Sample records for detailed cellular analysis

  1. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    PubMed

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  2. Procedures for numerical analysis of circadian rhythms

    PubMed Central

    REFINETTI, ROBERTO; LISSEN, GERMAINE CORNÉ; HALBERG, FRANZ

    2010-01-01

    This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed. PMID:23710111

  3. A Quantitative Microscopy Technique for Determining the Number of Specific Proteins in Cellular Compartments

    PubMed Central

    Mutch, Sarah A.; Gadd, Jennifer C.; Fujimoto, Bryant S.; Kensel-Hammes, Patricia; Schiro, Perry G.; Bajjalieh, Sandra M.; Chiu, Daniel T.

    2013-01-01

    This protocol describes a method to determine both the average number and variance of proteins in the few to tens of copies in isolated cellular compartments, such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number but lack information on the variance or are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling the cellular compartment with fluorescent primary-secondary antibody complexes, TIRF (total internal reflection fluorescence) microscopy imaging of the cellular compartment, digital image analysis, and deconvolution of the fluorescence intensity data. A minimum of 2.5 days is required to complete the labeling, imaging, and analysis of a set of samples. As an illustrative example, we describe in detail the procedure used to determine the copy number of proteins in synaptic vesicles. The same procedure can be applied to other organelles or signaling complexes. PMID:22094731

  4. Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks

    PubMed Central

    2011-01-01

    Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155

  5. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  6. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  7. Evolutionary tradeoffs in cellular composition across diverse bacteria

    PubMed Central

    Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori

    2016-01-01

    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336

  8. Fluorescence multi-scale endoscopy and its applications in the study and diagnosis of gastro-intestinal diseases: set-up design and software implementation

    NASA Astrophysics Data System (ADS)

    Gómez-García, Pablo Aurelio; Arranz, Alicia; Fresno, Manuel; Desco, Manuel; Mahmood, Umar; Vaquero, Juan José; Ripoll, Jorge

    2015-06-01

    Endoscopy is frequently used in the diagnosis of several gastro-intestinal pathologies as Crohn disease, ulcerative colitis or colorectal cancer. It has great potential as a non-invasive screening technique capable of detecting suspicious alterations in the intestinal mucosa, such as inflammatory processes. However, these early lesions usually cannot be detected with conventional endoscopes, due to lack of cellular detail and the absence of specific markers. Due to this lack of specificity, the development of new endoscopy technologies, which are able to show microscopic changes in the mucosa structure, are necessary. We here present a confocal endomicroscope, which in combination with a wide field fluorescence endoscope offers fast and specific macroscopic information through the use of activatable probes and a detailed analysis at cellular level of the possible altered tissue areas. This multi-modal and multi-scale imaging module, compatible with commercial endoscopes, combines near-infrared fluorescence (NIRF) measurements (enabling specific imaging of markers of disease and prognosis) and confocal endomicroscopy making use of a fiber bundle, providing a cellular level resolution. The system will be used in animal models exhibiting gastro-intestinal diseases in order to analyze the use of potential diagnostic markers in colorectal cancer. In this work, we present in detail the set-up design and the software implementation in order to obtain simultaneous RGB/NIRF measurements and short confocal scanning times.

  9. A broken krebs cycle in macrophages.

    PubMed

    O'Neill, Luke A J

    2015-03-17

    Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cellular interface morphologies in directional solidification. III - The effects of heat transfer and solid diffusivity

    NASA Technical Reports Server (NTRS)

    Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.

    1985-01-01

    The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.

  11. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions.

    PubMed

    Saha, Tanumoy; Rathmann, Isabel; Galic, Milos

    2017-07-11

    Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.

  12. Using cancer to make cellular reproduction rigorous and relevant

    NASA Astrophysics Data System (ADS)

    Duncan, Cynthia F.

    The 1983 report Nation at Risk highlighted the fact that test scores of American students were far below that of competing nations and educational standards were being lowered. This trend has continued and studies have also shown that students are not entering college ready for success. This trend can be reversed. Students can better understand and retain biology content expectations if they are taught in a way that is both rigorous and relevant. In the past, students have learned the details of cellular reproduction with little knowledge of why it is important to their everyday lives. This material is learned only for the test. Knowing the details of cellular reproduction is crucial for understanding cancer. Cancer is a topic that will likely affect all of my students at some point in their lives. Students used hands on activities, including simulations, labs, and models to learn about cellular reproduction with cancer as a theme throughout. Students were challenged to learn how to use the rigorous biology content expectations to think about cancer, including stem cell research. Students that will some day be college students, voting citizens, and parents, will become better learners. Students were assessed before and after the completion of the unit to determine if learning occurs. Students did learn the material and became more critical thinkers. Statistical analysis was completed to insure confidence in the results.

  13. Simulation analysis of an integrated model for dynamic cellular manufacturing system

    NASA Astrophysics Data System (ADS)

    Hao, Chunfeng; Luan, Shichao; Kong, Jili

    2017-05-01

    Application of dynamic cellular manufacturing system (DCMS) is a well-known strategy to improve manufacturing efficiency in the production environment with high variety and low volume of production. Often, neither the trade-off of inter and intra-cell material movements nor the trade-off of hiring and firing of operators are examined in details. This paper presents simulation results of an integrated mixed-integer model including sensitivity analysis for several numerical examples. The comprehensive model includes cell formation, inter and intracellular materials handling, inventory and backorder holding, operator assignment (including resource adjustment) and flexible production routing. The model considers multi-production planning with flexible resources (machines and operators) where each period has different demands. The results verify the validity and sensitivity of the proposed model using a genetic algorithm.

  14. In Vitro Analysis of Metabolite Transport Proteins.

    PubMed

    Roell, Marc-Sven; Kuhnert, Franziska; Zamani-Nour, Shirin; Weber, Andreas P M

    2017-01-01

    The photorespiratory cycle is distributed over four cellular compartments, the chloroplast, peroxisomes, cytoplasm, and mitochondria. Shuttling of photorespiratory intermediates between these compartments is essential to maintain the function of photorespiration. Specific transport proteins mediate the transport across biological membranes and represent important components of the cellular metabolism. Although significant progress was made in the last years on identifying and characterizing new transport proteins, the overall picture of intracellular metabolite transporters is still rather incomplete. The photorespiratory cycle requires at least 25 transmembrane transport steps; however to date only plastidic glycolate/glycerate transporter and the accessory 2-oxoglutarate/malate and glutamate/malate transporters as well as the mitochondrial transporter BOU1 have been identified. The characterization of transport proteins and defining their substrates and kinetics are still major challenges.Here we present a detailed set of protocols for the in vitro characterization of transport proteins. We provide protocols for the isolation of recombinant transport protein expressed in E. coli or Saccharomyces cerevisiae and the extraction of total leaf membrane protein for in vitro analysis of transporter proteins. Further we explain the process of reconstituting transport proteins in artificial lipid vesicles and elucidate the details of transport assays.

  15. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    NASA Astrophysics Data System (ADS)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  16. A Systems Biology Methodology Combining Transcriptome and Interactome Datasets to Assess the Implications of Cytokinin Signaling for Plant Immune Networks.

    PubMed

    Kunz, Meik; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    Cytokinins (CKs) play an important role in plant growth and development. Also, several studies highlight the modulatory implications of CKs for plant-pathogen interaction. However, the underlying mechanisms of CK mediating immune networks in plants are still not fully understood. A detailed analysis of high-throughput transcriptome (RNA-Seq and microarrays) datasets under modulated conditions of plant CKs and its mergence with cellular interactome (large-scale protein-protein interaction data) has the potential to unlock the contribution of CKs to plant defense. Here, we specifically describe a detailed systems biology methodology pertinent to the acquisition and analysis of various omics datasets that delineate the role of plant CKs in impacting immune pathways in Arabidopsis.

  17. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  18. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  19. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  20. Microfluidics for Single-Cell Genetic Analysis

    PubMed Central

    Thompson, A. M.; Paguirigan, A. L.; Kreutz, J. E.; Radich, J. P.; Chiu, D. T.

    2014-01-01

    The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decreases reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses. PMID:24789374

  1. Visualizing Viral Protein Structures in Cells Using Genetic Probes for Correlated Light and Electron Microscopy

    PubMed Central

    Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.

    2015-01-01

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760

  2. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales

    PubMed Central

    Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.

    2012-01-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897

  4. Wireless Emergency Alerts (WEA) Cybersecurity Risk Management Strategy for Alert Originators

    DTIC Science & Technology

    2014-03-01

    formerly known as the Commercial Mobile Alert Service ( CMAS ) RDT&E program, is a collaborative partnership that includes the cellular industry, the...Examples illustrate a STRIDE analysis of the generic mission 1 The CMAS Alerting Pipeline Taxonomy describes in detail a hierarchical classification...SEI-2013-SR-018 | 1 1 Introduction The Wireless Emergency Alerts (WEA) service, formerly known as the Commercial Mobile Alert Service ( CMAS ), is a

  5. Biological effects of weightlessness and clinostatic conditions registered in cells of root meristem and cap of higher plants

    NASA Astrophysics Data System (ADS)

    Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.

    Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.

  6. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less

  7. Cellular structure of lean hydrogen flames in microgravity

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1990-01-01

    Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.

  8. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging.

    PubMed

    Specht, Elizabeth A; Braselmann, Esther; Palmer, Amy E

    2017-02-10

    Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.

  9. Simulation study of overtaking in pedestrian flow using floor field cellular automaton model

    NASA Astrophysics Data System (ADS)

    Fu, Zhijian; Xia, Liang; Yang, Hongtai; Liu, Xiaobo; Ma, Jian; Luo, Lin; Yang, Lizhong; Chen, Junmin

    Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.

  10. Recent advances and opportunities in proteomic analyses of tumour heterogeneity.

    PubMed

    Bateman, Nicholas W; Conrads, Thomas P

    2018-04-01

    Solid tumour malignancies comprise a highly variable admixture of tumour and non-tumour cellular populations, forming a complex cellular ecosystem and tumour microenvironment. This tumour heterogeneity is not incidental, and is known to correlate with poor patient prognosis for many cancer types. Indeed, non-malignant cell populations, such as vascular endothelial and immune cells, are known to play key roles supporting and, in some cases, driving aggressive tumour biology, and represent targets of emerging therapeutics, such as antiangiogenesis and immune checkpoint inhibitors. The biochemical interplay between these cellular populations and how they contribute to molecular tumour heterogeneity remains enigmatic, particularly from the perspective of the tumour proteome. This review focuses on recent advances in proteomic methods, namely imaging mass spectrometry, single-cell proteomic techniques, and preanalytical sample processing, that are uniquely positioned to enable detailed analysis of discrete cellular populations within tumours to improve our understanding of tumour proteomic heterogeneity. This review further emphasizes the opportunity afforded by the application of these techniques to the analysis of tumour heterogeneity in formalin-fixed paraffin-embedded archival tumour tissues, as these represent an invaluable resource for retrospective analyses that is now routinely accessible, owing to recent technological and methodological advances in tumour tissue proteomics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. A technical review of cellular radio and analysis of a possible protocol

    NASA Astrophysics Data System (ADS)

    Reese, William D.

    1992-09-01

    Radio and television technology made the field of cellular radio possible. This thesis shows the development of radio and television technology from both a historical and technical aspect. A review of the important researchers and their contributions is followed by a technical explanation of the theories behind electromagnetic radiation of radio and television signals and the technology which was developed to implement such transmissions. The evolution of development which the paper outlines begins with some of the first theories about electricity and magnetism and the subsequent mathematical foundation developed to explain them. This is followed by a number of experimental and developmental researchers and their contributions. The bulk of the paper is concentrated on explaining the earliest generations of radio and all generations of television. The major components of both radio and television are described in detail along with an explanation of what they do and how they work. Such components, in many cases, found important uses in fields outside those for which they were developed. A brief overview of the regulatory environment of each technology and the U.S. and international standardization efforts is also included. Finally, the paper illustrates a modern-day application of radio technology--the cellular radio industry. A description of the components and their functions is followed by a possible cellular radio protocol and analysis.

  12. Plasmin-Cellular Interactions in Breast Cancer Invasion and Metastasis.

    DTIC Science & Technology

    1997-10-01

    Boehringer Mannheim. Aprotinin, chloramine T, e- aminocaproic acid (eACA), phenylmethylsulfonyl fluo- ride, and bovine serum albumin (BSA) were from...containing 174 amino acids from the C-terminus of CK8 (CK8f). The second construct was identical to the first except that the C-terminal lysine...amino acids from the C-terminus of wild type CK18. A detailed analysis of the experiments performed with these constructs, including eight figures, is

  13. Stiffness and strength of fiber reinforced polymer composite bridge deck systems

    NASA Astrophysics Data System (ADS)

    Zhou, Aixi

    This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elastic Equivalence to model the cellular deck as an equivalent orthotropic plate. The procedure provides a practical method to predict the equivalent orthotropic plate properties of cellular FRP decks. Analytical solutions for the bending analysis of single span decks were developed using classical laminated plate theory. The analysis procedures can be extended to analyze continuous FRP decks. It can also be further developed using higher order plate theories. Several failure modes of the cellular FRP deck systems were recorded and analyzed through laboratory and field tests and Finite Element Analysis (FEA). Two schemes of loading patches were used in the laboratory test: a steel patch made according to the ASSHTO's bridge testing specifications; and a tire patch made from a real truck tire reinforced with silicon rubber. The tire patch was specially designed to simulate service loading conditions by modifying real contact loading from a tire. Our research shows that the effects of the stiffness and contact conditions of loading patches are significant in the stiffness and strength testing of FRP decks. Due to the localization of load, a simulated tire patch yields larger deflection than the steel patch under the same loading level. The tire patch produces significantly different failure compared to the steel patch: a local bending mode with less damage for the tire patch; and a local punching-shear mode for the steel patch. A deck failure function method is proposed for predicting the failure of FRP decks. Using developed laminated composite theories and FEA techniques, a strength analysis procedure containing ply-level information was proposed and detailed for FRP deck systems. The behavior of the deck's unsupported (free) edges was also investigated using ply-level FEA.

  14. A mitochondria-selective near-infrared-emitting fluorescent dye for cellular imaging studies.

    PubMed

    Choi, Peter; Noguchi, Katsuya; Ishiyama, Munetaka; Denny, William A; Jose, Jiney

    2018-05-03

    This communication details the synthesis, evaluation of photophysical properties, and cellular imaging studies of cyanine chromophore based fluorescent dye 1 as a selective imaging agent for mitochondria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  16. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    PubMed Central

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-01-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323

  17. The Reactome pathway Knowledgebase

    PubMed Central

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2016-01-01

    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494

  18. Fast and accurate automated cell boundary determination for fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider

    2013-07-01

    Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.

  19. Feeding behavior of Aplysia: a model system for comparing cellular mechanisms of classical and operant conditioning.

    PubMed

    Baxter, Douglas A; Byrne, John H

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural circuitry that mediates the behavior is well characterized and amenable to detailed cellular analyses, substantial progress has been made toward a comparative analysis of the cellular mechanisms underlying these two forms of associative learning. Both forms of associative learning use the same reinforcement pathway (the esophageal nerve, En) and the same reinforcement transmitter (dopamine, DA). In addition, at least one cellular locus of plasticity (cell B51) is modified by both forms of associative learning. However, the two forms of associative learning have opposite effects on B51. Classical conditioning decreases the excitability of B51, whereas operant conditioning increases the excitability of B51. Thus, the approach of using two forms of associative learning to modify a single behavior, which is mediated by an analytically tractable neural circuit, is revealing similarities and differences in the mechanisms that underlie classical and operant conditioning.

  20. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    PubMed

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  1. Learning about Cellular Respiration: An Active Approach Illustrating the Process of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Johnson, Margaret (Peg)

    1998-01-01

    Details the active-learning approach to teaching cellular respiration in an introductory, one-semester course for nonmajors. Focuses on a laboratory exercise designed to answer the question of what happens to food when eaten. Contains 19 references. (DDR)

  2. Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts

    PubMed Central

    Shimamoto, Yuta; Kapoor, Tarun M.

    2014-01-01

    SUMMARY To explain how micron-sized cellular structures generate and respond to forces we need to characterize their micromechanical properties. Here we provide a protocol to build and use a dual force-calibrated microneedle-based set-up to quantitatively analyze the micromechanics of a metaphase spindle assembled in Xenopus laevis egg extracts. This cell-free extract system allows for controlled biochemical perturbations of spindle components. We describe how the microneedles are prepared and how they can be used to apply and measure forces. A multi-mode imaging system allows tracking of microtubules, chromosomes and needle tips. This set-up can be used to analyze the viscoelastic properties of the spindle on time-scales ranging from minutes to sub-seconds. A typical experiment, along with data analysis, is also detailed. We anticipate that our protocol can be readily extended to analyze the micromechanics of other cellular structures assembled in cell-free extracts. The entire procedure can take 3-4 days. PMID:22538847

  3. Maize early endosperm growth and development: from fertilization through cell type differentiation.

    PubMed

    Leroux, Brian M; Goodyke, Austin J; Schumacher, Katelyn I; Abbott, Chelsi P; Clore, Amy M; Yadegari, Ramin; Larkins, Brian A; Dannenhoffer, Joanne M

    2014-08-01

    • Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize. © 2014 Botanical Society of America, Inc.

  4. Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, S.; Devaraj, A.; Kovarik, L.

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  6. Dynamic analysis of CO₂ labeling and cell respiration using membrane-inlet mass spectrometry.

    PubMed

    Yang, Tae Hoon

    2014-01-01

    Here, we introduce a mass spectrometry-based analytical method and relevant technical details for dynamic cell respiration and CO2 labeling analysis. Such measurements can be utilized as additional information and constraints for model-based (13)C metabolic flux analysis. Dissolved dynamics of oxygen consumption and CO2 mass isotopomer evolution from (13)C-labeled tracer substrates through different cellular processes can be precisely measured on-line using a miniaturized reactor system equipped with a membrane-inlet mass spectrometer. The corresponding specific rates of physiologically relevant gases and CO2 mass isotopomers can be quantified within a short-term range based on the liquid-phase dynamics of dissolved fermentation gases.

  7. Absence of cellular hypersensitivity to muscle and thymic antigens in myasthenia gravis.

    PubMed Central

    Behan, W M; Behan, P O; Simpson, J A

    1975-01-01

    Humoral antibodies to skeletal muscle and its components and to thymus have been demonstrated in the sera of patients with myasthenia gravis. A role for cellular hypersensitivity to similar antigens in the pathogenesis of the disease has been suggested by some reports of the presence of cellular immunity. A detailed immunological study using muscle and thymic antigens, including those prepared from the patients' own tissues, failed to confirm these findings. It is suggested that previous reports of cellular hypersensitivity represent the demonstration of an epiphenomenon. PMID:1206412

  8. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  9. Methods for collection and analysis of aquatic biological and microbiological samples

    USGS Publications Warehouse

    Greeson, Phillip E.; Ehlke, T.A.; Irwin, G.A.; Lium, B.W.; Slack, K.V.

    1977-01-01

    Chapter A4 contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. Part 1 discusses biological sampling and sampling statistics. The statistical procedures are accompanied by examples. Part 2 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity, and bioassays. Each method is summarized, and the application, interferences, apparatus, reagents, collection, analysis, calculations, reporting of results, precision and references are given. Part 3 consists of a glossary. Part 4 is a list of taxonomic references.

  10. Bubble Divergences: Sorting out Topology from Cell Structure

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Smerlak, Matteo

    2012-02-01

    We conclude our analysis of bubble divergences in the flat spinfoam model. In [arXiv:1008.1476] we showed that the divergence degree of an arbitrary two-complex Gamma can be evaluated exactly by means of twisted cohomology. Here, we specialize this result to the case where Gamma is the two-skeleton of the cell decomposition of a pseudomanifold, and sharpen it with a careful analysis of the cellular and topological structures involved. Moreover, we explain in detail how this approach reproduces all the previous powercounting results for the Boulatov-Ooguri (colored) tensor models, and sheds light on algebraic-topological aspects of Gurau's 1/N expansion.

  11. Dynamism & Detail

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2004-01-01

    New material discovered in the study of cell research is presented for the benefit of biology teachers. Huge amounts of data are being generated in fields like cellular dynamics, and it is felt that people's understanding of the cell is becoming much more complex and detailed.

  12. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    PubMed

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  13. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This methodology enables visualization and analysis of the cellular position of target proteins and cells throughout the entire 3D culture topography and will facilitate a more detailed analysis of the spatial relationships between cells over the course of neurogenesis and gliogenesis in vitro. Both Imbeault and Valenzuela contributed equally and should be considered joint first authors. PMID:21258319

  14. Protein Structure in Context: The Molecular Landscape of Angiogenesis

    ERIC Educational Resources Information Center

    Span, Elise A.; Goodsell, David S.; Ramchandran, Ramani; Franzen, Margaret A.; Herman, Tim; Sem, Daniel S.

    2013-01-01

    A team of students, educators, and researchers has developed new materials to teach cell signaling within its cellular context. Two nontraditional modalities are employed: physical models, to explore the atomic details of several of the proteins in the angiogenesis signaling cascade, and illustrations of the proteins in their cellular environment,…

  15. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  16. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases.

