limestone in order to get a better performance from the FGD plant. Thus, it is important to know the reactivity (on a laboratory scale) and the sorbent utilization (on a pilot-plant scale) in order to identify if a limestone is reactive enough and to compare it with another type. In addition, by using the transfer-unit concept, a function has been obtained for the desulfurization efficiency, using the L/G ratio and the recycle slurry pH as independent variables. The Ca/S molar ratio is related to these and to the SO{sub 2} removal efficiency. This function, together with a simplified function of the operation variable cost, allows us to determine the pair (L/G ratio and pH) to achieve the desired SO{sub 2} removal with the minimum operation cost. Finally, the variable operation costs between packed towers and spray scrubbers have been compared, using as a basis the pilot packed tower and the industrial spray column at the Compostilla Power Station's FGD plant (in Leon, Spain).

  20. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  1. Distribution and quality of carbonate rock for desulfurization in coal combustion processes

    SciTech Connect

    Eggleston, J.R.; Kress, T.H.

    1995-12-31

    To meet the requirements of the Federal Clean Air Act of 1970 and the Amendments of 1977 and 1990, coal-burning power plants will use large tonnages of carbonate rock (limestone and dolomite) and lime for flue gas desulfurization, fluidized bed combustion, and other processes designed to minimize air pollution. By January 1, 2000, the end of Phase 2 of Title IV of the Clean Air Act, all plants having a capacity of 25 MW or more must restrict their sulfur emissions to 1.2 lb per million Btu or less. As power companies endeavor to comply with this regulation, they will need to identify resources of limestone and dolomite having specific quality and grindability characteristics, in sufficient quantity for their needs and within proximity to their plants. A study is underway at the US Geological Survey (USGS) to identify limestone resources in the Eastern US that are best suited for desulfurization in the various combustion systems. Carbonate resources are being identified, quantified, and characterized on the basis of their sorbent properties and proximity to potential markets. In addition, the USGS has developed a carbonate data base that includes approximately 1,500 chemically analyzed samples from the US. The current study focuses on limestones that are suited for wet scrubber operations and have at least 90% CaCO{sub 3}.

  2. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  3. Desulfurization, demetalation and denitrogenation of coal

    SciTech Connect

    Farcasiu, M.; Mitchell, T.O.; Whitehurst, D.D.

    1981-12-01

    The specification discloses a desulfurization, demetalation and denitrogenation process for coal and coal liquid charge stocks. The process comprises contacting the charge stock in the absence of externally added hydrogen with a hydrogen donor solvent in the presence of a catalytic amount of naturally occurring porous metal ores such as manganese nodules, bog iron, bog manganese, nickel laterites, bauxite or spent bauxite.

  4. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  5. Low-Cost Aqueous Coal Desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.

    1982-01-01

    Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.

  6. Novel sorbents for environmental remediation

    NASA Astrophysics Data System (ADS)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  7. [Performance of desulfurizing absorbent of roasted navajoite].

    PubMed

    Chen, Fang; Yang, Chun-ping; Gan, Hai-ming; Wu, Ting; Chen, Hai-lin; Chen, Hong; Xu, Ke-hui; Xie, Geng-xin

    2010-04-01

    An innovative flue gas desulfurization (FGD) coupling process was proposed in this study to overcome the problems in wet-type limestone/lime processes which include fouling, clogging, and difficulty of selling the by-products and the problems in traditional process for vanadium extraction from navajoite ore such as excessive consumption of sulfuric acid and emissions of pollutants. The performance of a jet bubbling reactor (JBR) at pilot-scale was evaluated using navajoite ore produced in the process of extracting vanadium pentoxide as desulfurization absorbent. Results showed that navajoite ore slurry achieved better desulfurization performance than limestone slurry. When the inlet flue gas pressure drop was 3.0 kPa, the gas flow was about 2350 m3 x h(-1) and the pH of the navajoite ore slurry was higher than 4.5, the desulfurization efficiency was stable about 90%. The SO2 removal efficiency appeared to increase along with the increasing of absorbent cycle-index. The efficiency of the second circulation was improved 3.5% compared to the first circulation. After an operating duration of 40 minutes, the leaching rate of vanadium pentoxide was about 20%, and reached 60% when the by-products were leached with 5% dilute sulfuric acid for 10 hours. The by-product from this process not only could be used to produce vanadium pentoxide which is a valuable industrial product, but also could significantly overcome the pollution problem existing in the traditional refining process of vanadium pentoxide when navajoite ore is used as the feed material. This FGD process using roasted navajoite slurry as absorbent is environmental sound and cost-effective, and shows the potential for application in the field of flue gas desulfurization as well as hydrometallurgy.

  8. Chemical and physical properties of dry flue gas desulfurization products.

    PubMed

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  9. Characteristics of pneumatically-emplaced dry flue gas desulfurization materials

    SciTech Connect

    Carter, S.D.; Rathbone, R.F.; Graham, U.M.; Robl, T.L.

    1996-12-31

    The University of Kentucky in collaboration with the Department of Energy, Addington, Inc. and Costain Coal is currently developing a commercial concept for the haul back of dry flue gas desulfurization materials (FGDM) into highwall mine adits. The University`s Center for Applied Energy Research (CAER) is investigating emplacement systems for a mine demonstration which is planned for the third quarter of 1996. A laboratory-scale transport system has been built at the CAER to evaluate the potential of pneumatic transport for FGDM emplacement. The system is modeled after shotcreting systems in which water is mixed with cement (FGDM) in a nozzle at the end of the pneumatic pipe. Solids travel approximately 70 ft in the lab-scale system at a rate of up to 6 lb FGDM/minute prior to impingement onto a sample collector. Prehydrated FGDM from a circulating fluidized bed combustor has been successfully emplaced onto vertically positioned sample surfaces without excessive dust liberation. The test program is focussed on determining the pneumatic conditions necessary to maximize the strength of the emplaced FGDM under anticipated mine curing conditions while minimizing dust formation. The mineralogy and strength of a pneumatically created sample are described following curing for 60 days.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  11. Functionalized Organosilicate Sorbents for Air Purification

    DTIC Science & Technology

    2013-12-23

    sorbents ...................................................................................... 20 Fig. 17 Chlorine breakthrough for E50 sorbents...32 Fig. 30 Chlorine and nitric oxide breakthrough... Chlorine breakthrough for NiC1S3-ED13 ................................................................................. 35 Fig. 34 Target

  12. Empty Quarter

    NASA Image and Video Library

    2017-09-27

    Empty Quarter - February 1st, 20003 Description: White pinpricks of cloud cast ebony shadows on the Rub' al Khali, or Empty Quarter, near the border between Saudi Arabia and Yemen. The lines of wind-sculpted sand are characteristic of immense sand deserts, or sand seas, and the Rub' al Khali is the largest desert of this type in the world. A highland ridge is just high enough to disturb the flow of the lines. In the center of that interruption lies the Saudi Arabian town of Sharurah. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  13. VALUE-ADDED SORBENT DEVELOPMENT