    PubMed

    Connolly, Niamh M C; Theurey, Pierre; Adam-Vizi, Vera; Bazan, Nicolas G; Bernardi, Paolo; Bolaños, Juan P; Culmsee, Carsten; Dawson, Valina L; Deshmukh, Mohanish; Duchen, Michael R; Düssmann, Heiko; Fiskum, Gary; Galindo, Maria F; Hardingham, Giles E; Hardwick, J Marie; Jekabsons, Mika B; Jonas, Elizabeth A; Jordán, Joaquin; Lipton, Stuart A; Manfredi, Giovanni; Mattson, Mark P; McLaughlin, BethAnn; Methner, Axel; Murphy, Anne N; Murphy, Michael P; Nicholls, David G; Polster, Brian M; Pozzan, Tullio; Rizzuto, Rosario; Satrústegui, Jorgina; Slack, Ruth S; Swanson, Raymond A; Swerdlow, Russell H; Will, Yvonne; Ying, Zheng; Joselin, Alvin; Gioran, Anna; Moreira Pinho, Catarina; Watters, Orla; Salvucci, Manuela; Llorente-Folch, Irene; Park, David S; Bano, Daniele; Ankarcrona, Maria; Pizzo, Paola; Prehn, Jochen H M

    2018-03-01

    Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.

  17. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells.

    PubMed

    Prauzner-Bechcicki, Szymon; Raczkowska, Joanna; Madej, Ewelina; Pabijan, Joanna; Lukes, Jaroslav; Sepitka, Josef; Rysz, Jakub; Awsiuk, Kamil; Bernasik, Andrzej; Budkowski, Andrzej; Lekka, Małgorzata

    2015-01-01

    A deep understanding of the interaction between cancerous cells and surfaces is particularly important for the design of lab-on-chip devices involving the use of polydimethylsiloxane (PDMS). In our studies, the effect of PDMS substrate stiffness on mechanical properties of cancerous cells was investigated in conditions where the PDMS substrate is not covered with any of extracellular matrix proteins. Two human prostate cancer (Du145 and PC-3) and two melanoma (WM115 and WM266-4) cell lines were cultured on two groups of PDMS substrates that were characterized by distinct stiffness, i.e. 0.75 ± 0.06 MPa and 2.92 ± 0.12 MPa. The results showed the strong effect on cellular behavior and morphology. The detailed analysis of chemical and physical properties of substrates revealed that cellular behavior occurs only due to substrate elasticity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Non-specific cellular uptake of surface-functionalized quantum dots

    NASA Astrophysics Data System (ADS)

    Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.

    2010-07-01

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.

  19. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    PubMed

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides.

    PubMed

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-12-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other.

  1. SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways

    PubMed Central

    Tuncbag, Nurcan; McCallum, Scott; Huang, Shao-shan Carol; Fraenkel, Ernest

    2012-01-01

    High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet. PMID:22638579

  2. Myokit: A simple interface to cardiac cellular electrophysiology.

    PubMed

    Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A

    2016-01-01

    Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The minute virus of mice exploits different endocytic pathways for cellular uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy andmore » flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.« less

  4. Comprehensive finite element modeling of Ti-6Al-4V cellular solids fabricated by electron beam melting

    NASA Astrophysics Data System (ADS)

    Arrieta, Edel

    Additive manufacturing permits the fabrication of cellular metals which are materials that can be highly customizable and possess multiple and extraordinary properties such as damage tolerance, metamorphic and auxetic behaviors, and high specific stiffness. This makes them the subject of interest for innovative applications. With interest in these materials for energy absorption applications, this work presents the development of nonlinear finite element models in commercial software platforms (MSC Patran/Nastran) that permit the analysis of the deformation mechanisms of these materials under compressive loads. In the development of these models, a detailed multiscale study on the different factors affecting the response of cellular metals was conducted with the objective to understanding the physics with the objective of selecting the most appropriate experiments. In that manner, a series of experiments were conducted on Ti-6Al-4V specimens fabricated by electron beam melting at different manufacturing orientations. Digital image correlation was presented as a vital tool for the measurement of strains in specimens with complex shapes; the experiments contemplated compression and tension tests of Ti-6Al-4V solid components, as well as compression tests on cellular lattices of the same alloy. FEMs were developed from the same CAD file utilized for the fabrication of the lattices; in addition, different meshing approaches and mesh convergence analysis were discussed. The mesh density showed convergence in models with over 70,000 elements, permitting the evaluation of the stress/strain-distribution mechanisms in the lattices. However, because of the considerable variability of the experimental material properties, some numerical results showed significant errors in predicting the compressive force applied to the lattices during the experiments; thus suggesting the need to improve the quality control in the manufacturing process and develop better technologies in computational mechanics for the modeling of cellular metals.

  5. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  6. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  7. Dynamic self-guiding analysis of Alzheimer's disease

    PubMed Central

    Kurakin, Alexei; Bredesen, Dale E.

    2015-01-01

    We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885

  8. A protocol for preparing, characterizing and using three RNA-specific, live cell imaging probes: E36, E144 and F22.

    PubMed

    Li, Qian; Chang, Young-Tae

    2006-01-01

    This protocol outlines a methodology for the preparation and characterization of three RNA-specific fluorescent probes (E36, E144 and F22) and their use in live cell imaging. It describes a detailed procedure for their chemical synthesis and purification; serial product characterization and quality control tests, including measurements of their fluorescence properties in solution, measurement of RNA specificity and analysis of cellular toxicity; and live cell staining and counterstaining with Hoechst or DAPI. Preparation and application of these RNA imaging probes takes 1 week.

  9. Quantitation of the cellular content of saliva and buccal swab samples.

    PubMed

    Theda, Christiane; Hwang, Seo Hye; Czajko, Anna; Loke, Yuk Jing; Leong, Pamela; Craig, Jeffrey M

    2018-05-02

    Buccal swabs and saliva are the two most common oral sampling methods used for medical research. Often, these samples are used interchangeably, despite previous evidence that both contain buccal cells and blood leukocytes in different proportions. For some research, such as epigenetic studies, the cell types contributing to the analysis are highly relevant. We collected such samples from twelve children and twenty adults and, using Papanicolaou staining, measured the proportions of epithelial cells and leukocytes through microscopy. To our knowledge, no studies have compared cellular heterogeneity in buccal swab and saliva samples from adults and children. We confirmed that buccal swabs contained a higher proportion of epithelial cells than saliva and that children have a greater proportion of such cells in saliva compared to adults. At this level of resolution, buccal swabs and saliva contained similar epithelial cell subtypes. Gingivitis in children was associated with a higher proportion of leukocytes in saliva samples but not in buccal swabs. Compared to more detailed and costly methods such as flow cytometry or deconvolution methods used in epigenomic analysis, the procedure described here can serve as a simple and low-cost method to characterize buccal and saliva samples. Microscopy provides a low-cost tool to alert researchers to the presence of oral inflammation which may affect a subset of their samples. This knowledge might be highly relevant to their specific research questions, may assist with sample selection and thus might be crucial information despite the ability of data deconvolution methods to correct for cellular heterogeneity.

  10. Global functional analyses of cellular responses to pore-forming toxins.

    PubMed

    Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V

    2011-03-01

    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  11. [Immunohistochemical description of proliferative activity and apoptosis of lung squamous cell carcinoma (literature review)].

    PubMed

    Филенко, Борис Н; Ройко, Наталия В; Степанчук, Алла П; Проскурня, Сергей А

    2016-01-01

    The analysis of the publications are describe immunohistochemical study of proliferative activity and apoptosis of lung squamous cell carcinoma. Established that the imbalance between proliferation and cell death is a key process in the development of tumors. However, the value of tumor markers in histogenesis and morfogenesis of tumors and forecast their occurrence is not studied enough. Despite the significant amount of scientific literature devoted to this issue, has not yet established a clear link expression of immunohistochemical markers of proliferation and apoptosis with the degree of differentiation of squamous cell lung cancer. Analysis of the literature shows that the morphology of this histogenetics type lung cancer at the cellular, subcellular structural and functional levels are controversial and require detailed investigation.

  12. Umbrella Sampling and X-ray Crystallographic Analysis Unveil an Arg-Asp Gate Facilitating Inhibitor Binding Inside Phosphopantetheine Adenylyltransferase Allosteric Cleft.

    PubMed

    Mondal, A; Chatterjee, R; Datta, S

    2018-02-08

    Phosphopantetheine adenylyltransferase (PPAT) is a rate-limiting enzyme essential for biosynthesis of coenzyme A (CoA), which in turn is responsible to regulate the secretion of exotoxins via type III secretion system in Pseudomonas aeruginosa, causing severe health concerns ranging from nosocomial infections to respiratory failure. Acetyl coenzyme A (AcCoA) is a newly reported inhibitor of PPAT, believed to regulate the cellular levels of CoA and thereby the pathogenesis. Very little is known so far regarding the mechanistic details of AcCoA binding inside PPAT-binding cleft. Herein, we have used extensive umbrella sampling simulations to decipher mechanistic insight into the inhibitor accommodation inside the binding cavity. We found that R90 and D94 residues act like a gate near the binding cavity to accommodate and stabilize the incoming ligand. Mutational models concerning these residues also show considerable difference in AcCoA-binding thermodynamics. To substantiate our findings, we have solved the first crystal structure of apo-PPAT from P. aeruginosa, which also found to agree with the simulation results. Collectively, these results describe the mechanistic details of accommodation of inhibitor molecule inside PPAT-binding cavity and also offer valuable insight into regulating cellular levels of CoA/AcCoA and thus controlling the pathogenicity.

  13. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    PubMed Central

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  14. The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides1[C][W][OA

    PubMed Central

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-01-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other. PMID:23037507

  15. Photobiomodulation on senescence

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  16. Log Normal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of Alpha Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2008-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316

  17. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    PubMed

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Protein structure in context: The molecular landscape of angiogenesis

    PubMed Central

    Span, Elise A.; Goodsell, David S.; Ramchandran, Ramani; Franzen, Margaret; Herman, Timothy; Sem, Daniel S.

    2014-01-01

    A team of students, educators, and researchers has developed new materials to teach cell signaling within its cellular context. Two non-traditional modalities are employed: physical models, to explore the atomic details of several of the proteins in the angiogenesis signaling cascade, and illustrations of the proteins in their cellular environment, to give an intuitive understanding of the cellular context of the pathway. The experiences of the team underscore the utility of these types of materials as an effective mode for fostering students’ understanding of the molecular world, and the scientific method used to define it. PMID:23868376

  19. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  20. Phase transitions in coupled map lattices and in associated probabilistic cellular automata.

    PubMed

    Just, Wolfram

    2006-10-01

    Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.

  1. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications

    PubMed Central

    Castillo, Jonathan; Stueve, Theresa R.; Marconett, Crystal N.

    2017-01-01

    Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far. PMID:29113413

  2. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    NASA Astrophysics Data System (ADS)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  3. Systematic approach to study of thinly and thickly sectioned melanoma tissues with scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, C.; Tittmann, B. R.; Tutwiler, R.; Tian, Y.; Maeva, E.; Shum, D.

    2010-03-01

    The present study is to investigate the feasibility of applying in-vivo acoustic microscopy to the analysis of cancerous tissue. The study was implemented with mechanical scanning reflection acoustic microscope (SAM) by the following procedures. First, we ultrasonically visualized thick sections of normal and tumor tissues to determine the lowest transducer frequency required for cellular imaging. We used skin for normal tissue and the tumor was a malignant melanoma. Thin sections of the tissue were also studied with the optical and high-frequency-ultrasonic imaging for pathological evaluation. Secondly, we ultrasonically visualized subsurface cellular details of thin tissue specimens with different modes (i.e., pulse and tone-burst wave modes) to obtain the highest quality ultrasonic images. The objective is to select the best mode for the future design of a future SAM for in-vivo examination. Thirdly, we developed a mathematical modeling technique based on an angular spectrum approach for improving image processing and comparing numerical to experimental results.

  4. Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth.

    PubMed

    Sankar, Martial; Nieminen, Kaisa; Ragni, Laura; Xenarios, Ioannis; Hardtke, Christian S

    2014-02-11

    Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.

  5. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    PubMed Central

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  6. Stability analysis of switched cellular neural networks: A mode-dependent average dwell time approach.

    PubMed

    Huang, Chuangxia; Cao, Jie; Cao, Jinde

    2016-10-01

    This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth

    PubMed Central

    Sankar, Martial; Nieminen, Kaisa; Ragni, Laura; Xenarios, Ioannis; Hardtke, Christian S

    2014-01-01

    Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001 PMID:24520159

  8. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose

    PubMed Central

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton

    2016-01-01

    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose–response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways. PMID:27702900

  9. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose.

    PubMed

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton; Dushek, Omer

    2016-10-25

    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose-response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways.

  10. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling.

    PubMed

    Estrada, Javier; Andrew, Natalie; Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-07-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell's environment. This suggests that the external environment may be harnessed to interrogate the cell's internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a "correct" model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 humanmore » skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA(III) perturbs Nrf2 pathway and selenoprotein synthesis.« less

  12. Express path analysis identifies a tyrosine kinase Src-centric network regulating divergent host responses to Mycobacterium tuberculosis infection.

    PubMed

    Karim, Ahmad Faisal; Chandra, Pallavi; Chopra, Aanchal; Siddiqui, Zaved; Bhaskar, Ashima; Singh, Amit; Kumar, Dhiraj

    2011-11-18

    Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.

  13. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    NASA Astrophysics Data System (ADS)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  14. Diagnosis of stinging insect allergy: utility of cellular in-vitro tests.

    PubMed

    Scherer, Kathrin; Bircher, Andreas J; Heijnen, Ingmar Afm

    2009-08-01

    Diagnosis of stinging insect allergy is based on a detailed history, venom skin tests, and detection of venom-specific IgE. As an additional diagnostic tool, basophil responsiveness to venom allergens has been shown to be helpful in selected patients. This review summarizes the current diagnostic procedures for stinging insect allergy and discusses the latest developments in cellular in-vitro tests. Cellular assays have been evaluated in patients with Hymenoptera venom allergy. The diagnostic performance of the cellular mediator release test is similar to that of the flow cytometric basophil activation test (BAT), but the BAT has been the most intensively studied. BAT offers the possibility to assess basophil reactivity to allergens in their natural environment and to simultaneously analyze surface marker expression and intracellular signaling. It has been demonstrated that BAT represents a valuable additional diagnostic tool in selected patients when used in combination with other well established tests. A major limitation is the current lack of unified, standardized protocols. Flow cytometry offers huge possibilities to enhance knowledge of basophil functions. The BAT may be used as an additional test to confirm the diagnosis of stinging insect allergy in selected patients, provided that it is performed by an experienced laboratory using a validated assay. Test results have to be interpreted by clinicians familiar with the methodological aspects. The utility of the BAT to confirm allergy diagnosis and to predict the risk of subsequent systemic reactions may be improved by combined analysis of multiple surface markers and intracellular signaling pathways.

  15. Derivation of large-scale cellular regulatory networks from biological time series data.

    PubMed

    de Bivort, Benjamin L

    2010-01-01

    Pharmacological agents and other perturbants of cellular homeostasis appear to nearly universally affect the activity of many genes, proteins, and signaling pathways. While this is due in part to nonspecificity of action of the drug or cellular stress, the large-scale self-regulatory behavior of the cell may also be responsible, as this typically means that when a cell switches states, dozens or hundreds of genes will respond in concert. If many genes act collectively in the cell during state transitions, rather than every gene acting independently, models of the cell can be created that are comprehensive of the action of all genes, using existing data, provided that the functional units in the model are collections of genes. Techniques to develop these large-scale cellular-level models are provided in detail, along with methods of analyzing them, and a brief summary of major conclusions about large-scale cellular networks to date.

  16. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    PubMed

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  17. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism.

    PubMed

    James, Emma L; Lane, James A E; Michalek, Ryan D; Karoly, Edward D; Parkinson, E Kenneth

    2016-12-07

    Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.

  18. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism

    PubMed Central

    James, Emma L.; Lane, James A. E.; Michalek, Ryan D.; Karoly, Edward D.; Parkinson, E. Kenneth

    2016-01-01

    Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease. PMID:27924925

  19. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    PubMed

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in the lysosomes with time.

  20. A class of cellular automata modeling winnerless competition

    NASA Astrophysics Data System (ADS)

    Afraimovich, V.; Ordaz, F. C.; Urías, J.

    2002-06-01

    Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.

  1. Cellular-based preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  2. Nipah virus matrix protein: expert hacker of cellular machines.

    PubMed

    Watkinson, Ruth E; Lee, Benhur

    2016-08-01

    Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly. © 2016 Federation of European Biochemical Societies.

  3. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  4. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  5. Methods for collection and analysis of aquatic biological and microbiological samples

    USGS Publications Warehouse

    Britton, L.J.; Greeson, P.E.

    1988-01-01

    Chapter A4, methods for collection and analyses of aquatic biological and microbiological samples, contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. Part 1 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity and bioassay. Each method is summarized, and the applications, interferences, apparatus, reagents, analyses, calculations, reporting of results, precisions, and references are given. Part 2 consists of a glossary. Part 3 is a list of taxonomic references. (USGS)

  6. Peptide-based Fluorescent Sensors of Protein Kinase Activity: Design and Applications

    PubMed Central

    Sharma, Vyas; Wang, Qunzhao; Lawrence, David S.

    2009-01-01

    Protein kinases control the flow of information through cell-signaling pathways. A detailed analysis of their behavior enhances our ability to understand normal cellular states and to devise therapeutic interventions for diseases. The design and application of “Environmentally-Sensitive”, “Deep-Quench” and “Self-Reporting” sensor systems for studying protein kinase activity are described. These sensors allow real-time activity measurements in a continuous manner for a wide variety of kinases. As these sensors can be adapted from an in vitro screen to imaging kinase activity in living cells, they support both preliminary and later stages of drug discovery. PMID:17881302

  7. Morphometric analysis of cisplatin-induced neurite outgrowth in N1E-115 neuroblastoma cells.

    PubMed

    Konings, P N; Philipsen, R L; van den Broek, J H; Ruigt, G S

    1994-08-29

    Cisplatin, a widely used cytostatic drug for the control of a variety of neoplastic tumors, unexpectedly induced neurite outgrowth in N1E-115 neuroblastoma cells and this phenomenon was studied further in detail with morphometric analysis. As expected, cisplatin dose-dependently reduced cell number. At the same time, however, cisplatin affected the morphology of the neuroblastoma cells that changed from small rounded cell bodies into large flat cell bodies with neurites. The neurite length/cell as a function of cisplatin concentration showed a bell-shaped curve. The maximal effect (1200% of control) on neurite length/cell was observed at 1 microgram/ml cisplatin. In conclusion, cisplatin induced cellular differentiation in N1E-115 neuroblastoma cells at and just above threshold doses for cytostatic activity.

  8. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  9. WESTPA: An interoperable, highly scalable software package for weighted ensemble simulation and analysis

    PubMed Central

    Zwier, Matthew C.; Adelman, Joshua L.; Kaus, Joseph W.; Pratt, Adam J.; Wong, Kim F.; Rego, Nicholas B.; Suárez, Ernesto; Lettieri, Steven; Wang, David W.; Grabe, Michael; Zuckerman, Daniel M.; Chong, Lillian T.

    2015-01-01

    The weighted ensemble (WE) path sampling approach orchestrates an ensemble of parallel calculations with intermittent communication to enhance the sampling of rare events, such as molecular associations or conformational changes in proteins or peptides. Trajectories are replicated and pruned in a way that focuses computational effort on under-explored regions of configuration space while maintaining rigorous kinetics. To enable the simulation of rare events at any scale (e.g. atomistic, cellular), we have developed an open-source, interoperable, and highly scalable software package for the execution and analysis of WE simulations: WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis). WESTPA scales to thousands of CPU cores and includes a suite of analysis tools that have been implemented in a massively parallel fashion. The software has been designed to interface conveniently with any dynamics engine and has already been used with a variety of molecular dynamics (e.g. GROMACS, NAMD, OpenMM, AMBER) and cell-modeling packages (e.g. BioNetGen, MCell). WESTPA has been in production use for over a year, and its utility has been demonstrated for a broad set of problems, ranging from atomically detailed host-guest associations to non-spatial chemical kinetics of cellular signaling networks. The following describes the design and features of WESTPA, including the facilities it provides for running WE simulations, storing and analyzing WE simulation data, as well as examples of input and output. PMID:26392815

  10. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types.

    PubMed

    van Unen, Vincent; Höllt, Thomas; Pezzotti, Nicola; Li, Na; Reinders, Marcel J T; Eisemann, Elmar; Koning, Frits; Vilanova, Anna; Lelieveldt, Boudewijn P F

    2017-11-23

    Mass cytometry allows high-resolution dissection of the cellular composition of the immune system. However, the high-dimensionality, large size, and non-linear structure of the data poses considerable challenges for the data analysis. In particular, dimensionality reduction-based techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can be analyzed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the analysis of mass cytometry data sets. HSNE constructs a hierarchy of non-linear similarities that can be interactively explored with a stepwise increase in detail up to the single-cell level. We apply HSNE to a study on gastrointestinal disorders and three other available mass cytometry data sets. We find that HSNE efficiently replicates previous observations and identifies rare cell populations that were previously missed due to downsampling. Thus, HSNE removes the scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the analysis of massive high-dimensional data sets.

  11. Comparison of high-resolution microendoscope images and histopathological sections in ex vivo middle ear cholesteatomas and surrounding tissue

    NASA Astrophysics Data System (ADS)

    Bradley, James; Levy, Lauren; Richards-Kortum, Rebecca; Sikora, Andrew G.; Smouha, Eric

    2013-03-01

    Objective: To investigate the concordance between optical images obtained with high-resolution microendoscopy (HRME) and conventional histopathology for ex vivo cholesteatoma specimens and surrounding middle ear epithelium. Methods: After resection of cholesteatoma and surrounding middle ear epithelium from surgical patients, tissues were stained with a contrast agent, proflavine, and the HRME fiberoptic scope was placed directly on each tissue specimen. 4- 10 short movie clips were recorded for both the cholesteatoma and surrounding middle ear epithelium specimens. The imaged areas were sent for standard histopathology, and the stained specimens were correlated with the HRME images. IRB approval was obtained, and each patient was consented for the study. Results: Ten cholesteatoma specimens and 9 middle ear specimens were collected from 10 patients. In each case, cholesteatoma was easily discriminated from normal middle ear epithelium by its hyperfluorescence and loss of cellular detail. Qualitative analysis for concordance between HRME images and histological images from the same surgical specimen yielded a strong correlation between imaging modalities. Conclusions: Keratinizing cholesteatoma and surrounding middle ear epithelium have distinct imaging characteristics. Loss of cellular detail and hyperfluorescence with proflavine are the hallmark characteristics of cholesteatoma which allow for differentiation from normal middle ear epithelium. Real-time optical imaging can potentially improve the results of otologic surgery by allowing for extirpation of cholesteatomas while eliminating residual disease. We anticipate performing an in vivo study to test this hypothesis.

  12. In-cell RNA structure probing with SHAPE-MaP.

    PubMed

    Smola, Matthew J; Weeks, Kevin M

    2018-06-01

    This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.

  13. Kerosene: Contributing agent to xylene as a clearing agent in tissue processing.

    PubMed

    Shah, Amisha Ashokkumar; Kulkarni, Dinraj; Ingale, Yashwant; Koshy, Ajit V; Bhagalia, Sanjay; Bomble, Nikhil

    2017-01-01

    Research methodology in oral and maxillofacial pathology has illimitable potential. The tissue processing involves many steps of which one of the most important step is "Clearing," which is a process of replacing dehydrant with a substance which is miscible with embedding medium or paraffin wax. Xylene is one of the common clearing agents used in laboratory, but it is also hazardous. The main aim of this study is to substitute conventionally used xylene by a mixture of kerosene and xylene in clearing steps without altering the morphology and staining characteristics of tissue sections. This will also minimize the toxic effects and tend to be more economical. One hundred and twenty bits of tissue samples were collected, each randomly separated into 4 groups (A, B, C and D) and kept for routine tissue processing till the step of clearing; during the step of clearing instead of conventional xylene, we used mixture of xylene and kerosene in 4 ratios ([A-K:X - 50:50]; [B-K:X - 70:30]; [C - Ab. Kerosene]; [D - Ab. Xylene - as control]) and observed for the light microscopic study adopting H and E staining, IHC (D2-40), Special stains (periodic acid-Schiff and congo red) procedure. The result was subjected to statistical analysis by using Fisher's exact test. The results obtained from the present study were compared with control group, i.e., D and it was observed that Groups A and B were absolutely cleared without altering the morphology of tissue and cellular details; optimum embedding characteristics and better staining characteristics were also noted, whereas Group C presents poor staining characteristics with reduced cellular details. Embedded tissues in Group C presented with rough, irregular surface and also appeared shrunken. Combined mixture of xylene and kerosene as a clearing agent in different ratio, i.e., Group A (K:X - 50:50) and B (K:X - 70:30) can be used without posing any health risk or compromising the cellular integrity.

  14. Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level.

    PubMed

    Barteneva, Natasha S; Vorobjev, Ivan A

    2018-01-01

    In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.

  15. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  16. Surfing along Filopodia: A Particle Transport Revealed by Molecular-Scale Fluctuation Analyses

    PubMed Central

    Kohler, Felix; Rohrbach, Alexander

    2015-01-01

    Filopodia perform cellular functions such as environmental sensing or cell motility, but they also grab for particles and withdraw them leading to an increased efficiency of phagocytic uptake. Remarkably, withdrawal of micron-sized particles is also possible without noticeable movements of the filopodia. Here, we demonstrate that polystyrene beads connected by optical tweezers to the ends of adherent filopodia of J774 macrophages, are transported discontinuously toward the cell body. After a typical resting time of 1–2 min, the cargo is moved with alternating velocities, force constants, and friction constants along the surface of the filopodia. This surfing-like behavior along the filopodium is recorded by feedback-controlled interferometric three-dimensional tracking of the bead motions at 10–100 kHz. We measured transport velocities of up to 120 nm/s and transport forces of ∼70 pN. Small changes in position, fluctuation width, and temporal correlation, which are invisible in conventional microscopy, indicate molecular reorganization of transport-relevant proteins in different phases of the entire transport process. A detailed analysis implicates a controlled particle transport with fingerprints of a nanoscale unbinding/binding behavior. The manipulation and analysis methods presented in our study may also be helpful in other fields of cellular biophysics. PMID:25954870

  17. Quantitative 4D analyses of epithelial folding during Drosophila gastrulation.

    PubMed

    Khan, Zia; Wang, Yu-Chiun; Wieschaus, Eric F; Kaschube, Matthias

    2014-07-01

    Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts. © 2014. Published by The Company of Biologists Ltd.

  18. Integrating GIS, cellular automata, and genetic algorithm in urban spatial optimization: a case study of Lanzhou

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2006-10-01

    This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.

  19. System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer.

    PubMed

    Donakonda, Sainitin; Sinha, Swati; Dighe, Shrinivas Nivrutti; Rao, Manchanahalli R Satyanarayana

    2017-07-25

    ASCL1 is a basic Helix-Loop-Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF-TF and gene-gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC.

  20. [Tissue engineering of urinary bladder using acellular matrix].

    PubMed

    Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M

    2017-04-01

    Tissue engineering has become a new promising strategy for repairing damaged organs of the urinary system, including the bladder. The basic idea of tissue engineering is to integrate cellular technology and advanced bio-compatible materials to replace or repair tissues and organs. of the study is the objective reflection of the current trends and advances in tissue engineering of the bladder using acellular matrix through a systematic search of preclinical and clinical studies of interest. Relevant studies, including those on methods of tissue engineering of urinary bladder, was retrieved from multiple databases, including Scopus, Web of Science, PubMed, Embase. The reference lists of the retrieved review articles were analyzed for the presence of the missing relevant publications. In addition, a manual search for registered clinical trials was conducted in clinicaltrials.gov. Following the above search strategy, a total of 77 eligible studies were selected for further analysis. Studies differed in the types of animal models, supporting structures, cells and growth factors. Among those, studies using cell-free matrix were selected for a more detailed analysis. Partial restoration of urothelium layer was observed in most studies where acellular grafts were used for cystoplasty, but no the growth of the muscle layer was observed. This is the main reason why cellular structures are more commonly used in clinical practice.

  1. 3D membrane segmentation and quantification of intact thick cells using cryo soft X-ray transmission microscopy: A pilot study

    PubMed Central

    Klementieva, Oxana; Werner, Stephan; Guttmann, Peter; Pratsch, Christoph; Cladera, Josep

    2017-01-01

    Structural analysis of biological membranes is important for understanding cell and sub-cellular organelle function as well as their interaction with the surrounding environment. Imaging of whole cells in three dimension at high spatial resolution remains a significant challenge, particularly for thick cells. Cryo-transmission soft X-ray microscopy (cryo-TXM) has recently gained popularity to image, in 3D, intact thick cells (∼10μm) with details of sub-cellular architecture and organization in near-native state. This paper reports a new tool to segment and quantify structural changes of biological membranes in 3D from cryo-TXM images by tracking an initial 2D contour along the third axis of the microscope, through a multi-scale ridge detection followed by an active contours-based model, with a subsequent refinement along the other two axes. A quantitative metric that assesses the grayscale profiles perpendicular to the membrane surfaces is introduced and shown to be linearly related to the membrane thickness. Our methodology has been validated on synthetic phantoms using realistic microscope properties and structure dimensions, as well as on real cryo-TXM data. Results demonstrate the validity of our algorithms for cryo-TXM data analysis. PMID:28376110

  2. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    PubMed

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Three-dimensional microscopic deformation measurements on cellular solids.

    PubMed

    Genovese, K

    2016-07-01

    The increasing interest in small-scale problems demands novel experimental protocols providing dense sets of 3D deformation data of complex shaped microstructures. Obtaining such information is particularly significant for the study of natural and engineered cellular solids for which experimental data collected at macro scale and describing the global mechanical response provide only limited information on their function/structure relationship. Cellular solids, in fact, due their superior mechanical performances to a unique arrangement of the bulk material properties (i.e. anisotropy and heterogeneity) and cell structural features (i.e. pores shape, size and distribution) at the micro- and nano-scales. To address the need for full-field experimental data down to the cell level, this paper proposes a single-camera stereo-Digital Image Correlation (DIC) system that makes use of a wedge prism in series to a telecentric lens for performing surface shape and deformation measurements on microstructures in three dimensions. Although the system possesses a limited measurement volume (FOV~2.8×4.3mm(2), error-free DOF ~1mm), large surface areas of cellular samples can be accurately covered by employing a sequential image capturing scheme followed by an optimization-based mosaicing procedure. The basic principles of the proposed method together with the results of the benchmarking of its metrological performances and error analysis are here reported and discussed in detail. Finally, the potential utility of this method is illustrated with micro-resolution three-dimensional measurements on a 3D printed honeycomb and on a block sample of a Luffa sponge under compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms.

    PubMed

    Gautam, Mukesh; Jara, Javier H; Sekerkova, Gabriella; Yasvoina, Marina V; Martina, Marco; Özdinler, P Hande

    2016-03-15

    Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability. © The Author 2016. Published by Oxford University Press.

  5. Form follows function: ultrastructure of different morphotypes of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Oettmeier, Christina; Lee, Jonghyun; Döbereiner, Hans-Günther

    2018-04-01

    The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits ‘smart’ behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold’s mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.

  6. A new paradigm for atomically detailed simulations of kinetics in biophysical systems.

    PubMed

    Elber, Ron

    2017-01-01

    The kinetics of biochemical and biophysical events determined the course of life processes and attracted considerable interest and research. For example, modeling of biological networks and cellular responses relies on the availability of information on rate coefficients. Atomically detailed simulations hold the promise of supplementing experimental data to obtain a more complete kinetic picture. However, simulations at biological time scales are challenging. Typical computer resources are insufficient to provide the ensemble of trajectories at the correct length that is required for straightforward calculations of time scales. In the last years, new technologies emerged that make atomically detailed simulations of rate coefficients possible. Instead of computing complete trajectories from reactants to products, these approaches launch a large number of short trajectories at different positions. Since the trajectories are short, they are computed trivially in parallel on modern computer architecture. The starting and termination positions of the short trajectories are chosen, following statistical mechanics theory, to enhance efficiency. These trajectories are analyzed. The analysis produces accurate estimates of time scales as long as hours. The theory of Milestoning that exploits the use of short trajectories is discussed, and several applications are described.

  7. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  8. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  9. Using the Biodatamation(TM) strategy to learn introductory college biology: Value-added effects on selected students' conceptual understanding and conceptual integration of the processes of photosynthesis and cellular respiration

    NASA Astrophysics Data System (ADS)

    Reuter, Jewel Jurovich

    The purpose of this exploratory research was to study how students learn photosynthesis and cellular respiration and to determine the value added to the student's learning by each of the three technology-scaffolded learning strategy components (animated concept presentations and WebQuest-style activities, data collection, and student-constructed animations) of the BioDatamation(TM) (BDM) Program. BDM learning strategies utilized the Theory of Interacting Visual Fields(TM) (TIVF) (Reuter & Wandersee, 2002a, 2002b; 2003a, 2003b) which holds that meaningful knowledge is hierarchically constructed using the past, present, and future visual fields, with visual metacognitive components that are derived from the principles of Visual Behavior (Jones, 1995), Human Constructivist Theory (Mintzes & Wandersee, 1998a), and Visual Information Design Theory (Tufte, 1990, 1997, 2001). Student alternative conceptions of photosynthesis and cellular respiration were determined by the item analysis of 263,267 Biology Advanced Placement Examinations and were used to develop the BDM instructional strategy and interview questions. The subjects were 24 undergraduate students of high and low biology prior knowledge enrolled in an introductory-level General Biology course at a major research university in the Deep South. Fifteen participants received BDM instruction which included original and innovative learning materials and laboratories in 6 phases; 8 of the 15 participants were the subject of in depth, extended individual analysis. The other 9 participants received traditional, non-BDM instruction. Interviews which included participants' creation of concept maps and visual field diagrams were conducted after each phase. Various content analyses, including Chi's Verbal Analysis and quantitizing/qualitizing were used for data analysis. The total value added to integrative knowledge during BDM instruction with the three visual fields was an average increase of 56% for cellular respiration and 62% increase for photosynthesis knowledge, improved long-term memory of concepts, and enhanced biological literacy to the multidimensional level, as determined by the BSCS literacy model. WebQuest-style activities and data collection provided for animated prior knowledge in the past visual field, and detailed content knowledge construction in the present visual field. During student construction of animated presentations, layering required participants to think by rearranging words and images for improved hierarchical organization of knowledge with real-life applications.

  10. Regulation of Plant Cellular and Organismal Development by SUMO.

    PubMed

    Elrouby, Nabil

    2017-01-01

    This chapter clearly demonstrates the breadth and spectrum of the processes that SUMO regulates during plant development. The gross phenotypes observed in mutants of the SUMO conjugation and deconjugation enzymes reflect these essential roles, and detailed analyses of these mutants under different growth conditions revealed roles in biotic and abiotic stress responses, phosphate starvation, nitrate and sulphur metabolism, freezing and drought tolerance and response to excess copper. SUMO functions also intersect with those regulated by several hormones such as salicylic acid , abscisic acid , gibberellins and auxin, and detailed studies provide mechanistic clues of how sumoylation may regulate these processes. The regulation of COP1 and PhyB functions by sumoylation provides very strong evidence that SUMO is heavily involved in the regulation of light signaling in plants. At the cellular and subcellular levels, SUMO regulates meristem architecture, the switch from the mitotic cycle into the endocycle, meiosis, centromere decondensation and exit from mitosis, transcriptional control, and release from transcriptional silencing. Most of these advances in our understanding of SUMO functions during plant development emerged over the past 6-7 years, and they may only predict a prominent rise of SUMO as a major regulator of eukaryotic cellular and organismal growth and development.

  11. Efficacy of adoptive cellular therapy in patients with gastric cancer: a meta-analysis.

    PubMed

    Shen, Dong; Liu, Zhi-Hao; Xu, Jia-Ning; Xu, Fang; Lin, Qin-Feng; Lin, Feng; Mao, Wei-Dong

    2016-07-01

    To systemically evaluate the efficacy and safety of adoptive cellular therapy for the treatment of gastric cancer (GC). We performed a systemic review and meta-analysis of nine eligible trials with GC and evaluated the effect of adoptive cellular therapy on the overall survival (OS) rate, T-cell subsets and adverse events. Overall, 829 patients were involved in the analysis. Adoptive cellular therapy significantly improved the OS rate compared with the control group. Meanwhile, we observed greatly increased percentages of CD3(+), CD4(+) and CD4(+)/CD8(+) in cellular therapy groups. Adoptive cellular therapy combined with adjuvant therapy resulted in significantly better OS rates, progression-free survival and T-lymphocyte responses in patients with GC.

  12. Ultrashort Phenomena in Biochemistry and Biological Signaling

    NASA Astrophysics Data System (ADS)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  13. Potent Elastase Inhibitors from Cyanobacteria: Structural Basis and Mechanisms Mediating Cytoprotective and Anti-inflammatory Effects in Bronchial Epithelial Cells

    PubMed Central

    Salvador, Lilibeth A.; Taori, Kanchan; Biggs, Jason S.; Jakoncic, Jean; Ostrov, David A.; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. SAR and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B and IL8. Compound 1 exhibited activity comparable to the clinically-approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays. PMID:23350733

  14. Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

    PubMed Central

    Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659

  15. Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses

    PubMed Central

    Toufighi, Kiana; Yang, Jae-Seong; Luis, Nuno Miguel; Aznar Benitah, Salvador; Lehner, Ben; Serrano, Luis; Kiel, Christina

    2015-01-01

    The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. PMID:25946651

  16. Effect of solid distribution on elastic properties of open-cell cellular solids using numerical and experimental methods.

    PubMed

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2014-09-01

    Effect of solid distribution between edges and vertices of three-dimensional cellular solid with an open-cell structure was investigated both numerically and experimentally. Finite element analysis (FEA) with continuum elements and appropriate periodic boundary condition was employed to calculate the elastic properties of cellular solids using tetrakaidecahedral (Kelvin) unit cell. Relative densities between 0.01 and 0.1 and various values of solid fractions were considered. In order to validate the numerical model, three scaffolds with the relative density of 0.08, but different amounts of solid in vertices, were fabricated via 3-D printing technique. Good agreement was observed between numerical simulation and experimental results. Results of numerical simulation showed that, at low relative densities (<0.03), Young׳s modulus increased by shifting materials away from edges to vertices at first and then decreased after reaching a critical point. However, for the high values of relative density, Young׳s modulus increased monotonically. Mechanisms of such a behavior were discussed in detail. Results also indicated that Poisson׳s ratio decreased by increasing relative density and solid fraction in vertices. By fitting a curve to the data obtained from the numerical simulation and considering the relative density and solid fraction in vertices, empirical relations were derived for Young׳s modulus and Poisson׳s ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Acellular dermal matrices in breast implant surgery: defining the problem and proof of concept.

    PubMed

    Baxter, Richard A

    2012-04-01

    The use of acellular dermal matrices (ADMs) has become a useful adjunct to implant-based breast reconstruction and revision of the augmented breast. In both instances, the goal is replacement or reinforcement of thinned or missing tissues for implant support and control of the implant pocket. This article reviews the factors that contribute to periprosthetic tissue thinning, and the advantages and limitations of the use of ADMs for revision breast surgery and breast reconstruction. Proof of concept for the use of ADMs in the periprosthetic space is detailed from early clinical experience and histologic analysis documenting vascular ingrowth and cellular repopulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS).

    PubMed

    Braun, Joerg E; Serebrov, Victor

    2017-01-01

    Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.

  19. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake

    NASA Astrophysics Data System (ADS)

    Schöttler, S.; Klein, Katja; Landfester, K.; Mailänder, V.

    2016-03-01

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake.Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake. Electronic supplementary information (ESI) available: Complete list of proteins identified by LC-MS. See DOI: 10.1039/c5nr08196c

  20. In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: consensus terminology glossary and illustrative images.

    PubMed

    Scope, Alon; Benvenuto-Andrade, Cristiane; Agero, Anna-Liza C; Malvehy, Josep; Puig, Susana; Rajadhyaksha, Milind; Busam, Klaus J; Marra, Diego E; Torres, Abel; Propperova, Iva; Langley, Richard G; Marghoob, Ashfaq A; Pellacani, Giovanni; Seidenari, Stefania; Halpern, Allan C; Gonzalez, Salvador

    2007-10-01

    Reflectance confocal microscopy (RCM) has been used for over 10 years for in vivo skin imaging. However, to date no standard RCM terminology has been published. To establish a glossary of terms for RCM evaluation of melanocytic lesions. Prominent RCM researchers were presented with RCM images of melanocytic lesions. Reviewers evaluated RCM images for image quality, lesion architecture, and cellular details. Reviewers could utilize published descriptors or contribute unpublished terminology to describe lesion attributes. An online meeting was conducted to reach consensus that integrates and defines existing and new RCM descriptive terms. We present a glossary with descriptors of image quality, normal skin morphology, lesion architecture, and cellular details for RCM evaluation of melanocytic lesions. Usefulness of the glossary in RCM diagnosis of melanocytic lesions needs to be assessed. Standardization of terminology is important toward implementation of RCM in the clinical setting.

  1. Variable-Internal-Stores models of microbial growth and metabolism with dynamic allocation of cellular resources.

    PubMed

    Nev, Olga A; van den Berg, Hugo A

    2017-01-01

    Variable-Internal-Stores models of microbial metabolism and growth have proven to be invaluable in accounting for changes in cellular composition as microbial cells adapt to varying conditions of nutrient availability. Here, such a model is extended with explicit allocation of molecular building blocks among various types of catalytic machinery. Such an extension allows a reconstruction of the regulatory rules employed by the cell as it adapts its physiology to changing environmental conditions. Moreover, the extension proposed here creates a link between classic models of microbial growth and analyses based on detailed transcriptomics and proteomics data sets. We ascertain the compatibility between the extended Variable-Internal-Stores model and the classic models, demonstrate its behaviour by means of simulations, and provide a detailed treatment of the uniqueness and the stability of its equilibrium point as a function of the availabilities of the various nutrients.