    SciTech Connect

    Grant E. Dunham; Edwin S. Olson; Stanley J. Miller

    2000-07-01

    On a worldwide basis, the projected increase in coal usage over the next two decades in China, India, and Indonesia will dwarf the current U.S. coal consumption of 1 billion tons/year. Therefore, in the United States, coal will be the dominant source of mercury emissions, and worldwide, coal may be the cause of significantly increased mercury emissions unless an effective control strategy is implemented. However, there is much uncertainty over the most technically sound and cost-effective approach for reducing mercury emissions from coal-fired boilers. Several approaches are suggested for mercury control from coal-fired boilers, including enhancing the ability of wet scrubbers to retain mercury. However, many coal-fired boilers are not equipped with wet scrubbers. On the other hand, since almost all coal-fired boilers are equipped with either an electrostatic precipitator (ESP) or a baghouse, sorbent injection upstream of either an ESP or baghouse appears attractive, because it has the potential to control both Hg{sup 0} and Hg{sup 2+}, would appear to be easy to retrofit, and would be applicable to both industrial and utility boilers. Since mercury in the gas stream from coal combustion is present in only trace quantities, only very small amounts of sorbent may be necessary. If we assume a mercury concentration of 10 {micro}g/m{sup 3} and a sorbent-to-mercury mass ratio of 1000:1, the required sorbent loading is 10 mg/m{sup 3}, which is only 0.1% to 0.2% of a typical dust loading of 5-10 g/m{sup 3} (2.2-4.4 grains/scf). This amount of additional sorbent material in the ash would appear to be negligible and would not be expected to have an impact on control device performance or ash utilization. Accomplishing effective mercury control with sorbent injection upstream of a particulate control device requires several critical steps: (1) Dispersion of the small sorbent particles and mixing with the flue gas must be adequate to ensure that all of the gas is effectively

  14. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  15. Sorbent characterization for FBC application

    SciTech Connect

    Pisupati, S.V.; Scaroni, A.W.

    1994-12-31

    Fluidized-bed boilers operating at both atmospheric and elevated pressures have received considerable attention from utilities and independent power producers because of their ability to remove SO{sub 2} from the flue gas during combustion and to minimize NO{sub x} production. The technology has advanced rapidly in the 1980s because of its adaptability to a range of fuel types, boiler capacities, and operating conditions without seriously compromising efficiency or performance. A sorbent, typically limestone or dolostone, is used in the fluidized-bed boiler to capture the combustion-generated SO{sub 2}. Many CFBC boiler operators are now realizing that optimizing sorbent usage is important for economical and environmentally acceptable operation of their plants. It is reported (mostly based on studies using a few sorbents) that particle size, porosity and pore size distribution, extent of sulfation, combustor temperature, pressure and CaCO{sub 3} content affect extent of sulfation.

  16. Effects of salts on preparation and use of calcium silicates for flue gas desulfurization

    SciTech Connect

    Kind, K.K.; Wassermann, P.D.; Rochelle, G.T. )

    1994-02-01

    High surface area calcium silicate hydrates that are highly reactive with SO[sub 2] can be made by slurrying fly ash and lime in water at elevated temperatures for several hours. This concept is the basis for the ADVACATE (ADVAnced siliCATE) process for flue gas desulfurization. This paper examines the impact of salts on such a system. Two low calcium fly ashes, from the Shawnee and Clinch River power plants, were examined. The addition of gypsum (CaSO[sub 4][center dot]2H[sub 2]O) or calcium chloride to the slurry system increased the dissolved calcium concentration, allowing the reaction rate to increase and the maximum surface area to more than double in some cases. This increase came despite a lower solution hydroxide level. The salts also enhanced the reaction of the sorbent with sulfur dioxide. This resulted from the higher equilibrium moisture on the sorbent at any humidity due to the deliquescent properties of some of the salts used (calcium chloride and calcium nitrate). Solids made without the deliquescent salts exhibited equilibrium moisture adsorption consistent with a type-II BET isotherm while the deliquescent salts caused hysteresis in the adsorption/desorption isotherm. 22 refs., 10 figs., 2 tabs.

  17. Review: understanding sorbent dialysis systems.

    PubMed

    Agar, John W M

    2010-06-01

    Although maintenance haemodialysis once had the benefit of two distinctly different dialysate preparation and delivery systems - (1) a pre-filtration and reverse osmosis water preparation plant linked to a single pass proportioning system and (2) a sorbent column dependent dialysate regeneration and recirculation system known as the REDY system - the first came to dominate the market and the second waned. By the early 1990s, the REDY had disappeared from clinical use. The REDY system had strengths. It was a small, mobile, portable and water-efficient, only 6 L of untreated water being required for each dialysis. In comparison, single pass systems are bulky, immobile and water (and power) voracious, typically needing 400-600 L/treatment of expensively pretreated water. A resurgence of interest in home haemodialysis - short and long, intermittent and daily - has provided impetus to redirect technological research into cost-competitive systems. Miniaturization, portability, flexibility, water-use efficiency and 'wearability' are ultimate goals. Sorbent systems are proving an integral component of this effort. In sorbent dialysate regeneration, rather than draining solute-rich dialyser effluent to waste - as do current systems - the effluent repetitively recirculates across a sorbent column capable of adsorption, ion exchange or catalytic conversion of all solute such that, at exit from the column, an ultra-pure water solution emerges. This then remixes with a known electrolyte concentrate for representation to the dialyser. As the same small water volume can recirculate, at least until column exhaustion, water source independence is assured. Many current technological developments in dialysis equipment are now focusing on sorbent-based dialysate circuitry. Although possibly déjà vu for some, it is timely for a brief review of sorbent chemistry and its application to dialysis systems.

  18. Carbon sorbent based on flax boon

    SciTech Connect

    Abramov, M.V.; Tyulina, R.M.; Yaroslavtsev, V.T.

    1994-11-10

    Flax-fiber production wastes such as boon can be used effectively as the starting material for producing carbon sorbents. Activated carbons are among the most widely used sorbents in industrial wastewater and waste gas treatment. A single-stage process has been developed for producing an efficient, cheap carbon sorbent based on flax boon.

  19. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  20. Desulfurization of Hydrocarbon Fuels at Ambient Conditions Using Supported Silver Oxide-Titania Sorbents

    DTIC Science & Technology

    2010-12-13

    Sulfur in refined fuels is considered a significant cause for atmospheric pollution such as acid rain and smog . Sulfur is also a poison for...Z39-18 ii Abstract Sulfur in refined fuels is considered a significant cause for atmospheric pollution such as acid rain and smog . Sulfur is...Introduction Anthropogenic sulfur emissions cause environmental pollution in the form of acid rain, smog and dry deposition. Reduction of sulfur emissions

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  2. Characterization of active sites, determination of mechanisms of H(2)S, COS and CS(2) sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives.

    PubMed

    Samokhvalov, Alexander; Tatarchuk, Bruce J

    2011-02-28

    The intellectually and technically challenging pursuit of the emerging global environmentally "green" and energy-efficient infrastructure of the 21st century requires the development of a worldwide network of low- to medium-power fuel cell (FC) based portable electric power-generating devices and high-power biomass/clean coal "electric+chemical plants" with zero carbon footprint utilizing integrated coal gasification combined cycle with geologic carbon sequestration (IGCC-GCS) under energy-efficient low-temperature conditions. These emerging technologies require the deep and ultradeep desulfurization of gaseous feeds, since sulfur compounds, especially hydrogen sulfide H(2)S are highly corrosive and poisonous to both technological processes and the environment. Therefore, it is of crucial importance for both academic and industrial research communities to have a solid understanding of the atomic-level structures of active sites and molecular-level mechanisms of surface chemical reactions of the novel deep and ultradeep desulfurization materials, especially desulfurization sorbents. This review critically analyzes the recent literature (last ∼20 years) on the experimental determination of molecular and atomic-level nature of adsorption sites, effects of desulfurization promoters, mechanisms of chemical reactions of H(2)S, COS and CS(2) and physical processes during and upon regeneration of "spent" low-temperature H(2)S sorbents based on ZnO that were developed for desulfurization of fuel reformates, syngas and similar streams. Recent trends in research on the ultradeep H(2)S sorbents are discussed with an impetus on real-time in situ and Operando techniques of instrumental chemical analysis, and the challenges of direct determination of the structure of active sites and of the experimental mechanistic studies in general are described.

  3. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  4. Development of Disposable Sorbents for Chloride Removal from High-Temperature Coal-Derived Gases

    SciTech Connect

    Krishnan, G.N.; Canizales, A.; Gupta, R.; Ayala, R.

    1996-12-31

    The integrated coal-gasification combined-cycle approach is an efficient process for producing electric power from coal by gasification, followed by high-temperature removal of gaseous impurities, then electricity generation by gas turbines. Alternatively, molten carbonate fuel cells (MCFC) may be used instead of gas turbine generators. The coal gas must be treated to remove impurities such as hydrogen chloride (HCl), a reactive, corrosive, and toxic gas, which is produced during gasification from chloride species in the coal. HCl vapor must be removed to meet environmental regulations, to protect power generation equipments such as fuel cells or gas turbines, and to minimize deterioration of hot coal gas desulfurization sorbents. The objectives of this study are to: (1) investigate methods to fabricate reactive sorbent pellets or granules that are capable of reducing HCl vapor in high-temperature coal gas streams to less than 1 ppm in the temperature range 400{degrees}C to 650{degrees}C and the pressure range 1 to 20 atm; (2) testing their suitability in bench-scale fixed- or fluidized-bed reactors; (3) testing a superior sorbent in a circulating fluidized- bed reactor using a gas stream from an operating coal gasifier; and (4) updating the economics of high temperature HCl removal.

  5. Crystalline marble beats limestone for fluegas desulfurization

    SciTech Connect

    1996-05-01

    NovaCon Energy Systems, Inc. (Bedford, NY) has developed an alternative to conventional limestone sorbents. The new process uses a class of marble, selected with a proprietary model. Recent pilot- and full-scale demonstrations in pulverized-coal (PC) and circulating fluidized bed (CFB) boilers suggest that these patented sorbents outperform conventional limestone for the simultaneous control of SOx, NOx, and particulates during the combustion of coal and sulfur-rich fuels, such as oil, mixed municipal waste and used tires. Dubbed thermally active marbles (TAMs), these sorbents are chemically identical to grainy limestone (whose main constituent is calcium carbonate or calcite). However, thanks to the increased pressures and temperatures experienced during their geologic history, these metamorphic minerals have a regular crystalline structure that offers some advantages in the combustion zone. TAMs, on the other hand, enjoy better calcium-utilization rates because upon heating, they cleave along inter- and intra-crystalline faces, continuously exposing fresh surfaces. By minimizing the self-extinguishment suffered by limestone sorbents, TAMs are effective over operating temperatures from 1,200 F to 2,800 F, which is 400 F higher than other calcium-based sorbents. This allows them to be injected closer to the burner or combustion grate to maximize residence time in the unit.

  6. Philippine refiner completes diesel desulfurization project

    SciTech Connect

    Candido, S.S.; Crisostomo, E.V.

    1997-01-27

    In anticipation of tightening sulfur specifications on diesel fuel, Petron Corp. built a new 18,000 b/sd gas oil desulfurization unit (GODU) at its refinery in Bataan, Philippines. The GODU gives Petron sufficient diesel oil desulfurization capacity to meet demand for lower-sulfur diesel in the country. The project places the refinery in a pacesetter position to comply with the Philippine government`s moves to reduce air pollution, especially in urban centers, by reducing the sulfur specification for diesel to 0.5 wt% in 1996 from 0.7 wt% at the start of the project. Performance tests and initial operations of the unit have revealed a desulfurization efficiency of 91% vs. a guaranteed efficiency of 90%. A feed sulfur content of 1.33 wt% is reduced to 0.12 wt% at normal operating conditions. Operating difficulties during start-up were minimized through use of a detailed prestartup check conducted during the early stages of construction work.

  7. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  8. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY WORKSHOP

    EPA Science Inventory

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on Ju...

  9. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY WORKSHOP

    EPA Science Inventory

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on Ju...

  10. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    SciTech Connect

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at

  11. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    SciTech Connect

    Jalan, V.

    1983-10-01

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  12. Liquefaction and desulfurization of coal using synthesis gas

    DOEpatents

    Fu, Yuan C.

    1977-03-08

    A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

  13. Flue gas desulfurization gypsum agricultural network alabama (cotton)

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that can be beneficially used in agriculture. Research was conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration wi...

  14. Long Life ZnO-TiO2 and Novel Sorbents

    SciTech Connect

    Copeland, Robert J.; Cesario, Mike; Feinberg, Dan; MacQueen, Brent; Sibold, Jack; Windecker, Brian; Yang, Jing

    1996-12-31

    Combined cycles (combinations of a gas turbine and a steam bottoming cycle) are the most efficient power generation technology, while coal is the lowest cost fuel. Therefore, the combination of Coal Gasifiers and Combined Cycles is predicted to be the lowest cost source of baseload electric power in the next decade. In a GCC, the sulfur and particulates are removed from the gasifier gases before they enter the turbine combuster. While H{sub 2}S (and COS/CS{sub 2}) can be removed effectively by cooling hot gases down to near room temperature and scrubbing them with an aqueous amine solution, removing the H{sub 2}S without cooling the gases (i.e., hot gas cleanup) is more advantageous. The leading hot gas sulfur absorbent uses a regenerable zinc oxide (ZnO) based sorbent, zinc titanate (Zn{sub 2}TiO{sub 4} and/or ZnTiO{sub 3}), to remove the H{sub 2}S and other sulfur compounds from the hot coal gases. The zinc absorbs H{sub 2}S, forming zinc sulfide (ZnS); ZnS is then regenerated with oxygen (air), releasing the sulfur as a concentrated stream of SO{sub 2}. The SO{sub 2} can be converted into sulfuric acid, sulfur, or reacted with calcium carbonate to form calcium sulfate (gypsum). The sorbent may be operated in a fluidized bed reactor, transport reactor, or moving bed reactor. Both the fluidized-bed and the transport reactor use two separate reactors; one absorbs H{sub 2}S COS and CS{sub 2} and converts the ZnO to ZnS; the second bed regenerates the sorbent with air converting the ZnS back to ZnO and producing SO{sub 2} (Figure 1); the sorbent moves between the two reactors to carry sulfur out of the absorber and return regenerated sorbent. Fluidized bed and transport reactors circulate very small particles at high gas velocity. The high gas-solid contact area of very small particles rapidly transfers both heat and mass within the reactor. The fluidized bed and transport reactor hot gas cleanup desulfurization systems are very similar and the sorbent particles are

  15. [A method of desulfurization with calcium sulfite and it's mechanism].