  2. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models

    PubMed Central

    Chen, Yang; Shen, Kuang

    2017-01-01

    To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process. PMID:28943680

  3. Positional differences in the wound transcriptome of skin and oral mucosa

    PubMed Central

    2010-01-01

    Background When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. Recent studies suggest that intrinsic differences in inflammation, growth factor production, levels of stem cells, and cellular proliferation capacity may underlie the exceptional healing that occurs in oral mucosa. The current study was designed to compare the transcriptomes of oral mucosal and skin wounds in order to identify critical differences in the healing response at these two sites using an unbiased approach. Results Using microarray analysis, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent sized wounds. Samples were examined from days 0 to 10 and spanned all stages of the wound healing process. Using unwounded matched tissue as a control, filtering identified 1,479 probe sets in skin wounds yet only 502 probe sets in mucosal wounds that were significantly differentially expressed over time. Clusters of genes that showed similar patterns of expression were also identified in each wound type. Analysis of functionally related gene expression demonstrated dramatically different reactions to injury between skin and mucosal wounds. To explore whether site-specific differences might be derived from intrinsic differences in cellular responses at each site, we compared the response of isolated epithelial cells from skin and oral mucosa to a defined in vitro stimulus. When cytokine levels were measured, epithelial cells from skin produced significantly higher amounts of proinflammatory cytokines than cells from oral mucosa. Conclusions The results provide the first detailed molecular profile of the site-specific differences in the genetic response to injury in mucosa and skin, and suggest the divergent reactions to injury may derive from intrinsic differences in the cellular responses at each site. PMID:20704739

  4. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions

    PubMed Central

    Liu, Jiaqi; Cai, Junjun; Wang, Rui; Yang, Shihai

    2016-01-01

    As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research. PMID:28036025

  5. Positional differences in the wound transcriptome of skin and oral mucosa.

    PubMed

    Chen, Lin; Arbieva, Zarema H; Guo, Shujuan; Marucha, Phillip T; Mustoe, Thomas A; DiPietro, Luisa A

    2010-08-12

    When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. Recent studies suggest that intrinsic differences in inflammation, growth factor production, levels of stem cells, and cellular proliferation capacity may underlie the exceptional healing that occurs in oral mucosa. The current study was designed to compare the transcriptomes of oral mucosal and skin wounds in order to identify critical differences in the healing response at these two sites using an unbiased approach. Using microarray analysis, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent sized wounds. Samples were examined from days 0 to 10 and spanned all stages of the wound healing process. Using unwounded matched tissue as a control, filtering identified 1,479 probe sets in skin wounds yet only 502 probe sets in mucosal wounds that were significantly differentially expressed over time. Clusters of genes that showed similar patterns of expression were also identified in each wound type. Analysis of functionally related gene expression demonstrated dramatically different reactions to injury between skin and mucosal wounds. To explore whether site-specific differences might be derived from intrinsic differences in cellular responses at each site, we compared the response of isolated epithelial cells from skin and oral mucosa to a defined in vitro stimulus. When cytokine levels were measured, epithelial cells from skin produced significantly higher amounts of proinflammatory cytokines than cells from oral mucosa. The results provide the first detailed molecular profile of the site-specific differences in the genetic response to injury in mucosa and skin, and suggest the divergent reactions to injury may derive from intrinsic differences in the cellular responses at each site.

  6. Involvement of S6K1 in mitochondria function and structure in HeLa cells.

    PubMed

    Park, Jisoo; Tran, Quangdon; Mun, Kisun; Masuda, Kouhei; Kwon, So Hee; Kim, Seon-Hwan; Kim, Dong-Hoon; Thomas, George; Park, Jongsun

    2016-12-01

    The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. Electronic supplementary information (ESI) available: UV-Vis spectra of Au NPs, the most significantly changed genes of HDF cells after Au NP incubation under GO accession number GO:0007049 ``cell cycle'', detailed information about the primer/probe sets used for RT-PCR validation of results. See DOI: 10.1039/c4nr05166a

  8. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  9. Applications of systems biology towards microbial fuel production.

    PubMed

    Gowen, Christopher M; Fong, Stephen S

    2011-10-01

    Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    PubMed

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.

  11. Mitochondrial DNA and retroviral RNA analyses of archival oral polio vaccine (OPV CHAT) materials: evidence of macaque nuclear sequences confirms substrate identity.

    PubMed

    Berry, Neil; Jenkins, Adrian; Martin, Javier; Davis, Clare; Wood, David; Schild, Geoffrey; Bottiger, Margareta; Holmes, Harvey; Minor, Philip; Almond, Neil

    2005-02-25

    Inoculation of live experimental oral poliovirus vaccines (OPV CHAT) during the 1950s in central Africa has been proposed to account for the introduction of HIV into human populations. For this to have occurred, it would have been necessary for chimpanzee rather than macaque kidney epithelial cells to have been included in the preparation of early OPV materials. Theoretically, this could have led to contamination with a progenitor of HIV-1 derived from a related simian immunodeficiency virus of chimpanzees (SIVCPZ). In this article we present further detailed analyses of two samples of OPV, CHAT 10A-11 and CHAT 6039/Yugo, which were used in early human trials of poliovirus vaccination. Recovery of poliovirus by culture techniques confirmed the biological viability of the vaccines and sequence analysis of poliovirus RNA specifically identified the presence of the CHAT strain. Independent nested sets of oligonucleotide primers specific for HIV-1/SIVCPZ and HIV-2/SIVMAC/SIVSM phylogenetic lineages, respectively, indicated no evidence of HIV/SIV RNA in either vaccine preparation, at a sensitivity of 100 RNA equivalents/ml. Analysis of cellular substrate by the amplification of two distinct regions of mitochondrial DNA (D-loop control region and 12S ribosomal sequences) revealed no evidence of chimpanzee cellular sequences. However, this approach positively identified rhesus and cynomolgus macaque DNA for the CHAT 10A-11 and CHAT 6039/Yugo vaccine preparations, respectively. Analysis of multiple clones of mtDNA 12S rDNA indicated a relatively high number of nuclear mitochondrial DNA sequences (numts) in the CHAT 10A-11 material, but confirmed the macaque origin of cellular substrate used in vaccine preparation. These data reinforce earlier findings on this topic providing no evidence to support the contention that poliovirus vaccination was responsible for the introduction of HIV into humans and sparking the AIDS pandemic.

  12. Preparation of BFV Gag antiserum and preliminary study on cellular distribution of BFV.

    PubMed

    Wang, Jian; Guo, Hong-yan; Jia, Rui; Xu, Xuan; Tan, Juan; Geng, Yun-qi; Qiao, Wen-tao

    2010-04-01

    Viruses (e.g. Human immunodeficiency virus, Human simplex virus and Prototype foamy virus) are obligate intracellular parasites and therefore depend on the cellular machinery for cellular trafficking. Bovine foamy virus (BFV) is a member of the Spumaretrovirinae subfamily of Retroviruses, however, details of its cellular trafficking remain unknown. In this study, we cloned the BFV gag gene into prokaryotic expression vector pET28a and purified the denaturalized Gag protein. The protein was used to immunize BALB/c mouse to produce antiserum, which could specifically recognize the BFV Gag protein in BFV-infected cells through western blot assay. Additionally, these results demonstrated that both the optimal and suboptimal cleavage of Gag protein occur in BFV-infected cells. Subsequently, the Gag antiserum was used to investigate subcellular localization of BFV. In immunofluorescence microscopy assays, colocalization microtubules (MTs) and assembling viral particles were clearly observed, which implied that BFV may transport along cellular MTs in host cells. Furthermore, MTs-depolymerizing assay indicated MTs were required for the efficient replication of BFV. In conclusion, our study suggests that BFV has evolved the mechanism to hijack the cellular cytoskeleton for its replication.

  13. Emergence of tissue mechanics from cellular processes: shaping a fly wing

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.

  14. Comparison of ThinPrep and conventional preparations on fine needle aspiration cytology material.

    PubMed

    Dey, P; Luthra, U K; George, J; Zuhairy, F; George, S S; Haji, B I

    2000-01-01

    To compare the various cytologic features on ThinPrep 2000 (TP) (Cytyc Corporation, Marlborough, Massachusetts, U.S.A.) and conventional preparation (CP) specimens from fine needle aspiration cytology (FNAC) material by a semiquantitative scoring system. In this prospective study a total of 71 consecutive cases were included. In each case, two passes were performed. The first pass was used for conventional preparations, with direct smears made and fixed immediately in 95% alcohol for Papanicolaou stain. For TP preparation a second pass produced material for processing in the ThinPrep 2000. The TP and CP slides were studied independently by two observers and representative slides of CP and TP compared for cellularity, background blood and necrotic cell debris, cell architecture, informative background, presence of monolayer cells, and nuclear and cytoplasmic details by a semiquantitative scoring system. Statistical analysis was performed by Wilcoxon's signed rank test on an SPSS program (Chicago, Illinois, U.S.A.). TP preparations contained adequate diagnostic cells in all cases and were tangibly superior to CP preparations concerning monolayer cells, absence of blood and necrosis, and preservation of nuclear and cytoplasmic detail (statistically significant, Wilcoxon's signed rank test, P < .000). TP preparations are superior to conventional preparations with regard to clear background, monolayer cell preparation and cell preservation. It is easier and less time consuming to screen and interpret TP preparations because the cells are limited to smaller areas on clear backgrounds, with excellent cellular preservation. However, TP preparations are more expensive than CP and require some experience for interpretation.

  15. Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology.

    PubMed

    Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian

    2018-04-18

    With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the role of cell structure in calcium signaling and mitochondrial bioenergetics, which is illustrated and discussed using two case studies that are presented following the detailed protocol.

  16. Imaging Flow Cytometry Analysis to Identify Differences of Survival Motor Neuron Protein Expression in Patients With Spinal Muscular Atrophy.

    PubMed

    Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko

    2016-08-01

    Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    PubMed

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  18. Using Magnets and Magnetic Beads to Dissect Signaling Pathways Activated by Mechanical Tension Applied to Cells

    PubMed Central

    Marjoram, R.J.; Guilluy, C; Burridge, K.

    2015-01-01

    Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers. PMID:26427549

  19. Evolution of Antibody-Drug Conjugate Tumor Disposition Model to Predict Preclinical Tumor Pharmacokinetics of Trastuzumab-Emtansine (T-DM1).

    PubMed

    Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K

    2016-07-01

    A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell.

  20. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    PubMed

    Hammel, Jörg U; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  1. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    PubMed Central

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes. PMID:25409176

  2. Methods for the visualization and analysis of extracellular matrix protein structure and degradation.

    PubMed

    Leonard, Annemarie K; Loughran, Elizabeth A; Klymenko, Yuliya; Liu, Yueying; Kim, Oleg; Asem, Marwa; McAbee, Kevin; Ravosa, Matthew J; Stack, M Sharon

    2018-01-01

    This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders. © 2018 Elsevier Inc. All rights reserved.

  3. Metabolic regulation of histone acetyltransferases by endogenous Acyl-CoA cofactors | Center for Cancer Research

    Cancer.gov

    Unraveling the metabolic regulation of lysine acetyltransferases (KATs). Montgomery et al. detail the application of a competitive chemoproteomic strategy to quantitatively characterize the interactions of acyl-CoA metabolites with cellular KAT enzymes.

  4. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    PubMed Central

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  5. Mass Spectrometry in Studies of Protein Thiol Chemistry and Signaling: Opportunities and Caveats

    PubMed Central

    Devarie Baez, Nelmi O.; Reisz, Julie A.; Furdui, Cristina M.

    2014-01-01

    Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers have been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses. PMID:25261734

  6. T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges

    PubMed Central

    2010-01-01

    Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics. PMID:21067546

  7. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    PubMed

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis.

    PubMed

    Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P

    2017-04-01

    Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity.

    PubMed

    Dyer, Adam H; Vahdatpour, Cyrus; Sanfeliu, Albert; Tropea, Daniela

    2016-06-14

    Insulin-Like Growth Factor 1 (IGF-1) is a phylogenetically ancient neurotrophic hormone with crucial roles to play in CNS development and maturation. Recently, IGF-1 has been shown to have potent effects on cellular neuroplasticity. Neuroplasticty refers to the adaptive changes made by the CNS in the face of changing functional demands and is crucial in processes such as learning and memory. IGF-1, signaling through its glycoprotein receptor (IGF-1R), and canonical signaling pathways such as the PI3K-Akt and Ras-Raf-MAP pathways, has potent effects on cellular neuroplasticity in the CNS. In the present review, the role of IGF-1 in brain development is reviewed, followed by a detailed discussion of the role played by IGF in cellular neuroplasticity in the CNS. Findings from models of perturbed and reparative plasticity detailing the role played by IGF-1 are discussed, followed by the electrophysiological, structural and functional evidence supporting this role. Finally, the post-lesion and post-injury roles played by IGF-1 are briefly evaluated. We discuss the putative neurobiology underlying these changes, reviewing recent evidence and highlighting areas for further research. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling

    PubMed Central

    Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen

    2014-01-01

    Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309

  11. Optimized Heart Sampling and Systematic Evaluation of Cardiac Therapies in Mouse Models of Ischemic Injury: Assessment of Cardiac Remodeling and Semi-Automated Quantification of Myocardial Infarct Size.

    PubMed

    Valente, Mariana; Araújo, Ana; Esteves, Tiago; Laundos, Tiago L; Freire, Ana G; Quelhas, Pedro; Pinto-do-Ó, Perpétua; Nascimento, Diana S

    2015-12-02

    Cardiac therapies are commonly tested preclinically in small-animal models of myocardial infarction. Following functional evaluation, post-mortem histological analysis is essential to assess morphological and molecular alterations underlying the effectiveness of treatment. However, non-methodical and inadequate sampling of the left ventricle often leads to misinterpretations and variability, making direct study comparisons unreliable. Protocols are provided for representative sampling of the ischemic mouse heart followed by morphometric analysis of the left ventricle. Extending the use of this sampling to other types of in situ analysis is also illustrated through the assessment of neovascularization and cellular engraftment in a cell-based therapy setting. This is of interest to the general cardiovascular research community as it details methods for standardization and simplification of histo-morphometric evaluation of emergent heart therapies. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  12. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    PubMed

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  13. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning.

    PubMed

    Vitiello, Giuseppe

    2015-04-01

    The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Failover in Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kumar, Shailesh; Rao, Shrisha

    This paper studies a phenomenon called failover, and shows that this phenomenon (in particular, stateless failover) can be modeled by Game of Life cellular automata. This is the first time that this sophisticated real-life system behavior has been modeled in abstract terms. A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using the primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  15. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    PubMed

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  16. Analysis And Augmentation Of Timing Advance Based Geolocation In Lte Cellular Networks

    DTIC Science & Technology

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCATION IN LTE CELLULAR NETWORKS by...estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the...AND SUBTITLE ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCA- TION IN LTE CELLULAR NETWORKS 5. FUNDING NUMBERS 6. AUTHOR(S) John D. Roth 7

  17. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    PubMed

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is illustrated through a step-by-step demonstration, which is also contained in a digital Jupyter Notebook format that enhances reproducibility and provides the capability to be adopted to the user's specific needs. As an open-source software project, users can modify and extend the code base and make improvements at will, providing a base for future modeling efforts.

  18. Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer's disease.

    PubMed

    Kotler, Samuel A; Walsh, Patrick; Brender, Jeffrey R; Ramamoorthy, Ayyalusamy

    2014-10-07

    The association of the amyloid-β (Aβ) peptide with cellular membranes is hypothesized to be the underlying phenomenon of neurotoxicity in Alzheimer's disease. Misfolding of proteins and peptides, as is the case with Aβ, follows a progression from a monomeric state, through intermediates, ending at long, unbranched amyloid fibers. This tutorial review offers a perspective on the association of toxic Aβ structures with membranes as well as details of membrane-associated mechanisms of toxicity.

  19. Analysis of PAMP-Triggered ROS Burst in Plant Immunity.

    PubMed

    Sang, Yuying; Macho, Alberto P

    2017-01-01

    The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.

  20. Mass Spectrometry: A Technique of Many Faces

    PubMed Central

    Olshina, Maya A.; Sharon, Michal

    2016-01-01

    Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928

  1. Mean-field theory for pedestrian outflow through an exit.

    PubMed

    Yanagisawa, Daichi; Nishinari, Katsuhiro

    2007-12-01

    The average pedestrian flow through an exit is one of the most important indices in evaluating pedestrian dynamics. In order to study the flow in detail, the floor field model, which is a crowd model using cellular automata, is extended by taking into account realistic behavior of pedestrians around the exit. The model is studied by both numerical simulations and cluster analysis to obtain a theoretical expression for the average pedestrian flow through the exit. It is found quantitatively that the effects of exit door width, the wall, and the pedestrian mood of competition or cooperation significantly influence the average flow. The results show that there is a suitable width and position of the exit according to the pedestrians' mood.

  2. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles.

    PubMed

    Walker, Mathew W; Lloyd-Evans, Emyr

    2015-01-01

    Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    PubMed Central

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  5. Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity.

    PubMed

    Ulusoy, Mehriban; Jonczyk, Rebecca; Walter, Johanna-Gabriela; Springer, Sergej; Lavrentieva, Antonina; Stahl, Frank; Green, Mark; Scheper, Thomas

    2016-02-17

    Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEG-Qdots were characterized by using ζ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount.

  6. The AIDS resistance of naturally SIV-infected sooty mangabeys is independent of cellular immunity to the virus

    PubMed Central

    Dunham, Richard; Pagliardini, Paola; Gordon, Shari; Sumpter, Beth; Engram, Jessica; Moanna, Abeer; Paiardini, Mirko; Mandl, Judith N.; Lawson, Benton; Garg, Seema; McClure, Harold M.; Xu, Yong-Xian; Ibegbu, Chris; Easley, Kirk; Katz, Nathalia; Pandrea, Ivona; Apetrei, Cristian; Sodora, Donald L.; Staprans, Silvija I.; Feinberg, Mark B.; Silvestri, Guido

    2006-01-01

    In contrast to human immunodeficiency virus (HIV)-infected humans, natural hosts for simian immunodeficiency virus (SIV) very rarely progress to acquired immunodeficiency syndrome (AIDS). While the mechanisms underlying this disease resistance are still poorly understood, a consistent feature of natural SIV infection is the absence of the generalized immune activation associated with HIV infection. To investigate the immunologic mechanisms underlying the absence of AIDS in SIV-infected sooty mangabeys (SMs), a natural host species, we performed a detailed analysis of the SIV-specific cellular immune responses in 110 SIV-infected SMs. We found that while SIV-specific T-cell responses are detectable in the majority of animals, their magnitude and breadth are, in fact, lower than what has been described in HIV-infected humans, both in terms of cytokine production (ie, IFN-γ, TNF-α, and IL-2) and degranulation (ie, CD107a expression). Of importance, SIV-specific T-cell responses were similarly low when either SIVmac239-derived peptides or autologous SIVsmm peptides were used as stimuli. No correlation was found between SIV-specific T-cell responses and either viral load or CD4+ T-cell count, or between these responses and markers of T-cell activation and proliferation. These findings indicate that the absence of AIDS in naturally SIV-infected sooty mangabeys is independent of a strong cellular immune response to the virus. (Blood. 2006;108:209-217) PMID:16522814

  7. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry.

    PubMed

    Young, Travis W; Mei, Fang C; Yang, Gong; Thompson-Lanza, Jennifer A; Liu, Jinsong; Cheng, Xiaodong

    2004-07-01

    Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic ras(V12) allele. Of approximately 2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.

  8. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  9. What Defines the "Kingdom" Fungi?

    PubMed

    Richards, Thomas A; Leonard, Guy; Wideman, Jeremy G

    2017-06-01

    The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.

  10. Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor.

    PubMed

    Felouzis, Virginia; Hermand, Patricia; de Laissardière, Guy Trambly; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Profiling antibody responses by multiparametric analysis of primary B cells

    PubMed Central

    Story, Craig M.; Papa, Eliseo; Hu, Chih-Chi Andrew; Ronan, Jehnna L.; Herlihy, Kara; Ploegh, Hidde L.; Love, J. Christopher

    2008-01-01

    Determining the efficacy of a vaccine generally relies on measuring neutralizing antibodies in sera. This measure cannot elucidate the mechanisms responsible for the development of immunological memory at the cellular level, however. Quantitative profiles that detail the cellular origin, extent, and diversity of the humoral (antibody-based) immune response would improve both the assessment and development of vaccines. Here, we describe a novel approach to collect multiparametric datasets that describe the specificity, isotype, and apparent affinity of the antibodies secreted from large numbers of individual primary B cells (≈103-104). The antibody/antigen binding curves obtained by this approach can be used to classify closely related populations of cells using algorithms for data clustering, and the relationships among populations can be visualized graphically using affinity heatmaps. The technique described was used to evaluate the diversity of antigen-specific antibody-secreting cells generated during an in vivo humoral response to a series of immunizations designed to mimic a multipart vaccination. Profiles correlating primary antibody-producing cells with the molecular characteristics of their secreted antibodies should facilitate both the evaluation of candidate vaccines and, broadly, studies on the repertoires of antibodies generated in response to infectious or autoimmune diseases. PMID:19004776

  12. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    PubMed Central

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-01-01

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351

  13. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    PubMed

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  14. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cellular phone collateral damage: A review of burns associated with lithium battery powered mobile devices.