    PubMed

    Tong, Z; Chen, Z; Peng, Z

    2001-09-01

    Directing to the scaling problem lying in wet desulfurization with lime slurry, a method of desulfurization with calcium sulfite was proposed. Reaction mechanism and the effects of different conditions on desulfurization efficiency were studied. The optimum conditions were obtained, i.e. air velocity of 2.75 m/s in empty tower, L/G = 3.0 L/m3, solid content 6.7%, air temperature 31 degrees C, concentration inlet of SO2 1500 x 10(-6) and inlet suspension pH of 8.0. Under the conditions, the desulfurization efficiency was about 87%. The presented method theoretically and practically solved the scaling problems, which is a novel indirect lime-method with Ca-contained material as desulfurization agent.

  16. Hot-Gas Desulfurization with Sulfur Recovery

    SciTech Connect

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-07-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO{sub 2}, with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system.

  17. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  18. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  19. Land application uses of dry FGD by-products: Quarterly report, October--December 1994

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Haefner, R.J.

    1995-02-01

    The project involves the testing of several ground application uses for flue gas desulfurization by-products, including the mitigation of acid mine drainage, agronomic liming, cattle feedlot, stabilization of coal refuse, and road embankments. The project also involves ground water monitoring, environmental modeling, and economic modeling. This quarterly report deals mostly with the financial aspects of the research project. Monthly progress reports from various sites are included.

  20. Photopatternable sorbent and functionalized films

    DOEpatents

    Grate, Jay W.; Nelson, David A.

    2006-01-31

    A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.

  1. Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Annual technical progress report, October 1, 1995--September 30, 1996; Quarterly technical progress report, July 1--September 30, 1996

    SciTech Connect

    Jiang, X.; Khang, S.J.; Keener, T.C.

    1996-12-31

    This annual report summarizes the results of the project during the third year period. The purpose of this study was to develop an experimental and theoretical procedure to investigate the feasibility of producing elemental sulfur, carbon monoxide, hydrogen and possibly methane from hydrogen sulfide and carbon dioxide through catalytic reactions. A standard experimental system that can evaluate potential catalysts under controlled laboratory conditions has been designed and constructed. And an effective simulation program capable of providing valuable thermodynamic information on the reaction system has been compiled. During this project year, the modified experimental system for the catalytic reaction studies was installed and the temperature distribution profile inside the reactor has been characterized. New flowmeters were replaced in the reaction system and calibrated to control the flowrates of H{sub 2}S, CO{sub 2}, H{sub 2} and N{sub 2}. Based on the experimental results of H{sub 2}S decomposition under both non-catalytic and catalytic conditions, bench scale experiments were performed with the CoO-MoO{sub 3}-Alumina catalyst at moderate temperatures, around 550 C, to investigate the adsorption effects using solid sorbents within a sulfur vapor environment. Four kinds of adsorbents have been tested. In addition to the above baseline tests, several designs of solid adsorbent feed system have been tested. Under both an inert and a real reaction environment, bench scale experiments were performed to investigate the characteristics and efficiency of activated carbon passing through the CoO-MoO{sub 3}-Alumina catalyst bed.

  2. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices

    SciTech Connect

    Underkoffler, V.S.

    1986-12-01

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

  3. Kinetics of the desulfurization of molten iron. Final report

    SciTech Connect

    Gaskell, D.R.

    1981-03-01

    Experimental work has involved the fabrication of impervious slip-cast CaO crucibles, measurement of the rate of desulfurization of liquid iron by solid CaO and measurement of the rate of desulfurization of liquid iron by CaO-saturated liquid FeO. Above 0.087 < wt % S < 0.67, the activity of FeS is high enough to form a liquid phase in the system CaO-Fe-S. With lower sulfur levels, CaO does not cause any desulfurization of the liquid iron. When CaO-saturated liquid FeO is brought into contact with a liquid Fe-S alloy a rapid initial rate of desulfurization occurs due to surface tension-induced local convection at the slag-metal interface. After this initial period, the rate of desulfurization is determined by diffusion of sulfur in the metal. No change occurs in the oxygen content of the metal during desulfurization and hence the half cell reactions occurring in the electrochemical transfer process are (Fe) ..-->.. (Fe/sup 2 +/) + 2e/sup -/ and (S) + 2e/sup -/ ..-->.. (S/sup 2 -/). Addition of CaF/sub 2/ to the CaO-saturated slag has no effect on the desulfurization.

  4. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency.

  5. Bench-scale development of mild gasification char desulfurization. Technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Knight, R.A.

    1994-06-01

    The goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650--760 C and 7-15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt % sulfur was converted to chars with less than 1.0 wt% sulfur was converted to chars with less than 1.0 wt % sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. During the second quarter, the authors completed the acid pretreatment of 25 lb (11 kg) of the 40 x 80-mesh IBC-105 coal and 7 lb (3 kg) of carbonizer char. Modifications of the bench-scale fluidized-bed reactor were completed, permitting extended-duration char-producing runs with caking coal. Char-producing runs were initiated at 1100 F and 20 psig in nitrogen, and will continue into the third quarter.

  6. Effects of surface acidities of MCM-41 modified with MoO3 on adsorptive desulfurization of gasoline

    NASA Astrophysics Data System (ADS)

    Shao, Xinchao; Zhang, Xiaotong; Yu, Wenguang; Wu, Yuye; Qin, Yucai; Sun, Zhaolin; Song, Lijuan

    2012-12-01

    A series of MCM-41 samples containing molybdenum oxide as active species in the mesoporous channels loaded by spontaneous monolayer dispersion (SMD) and impregnation (IM) have been prepared and characterized using XRD, N2 adsorption-desorption analysis, Fourier transform infrared spectroscopy (FTIR) and intelligent gravimetric analyzer (IGA). The relative number of hydroxy on the adsorbents was investigated by in situ FTIR. Surface acidities of the adsorbents were studied by infrared spectroscopy of adsorbed pyridine and correlated with reactivity for adsorptive desulfurization. The IGA technique was employed to investigate adsorption behavior of thiophene and benzene on the adsorbents at 303 K. It is shown that MoO3 can be highly dispersed up to 0.2 g g-1 in the MCM-41 channels by the SMD strategy with the ordered mesoporous structure of the MoMM samples remaining intact. The ordered mesostructure of MCM-41 is, however, destroyed at higher MoO3 contents of 0.26 and 0.32 g g-1 with particle sizes of 1.2 nm and 3.6 nm, respectively, observed. For the MoMI(0.2) sample prepared by the IM method, the aggregation of the MoO3 particles takes place with a particle size of 6.5 nm obtained. The results are also revealed that the dispersion extent of the MoO3 species is related to the abundant surface hydroxy of MCM-41. The host species and guest species undergo solid-state reaction to form Sisbnd Osbnd Mo bonds in the mixtures which enhance both the Lewis acid and Brönsted acid of the samples. It has been concluded that the surface acidities of the sorbents contributes to the desulfurization performance which has also been investigated in this study. The octahedral coordinated species (Mo7O246-) are the adsorptive active species for desulfurization compared with the tetrahedral coordinated ones (MoO42-).