    PubMed

    Mankowski, Peter J; Kanevsky, Jonathan; Bakirtzian, Parseh; Cugno, Sabrina

    2016-06-01

    The spontaneous destruction of lithium battery powered cellphones has raised concern about the safety of these devices. We present a case report and review of the literature of burn injuries sustained in association with cellular phone usage. A Medline search was performed to identify articles describing cellular phone associated thermal injuries using key search words including "burn," "burn injury," "cellular phone," "cellphone," "thermal injury," and "telephone." Articles were reviewed for etiology, location, severity and treatment. We also present a case of a burn to the upper thigh resulting from cellular phone battery malfunction. Six case reports were identified detailing burn injuries obtained from cellphone use. Half of these cases occurred from battery malfunction with second degree being the most common severity. All cases were managed conservatively except one case, which required excision and primary closure. Lithium powered cellular phones are susceptible to overheating and destruction from inadequate heat dissipation during thermal runaway. This process can be initiated by local short-circuiting from direct contact with a low resistance conductor such as keys or coins. We reinforce the importance of safe cell phone battery practices including avoiding overcharging and direct skin exposure to minimize thermal injury risk. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis

    PubMed Central

    Vukmirovic, Milica; Kaminski, Naftali

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aberrant remodeling of the lung parenchyma with extensive changes to the phenotypes of all lung resident cells. The introduction of transcriptomics, genome scale profiling of thousands of RNA transcripts, caused a significant inversion in IPF research. Instead of generating hypotheses based on animal models of disease, or biological plausibility, with limited validation in humans, investigators were able to generate hypotheses based on unbiased molecular analysis of human samples and then use animal models of disease to test their hypotheses. In this review, we describe the insights made from transcriptomic analysis of human IPF samples. We describe how transcriptomic studies led to identification of novel genes and pathways involved in the human IPF lung such as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among others, as well as conceptual insights such as the involvement of developmental pathways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and transcriptomic studies on disease classification, endotype discovery, and reproducible biomarkers is also described in detail. Despite these impressive achievements, the impact of transcriptomic studies has been limited because they analyzed bulk tissue and did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new emerging technologies and applications, such as single-cell RNAseq and microenvironment analysis that may address cellular and spatial heterogeneity. We end by making the point that most current tissue collections and resources are not amenable to analysis using the novel technologies. To take advantage of the new opportunities, we need new efforts of sample collections, this time focused on access to all the microenvironments and cells in the IPF lung. PMID:29670881

  17. NovelFam3000 – Uncharacterized human protein domains conserved across model organisms

    PubMed Central

    Kemmer, Danielle; Podowski, Raf M; Arenillas, David; Lim, Jonathan; Hodges, Emily; Roth, Peggy; Sonnhammer, Erik LL; Höög, Christer; Wasserman, Wyeth W

    2006-01-01

    Background Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. Description From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. Conclusion Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families. PMID:16533400

  18. A phase code for memory could arise from circuit mechanisms in entorhinal cortex

    PubMed Central

    Hasselmo, Michael E.; Brandon, Mark P.; Yoshida, Motoharu; Giocomo, Lisa M.; Heys, James G.; Fransen, Erik; Newman, Ehren L.; Zilli, Eric A.

    2009-01-01

    Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition. PMID:19656654

  19. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  20. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants.

    PubMed

    Mohanta, Tapan Kumar; Kumar, Pradeep; Bae, Hanhong

    2017-02-03

    Ca 2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca 2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.

  1. Monitoring Cellular Events in Living Mast Cells Stimulated with an Extremely Small Amount of Fluid on a Microchip

    NASA Astrophysics Data System (ADS)

    Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira

    2006-07-01

    We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.

  2. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation.

    PubMed

    Potter, Timothy M; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A

    2018-01-01

    Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.

  3. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  4. An efficient Cellular Potts Model algorithm that forbids cell fragmentation

    NASA Astrophysics Data System (ADS)

    Durand, Marc; Guesnet, Etienne

    2016-11-01

    The Cellular Potts Model (CPM) is a lattice based modeling technique which is widely used for simulating cellular patterns such as foams or biological tissues. Despite its realism and generality, the standard Monte Carlo algorithm used in the scientific literature to evolve this model preserves connectivity of cells on a limited range of simulation temperature only. We present a new algorithm in which cell fragmentation is forbidden for all simulation temperatures. This allows to significantly enhance realism of the simulated patterns. It also increases the computational efficiency compared with the standard CPM algorithm even at same simulation temperature, thanks to the time spared in not doing unrealistic moves. Moreover, our algorithm restores the detailed balance equation, ensuring that the long-term stage is independent of the chosen acceptance rate and chosen path in the temperature space.

  5. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin.

    PubMed

    Sullivan-Brown, Jessica; Bisher, Margaret E; Burdine, Rebecca D

    2011-01-01

    Histological techniques are critical for observing tissue and cellular morphology. In this paper, we outline our protocol for embedding, serial sectioning, staining and visualizing zebrafish embryos embedded in JB-4 plastic resin-a glycol methacrylate-based medium that results in excellent preservation of tissue morphology. In addition, we describe our procedures for staining plastic sections with toluidine blue or hematoxylin and eosin, and show how to couple these stains with whole-mount RNA in situ hybridization. We also describe how to maintain and visualize immunofluorescence and EGFP signals in JB-4 resin. The protocol we outline-from embryo preparation, embedding, sectioning and staining to visualization-can be accomplished in 3 d. Overall, we reinforce that plastic embedding can provide higher resolution of cellular details and is a valuable tool for cellular and morphological studies in zebrafish.

  6. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  7. Connecting Undergraduate Plant Cell Biology Students with the Scientists about Whom They Learn: A Bibliography.

    ERIC Educational Resources Information Center

    Wayne, Randy; Staves, Mark P.

    1998-01-01

    Details the teaching of an undergraduate plant-cell biology class in the manner proposed by Jean Baptiste Carnoy when he established the first institute of cellular biology. Integrates mathematics, astronomy, physics, chemistry, anatomy, physiology, and ecology. Contains 226 references. (DDR)

  8. Label-Free Analysis of Cellular Lipid Droplet Formation by Non-Linear Microscopy

    NASA Astrophysics Data System (ADS)

    Schie, Iwan W.

    Cellular lipid droplets (LD) are cellular organelles that can be found in every cell type. Recent research indicates that cellular LD are involved in a large number of cellular metabolic functions, such as lipid metabolism, protection from lipotoxicity, protein storage and degradation, and many more. LD formation is frequently associated with adverse health effects, i.e. alcoholic and non-alcoholic fatty liver disease, diabetes type-2, as well as many cardiovascular disorders. Despite their wide presence, LDs are the least studied and most poorly understood cellular organelles. Typically, LDs are investigated using fluorescence-based techniques that require staining with exogenous fluorophores. Other techniques, e.g. biochemical assays, require the destruction of cells that prohibit the analysis of living cells. Therefore, in my thesis research I developed a novel compound fast-scanning nonlinear optical microscope equipped with the ability to also acquire Raman spectra at specific image locations. This system allows us to image label-free cellular LD formation in living cells and analyze the composition of single cellular LDs. Images can be acquired at near video-rate (˜16 frames/s). Furthermore, the system has the ability to acquire very large images of tissue of up to 7.5x15 cm2 total area by stitching together scans with dimensions of 1x1 mm2 in less than 1 minute. The system also enables the user to acquire Raman spectra from points of interest in the multiphoton images and provides chemically-specific data from sample volumes as small as 1 femtoliter. In my thesis I used this setup to determine the effects of VLDL lipolysis products on primary rat hepatocytes. By analyzing the Raman spectra and comparing the peak ratios for saturated and unsaturated fatty acid it was determined that the small cellular LD are highly saturated, while large cellular LDs contain mostly unsaturated lipids. Furthermore, I established a method to determine the specific contribution of each individual fatty acids to a single cellular LD based on non-negative least squares analysis. The calculated quantities for oleic and palmitic acid from 10 individual cellular LDs were compared to results of a gas chromatography (GC) analysis of 2x10 6 cells. The analysis found that the data obtained by Raman spectroscopy of individual LDs closely resemble GC data of a significantly larger number of LDs.

  9. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses.

    PubMed

    McGeoch, D J; Cook, S; Dolan, A; Jamieson, F E; Telford, E A

    1995-03-31

    A detailed phylogenetic analysis for mammalian members of the family Herpesviridae, based on molecular sequences is reported. Sets of encoded amino acid sequences were collected for eight well conserved genes that are common to mammalian herpesviruses. Phylogenetic trees were inferred from alignments of these sequence sets using both maximum parsimony and distance methods, and evaluated by bootstrap analysis. In all cases the three recognised subfamilies (Alpha-, Beta- and Gammaherpesvirinae), and major sublineages in each subfamily, were clearly distinguished, but within sublineages some finer details of branching were incompletely resolved. Multiple-gene sets were assembled to give a broadly based tree. The root position of the tree was estimated by assuming a constant molecular clock and also by analysis of one herpesviral gene set (that encoding uracil-DNA glycosylase) using cellular homologues as outgroups. Both procedures placed the root between the Alphaherpesvirinae and the other two subfamilies. Substitution rates were calculated for the combined gene sets based on a previous estimate for alphaherpesviral UL27 genes, where the time base had been obtained according to the hypothesis of cospeciation of virus and host lineages. Assuming a constant molecular clock, it was then estimated that the three subfamilies arose approximately 180 to 220 million years ago, that major sublineages within subfamilies were probably generated before the mammalian radiation of 80 to 60 million years ago, and that speciations within sublineages took place in the last 80 million years, probably with a major component of cospeciation with host lineages.

  10. Comprehensive morphometric analysis of mononuclear cell infiltration during experimental renal allograft rejection.

    PubMed

    Hoffmann, Ute; Bergler, Tobias; Jung, Bettina; Steege, Andreas; Pace, Claudia; Rümmele, Petra; Reinhold, Stephan; Krüger, Bernd; Krämer, Bernhard K; Banas, Bernhard

    2013-01-01

    The role of specific subtypes of infiltrating cells in acute kidney allograft rejection is still not clear and was so far not examined by different analyzing methods under standardized conditions of an experimental kidney transplantation model. Immunohistochemical staining of CD3, CD20 and CD68 was performed in rat allografts, in syngeneically transplanted rats and in control rats with a test duration of 6 and 28 days. The detailed expression and localization of infiltrating cells were analyzed manually in different kidney compartments under light microscope and by the two different morphometric software programs. Data were correlated with the corresponding kidney function as well as with histopathological classification. The information provided by the morphometric software programs on the infiltration of the specific cell types after renal transplantation was in accordance with the manual analysis. Morphometric methods were solid to analyze reliably the induction of cellular infiltrates after renal transplantation. By manual analysis we could clearly demonstrate the detailed localization of the specific cell infiltrates in the different kidney compartments. Besides infiltration of CD3 and CD68 infiltrating cells, a robust infiltration of CD20 B-cells in allogeneically transplanted rats, even at early time points after transplantation was detected. Additionally an MHC class I expression could reliable be seen in allogeneically transplanted rats. The infiltration of B-cells and the reliable antigen presentation might act as a silent subclinical trigger for subsequent chronic rejection and premature graft loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. "Parking-garage" structures in nuclear astrophysics and cellular biophysics

    NASA Astrophysics Data System (ADS)

    Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Huber, Greg; Schneider, A. S.

    2016-11-01

    A striking shape was recently observed for the endoplasmic reticulum, a cellular organelle consisting of stacked sheets connected by helical ramps [Terasaki et al., Cell 154, 285 (2013), 10.1016/j.cell.2013.06.031]. This shape is interesting both for its biological function, to synthesize proteins using an increased surface area for ribosome factories, and its geometric properties that may be insensitive to details of the microscopic interactions. In the present work, we find very similar shapes in our molecular dynamics simulations of the nuclear pasta phases of dense nuclear matter that are expected deep in the crust of neutron stars. There are dramatic differences between nuclear pasta and terrestrial cell biology. Nuclear pasta is 14 orders of magnitude denser than the aqueous environs of the cell nucleus and involves strong interactions between protons and neutrons, while cellular-scale biology is dominated by the entropy of water and complex assemblies of biomolecules. Nonetheless, the very similar geometry suggests both systems may have similar coarse-grained dynamics and that the shapes are indeed determined by geometrical considerations, independent of microscopic details. Many of our simulations self-assemble into flat sheets connected by helical ramps. These ramps may impact the thermal and electrical conductivities, viscosity, shear modulus, and breaking strain of neutron star crust. The interaction we use, with Coulomb frustration, may provide a simple model system that reproduces many biologically important shapes.

  12. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    PubMed

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  13. Production, properties, and applications of hydrocolloid cellular solids.

    PubMed

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical, and even electronic industries.

  14. Human Skeletal Muscle Health with Spaceflight

    NASA Astrophysics Data System (ADS)

    Trappe, Scott

    2012-07-01

    This lecture will overview the most recent aerobic and resistance exercise programs used by crewmembers while aboard the International Space Station (ISS) for six months and examine its effectiveness for protecting skeletal muscle health. Detailed information on the exercise prescription program, whole muscle size, whole muscle performance, and cellular data obtained from muscle biopsy samples will be presented. Historically, detailed information on the exercise program while in space has not been available. These most recent exercise and muscle physiology findings provide a critical foundation to guide the exercise countermeasure program forward for future long-duration space missions.

  15. Teaching Cell Anatomy with a Fabric Model

    ERIC Educational Resources Information Center

    Kluka, Michelle

    2005-01-01

    Middle schoolers are often first introduced to detailed cellular anatomy through one-dimensional drawings in basic life science books, fill-in-the blank handouts accompanied by notes from the teacher, or desktop hard-plastic commercial models that resemble giant lollipops. One of the most important, yet difficult, life science concepts for…

  16. HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation

    PubMed Central

    Lawag, Abdalla A.; Napper, Jennifer M.; Hunter, Caroline A.; Bacon, Nickolas A.; Deskins, Seth; El-hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C.

    2017-01-01

    Abstract Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%–90% of the cells die when placed in medium where the major growth factor is granulocyte–macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer. PMID:28910138

  17. HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation.

    PubMed

    Lawag, Abdalla A; Napper, Jennifer M; Hunter, Caroline A; Bacon, Nickolas A; Deskins, Seth; El-Hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C; Sollars, Vincent E

    2017-10-01

    Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%-90% of the cells die when placed in medium where the major growth factor is granulocyte-macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer.

  18. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    PubMed

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.

  19. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics. PMID:25120463

  20. Fostering synergy between cell biology and systems biology.

    PubMed

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Examining the Role of Membrane Lipid Composition in Determining the Ethanol Tolerance of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.

    2014-01-01

    Yeast (Saccharomyces cerevisiae) has an innate ability to withstand high levels of ethanol that would prove lethal to or severely impair the physiology of other organisms. Significant efforts have been undertaken to elucidate the biochemical and biophysical mechanisms of how ethanol interacts with lipid bilayers and cellular membranes. This research has implicated the yeast cellular membrane as the primary target of the toxic effects of ethanol. Analysis of model membrane systems exposed to ethanol has demonstrated ethanol's perturbing effect on lipid bilayers, and altering the lipid composition of these model bilayers can mitigate the effect of ethanol. In addition, cell membrane composition has been correlated with the ethanol tolerance of yeast cells. However, the physical phenomena behind this correlation are likely to be complex. Previous work based on often divergent experimental conditions and time-consuming low-resolution methodologies that limit large-scale analysis of yeast fermentations has fallen short of revealing shared mechanisms of alcohol tolerance in Saccharomyces cerevisiae. Lipidomics, a modern mass spectrometry-based approach to analyze the complex physiological regulation of lipid composition in yeast and other organisms, has helped to uncover potential mechanisms for alcohol tolerance in yeast. Recent experimental work utilizing lipidomics methodologies has provided a more detailed molecular picture of the relationship between lipid composition and ethanol tolerance. While it has become clear that the yeast cell membrane composition affects its ability to tolerate ethanol, the molecular mechanisms of yeast alcohol tolerance remain to be elucidated. PMID:24610851

  2. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants

    PubMed Central

    Greenwood, Edward JD; Matheson, Nicholas J; Wals, Kim; van den Boomen, Dick JH; Antrobus, Robin; Williamson, James C; Lehner, Paul J

    2016-01-01

    Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function. DOI: http://dx.doi.org/10.7554/eLife.18296.001 PMID:27690223

  3. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  4. Expansion of blood IgG4+ B, TH2, and regulatory T cells in patients with IgG4-related disease.

    PubMed

    Heeringa, Jorn J; Karim, A Faiz; van Laar, Jan A M; Verdijk, Robert M; Paridaens, Dion; van Hagen, P Martin; van Zelm, Menno C

    2018-05-01

    IgG 4 -related disease (IgG 4 -RD) is a systemic fibroinflammatory condition affecting various organs and has a diverse clinical presentation. Fibrosis and accumulation of IgG 4 + plasma cells in tissue are hallmarks of the disease, and IgG 4 -RD is associated with increased IgG 4 serum levels. However, disease pathogenesis is still unclear, and these cellular and molecular parameters are neither sensitive nor specific for the diagnosis of IgG 4 -RD. Here we sought to develop a flow cytometric gating strategy to reliably identify blood IgG 4 + B cells to study their cellular and molecular characteristics and investigate their contribution in disease pathogenesis. Sixteen patients with histologically confirmed IgG 4 -RD, 11 patients with sarcoidosis, and 30 healthy subjects were included for 11-color flow cytometric analysis of peripheral blood for IgG 4 -expressing B cells and T H subsets. In addition, detailed analysis of activation markers and chemokine receptors was performed on IgG 4 -expressing B cells, and IgG 4 transcripts were analyzed for somatic hypermutations. Cellular and molecular analyses revealed increased numbers of blood IgG 4 + memory B cells in patients with IgG 4 -RD. These cells showed reduced expression of CD27 and CXCR5 and increased signs of antibody maturation. Furthermore, patients with IgG 4 -RD, but not patients with sarcoidosis, had increased numbers of circulating plasmablasts and CD21 low B cells, as well as T H 2 and regulatory T cells, indicating a common disease pathogenesis in patients with IgG 4 -RD. These results provide new insights into the dysregulated IgG 4 response in patients with IgG 4 -RD. A specific "peripheral lymphocyte signature" observed in patients with IgG 4 -RD, could support diagnosis and treatment monitoring. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction.

    PubMed

    Giorgini, Elisabetta; Sabbatini, Simona; Rocchetti, Romina; Notarstefano, Valentina; Rubini, Corrado; Conti, Carla; Orilisi, Giulia; Mitri, Elisa; Bedolla, Diana E; Vaccari, Lisa

    2018-06-22

    In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).

  6. Cellular phone use and brain tumor: a meta-analysis.

    PubMed

    Kan, Peter; Simonsen, Sara E; Lyon, Joseph L; Kestle, John R W

    2008-01-01

    The dramatic increase in the use of cellular phones has generated concerns about potential adverse effects, especially the development of brain tumors. We conducted a meta-analysis to examine the effect of cellular phone use on the risk of brain tumor development. We searched the literature using MEDLINE to locate case-control studies on cellular phone use and brain tumors. Odds ratios (ORs) for overall effect and stratified ORs associated with specific brain tumors, long-term use, and analog/digital phones were calculated for each study using its original data. A pooled estimator of each OR was then calculated using a random-effects model. Nine case-control studies containing 5,259 cases of primary brain tumors and 12,074 controls were included. All studies reported ORs according to brain tumor subtypes, and five provided ORs on patients with > or =10 years of follow up. Pooled analysis showed an overall OR of 0.90 (95% confidence interval [CI] 0.81-0.99) for cellular phone use and brain tumor development. The pooled OR for long-term users of > or =10 years (5 studies) was 1.25 (95% CI 1.01-1.54). No increased risk was observed in analog or digital cellular phone users. We found no overall increased risk of brain tumors among cellular phone users. The potential elevated risk of brain tumors after long-term cellular phone use awaits confirmation by future studies.

  7. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  8. Engineering of Surface Functionality onto Polystyrene Microcarriers for the Attachment and Growth of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo

    2014-08-01

    This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.

  9. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    PubMed

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  10. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns.

    PubMed

    Singh, Deependra; Singh, Satpal; Sahu, Jageshwari; Srivastava, Shikha; Singh, Manju Rawat

    2016-01-01

    Over the past few years, nanoparticles and their role in drug delivery have been the centre of attraction as new drug delivery systems. Various forms of nanosystems have been designed, such as nanoclays, scaffolds and nanotubes, having numerous applications in areas such as drug loading, target cell uptake, bioassay and imaging. The present study discusses various types of nanoparticles, with special emphasis on ceramic nanocarriers. Ceramic materials have high mechanical strength, good body response and low or non-existing biodegradability. In this article, the various aspects concerning ceramic nanoparticles, such as their advantages over other systems, their cellular uptake and toxicity concerns are discussed in detail.

  11. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress.

    PubMed

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  12. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  13. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  14. ThinPrep versus conventional smear cytologic preparations in the analysis of thyroid fine-needle aspiration specimens.