  7. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  8. Ultrasound-promoted chemical desulfurization of Illinois coals

    SciTech Connect

    Chao, S.S.

    1991-01-01

    The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

  9. Selenium speciation in flue desulfurization residues.

    PubMed

    Zhong, Liping; Cao, Yan; Li, Wenying; Xie, Kechang; Pan, Wei-Ping

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.

  10. Biocatalytic desulfurization (BDS) of petrodiesel fuels.

    PubMed

    Mohebali, Ghasemali; Ball, Andrew S

    2008-08-01

    Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.

  11. Process for desulfurizing combustion exhaust gases

    SciTech Connect

    Kumagai, T.; Matsuda, S.; Mori, T.; Nishimura, T.; Nishimura, Y.

    1982-05-04

    An improved process for desulfurizing combustion exhaust gases of mainly coal containing sulfur oxides, Hf and dust containing Al is provided, which process consists of four steps; a first step of contacting the gases with calcium carbonate or hydroxide in the form of slurry to convert the sulfur oxides into caso3; a second step of contacting O2 with the resulting slurry to convert CaSo3 into caso4; a third step of separating caso4 and mother liquor from the resulting slurry; and a fourth step of preparing a slurry of calcium carbonate or hydroxide to be employed in the first step, from the mother liquor, the pHs of the slurry and the mother liquor in the first and fourth steps being adjusted to 5 or higher by adding alkali such as sodium carbonate. According to the present process, it is possible to prevent hindrance of hf and al contained in dust to the reaction of so2absorbent (CaCO3 or Ca(OH)2) with SO2 gas, and thereby improve percentage desulfurization and also obtain a high quality gypsum.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  13. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae

    SciTech Connect

    Krawiec, S.

    1990-10-22

    Research continued on coal desulfurization and the study of biological enhancement of desulfurization. This quarters work included: crosses between soil isolates containing r68.45 and P. aeruginosa 27853-2a; extents of crosses and abundances of transconjugants; purpose of repeated crosses; noteworthy features of mating protocol; phenotypic peculiarities and phenotypic stabilities of transconjugants; characterization of antibiotic sensitivity; effect of receiving R68.45 from P. putida PRS 2003; transfer of R68.45 from C18 to auxotrophs derived from P. aeruginosa 27853; and differences in ability of various soil isolates to transfer Dbt{sup +} phenotype to recipient cells; incipient characterizations of Thiobacillae spp. growth and antibiotic sensitivity; plasmid isolation; and acquisition of new soil isolates.

  14. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  15. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  16. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  17. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  18. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  19. Olefins can limit desulfurization of reformer feedstock

    SciTech Connect

    Ali, S.A.; Anabtawi, J.A.

    1995-07-03

    Pilot plant studies have shown that the presence of even very small amounts of olefins may limit the desulfurization of reformer feedstocks to trace levels. Engineers at the Research Institute of King Fahd University of Petroleum and Minerals observed under typical industrial conditions the recombination reaction of olefins with hydrogen sulfide to form mercaptans. The results indicate that the advantage of using highly active (third generation) CoMo hydrotreating catalysts can be masked by these reactions if the olefins are not saturated. The trend in naphtha reforming is to use high-rhenium, bimetallic catalysts that display less resistance to sulfur than do balanced Pt-Re catalysts. Due consideration, therefore, should be given to these undesirable recombination reactions while designing hydrotreaters and selecting hydrodesulfurization (HDS) and reforming catalysts. The paper discusses catalysts and feedstock tests, catalyst activity, temperature effects, space velocity, feedstock effect, catalyst performance, and recommendations.

  20. Limestone-gypsum flue gas desulfurization process

    SciTech Connect

    Kuroda, H.; Hashimoto, T.; Kanda, O.; Nishimura, M.; Nishimura, T.; Nozawa, S.

    1984-12-11

    A flue gas desulfurization process capable of producing a high purity gypsum and also making equipment employed as minimum as possible is provided, which process comprises the steps of cooling and dedusting flue gas containing SO /SUB x/ ; contacting the cooled gas with a slurry containing limestone to remove SO /SUB x/ by absorption and also form CaSO/sub 3/; controlling the pH of the resulting slurry and then blowing air therein to form gypsum; and separating gypsum from the resulting slurry. As a modification of the above process, the slurry of the above second absorption step is further fed to the above first cooling step where unreacted limestone and SO /SUB x/ are reacted to form CaSO/sub 3/.

  1. Regenerative process for desulfurization of high temperature combustion and fuel gases. Progress report No. 14, October 1-December 31, 1979

    SciTech Connect

    Albanese, A.S.; Sethi, D.S.

    1980-03-01

    The characteristics of Portland Type III cement (PC III) as a potential sorbent for use in a regenerative process for desulfurization of coal in fluidized-bed combustion were examined. The sulfation rates for PC III + 5% amorphous SiO/sub 2/ at temperatures between 860 and 1100/sup 0/C and at 1 atm were studied thermogravimetrically, using a simulated combustion gas mixture containing 0.25% SO/sub 2/. The sulfation rates were found to be independent of temperature between 950 and 1050/sup 0/C. The isothermal regeneration with a mixture consisting of 5% CO, 15% CO/sub 2/ and the balance N/sub 2/, in this 100/sup 0/C temperature interval approached an equilibrium value of over 90% within thirty minutes. Sulfation/regeneration efficiency did not decrease with cycling and was unaffected by additives introduced to increase the porosity and/or conversion of free CaO in PC III to silicates which are known to be more regenerative than CaSO/sub 4/. Pressurized TGA experiments within the optimum sulfation temperature range were conducted at 5 and 10 atm to establish the viability of this sorbent for pressurized fluidized-bed combustion use. Within the experimental accuracy, no pressure dependence of sulfation rate was observed. Our experiments indicate that the attrition resistance of PC III is significantly better than natural limestones.