    PubMed

    Biscotti, C V; Hollow, J A; Toddy, S M; Easley, K A

    1995-08-01

    Paired fine-needle aspiration specimens were analyzed from 41 surgically resected thyroid nodules, to compare diagnostic accuracy, amount (absent, mild, moderate, or marked) and pattern (diffuse, droplets, or both) of colloid, nuclear detail (poor, satisfactory, or excellent) and cytoplasmic detail (intact or disrupted) in ThinPrep (TP) (Cytyc, Marlborough, MA) versus conventional smear (CS) cytologic preparations. The 41 surgical specimens included 25 colloid nodules, 6 papillary carcinomas, 4 follicular adenomas, 2 minimally invasive (encapsulated) follicular carcinomas, 3 Hashimoto's thyroiditis, and 1 Grave's disease. Both techniques identified seven of the eight carcinomas with the minimally invasive follicular carcinomas categorized as hypercellular follicular nodule, possibly malignant (HCFN). One papillary carcinoma was classified as a HCFN by both TP and CS techniques. The four follicular adenomas were classified as HCFN based on the TP slides. One oxyphilic follicular adenoma, associated with focal lymphocytic thyroiditis, was misinterpreted as Hashimoto's thyroiditis on a conventional smear. Three colloid nodules were interpreted as HCFN based on the TP slides. Two of these were similarly classified based on the conventional smear. ThinPrep slides contained less colloid and the colloid occurred as droplets rather than a diffuse pattern. TP slides had better nuclear detail but more often disrupted cytoplasm. In conclusion, the TP process does alter some cellular features; however, we experienced similar diagnostic accuracy with the TP and conventional smear preparations.

  15. Diaryl- and triaryl-pyrrole derivatives: inhibitors of the MDM2-p53 and MDMX-p53 protein-protein interactions†Electronic supplementary information (ESI) available: Experimental details for compound synthesis, analytical data for all compounds and intermediates. Details for the biological evaluation. Further details for the modeling. Table of combustion analysis data. See DOI: 10.1039/c3md00161jClick here for additional data file.

    PubMed

    Blackburn, Tim J; Ahmed, Shafiq; Coxon, Christopher R; Liu, Junfeng; Lu, Xiaohong; Golding, Bernard T; Griffin, Roger J; Hutton, Claire; Newell, David R; Ojo, Stephen; Watson, Anna F; Zaytzev, Andrey; Zhao, Yan; Lunec, John; Hardcastle, Ian R

    2013-09-21

    Screening identified 2-(3-((4,6-dioxo-2-thioxotetrahydropyrimidin-5(2 H )-ylidene)methyl)-2,5-dimethyl-1 H -pyrrol-1-yl)-4,5,6,7-tetrahydrobenzo[ b ]thiophene-3-carbonitrile as an MDM2-p53 inhibitor (IC 50 = 12.3 μM). MDM2-p53 and MDMX-p53 activity was seen for 5-((1-(4-chlorophenyl)-2,5-diphenyl-1 H -pyrrol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1 H ,5 H )-dione (MDM2 IC 50 = 0.11 μM; MDMX IC 50 = 4.2 μM) and 5-((1-(4-nitrophenyl)-2,5-diphenyl-1 H -pyrrol-3-yl)methylene)pyrimidine-2,4,6(1 H ,3 H ,5 H )-trione (MDM2 IC 50 = 0.15 μM; MDMX IC 50 = 4.2 μM), and cellular activity consistent with p53 activation in MDM2 amplified cells. Further SAR studies demonstrated the requirement for the triarylpyrrole moiety for MDMX-p53 activity but not for MDM2-p53 inhibition.

  16. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  17. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  18. The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making

    PubMed Central

    2016-01-01

    This perspective sets out to critically evaluate the scope of reactive electrophilic small molecules as unique chemical signal carriers in biological information transfer cascades. We consider these electrophilic cues as a new volatile cellular currency and compare them to canonical signaling circulation such as phosphate in terms of chemical properties, biological specificity, sufficiency, and necessity. The fact that nonenzymatic redox sensing properties are found in proteins undertaking varied cellular tasks suggests that electrophile signaling is a moonlighting phenomenon manifested within a privileged set of sensor proteins. The latest interrogations into these on-target electrophilic responses set forth a new horizon in the molecular mechanism of redox signal propagation wherein direct low-occupancy electrophilic modifications on a single sensor target are biologically sufficient to drive functional redox responses with precision timing. We detail how the various mechanisms through which redox signals function could contribute to their interesting phenotypic responses, including hormesis. PMID:27617777

  19. The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making.

    PubMed

    Long, Marcus J C; Aye, Yimon

    2016-10-02

    This perspective sets out to critically evaluate the scope of reactive electrophilic small molecules as unique chemical signal carriers in biological information transfer cascades. We consider these electrophilic cues as a new volatile cellular currency and compare them to canonical signaling circulation such as phosphate in terms of chemical properties, biological specificity, sufficiency, and necessity. The fact that nonenzymatic redox sensing properties are found in proteins undertaking varied cellular tasks suggests that electrophile signaling is a moonlighting phenomenon manifested within a privileged set of sensor proteins. The latest interrogations into these on-target electrophilic responses set forth a new horizon in the molecular mechanism of redox signal propagation wherein direct low-occupancy electrophilic modifications on a single sensor target are biologically sufficient to drive functional redox responses with precision timing. We detail how the various mechanisms through which redox signals function could contribute to their interesting phenotypic responses, including hormesis.

  20. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology

    NASA Astrophysics Data System (ADS)

    Mederacke, Ingmar; Hsu, Christine C.; Troeger, Juliane S.; Huebener, Peter; Mu, Xueru; Dapito, Dianne H.; Pradere, Jean-Philippe; Schwabe, Robert F.

    2013-11-01

    Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective antifibrotic therapies. Different cellular sources, including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells, have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis these findings, HSCs should be considered the primary cellular target for antifibrotic therapies across all types of liver disease.

  1. An outline of cellular automaton universe via cosmological KdV equation

    NASA Astrophysics Data System (ADS)

    Christianto, V.; Smarandache, F.; Umniyati, Y.

    2018-03-01

    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such a sound wave model of cosmology is rarely developed fully into a complete framework. This paper can be considered as our second attempt towards such a complete description of the Universe based on soliton wave solution of cosmological KdV equation. Then we advance further this KdV equation by virtue of Cellular Automaton method to solve the PDEs. We submit wholeheartedly Robert Kuruczs hypothesis that Big Bang should be replaced with a finite cellular automaton universe with no expansion [4][5]. Nonetheless, we are fully aware that our model is far from being complete, but it appears the proposed cellular automaton model of the Universe is very close in spirit to what Konrad Zuse envisaged long time ago. It is our hope that the new proposed method can be verified with observation data. But we admit that our model is still in its infancy, more researches are needed to fill all the missing details.

  2. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    PubMed Central

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  3. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment.

    PubMed

    Zhao, Jingbo; McMahon, Barry; Fox, Mark; Gregersen, Hans

    2018-06-10

    Esophageal diseases are highly prevalent and carry significant socioeconomic burden. Despite the apparently simple function of the esophagus, we still struggle to better understand its physiology and pathophysiology. The assessment of large data sets and application of multiscale mathematical organ models have gained attention as part of the Physiome Project. This has long been recognized in cardiology but has only recently gained attention for the gastrointestinal(GI) tract. The term "esophagiome" implies a holistic assessment of esophageal function, from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. These anatomical, mechanical, and physiological models underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease. Functional models incorporate anatomical details with sensory-motor responses, especially related to biomechanical functions such as bolus transport. Our review builds on previous reviews and focuses on assessment of detailed anatomical and geometric data using advanced imaging technology for evaluation of gastro-esophageal reflux disease (GERD), and on esophageal mechanophysiology assessed using technologies that distend the esophagus. Integration of mechanics- and physiology-based analysis is a useful characteristic of the esophagiome. Experimental data on pressures and geometric characteristics are useful for the validation of mathematical and computer models of the esophagus that may provide predictions of novel endoscopic, surgical, and pharmaceutical treatment options. © 2018 New York Academy of Sciences.

  4. Design and Analysis of a Petri Net Model of the Von Hippel-Lindau (VHL) Tumor Suppressor Interaction Network

    PubMed Central

    Minervini, Giovanni; Panizzoni, Elisabetta; Giollo, Manuel; Masiero, Alessandro; Ferrari, Carlo; Tosatto, Silvio C. E.

    2014-01-01

    Von Hippel-Lindau (VHL) syndrome is a hereditary condition predisposing to the development of different cancer forms, related to germline inactivation of the homonymous tumor suppressor pVHL. The best characterized function of pVHL is the ubiquitination dependent degradation of Hypoxia Inducible Factor (HIF) via the proteasome. It is also involved in several cellular pathways acting as a molecular hub and interacting with more than 200 different proteins. Molecular details of pVHL plasticity remain in large part unknown. Here, we present a novel manually curated Petri Net (PN) model of the main pVHL functional pathways. The model was built using functional information derived from the literature. It includes all major pVHL functions and is able to credibly reproduce VHL syndrome at the molecular level. The reliability of the PN model also allowed in silico knockout experiments, driven by previous model analysis. Interestingly, PN analysis suggests that the variability of different VHL manifestations is correlated with the concomitant inactivation of different metabolic pathways. PMID:24886840

  5. Design and analysis of a Petri net model of the Von Hippel-Lindau (VHL) tumor suppressor interaction network.

    PubMed

    Minervini, Giovanni; Panizzoni, Elisabetta; Giollo, Manuel; Masiero, Alessandro; Ferrari, Carlo; Tosatto, Silvio C E

    2014-01-01

    Von Hippel-Lindau (VHL) syndrome is a hereditary condition predisposing to the development of different cancer forms, related to germline inactivation of the homonymous tumor suppressor pVHL. The best characterized function of pVHL is the ubiquitination dependent degradation of Hypoxia Inducible Factor (HIF) via the proteasome. It is also involved in several cellular pathways acting as a molecular hub and interacting with more than 200 different proteins. Molecular details of pVHL plasticity remain in large part unknown. Here, we present a novel manually curated Petri Net (PN) model of the main pVHL functional pathways. The model was built using functional information derived from the literature. It includes all major pVHL functions and is able to credibly reproduce VHL syndrome at the molecular level. The reliability of the PN model also allowed in silico knockout experiments, driven by previous model analysis. Interestingly, PN analysis suggests that the variability of different VHL manifestations is correlated with the concomitant inactivation of different metabolic pathways.

  6. Evaluation of variability in high-resolution protein structures by global distance scoring.

    PubMed

    Anzai, Risa; Asami, Yoshiki; Inoue, Waka; Ueno, Hina; Yamada, Koya; Okada, Tetsuji

    2018-01-01

    Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species.

  7. AtCSLA7, a Cellulose Synthase-Like Putative Glycosyltransferase, Is Important for Pollen Tube Growth and Embryogenesis in Arabidopsis1

    PubMed Central

    Goubet, Florence; Misrahi, Audrey; Park, Soon Ki; Zhang, Zhinong; Twell, David; Dupree, Paul

    2003-01-01

    The cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide β-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth. Moreover, the homozygous insertion was embryo lethal. A detailed analysis of seed developmental progression revealed that mutant embryos developed more slowly than wild-type siblings. The mutant embryos also showed abnormal cell patterning and they arrested at a globular stage. The defective embryonic development was associated with reduced proliferation and failed cellularization of the endosperm. AtCSLA7 is widely expressed, and is likely to be required for synthesis of a cell wall polysaccharide found throughout the plant. Our results suggest that this polysaccharide is essential for cell wall structure or for signaling during plant embryo development. PMID:12586879

  8. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time.

    PubMed

    Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl

    2009-11-01

    Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.

  9. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  10. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates

    PubMed Central

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-01-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  11. Microvalve-based bioprinting - process, bio-inks and applications.

    PubMed

    Ng, Wei Long; Lee, Jia Min; Yeong, Wai Yee; Win Naing, May

    2017-03-28

    Bioprinting is an emerging research field that has attracted tremendous attention for various applications; it offers a highly automated, advanced manufacturing platform for the fabrication of complex bioengineered constructs. Different bio-inks comprising multiple types of printable biomaterials and cells are utilized during the bioprinting process to improve the homology to native tissues and/or organs in a highly reproducible manner. This paper, presenting a first-time comprehensive yet succinct review of microvalve-based bioprinting, provides an in-depth analysis and comparison of different drop-on-demand bioprinting systems and highlights the important considerations for microvalve-based bioprinting systems. This review paper reports a detailed analysis of its printing process, bio-ink properties and cellular components on the printing outcomes. Lastly, this review highlights the significance of drop-on-demand bioprinting for various applications such as high-throughput screening, fundamental cell biology research, in situ bioprinting and fabrication of in vitro tissue constructs and also presents future directions to transform the microvalve-based bioprinting technology into imperative tools for tissue engineering and regenerative medicine.

  12. An integrated expression atlas of miRNAs and their promoters in human and mouse

    PubMed Central

    de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.

    2018-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439

  13. Inverse problems and computational cell metabolic models: a statistical approach

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Somersalo, E.

    2008-07-01

    In this article, we give an overview of the Bayesian modelling of metabolic systems at the cellular and subcellular level. The models are based on detailed description of key biochemical reactions occurring in tissue, which may in turn be compartmentalized into cytosol and mitochondria, and of transports between the compartments. The classical deterministic approach which models metabolic systems as dynamical systems with Michaelis-Menten kinetics, is replaced by a stochastic extension where the model parameters are interpreted as random variables with an appropriate probability density. The inverse problem of cell metabolism in this setting consists of estimating the density of the model parameters. After discussing some possible approaches to solving the problem, we address the issue of how to assess the reliability of the predictions of a stochastic model by proposing an output analysis in terms of model uncertainties. Visualization modalities for organizing the large amount of information provided by the Bayesian dynamic sensitivity analysis are also illustrated.

  14. Histomorphometric analysis of nuclear and cellular volumetric alterations in oral lichen planus, lichenoid lesions and normal oral mucosa using image analysis software.

    PubMed

    Venkatesiah, Sowmya S; Kale, Alka D; Hallikeremath, Seema R; Kotrashetti, Vijayalakshmi S

    2013-01-01

    Lichen planus is a chronic inflammatory mucocutaneous disease that clinically and histologically resembles lichenoid lesions, although the latter has a different etiology. Though criteria have been suggested for differentiating oral lichen planus from lichenoid lesions, confusion still prevails. To study the cellular and nuclear volumetric features in the epithelium of normal mucosa, lichen planus, and lichenoid lesions to determine variations if any. A retrospective study was done on 25 histologically diagnosed cases each of oral lichen planus, oral lichenoid lesions, and normal oral mucosa. Cellular and nuclear morphometric measurements were assessed on hematoxylin and eosin sections using image analysis software. Analysis of variance test (ANOVA) and Tukey's post-hoc test. The basal cells of oral lichen planus showed a significant increase in the mean nuclear and cellular areas, and in nuclear volume; there was a significant decrease in the nuclear-cytoplasmic ratio as compared to normal mucosa. The suprabasal cells showed a significant increase in nuclear and cellular areas, nuclear diameter, and nuclear and cellular volumes as compared to normal mucosa. The basal cells of oral lichenoid lesions showed significant difference in the mean cellular area and the mean nuclear-cytoplasmic ratio as compared to normal mucosa, whereas the suprabasal cells differed significantly from normal mucosa in the mean nuclear area and the nuclear and cellular volumes. Morphometry can differentiate lesions of oral lichen planus and oral lichenoid lesions from normal oral mucosa. Thus, morphometry may serve to discriminate between normal and premalignant lichen planus and lichenoid lesions. These lesions might have a high risk for malignant transformation and may behave in a similar manner with respect to malignant transformation.

  15. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles.

    PubMed

    Kües, Ursula; Nelson, David R; Liu, Chang; Yu, Guo-Jun; Zhang, Jianhui; Li, Jianqin; Wang, Xin-Cun; Sun, Hui

    2015-06-01

    Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of Ganoderma species. The current review carries out a detailed comparison of the nuclear genomes, mitochondrial genomes and transcriptomes from several Ganoderma species. Genes involved in biosynthetic pathways such as CYP450 genes and in cellular development such as matA and matB genes are characterized and compared in detail, as examples to demonstrate the usefulness of comparative genomic analyses for the identification of critical genes. Resources needed for future data integration and exploitation are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids

    PubMed Central

    Rae, James; Fontaine, Frank; Salim, Angela A.; Lo, Harriet P.; Capon, Robert J.; Parton, Robert G.; Martin, Sally

    2011-01-01

    Mammalian cells store excess fatty acids as neutral lipids in specialised organelles called lipid droplets (LDs). Using a simple cell-based assay and open-source software we established a high throughput screen for LD formation in A431 cells in order to identify small bioactive molecules affecting lipid storage. Screening an n-butanol extract library from Australian marine organisms we identified 114 extracts that produced either an increase or a decrease in LD formation in fatty acid-treated A431 cells with varying degrees of cytotoxicity. We selected for further analysis a non-cytotoxic extract derived from the genus Spongia (Heterofibria). Solvent partitioning, HPLC fractionation and spectroscopic analysis (NMR, MS) identified a family of related molecules within this extract with unique structural features, a subset of which reduced LD formation. We selected one of these molecules, heterofibrin A1, for more detailed cellular analysis. Inhibition of LD biogenesis by heterofibrin A1 was observed in both A431 cells and AML12 hepatocytes. The activity of heterofibrin A1 was dose dependent with 20 µM inhibiting LD formation and triglyceride accumulation by ∼50% in the presence of 50 µM oleic acid. Using a fluorescent fatty acid analogue we found that heterofibrin A1 significantly reduces the intracellular accumulation of fatty acids and results in the formation of distinct fatty acid metabolites in both cultured cells and in embryos of the zebrafish Danio rerio. In summary we have shown using readily accessible software and a relatively simple assay system that we can identify and isolate bioactive molecules from marine extracts, which affect the formation of LDs and the metabolism of fatty acids both in vitro and in vivo. PMID:21857959

  17. Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423.

    PubMed

    Liu, Beibei; Su, Shengzhong; Wu, Ying; Li, Ying; Shan, Xiaohui; Li, Shipeng; Liu, Hongkui; Dong, Haixiao; Ding, Meiqi; Han, Junyou; Yuan, Yaping

    2015-07-01

    Intact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously. Histological analysis and scanning electron micrographs confirmed the different developmental stages of somatic embryogenesis, including globular-shaped embryo, pear-shaped embryo, scutiform embryo, and mature embryo. cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used for comparative transcript profiling between embryogenic and non-embryogenic calli of a new elite maize inbred line Y423 during somatic embryogenesis. Differentially expressed genes were cloned and sequenced. Gene Ontology analysis of 117 candidate genes indicated their involvement in cellular component, biological process and molecular function. Nine of the candidate genes were selected. The changes in their expression levels during embryo induction and regeneration were analyzed in detail using quantitative real-time PCR. Two full-length cDNA sequences, encoding ZmSUF4 (suppressor of fir 4-like protein) and ZmDRP3A (dynamin-related protein), were cloned successfully from intact somatic embryos of the elite inbred maize line Y423. Here, a procedure for maize plant regeneration from somatic embryos is described. Additionally, the possible roles of some of these genes during the somatic embryogenesis has been discussed. This study is a systematic analysis of the cellular and molecular mechanism during the formation of intact somatic embryos in maize. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings.

    PubMed

    Seabra, Catarina M; Szoko, Nicholas; Erdin, Serkan; Ragavendran, Ashok; Stortchevoi, Alexei; Maciel, Patrícia; Lundberg, Kathleen; Schlatzer, Daniela; Smith, Janice; Talkowski, Michael E; Gusella, James F; Natowicz, Marvin R

    2017-09-01

    Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities. © 2017 Wiley Periodicals, Inc.

  19. A methodological approach for using high-level Petri Nets to model the immune system response.

    PubMed

    Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; Pappalardo, Francesco

    2016-12-22

    Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the same technique and software.

  20. Transcriptome Analysis Reveals Markers of Aberrantly Activated Innate Immunity in Vitiligo Lesional and Non-Lesional Skin

    PubMed Central

    Huang, Yuanshen; Wang, Yang; Yu, Jie; Gao, Min; Levings, Megan; Wei, Shencai; Zhang, Shengquan; Xu, Aie; Su, Mingwan; Dutz, Jan; Zhang, Xuejun; Zhou, Youwen

    2012-01-01

    Background Vitiligo is characterized by the death of melanocytes in the skin. This is associated with the presence of T cell infiltrates in the lesional borders. However, at present, there is no detailed and systematic characterization on whether additional cellular or molecular changes are present inside vitiligo lesions. Further, it is unknown if the normal appearing non-lesional skin of vitiligo patients is in fact normal. The purpose of this study is to systematically characterize the molecular and cellular characteristics of the lesional and non-lesional skin of vitiligo patients. Methods and Materials Paired lesional and non-lesional skin biopsies from twenty-three vitiligo patients and normal skin biopsies from sixteen healthy volunteers were obtained with informed consent. The following aspects were analyzed: (1) transcriptome changes present in vitiligo skin using DNA microarrays and qRT-PCR; (2) abnormal cellular infiltrates in vitiligo skin explant cultures using flow cytometry; and (3) distribution of the abnormal cellular infiltrates in vitiligo skin using immunofluorescence microscopy. Results Compared with normal skin, vitiligo lesional skin contained 17 genes (mostly melanocyte-specific genes) whose expression was decreased or absent. In contrast, the relative expression of 13 genes was up-regulated. The up-regulated genes point to aberrant activity of the innate immune system, especially natural killer cells in vitiligo. Strikingly, the markers of heightened innate immune responses were also found to be up-regulated in the non-lesional skin of vitiligo patients. Conclusions and Clinical Implications As the first systematic transcriptome characterization of the skin in vitiligo patients, this study revealed previously unknown molecular markers that strongly suggest aberrant innate immune activation in the microenvironment of vitiligo skin. Since these changes involve both lesional and non-lesional skin, our results suggest that therapies targeting the entire skin surface may improve treatment outcomes. Finally, this study revealed novel mediators that may facilitate future development of vitiligo therapies. PMID:23251420

  1. Using Call Detail Records for Modeling Coastal Recreation Behavior

    EPA Science Inventory

    Call data records (CDR) are data from cellular phone networks that can be used to understand human mobility or where people go spatially. They can be used to estimate visitation to an area such as a coastal access point for a given time window, as well as provide information on t...