  2. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  3. Preparation of Modified Semi-Coke–Supported ZnFe2O4 Sorbent with the Assistance of Ultrasonic Irradiation

    PubMed Central

    Mi, Jie; Ren, Jun; Zhang, Yongyan

    2012-01-01

    Abstract Modified semi-coke (MSC) supported ZnFe2O4 was prepared under the condition of ultrasonic irradiation. Performance of the sorbents was tested using a fixed-bed reactor as a hot gas desulfurizer. The MSC support, the mass ratio of zinc ferrites to the support, calcination temperature, and the ultrasonic conditions of power and time all had influences on the structure and the breakthrough behavior of the sorbent. Ultrasonic irradiation can help to make ZnFe2O4 highly dispersed on MSC. ZnFe2O4/MSC had increased porosity and a larger specific surface area compared to unsupported ZnFe2O4. The sorbent exhibited a higher sulfur capacity at the optimum preparing conditions, where the mass ratio of ZnFe2O4 to MSC was 8:10, calcinated at 500°C, and the ultrasonic power and time was 900 W and 1.5 h, respectively. PMID:23133310

  4. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998

    SciTech Connect

    Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

    1998-10-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup

  5. Sorbents

    EPA Pesticide Factsheets

    These insoluble materials or mixtures of materials are used to recover liquids through the mechanism of absorption, adsorption, or both. To be useful in oil spill cleanups, they need to be both oleophilic (oil-attracting) and hydrophobic (water-repellent).

  6. Apparatus for hot-gas desulfurization of fuel gases

    DOEpatents

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  7. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  8. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  9. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  10. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S; Holmes, Michael J; Pavlish, John Henry

    2013-08-20

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  11. Sorption of methylxanthines by different sorbents

    NASA Astrophysics Data System (ADS)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  12. Study on multiphase flow and mixing in semidry flue gas desulfurization with a multifluid alkaline spray generator using particle image velocimetry

    SciTech Connect

    Zhou, Y.G.; Wang, D.F.; Zhang, M.C.

    2009-06-15

    Particle image velocimetry (PIV) technique was used to measure the velocity fields of gas-droplet-solid multiphase flow in the experimental setup of a novel semidry flue gas desulfurization process with a multifluid alkaline spray generator. The flow structure, mixing characteristic, and interphase interaction of gas-droplet-solid multiphase flow were investigated both in the confined alkaline spray generator and in the duct bent pipe section. The results show that sorbent particles in the confined alkaline spray generator are entrained into the spray core zone by a high-speed spray jet and most of the sorbent particles can be effectively humidified by spray water fine droplets to form aqueous lime slurry droplets. Moreover, a minimum amount of air stream in the generator is necessary to achieve higher collision humidification efficiency between sorbent particles and spray water droplets and to prevent the possible deposition of fine droplets on the wall. The appropriate penetration length of the slurry droplets from the generator can make uniform mixing between the formed slurry droplets and main air stream in the duct bent pipe section, which is beneficial to improving sulfur dioxide removal efficiency and to preventing the deposition of droplets on the wall.

  13. High Contacting Efficience Carrier Structures & Porcesses for Liquid Phase Regenerable Desulfurization of Logistic Fuels

    DTIC Science & Technology

    2011-02-21

    Phase Regenerable Desulfurization of Logistic Fuels 5a. CONTRACT NUMBER Sb. GRANT NUMBER N00014-06-1-1165 6c. PROGRAM ELEMENT NUMBER 6. AUTHOR...developed and characterized. The adsorbent’s formulation, preparation procedure, desulfurization conditions and regeneration procedure have established and...enables novel process design for the logistic fuel desulfurization . 15. SUBJECT TERMS desulfurization , liquid fuel, silver, titania 16. SECURITY

  14. New, high-capacity, calcium-based sorbents: Calcium silicate sorbents. Final report

    SciTech Connect

    Kenney, M.E.; Chiang, Ray-Kuang

    1993-09-30

    A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives of the past year were to study the sorption of SO{sub 2} by representative calcium silicates, to study the composition of the Ca(OH){sub 2}-fly ash sorbent, and to install a humidity sensor in the sorption system.

  15. Stabilization of spent sorbents from coal-based power generation processes. Technical report, September 1, 1995--November 30,1995

    SciTech Connect

    Abbassian, J.; Hill, A.H.

    1995-12-31

    The overall objective of this study is to determine the effect of implementation of the new and more stringent EPA Protocol Test Method involving sulfide containing waste, on the suitability of the oxidized spent sorbents from gasification of of high sulfur coals for disposal in landfills, and to determine the optimum operating conditions in a ``final`` hydrolysis stage for conversion of the residual calcium sulfide in these wastes to materials that are suitable for disposal in landfills. An additional objective is to study the effect of ash on the regeneration and ash-sorbent separation steps in the Spent Sorbent Regeneration Process (SSRP). To achieve these objectives, a large set of oxidized samples of sulfided calcium-based sorbents (produced in earlier ICCI-funded programs) as well as oxidized samples of gasifier discharge (containing ash and spent sorbent) are tested according to the new EPA test protocol. Samples of the oxidized spent sorbents that do not pass the EPA procedure are reacted with water and carbon dioxide to convert the residual calcium sulfide to calcium carbonate. During this quarter, samples of oxidized sulfided calcium-based sorbents, including untreated calcium sulfide-containing feed materials, were analyzed using both weak acid and more stringent strong acid tests. Preliminary analysis of the H{sub 2}S leachability test results indicate that all samples (including those that were not oxidized) pass the EPA requirement of 500 mg H{sub 2}S per kg of solid waste. However, under the strong acid test procedure, samples containing more than 2.5% calcium sulfide fail the EPA requirement.

  16. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    SciTech Connect

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  17. 7 CFR 3201.23 - Sorbents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Items § 3201.23 Sorbents. (a) Definition. Materials formulated for use in the cleanup and bioremediation of oil and chemical spills, the disposal of liquid materials, or the prevention of leakage or...

  18. 7 CFR 3201.23 - Sorbents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Items § 3201.23 Sorbents. (a) Definition. Materials formulated for use in the cleanup and bioremediation of oil and chemical spills, the disposal of liquid materials, or the prevention of leakage or...

  19. 7 CFR 3201.23 - Sorbents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Items § 3201.23 Sorbents. (a) Definition. Materials formulated for use in the cleanup and bioremediation of oil and chemical spills, the disposal of liquid materials, or the prevention of leakage or...

  20. Replacement of charcoal sorbent in the VOST

    SciTech Connect

    Johnson, L.D.; Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

    1993-01-01

    EPA Method 0030, the Volatile Organic Sampling Train (VOST), for sampling volatile organics from stationary sources, specifies the use of petroleum-base charcoal in the second sorbent tube. Charcoal has proven to be a marginal performer as a sampling sorbent, partly due to inconsistency in analyte recovery. In addition, commercial availability of petroleum charcoal for VOST tubes has been variable. Lack of data on comparability and variability of charcoals for VOST application has created uncertainty when other charcoals are substituted. Five potential sorbent replacements for charcoal in Method 0030 were evaluated along with a reference charcoal. Two of the sorbents tested, Ambersorb XE-340 and Tenax GR, did not perform well enough to qualify as replacements. Three candidates, Anasorb 747, Carbosieve S-III and Kureha Beaded Activated Charcoal, performed adequately, and produced statistically equivalent results. Anasorb 747 appears to be an acceptable replacement for petroleum charcoal, based on a combination of performance, availability, and cost.