  2. Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.

    PubMed

    Yang, Hongrong; Chen, Zhong; Zhang, Lei; Yung, Wing-Yin; Leung, Ken Cham-Fai; Chan, Ho Yin Edwin; Choi, Chung Hang Jonathan

    2016-10-01

    Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution

    PubMed Central

    2013-01-01

    Background The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. Description We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. Conclusion The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses. PMID:23714426

  4. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  5. The Next Frontier: Quantitative Biochemistry in Living Cells.

    PubMed

    Honigmann, Alf; Nadler, André

    2018-01-09

    Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.

  6. Using in vitro models for expression profiling studies on ethanol and drugs of abuse.

    PubMed

    Thibault, Christelle; Hassan, Sajida; Miles, Michael

    2005-03-01

    The use of expression profiling with microarrays offers great potential for studying the mechanisms of action of drugs of abuse. Studies with the intact nervous system seem likely to be most relevant to understanding the mechanisms of drug abuse-related behaviours. However, the use of expression profiling with in vitro culture models offers significant advantages for identifying details of cellular signalling actions and toxicity for drugs of abuse. This study discusses general issues of the use of microarrays and cell culture models for studies on drugs of abuse. Specific results from existing studies are also discussed, providing clear examples of relevance for in vitro studies on ethanol, nicotine, opiates, cannabinoids and hallucinogens such as LSD. In addition to providing details on signalling mechanisms relevant to the neurobiology of drugs of abuse, microarray studies on a variety of cell culture systems have also provided important information on mechanisms of cellular/organ toxicity with drugs of abuse. Efforts to integrate genomic studies on drugs of abuse with both in vivo and in vitro models offer the potential for novel mechanistic rigor and physiological relevance.

  7. In silico evidence for sequence-dependent nucleosome sliding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lequieu, Joshua; Schwartz, David C.; de Pablo, Juan J.

    Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nudeosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces andmore » the corresponding dynamics of nudeosome repositioning. The mechanism of nudeosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.« less

  8. Induction of cellular and molecular immunomodulatory pathways by vitamin A and Flavonoids

    PubMed Central

    Patel, Sapna; Vajdy, Michael

    2016-01-01

    Introduction A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. Areas Covered Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of Vitamin A and select flavonoids in induction of innate and adaptive B and T cell responses, including TH1, TH2 and Treg. Expert Opinion While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immuno-modulatory compounds. PMID:26185959

  9. Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development

    PubMed Central

    Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul

    2017-01-01

    Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448

  10. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    NASA Astrophysics Data System (ADS)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  11. A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers.

    PubMed

    Taraslia, Vasiliki; Lymperi, Stefania; Pantazopoulou, Vasiliki; Anagnostopoulos, Athanasios K; Papassideri, Issidora S; Basdra, Efthimia K; Bei, Marianna; Kontakiotis, Evangelos G; Tsangaris, George Th; Stravopodis, Dimitrios J; Anastasiadou, Ema

    2018-01-05

    Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.

  12. A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers

    PubMed Central

    Taraslia, Vasiliki; Lymperi, Stefania; Pantazopoulou, Vasiliki; Anagnostopoulos, Athanasios K.; Basdra, Efthimia K.; Bei, Marianna; Kontakiotis, Evangelos G.; Tsangaris, George Th.; Stravopodis, Dimitrios J.; Anastasiadou, Ema

    2018-01-01

    Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways. PMID:29304003

  13. Simultaneous extraction of proteins and metabolites from cells in culture

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Weindl, Daniel; Ghelfi, Jenny; Dittmar, Gunnar; Hiller, Karsten

    2014-01-01

    Proper sample preparation is an integral part of all omics approaches, and can drastically impact the results of a wide number of analyses. As metabolomics and proteomics research approaches often yield complementary information, it is desirable to have a sample preparation procedure which can yield information for both types of analyses from the same cell population. This protocol explains a method for the separation and isolation of metabolites and proteins from the same biological sample, in order for downstream use in metabolomics and proteomics analyses simultaneously. In this way, two different levels of biological regulation can be studied in a single sample, minimizing the variance that would result from multiple experiments. This protocol can be used with both adherent and suspension cell cultures, and the extraction of metabolites from cellular medium is also detailed, so that cellular uptake and secretion of metabolites can be quantified. Advantages of this technique includes:1.Inexpensive and quick to perform; this method does not require any kits.2.Can be used on any cells in culture, including cell lines and primary cells extracted from living organisms.3.A wide variety of different analysis techniques can be used, adding additional value to metabolomics data analyzed from a sample; this is of high value in experimental systems biology. PMID:26150938

  14. Cellular stress induces a protective sleep-like state in C. elegans.

    PubMed

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Unique Cellular Organization in the Oldest Root Meristem.

    PubMed

    Hetherington, Alexander J; Dubrovsky, Joseph G; Dolan, Liam

    2016-06-20

    Roots and shoots of plant bodies develop from meristems-cell populations that self-renew and produce cells that undergo differentiation-located at the apices of axes [1].The oldest preserved root apices in which cellular anatomy can be imaged are found in nodules of permineralized fossil soils called coal balls [2], which formed in the Carboniferous coal swamp forests over 300 million years ago [3-9]. However, no fossil root apices described to date were actively growing at the time of preservation [3-10]. Because the cellular organization of meristems changes when root growth stops, it has been impossible to compare cellular dynamics as stem cells transition to differentiated cells in extinct and extant taxa [11]. We predicted that meristems of actively growing roots would be preserved in coal balls. Here we report the discovery of the first fossilized remains of an actively growing root meristem from permineralized Carboniferous soil with detail of the stem cells and differentiating cells preserved. The cellular organization of the meristem is unique. The position of the Körper-Kappe boundary, discrete root cap, and presence of many anticlinal cell divisions within a broad promeristem distinguish it from all other known root meristems. This discovery is important because it demonstrates that the same general cellular dynamics are conserved between the oldest extinct and extant root meristems. However, its unique cellular organization demonstrates that extant root meristem organization and development represents only a subset of the diversity that has existed since roots first evolved. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Simulation tools for particle-based reaction-diffusion dynamics in continuous space

    PubMed Central

    2014-01-01

    Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics. PMID:25737778

  17. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  18. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis.

    PubMed

    Chen, Lihua; Liu, Min; Bao, Jing; Xia, Yunbao; Zhang, Jiuquan; Zhang, Lin; Huang, Xuequan; Wang, Jian

    2013-01-01

    To perform a meta-analysis exploring the correlation between the apparent diffusion coefficient (ADC) and tumor cellularity in patients. We searched medical and scientific literature databases for studies discussing the correlation between the ADC and tumor cellularity in patients. Only studies that were published in English or Chinese prior to November 2012 were considered for inclusion. Summary correlation coefficient (r) values were extracted from each study, and 95% confidence intervals (CIs) were calculated. Sensitivity and subgroup analyses were performed to investigate potential heterogeneity. Of 189 studies, 28 were included in the meta-analysis, comprising 729 patients. The pooled r for all studies was -0.57 (95% CI: -0.62, -0.52), indicating notable heterogeneity (P<0.001). After the sensitivity analysis, two studies were excluded, and the pooled r was -0.61 (95% CI: -0.66, -0.56) and was not significantly heterogeneous (P = 0.127). Regarding tumor type subgroup analysis, there were sufficient data to support a strong negative correlation between the ADC and cellularity for brain tumors. There was no notable evidence of publication bias. There is a strong negative correlation between the ADC and tumor cellularity in patients, particularly in the brain. However, larger, prospective studies are warranted to validate these findings in other cancer types.

  19. Analysis of Human Mobility Based on Cellular Data

    NASA Astrophysics Data System (ADS)

    Arifiansyah, F.; Saptawati, G. A. P.

    2017-01-01

    Nowadays not only adult but even teenager and children have then own mobile phones. This phenomena indicates that the mobile phone becomes an important part of everyday’s life. Based on these indication, the amount of cellular data also increased rapidly. Cellular data defined as the data that records communication among mobile phone users. Cellular data is easy to obtain because the telecommunications company had made a record of the data for the billing system of the company. Billing data keeps a log of the users cellular data usage each time. We can obtained information from the data about communication between users. Through data visualization process, an interesting pattern can be seen in the raw cellular data, so that users can obtain prior knowledge to perform data analysis. Cellular data processing can be done using data mining to find out human mobility patterns and on the existing data. In this paper, we use frequent pattern mining and finding association rules to observe the relation between attributes in cellular data and then visualize them. We used weka tools for finding the rules in stage of data mining. Generally, the utilization of cellular data can provide supporting information for the decision making process and become a data support to provide solutions and information needed by the decision makers.

  20. Reconstruction of vessel structures from serial whole slide sections of murine liver samples

    NASA Astrophysics Data System (ADS)

    Schwier, Michael; Hahn, Horst K.; Dahmen, Uta; Dirsch, Olaf

    2013-03-01

    Image-based analysis of the vascular structures of murine liver samples is an important tool for scientists to understand liver physiology and morphology. Typical assessment methods are MicroCT, which allows for acquiring images of the whole organ while lacking resolution for fine details, and confocal laser scanning microscopy, which allows detailed insights into fine structures while lacking the broader context. Imaging of histological serial whole slide sections is a recent technology able to fill this gap, since it provides a fine resolution up to the cellular level, but on a whole organ scale. However, whole slide imaging is a modality providing only 2D images. Therefore the challenge is to use stacks of serial sections from which to reconstruct the 3D vessel structures. In this paper we present a semi-automatic procedure to achieve this goal. We employ an automatic method that detects vessel structures based on continuity and shape characteristics. Furthermore it supports the user to perform manual corrections where required. With our methods we were able to successfully extract and reconstruct vessel structures from a stack of 100 and a stack of 397 serial sections of a mouse liver lobe, thus proving the potential of our approach.

  1. Brain segmentation and forebrain development in amniotes.

    PubMed

    Puelles, L

    2001-08-01

    This essay contains a general introduction to the segmental paradigm postulated for interpreting morphologically cellular and molecular data on the developing forebrain of vertebrates. The introduction examines the nature of the problem, indicating the role of topological analysis in conjunction with analysis of various developmental cell processes in the developing brain. Another section explains how morphological analysis in essence depends on assumptions (paradigms), which should be reasonable and well founded in other research, but must remain tentative until time reveals their necessary status as facts for evolving theories (or leads to their substitution by alternative assumptions). The chosen paradigm affects many aspects of the analysis, including the sectioning planes one wants to use and the meaning of what one sees in brain sections. Dorsoventral patterning is presented as the fundament for defining what is longitudinal, whereas less well-understood anteroposterior patterning results from transversal regionalization. The concept of neural segmentation is covered, first historically, and then step by step, explaining the prosomeric model in basic detail, stopping at the diencephalon, the extratelencephalic secondary prosencephalon, and the telencephalon. A new pallial model for telencephalic development and evolution is presented as well, updating the proposed homologies between the sauropsidian and mammalian telencephalon.

  2. A novel ENU-induced mutation, peewee, causes dwarfism in the mouse

    PubMed Central

    Bon-Ryon, Lee; Kano, Kiyoshi; Young, Jay; John, Simon; Nishina, Patsy M; Naggert, Jurgen K; Naito, Kunihiko

    2010-01-01

    We identified a novel fertile, autosomal recessive mutation, called peewee and that results in dwarfing, in a region-specific ENU-induced mutagenesis. These mice at litter size were smaller those of other strains. Histological analysis revealed that the major organs appear normal, but abnormalities in cellular proliferation were observed in bone, liver and testis. Haplotype analysis localized the peewee gene to a 3.3-Mb region between D5Mit83 and D5Mit356.3. There are 18 genes in this linkage area, and we also performed in silico mapping using the PosMed℠ program, which searches for connections among keywords and genes in an interval, but no similar phenotype descriptions were found for these genes. In the peewee mutant compared to the normal, C57BL/6J mouse, only Slc10a4 expression was lower. Our preliminary mutation analysis examining the nucleotide sequence of three exons, two introns and an untranslated region of Slc10a4 did not find any sequence difference between the peewee mouse and the C57BL/6J mouse. Detailed analysis of peewee mice might provide novel molecular insights into the complex mechanisms regulating body growth. PMID:19513787

  3. Protein arginine methylation: Cellular functions and methods of analysis.

    PubMed

    Pahlich, Steffen; Zakaryan, Rouzanna P; Gehring, Heinz

    2006-12-01

    During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.

  4. Efficacy of Cellular Therapy for Diabetic Foot Ulcer: A Meta-Analysis of Randomized Controlled Clinical Trials.

    PubMed

    Zhang, Ye; Deng, Hong; Tang, Zhouping

    2017-12-01

    Diabetes mellitus is a widely spread chronic disease with growing incidence worldwide, and diabetic foot ulcer is one of the most serious complications of diabetes. Cellular therapy has shown promise in the management of diabetic foot ulcer in many preclinical experiments and clinical researches. Here, we performed a meta-analysis to evaluate the efficacy and safety of cellular therapy in the management of diabetic foot ulcer. We systematically searched PubMed, MEDLINE, EMBASE, and Cochrane Library databases from inception to May 2017 for randomized controlled trials assessing the efficacy of cellular therapy in diabetic foot ulcer, and a meta-analysis was conducted. A total of 6 randomized controlled clinical trials involving 241 individuals were included in this meta-analysis. The results suggested that cellular therapy could help accelerating the healing of diabetic foot ulcer, presented as higher ankle-brachial index (mean difference = 0.17, 95% confidence interval [CI] = 0.11 to 0.23), higher transcutaneous oxygen pressure (standardized mean difference [SMD] = 1.43; 95% CI, 1.09- to 1.78), higher ulcer healing rate (relative risk [RR] = 1.78; 95% CI, 1.41 to 2.25), higher amputation-free survival (RR = 1.25; 95% CI, 1.11 to 1.40), and lower scale of pain (SMD = -1.69; 95% CI, -2.05 to -1.33). Furthermore, cellular therapy seemed to be safe, with no serious complications and low risk of short-term slight complications. Cellular therapy could accelerate the rate of diabetic foot ulcer healing and may be more efficient than standard therapy for diabetic foot treatment.

  5. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine.

    PubMed

    Lobo, Joana; See, Eugene Yong-Shun; Biggs, Manus; Pandit, Abhay

    2016-07-01

    Cellular morphology has recently been indicated as a powerful indicator of cellular function. The analysis of cell shape has evolved from rudimentary forms of microscopic visual inspection to more advanced methodologies that utilize high-resolution microscopy coupled with sophisticated computer hardware and software for data analysis. Despite this progress, there is still a lack of standardization in quantification of morphometric parameters. In addition, uncertainty remains as to which methodologies and parameters of cell morphology will yield meaningful data, which methods should be utilized to categorize cell shape, and the extent of reliability of measurements and the interpretation of the resulting analysis. A large range of descriptors has been employed to objectively assess the cellular morphology in two-dimensional and three-dimensional domains. Intuitively, simple and applicable morphometric descriptors are preferable and standardized protocols for cell shape analysis can be achieved with the help of computerized tools. In this review, cellular morphology is discussed as a descriptor of cellular function and the current morphometric parameters that are used quantitatively in two- and three-dimensional environments are described. Furthermore, the current problems associated with these morphometric measurements are addressed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.

    PubMed

    Tarantola, Marco; Schneider, David; Sunnick, Eva; Adam, Holger; Pierrat, Sebastien; Rosman, Christina; Breus, Vladimir; Sönnichsen, Carsten; Basché, Thomas; Wegener, Joachim; Janshoff, Andreas

    2009-01-27

    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell.

  7. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  8. Rapid, Optimized Interactomic Screening

    PubMed Central

    Hakhverdyan, Zhanna; Domanski, Michal; Hough, Loren; Oroskar, Asha A.; Oroskar, Anil R.; Keegan, Sarah; Dilworth, David J.; Molloy, Kelly R.; Sherman, Vadim; Aitchison, John D.; Fenyö, David; Chait, Brian T.; Jensen, Torben Heick; Rout, Michael P.; LaCava, John

    2015-01-01

    We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screen that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners and the elucidation of their functional interactions in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles even for well-studied proteins. Our approach is robust, economical and automatable, providing an inroad to the rigorous, systematic dissection of cellular interactomes. PMID:25938370

  9. Amazing structure of respirasome: unveiling the secrets of cell respiration.

    PubMed

    Guo, Runyu; Gu, Jinke; Wu, Meng; Yang, Maojun

    2016-12-01

    Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

  10. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    PubMed

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These knock-in mice have NOP receptors that function both in vitro and in vivo and have provided a detailed characterization of NOP receptors in brain, spinal cord, and DRG neurons. They appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. Copyright © 2015 the authors 0270-6474/15/3511683-12$15.00/0.

  11. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.

    PubMed

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  12. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity

    USDA-ARS?s Scientific Manuscript database

    Th2 immunity is essential for the host protection against nematode infection, while detrimental in allergic inflammation or asthma. Although many of the details regarding the cellular and molecular events in Th2 immunity have been described, the specific cell types and effector molecules involved i...

  13. Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling | Center for Cancer Research

    Cancer.gov

    The cover image illuminates the non-enzymatic “ghost writers” of lysine acylation. Meier et al. detail the development of a chemoproteomic strategy that harnesses thioester reactivity to discover candidate cellular targets of non-enzymatic acylation. Application of this approach reveals that glycolytic enzymes can be strongly inhibited by reactive thioesters, including the

  14. 77 FR 12010 - Takes of Marine Mammals Incidental to Specified Activities; Navy Research, Development, Test and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence... environmental effects associated with the Q-20 test activities proposed for the Q-20 Study Area (see below for detailed description of the Study Area), which includes non-territorial waters of Military Warning Area 151...

  15. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development.

    PubMed

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-05-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development. © 2015. Published by The Company of Biologists Ltd.

  16. Cellular, Molecular and Functional Characterisation of YAC Transgenic Mouse Models of Friedreich Ataxia

    PubMed Central

    Anjomani Virmouni, Sara; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.

    2014-01-01

    Background Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). Methodology/Principal Findings We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. Conclusions/Significance Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy. PMID:25198290

  17. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    PubMed Central

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  18. Multiple effects of the special AT-rich binding protein 1 (SATB1) in colon carcinoma.

    PubMed

    Frömberg, Anja; Rabe, Michael; Aigner, Achim

    2014-12-01

    SATB1 (special AT-rich binding protein 1) is a global chromatin organizer regulating the expression of a large number of genes. Overexpression has been found in various solid tumors and positively correlated with prognostic and clinicopathological properties. In colorectal cancer (CRC), SATB1 overexpression and its correlation with poor differentiation, invasive depth, TNM (tumor, nodes, metastases) stage and prognosis have been demonstrated. However, more detailed studies on the SATB1 functions in CRC are warranted. In this article, we comprehensively analyze the cellular and molecular role of SATB1 in CRC cell lines with different SATB1 expression levels by using RNAi-mediated knockdown. Using siRNAs with different knockdown efficacies, we demonstrate antiproliferative, cell cycle-inhibitory and proapoptotic effects of SATB1 knockdown in a SATB1 gene dose-dependent manner. Tumor growth inhibition is confirmed in vivo in a subcutaneous tumor xenograft mouse model using stable knockdown cells. The in-depth analysis of cellular effects reveals increased activities of caspases-3, -7, -8, -9 and other mediators of apoptotic pathways. Similarly, the analysis of E- and N-cadherin, slug, twist, β-catenin and MMP7 indicates SATB1 effects on epithelial-mesenchymal transition (EMT) and matrix breakdown. Our results also establish SATB1 effects on receptor tyrosine kinases and (proto-)oncogenes such as HER receptors and Pim-1. Taken together, this suggests a more complex molecular interplay between tumor-promoting and possible inhibitory effects in CRC by affecting multiple pathways and molecules involved in proliferation, cell cycle, EMT, invasion and cell survival. © 2014 UICC.

  19. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis

    PubMed Central

    Dragovic, Rebecca A.; Gardiner, Christopher; Brooks, Alexandra S.; Tannetta, Dionne S.; Ferguson, David J.P.; Hole, Patrick; Carr, Bob; Redman, Christopher W.G.; Harris, Adrian L.; Dobson, Peter J.; Harrison, Paul; Sargent, Ian L.