  1. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    SciTech Connect

    John G. Verkade

    2001-11-01

    Column chromatographic separation of the S=PBu{sub 3}/PBu{sub 3} product mixture followed by weighing the S=PBu{sub 3}, and by vacuum distillation of S=PBu{sub 3}/PBu{sub 3}mixture followed by gas chromatographic analysis are described. Effects of coal mesh size, pre-treatment with methanol Coal (S) + excess PR{sub 3} {yields} Coal + S=PR{sub 3}/PBu{sub 3} and sonication on sulfur removal by PBu{sub 3} revealed that particle size was not observed to affect desulfurization efficiency in a consistent manner. Coal pretreatment with methanol to induce swelling or the addition of a filter aid such as Celite reduced desulfurization efficiency of the PBu{sub 3} and sonication was no more effective than heating. A rationale is put forth for the lack of efficacy of methanol pretreatment of the coal in desulfurization runs with PBu{sub 3}. Coal desulfurization with PBu{sub 3} was not improved in the presence of miniscule beads of molten lithium or sodium as a desulfurizing reagent for SPBu{sub 3} in a strategy aimed at regenerating PBu{sub 3} inside coal pores. Although desulfurization of coals did occur in sodium solutions in liquid ammonia, substantial loss of coal mass was also observed. Of particular concern is the mass balance in the above reaction, a problem which is described in some detail. In an effort to solve this difficulty, a specially designed apparatus is described which we believe can solve this problem reasonably effectively. Elemental sodium was found to remove sulfur quantitatively from a variety of polycyclic organosulfur compounds including dibenzothiophene and benzothiophene under relatively mild conditions (150 C) in a hydrocarbon solvent without requiring the addition of a hydrogen donor. Lithium facilitates the same reaction at a higher temperature (254 C). Mechanistic pathways are proposed for these transformations. Curiously, dibenzothiophene and its corresponding sulfone was virtually quantitatively desulfurized in sodium solutions in liquid

  2. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate

  3. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    SciTech Connect

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with

  4. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  5. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  6. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  7. Method for operating a flue gas desulfurization

    SciTech Connect

    Karger, R.; Weinzierl, K.

    1983-02-01

    A method of operating a flue gas desulfurization with a steam power plant heated with fossil fuels. The sulfur dioxide contained in the flue gas is removed in a wash tower by means of an excess of milk of lime or limestone, and the resulting sulfite is oxidized with air at a low ph-value into calcium sulfate. The non-converted milk of lime or limestone is neutralized at least partially by an addition of acid waste waters from a complete desalination plant for the supply water, and/or by an addition of acid condensate from the flue or chimney of the steam power plant. An installation for carrying out the method of the present invention includes a wash tower having flue gas flowing therethrough, an oxidation tower having air flowing therethrough, milk of lime or limestone supply into the wash tower, and a delivery device for the wash liquid in the wash tower and in the oxidation tower, with the device having a pump for liquid drawn off from the sump of the wash tower. The sump of the wash tower is connected with a supply line for acid waste water from a complete desalination plant, and/or with a supply line for acid condensate from the chimney or flue of the steam power plant.

  8. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  9. Quarterly coal report

    SciTech Connect

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  10. Ultrasonic coal-wash for de-sulfurization.

    PubMed

    Ambedkar, B; Nagarajan, R; Jayanti, S

    2011-05-01

    Coal is the one of the world's most abundant fossil fuel resources. It is not a clean fuel, as it contains ash and sulfur. SOx as a pollutant are a real threat to both the ecosystem and to human health. There are numerous de-sulfurization methods to control SO(2) emissions. Nowadays, online flue gas de-sulfurization is being used as one such method to remove sulfur from coal during combustion. The biggest disadvantage associated with this method is formation of by-products (FGD gypsum). A way for effective usage of FGD gypsum has not yet been found. This will lead to acute and chronic effects to humans as well as plants. Power ultrasound can be used for the beneficiation of coal by the removal of sulfur from coal prior to coal combustion. The main effects of ultrasound in liquid medium are acoustic cavitation and acoustic streaming. The process of formation, growth and implosion of bubbles is called cavitation. Bulk fluid motion due to sound energy absorption is known as acoustic streaming. In addition, coupling of an acoustic field to water produces OH radicals, H(2)O(2), O(2), ozone and HO(2) that are strong oxidizing agents. Oxidation that occurs due to ultrasound is called Advanced Oxidation Process (AOP). It converts sulfur from coal to water-soluble sulphates. Conventional chemical-based soaking and stirring methods are compared here to ultrasonic methods of de-sulfurization. The main advantages of ultrasonic de-sulfurization over conventional methods, the mechanism involved in ultrasonic de-sulfurization and the difference between aqueous-based and solvent-based (2N HNO(3), 3-volume percentage H(2)O(2)) de-sulfurization are investigated experimentally.

  11. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  12. INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect

    Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

    1998-10-01

    This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

  13. Control of thiosulfate in wet desulfurization process solutions

    SciTech Connect

    Castrantas, H.M.

    1983-01-04

    A method for controlling the concentration of dissolved thiosulfate byproduct which forms in a wet desulfurization process, by introducing a peroxygen chemical into its recirculating aqueous absorption medium. A peroxygen chemical such as aqueous hydrogen peroxide is introduced into the recirculating aqueous alkaline absorption medium, preferably after its regeneration, in an amount sufficient to maintain the concentration of thiosulfate byproduct below a saturation concentration. The method is applicable to cyclic wet desulfurization processes, used to recover elemental sulfur from H/sub 2/S-containing gas streams, in which the absorption medium contains a regenerable oxidizing agent and is subject to thiosulfate byproduct buildup.

  14. 6. Interior of quarters (executive officer's quarters), living room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior of quarters (executive officer's quarters), living room, looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  15. 1. North side of quarters (executive officer's quarters), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. North side of quarters (executive officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  16. 5. East side of quarters (executive officer's quarters), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. East side of quarters (executive officer's quarters), looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  17. 4. South side of quarters (executive officer's quarters), looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South side of quarters (executive officer's quarters), looking north - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  18. 2. West side of quarters (executive officer's quarters), looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. West side of quarters (executive officer's quarters), looking east - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  19. 3. Southwest side of quarters (executive officer's quarters), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters (executive officer's quarters), looking northeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  20. 2. Southeast side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of Quarters R (commanding officer's quarters), looking northwest - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  1. 5. Interior of Quarters R (commanding officer's quarters), living room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Interior of Quarters R (commanding officer's quarters), living room, looking northwest - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  2. 4. Northwest side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northwest side of Quarters R (commanding officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  3. 3. Southwest side of quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters R (commanding officer's quarters), looking east - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  4. 1. Northeast side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast side of Quarters R (commanding officer's quarters), looking west - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  5. Contextual view of quarters no. 2 quarters no. 1, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of quarters no. 2 quarters no. 1, and water tower, looking southwest. - Sacramento National Wildlife Refuge, Headquarters Complex, Quarters No. 2, 752 County Road 99W, Willows, Glenn County, CA

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  7. The antimicrobial efficiency of silver activated sorbents

    NASA Astrophysics Data System (ADS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  8. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  9. FIELD TEST PROGRAM FOR EVALUATION OF SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2004-02-12

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of this test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at four plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Ontario Power Generation's Nanticoke Station. This is the first quarterly report for this project. This report includes an overview of the plans for the project. Field testing is scheduled to begin next quarter. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

  10. Flue gas desulfurization by rotating beds

    SciTech Connect

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-01-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE [number sign]FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0[sub 2] absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0[sub 2] absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m[sub 2]/m[sub 3]. Liquid flow rates to 36 kg/s*m[sub 2], gas flow rate to 2.2 kg/s*m[sub 2], and gravitational fields to 300 g were covered in this study.

  11. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  12. Aquatic oil spill cleanup using natural sorbents.

    PubMed

    Paulauskienė, Tatjana; Jucikė, Indrė

    2015-10-01

    One of the most popular transportation methods of crude oil is water transport, leading to potential spills of these pollutants in the seas and oceans and water areas of ports, during their extraction, transportation, transhipment and use. The growth of the Lithuanian economy and the expansion of competitiveness were hardly imagined without the development of the Klaipeda seaport. However, the intensity of shipping and the increase in cargo loading volumes at specialised terminals are associated with a higher risk of environmental pollution. To achieve a sustainable development of the seaport, it is necessary not only to ensure the prevention of potential water pollution but also, if necessary, to use environmentally friendly technology for pollution management. The work analyses the possibilities related to the collection of oil products from the water surface using natural sorbents (peat, wool, moss and straw) and their composites.The research of absorbed amount of crude oil and diesel fuel spilled on the water surface, while using sorbents and their composites, determined that sorbents' composite straw-peat (composition percentage of straw-peat 25-75 %) absorbs the major amount of both crude oil (60 % of the spilled volume) and diesel fuel (69 % of the spilled volume) comparing to single sorbents and sorbents' composite straw-peat (composition percentage of straw-peat 50-50 %).

  13. Soil washing enhancement with solid sorbents

    SciTech Connect

    El-Shoubary, Y.M.; Woodmansee, D.E.

    1996-12-31

    Soil washing is a dynamic, physical process that remediates contaminated soil through two mechanisms: particle size separation and transfer of the contaminant into the (mostly) liquid stream. The performance of different sorbents and additives to remove motor oil from sea sand was tested. Hydrocyclone, attrition scrubber, and froth flotation equipment were used for the decontamination study. Sorbents and additives were mixed with soils in the attrition scrubber prior to flotation. Sorbents used were granular activated carbon, powder activated carbon, and rubber tires. Chemical additives used were calcium hydroxide, sodium carbonate, Alconox{reg_sign}, Triton{reg_sign} X-100 and Triton{reg_sign} X-114. When a froth flotation run was performed using no additive, washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). However, when carbon or rubber (6% by weight) was added to the contaminated soils the washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). The addition of sodium carbonate or calcium hydroxide (6% by weight) had same effects as sorbents. In both cases washed soil {open_quotes}tails{close_quotes} contained total oil and grease of less than 1000 ppm. The use of these non-hazardous additives or sorbent can enhance the soil washing process and consequently saves on time (residence time in equipment design) required to achieve the target clean up levels. 18 refs., 12 figs.

  14. CSSEDC Quarterly. 1989.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1989-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1989. Articles in number 1 deal with professional development, and include: "Sharing Expertise within a Department" (Martha R. Dolly); "Empowerment Develops a Computer Writing Center" (Norman…

  15. English Leadership Quarterly. 1991.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1991-01-01

    These four issues of the English Leadership Quarterly represent the quarterly for 1991. Articles in number 1 deal with whole language and include: "CEL: Shorter and Better" (Myles D. Eley); "Toward a New Philosophy of Language Learning" (Kathleen Strickland); "Whole Language: Implications for Secondary Classrooms"…

  16. CSSEDC Quarterly. 1988.

    ERIC Educational Resources Information Center

    Zirinsky, Driek, Ed.; Strickland, James, Ed.

    1988-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1988. Articles in number 1 include: "Relearning Leadership" (Tom Jones); "The English Coalition Conference" (Robert Denham); "The Reluctant Writer and Word Processing" (James…

  17. CSSEDC Quarterly. 1990.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1990-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1990. Articles in number 1 deal with student teachers and include: "Student Teaching: Smoothing Out the Rough Spots" (Susan B. Argyle and Fred C. Feitler); "A Partnership for Urban Student…

  18. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx

    SciTech Connect

    Liu, C.F.; Shih, S.M.

    2009-09-15

    The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

  19. Microbial stabilization of sulfur-laden sorbents. Technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Miller, K.W.

    1994-06-01

    Clean coal technologies that involve limestone for sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spend sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species required additional processing. Thermal oxidation of reduced sulfur can result in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide, sulfite, or various polythionate species serve as growth substrates for sulfur-oxidizing bacteria, which have the potential to convert all sulfur to sulfate. This quarter, efforts focused on treating the aqueous phase of a waste sorbent obtained from an inhibited wet scrubbing process. Although two named strains, Thiobacillus neapolitanus ATCC 23639 and ATCC 23641, failed; the isolate TQ1 rapidly oxidized thiosalts, producing sulfate. The Virtis Fermentor arrived, so that experiments with TQ1 have been scaled up to 1.5 liters with temperature, aeration, and pH control.

  20. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Not Available

    1990-11-01

    The device described in this report will simultaneously remove particulates, SO{sub 2} and NO{sub x} from the combustion gases of coal combustors. The device is configured as a cross-flow filter. The gas flows from the inlet passages to orthogonally oriented discharge channels via thin, multilayered porous walls. Flue gas enters from both the front and back of the device. With the left wall of the filter sealed, gas discharges from the right side of the device. The key to combined physical (fly ash) and chemical (SO{sub 2}/NO{sub x}) cleaning is to utilize chemical active sorbent-catalysts (e.g., metal oxides) in the layered walls of the filter. This quarter, the NO{sub x} reduction activity of three sorbent-catalyst materials was tested over a temperature range from 200 to 500{degree}C. We were primarily interested in the sorbent-catalyst NO{sub x} reduction performance at 400{degree}C because this appears to be a minimum temperature for acceptable sulfur capture with these sorbents. the tradeoff between sulfur capture and NO{sub x} reduction performance for these sorbent-catalysts is clear: sulfation improves with higher temperatures (e.g., 400--600{degree}C) while NO{sub x} reduction improves at lower temperatures (e.g., 200--300{degree}C). Sorbent-catalyst materials included: Cu-7Al-O; Cu-Ce-O; and CeO{sub 2}. 7 refs., 7 figs., 4 tabs.