    2011-01-01

    Cellular microvesicles and nanovesicles (exosomes) are involved in many disease processes and have major potential as biomarkers. However, developments in this area are constrained by limitations in the technology available for their measurement. Here we report on the use of fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles. In this system vesicles are visualized by light scattering using a light microscope. A video is taken, and the NTA software tracks the brownian motion of individual vesicles and calculates their size and total concentration. Using human placental vesicles and plasma, we have demonstrated that NTA can measure cellular vesicles as small as ∼50 nm and is far more sensitive than conventional flow cytometry (lower limit ∼300 nm). By combining NTA with fluorescence measurement we have demonstrated that vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined. From the Clinical Editor The authors of this study utilized fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles, demonstrating that NTA is far more sensitive than conventional flow cytometry. PMID:21601655

  20. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    PubMed

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Identifying the cellular targets of natural products using T7 phage display.

    PubMed

    Piggott, Andrew M; Karuso, Peter

    2016-05-04

    Covering: up to the end of 2015While Nature continues to deliver a myriad of potent and structurally diverse biologically active small molecules, the cellular targets and modes of action of these natural products are rarely identified, significantly hindering their development as new chemotherapeutic agents. This article provides an introductory tutorial on the use of T7 phage display as a tool to rapidly identify the cellular targets of natural products and is aimed specifically at natural products chemists who may have only limited experience in molecular biology. A brief overview of T7 phage display is provided, including its strengths, weaknesses, and the type of problems that can and cannot be tackled with this technology. Affinity probe construction is reviewed, including linker design and natural product derivatisation strategies. A detailed description of the T7 phage biopanning procedure is provided, with valuable tips for optimising each step in the process, as well as advice for identifying and avoiding the most commonly encountered challenges and pitfalls along the way. Finally, a brief discussion is provided on techniques for validating the cellular targets identified using T7 phage display.

  2. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    PubMed

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate

    DOEpatents

    Culbertson, Christopher T.; Jacobson, Stephen C.; McClain, Maxine A.; Ramsey, J. Michael

    2004-08-31

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  4. Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate

    DOEpatents

    Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-02

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  5. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    PubMed Central

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059

  6. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis.

    PubMed

    Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R

    2001-07-01

    Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.

  7. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation.

    PubMed

    Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S; Dean, Emma C; Burwell, Todd C; Meadows, Sarah K; Cooper, Sara J; Garabedian, Michael J; Gertz, Jason; Myers, Richard M

    2016-07-11

    The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers.

  8. DAPNe with micro-capillary separatory chemistry-coupled to MALDI-MS for the analysis of polar and non-polar lipid metabolism in one cell

    NASA Astrophysics Data System (ADS)

    Hamilton, Jason S.; Aguilar, Roberto; Petros, Robby A.; Verbeck, Guido F.

    2017-05-01

    The cellular metabolome is considered to be a representation of cellular phenotype and cellular response to changes to internal or external events. Methods to expand the coverage of the expansive physiochemical properties that makeup the metabolome currently utilize multi-step extractions and chromatographic separations prior to chemical detection, leading to lengthy analysis times. In this study, a single-step procedure for the extraction and separation of a sample using a micro-capillary as a separatory funnel to achieve analyte partitioning within an organic/aqueous immiscible solvent system is described. The separated analytes are then spotted for MALDI-MS imaging and distribution ratios are calculated. Initially, the method is applied to standard mixtures for proof of partitioning. The extraction of an individual cell is non-reproducible; therefore, a broad chemical analysis of metabolites is necessary and will be illustrated with the one-cell analysis of a single Snu-5 gastric cancer cell taken from a cellular suspension. The method presented here shows a broad partitioning dynamic range as a single-step method for lipid analysis demonstrating a decrease in ion suppression often present in MALDI analysis of lipids.

  9. Isolation and analysis of linker histones across cellular compartments

    PubMed Central

    Harshman, Sean W.; Chen, Michael M.; Branson, Owen E.; Jacob, Naduparambil K.; Johnson, Amy J.; Byrd, John C.; Freitas, Michael A.

    2013-01-01

    Analysis of histones, especially histone H1, is severely limited by immunological reagent availability. This paper describes the application of cellular fractionation with LC-MS for profiling histones in the cytosol and upon chromatin. First, we show that linker histones enriched by cellular fractionation gives less nuclear contamination and higher histone content than when prepared by nuclei isolation. Second, we profiled the soluble linker histones throughout the cell cycle revealing phosphorylation increases as cells reach mitosis. Finally, we monitored histone H1.2–H1.5 translocation to the cytosol in response to the CDK inhibitor flavopiridol in primary CLL cells treated ex vivo. Data shows all H1 variants translocate in response to drug treatment with no specific order to their cytosolic appearance. The results illustrate the utility of cellular fractionation in conjunction with LC-MS for the analysis of histone H1 throughout the cell. PMID:24013129

  10. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.

    PubMed

    Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.

  11. Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.

    ERIC Educational Resources Information Center

    Songer, Catherine J.; Mintzes, Joel J.

    1994-01-01

    Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…

  12. UMA/GAN network architecture analysis

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  13. Effect of crumb cellular structure characterized by image analysis on cake softness.

    PubMed

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2018-06-01

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image analysis is a very efficient tool for quality control. © 2017 Wiley Periodicals, Inc.

  14. Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing.

    PubMed

    Wong, Stephanie; Guo, Wei-hui; Hoffecker, Ian; Wang, Yu-li

    2014-01-01

    Substrate rigidity has been recognized as an important property that affects cellular physiology and functions. While the phenomenon has been well recognized, understanding the underlying mechanism may be greatly facilitated by creating a microenvironment with designed rigidity patterns. This chapter describes in detail an optimized method for preparing substrates with micropatterned rigidity, taking advantage of the ability to dehydrate polyacrylamide gels for micropatterning with photolithography, and subsequently rehydrate the gel to regain the original elastic state. While a wide range of micropatterns may be prepared, typical composite substrates consist of micron-sized islands of rigid photoresist grafted on the surface of polyacrylamide hydrogels of defined rigidity. These islands are displaced by cellular traction forces, for a distance determined by the size of the island, the rigidity of the underlying hydrogel, and the magnitude of traction forces. Domains of rigidity may be created using this composite material to allow systematic investigations of rigidity sensing and durotaxis. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Serotonin targets inhibitory synapses to induce modulation of network functions

    PubMed Central

    Manzke, Till; Dutschmann, Mathias; Schlaf, Gerald; Mörschel, Michael; Koch, Uwe R.; Ponimaskin, Evgeni; Bidon, Olivier; Lalley, Peter M.; Richter, Diethelm W.

    2009-01-01

    The cellular effects of serotonin (5-HT), a neuromodulator with widespread influences in the central nervous system, have been investigated. Despite detailed knowledge about the molecular biology of cellular signalling, it is not possible to anticipate the responses of neuronal networks to a global action of 5-HT. Heterogeneous expression of various subtypes of serotonin receptors (5-HTR) in a variety of neurons differently equipped with cell-specific transmitter receptors and ion channel assemblies can provoke diverse cellular reactions resulting in various forms of network adjustment and, hence, motor behaviour. Using the respiratory network as a model for reciprocal synaptic inhibition, we demonstrate that 5-HT1AR modulation primarily affects inhibition through glycinergic synapses. Potentiation of glycinergic inhibition of both excitatory and inhibitory neurons induces a functional reorganization of the network leading to a characteristic change of motor output. The changes in network operation are robust and help to overcome opiate-induced respiratory depression. Hence, 5-HT1AR activation stabilizes the rhythmicity of breathing during opiate medication of pain. PMID:19651659

  16. AMPK in Pathogens.

    PubMed

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  17. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells.

    PubMed

    Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-09-09

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.

  18. Rapid detection of biothreat agents based on cellular machinery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Todd W.; Gantt, Richard W.

    This research addresses rapid and sensitive identification of biological agents in a complex background. We attempted to devise a method by which the specificity of the cellular transcriptional machinery could be used to detect and identify bacterial bio-terror agents in a background of other organisms. Bacterial cells contain RNA polymerases and transcription factors that transcribe genes into mRNA for translation into proteins. RNA polymerases in conjunction with transcription factors recognize regulatory elements (promoters) upstream of the gene. These promoters are, in many cases, recognized by the polymerase and transcription factor combinations of one species only. We have engineered a plasmid,more » for Escherichia coli, containing the virA promoter from the target species Shigella flexneri. This promoter was fused to a reporter gene Green Fluorescent Protein (GFP). In theory the indicator strain (carrying the plasmid) is mixed with the target strain and the two are lysed. The cellular machinery from both cells mixes and the GFP is produced. This report details the results of testing this system.« less

  19. The successes and future prospects of the linear antisense RNA amplification methodology.

    PubMed

    Li, Jifen; Eberwine, James

    2018-05-01

    It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.

  20. DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen

    2017-08-01

    As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.

  1. The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    PubMed Central

    Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-01-01

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577

  2. Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure

    PubMed Central

    Simkó, Myrtill; Remondini, Daniel; Zeni, Olga; Scarfi, Maria Rosaria

    2016-01-01

    Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions. PMID:27420084

  3. Design, synthesis and cellular metabolism study of 4'-selenonucleosides.

    PubMed

    Yu, Jinha; Sahu, Pramod K; Kim, Gyudong; Qu, Shuhao; Choi, Yoojin; Song, Jayoung; Lee, Sang Kook; Noh, Minsoo; Park, Sunghyouk; Jeong, Lak Shin

    2015-01-01

    4'-seleno-homonucleosides were synthesized as next-generation nucleosides, and their cellular phosphorylation was studied to confirm the hypothesis that bulky selenium atom can sterically hinder the approach of cellular nucleoside kinase to the 5'-OH for phosphorylation. 4'-seleno-homonucleosides (n = 2), with one-carbon homologation, were synthesized through a tandem seleno-Michael addition-SN2 ring cyclization. LC-MS analysis demonstrated that they were phosphorylated by cellular nucleoside kinases, resulting in anticancer activity. The bulky selenium atom played a key role in deciding the phosphorylation by cellular nucleoside kinases. [Formula: see text].

  4. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology

    PubMed Central

    2015-01-01

    Background Sufficient knowledge of molecular and genetic interactions, which comprise the entire basis of the functioning of living systems, is one of the necessary requirements for successfully answering almost any research question in the field of biology and medicine. To date, more than 24 million scientific papers can be found in PubMed, with many of them containing descriptions of a wide range of biological processes. The analysis of such tremendous amounts of data requires the use of automated text-mining approaches. Although a handful of tools have recently been developed to meet this need, none of them provide error-free extraction of highly detailed information. Results The ANDSystem package was developed for the reconstruction and analysis of molecular genetic networks based on an automated text-mining technique. It provides a detailed description of the various types of interactions between genes, proteins, microRNA's, metabolites, cellular components, pathways and diseases, taking into account the specificity of cell lines and organisms. Although the accuracy of ANDSystem is comparable to other well known text-mining tools, such as Pathway Studio and STRING, it outperforms them in having the ability to identify an increased number of interaction types. Conclusion The use of ANDSystem, in combination with Pathway Studio and STRING, can improve the quality of the automated reconstruction of molecular and genetic networks. ANDSystem should provide a useful tool for researchers working in a number of different fields, including biology, biotechnology, pharmacology and medicine. PMID:25881313

  5. Tissue-specific promoter utilisation of the kallikrein-related peptidase genes, KLK5 and KLK7, and cellular localisation of the encoded proteins suggest roles in exocrine pancreatic function.

    PubMed

    Dong, Ying; Matigian, Nick; Harvey, Tracey J; Samaratunga, Hemamali; Hooper, John D; Clements, Judith A

    2008-02-01

    Abstract Tissue kallikrein (kallikrein 1) was first identified in pancreas and is the namesake of the kallikrein-related peptidase (KLK) family. KLK1 and the other 14 members of the human KLK family are encoded by 15 serine protease genes clustered at chromosome 19q13.4. Our Northern blot analysis of 19 normal human tissues for expression of KLK4 to KLK15 identified pancreas as a common expression site for the gene cluster spanning KLK5 to KLK13, as well as for KLK15 which is located adjacent to KLK1. Consistent with previous reports detailing the ability of KLK genes to generate organ- and disease-specific transcripts, detailed molecular and in silico analyses indicated that KLK5 and KLK7 generate transcripts in pancreas variant from those in skin or ovary. Consistently, we identified in the promoters of these KLK genes motifs which conform with consensus binding sites for transcription factors conferring pancreatic expression. In addition, immunohistochemical analysis revealed predominant localisation of KLK5 and KLK7 in acinar cells of the exocrine pancreas, suggesting roles for these enzymes in digestion. Our data also support expression patterns derived from gene duplication events in the human KLK cluster. These findings suggest that, in addition to KLK1, other related KLK enzymes will function in the exocrine pancreas.

  6. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    PubMed

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Applications of Mass Spectrometry for Cellular Lipid Analysis

    PubMed Central

    Wang, Chunyan; Wang, Miao; Han, Xianlin

    2015-01-01

    Mass spectrometric analysis of cellular lipids is an enabling technology for lipidomics, which is a rapidly-developing research field. In this review, we briefly discuss the principles, advantages, and possible limitations of electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry-based methodologies for the analysis of lipid species. The applications of these methodologies to lipidomic research are also summarized. PMID:25598407

  8. Lempel-Ziv complexity analysis of one dimensional cellular automata.

    PubMed

    Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  9. Lempel-Ziv complexity analysis of one dimensional cellular automata

    NASA Astrophysics Data System (ADS)

    Estevez-Rams, E.; Lora-Serrano, R.; Nunes, C. A. J.; Aragón-Fernández, B.

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  10. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    PubMed

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To orchestrate such complex regulation, viruses, including herpes simplex virus 1 (HSV-1), rely on multifunctional proteins such as the E3 ubiquitin ligase ICP0. This protein regulates various cellular pathways concurrently by targeting a diverse set of cellular factors for degradation. While some of these targets have been previously identified and characterized, we undertook a proteomic screen to identify additional targets of this activity to further characterize ICP0's role during infection. We describe a set of candidate interacting proteins of ICP0 identified through this approach and our characterization of the most statistically significant result, the cellular transcriptional repressor TRIM27. We present TRIM27 as a novel degradation target of ICP0 and describe the relationship of these two proteins during infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Time-dependent computational studies of flames in microgravity

    NASA Technical Reports Server (NTRS)

    Oran, Elaine S.; Kailasanath, K.

    1989-01-01

    The research performed at the Center for Reactive Flow and Dynamical Systems in the Laboratory for Computational Physics and Fluid Dynamics, at the Naval Research Laboratory, in support of the NASA Microgravity Science and Applications Program is described. The primary focus was on investigating fundamental questions concerning the propagation and extinction of premixed flames in Earth gravity and in microgravity environments. The approach was to use detailed time-dependent, multispecies, numerical models as tools to simulate flames in different gravity environments. The models include a detailed chemical kinetics mechanism consisting of elementary reactions among the eight reactive species involved in hydrogen combustion, coupled to algorithms for convection, thermal conduction, viscosity, molecular and thermal diffusion, and external forces. The external force, gravity, can be put in any direction relative to flame propagation and can have a range of values. A combination of one-dimensional and two-dimensional simulations was used to investigate the effects of curvature and dilution on ignition and propagation of flames, to help resolve fundamental questions on the existence of flammability limits when there are no external losses or buoyancy forces in the system, to understand the mechanism leading to cellular instability, and to study the effects of gravity on the transition to cellular structure. A flame in a microgravity environment can be extinguished without external losses, and the mechanism leading to cellular structure is not preferential diffusion but a thermo-diffusive instability. The simulations have also lead to a better understanding of the interactions between buoyancy forces and the processes leading to thermo-diffusive instability.

  12. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    PubMed

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can impact the activity of antibody-based therapeutic interventions via Sn. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein.

    PubMed

    Blomström, Anne-Lie; Gu, Quan; Barry, Gerald; Wilkie, Gavin; Skelton, Jessica K; Baird, Margaret; McFarlane, Melanie; Schnettler, Esther; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2015-04-19

    Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.

  15. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen; Nguyen, Catherine Quynh Nhu; Shiea, Christopher; Reid, Gavin E.

    2017-07-01

    Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon-carbon and acyl chain carbon-carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N-C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.

  16. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fengjuan; Bexiga, Mariana G.; Anguissola, Sergio; Boya, Patricia; Simpson, Jeremy C.; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes.Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes. Electronic supplementary information (ESI) available: additional analysis of flow cytometry results, western blots and experiments with cathepsin inhibitors. See DOI: 10.1039/c3nr03249c

  17. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves

    Treesearch

    Alex L. Shigo

    1984-01-01

    The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...

  18. Serological detection of ‘Candidatus Liberibacter asiaticus’ in citrus, and the identification of a promising secreted chaperone protein responding to cellular pathogens

    USDA-ARS?s Scientific Manuscript database

    Antibodies against ‘Candidatus Liberibacter asiaticus (CaLas) would be useful in inexpensive tissue print assays to detect the pathogen in infected plants. Such assays would provide low cost detection and a level of spatial and anatomical detail not possible with other methods like qPCR. We used S...

  19. Modelling Molecular Mechanisms: A Framework of Scientific Reasoning to Construct Molecular-Level Explanations for Cellular Behaviour

    ERIC Educational Resources Information Center

    van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Waarlo, Arend Jan

    2013-01-01

    Although molecular-level details are part of the upper-secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the level of cells, organs and organisms. Recent studies suggest that students lack a framework to reason about complex systems to make this connection. In this…

  20. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    PubMed Central

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  1. A guide to modelling cardiac electrical activity in anatomically detailed ventricles.

    PubMed

    Clayton, R H; Panfilov, A V

    2008-01-01

    One of the most recent trends in cardiac electrophysiology is the development of integrative anatomically accurate models of the heart, which include description of cardiac activity from sub-cellular and cellular level to the level of the whole organ. In order to construct this type of model, a researcher needs to collect a wide range of information from books and journal articles on various aspects of biology, physiology, electrophysiology, numerical mathematics and computer programming. The aim of this methodological article is to survey recent developments in integrative modelling of electrical activity in the ventricles of the heart, and to provide a practical guide to the resources and tools that are available for work in this exciting and challenging area.

  2. An Overview and Analysis of Mobile Internet Protocols in Cellular Environments.

    ERIC Educational Resources Information Center

    Chao, Han-Chieh

    2001-01-01

    Notes that cellular is the inevitable future architecture for the personal communication service system. Discusses the current cellular support based on Mobile Internet Protocol version 6 (Ipv6) and points out the shortfalls of using Mobile IP. Highlights protocols especially for mobile management schemes which can optimize a high-speed mobile…

  3. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  4. ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments

    PubMed Central

    Schöneberg, Johannes; Noé, Frank

    2013-01-01

    We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics. PMID:24040218

  5. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  6. Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System.

    PubMed

    Poon, Candice C; Ebacher, Vincent; Liu, Katherine; Yong, Voon Wee; Kelly, John James Patrick

    2018-05-03

    Automated slide scanning and segmentation of fluorescently-labeled tissues is the most efficient way to analyze whole slides or large tissue sections. Unfortunately, many researchers spend large amounts of time and resources developing and optimizing workflows that are only relevant to their own experiments. In this article, we describe a protocol that can be used by those with access to a widefield high-content analysis system (WHCAS) to image any slide-mounted tissue, with options for customization within pre-built modules found in the associated software. Not originally intended for slide scanning, the steps detailed in this article make it possible to acquire slide scanning images in the WHCAS which can be imported into the associated software. In this example, the automated segmentation of brain tumor slides is demonstrated, but the automated segmentation of any fluorescently-labeled nuclear or cytoplasmic marker is possible. Furthermore, there are a variety of other quantitative software modules including assays for protein localization/translocation, cellular proliferation/viability/apoptosis, and angiogenesis that can be run. This technique will save researchers time and effort and create an automated protocol for slide analysis.

  7. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains.

    PubMed

    Bhattacharyya, Anamitra; Stilwagen, Stephanie; Ivanova, Natalia; D'Souza, Mark; Bernal, Axel; Lykidis, Athanasios; Kapatral, Vinayak; Anderson, Iain; Larsen, Niels; Los, Tamara; Reznik, Gary; Selkov, Eugene; Walunas, Theresa L; Feil, Helene; Feil, William S; Purcell, Alexander; Lassez, Jean-Louis; Hawkins, Trevor L; Haselkorn, Robert; Overbeek, Ross; Predki, Paul F; Kyrpides, Nikos C

    2002-09-17

    Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer. Second, a detailed whole-genome functional comparison was based on the three sequenced Xf strains, identifying the unique genes present in each strain, in addition to those shared between strains. Third, an "in silico" cellular reconstruction of these organisms was made, based on a comparison of their core functional subsystems that led to a characterization of their conjugative transfer machinery, identification of potential differences in their adhesion mechanisms, and highlighting of the absence of a classical quorum-sensing mechanism. This study demonstrates the effectiveness of comparative analysis strategies in the interpretation of genomes that are closely related.

  8. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.

  9. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  10. New Methods in Tissue Engineering: Improved Models for Viral Infection.

    PubMed

    Ramanan, Vyas; Scull, Margaret A; Sheahan, Timothy P; Rice, Charles M; Bhatia, Sangeeta N

    2014-11-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.

  11. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  12. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses.

    PubMed

    Gencturk, Elif; Mutlu, Senol; Ulgen, Kutlu O

    2017-09-01

    Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.

  13. Complex Geometric Models of Diffusion and Relaxation in Healthy and Damaged White Matter

    PubMed Central

    Farrell, Jonathan A.D.; Smith, Seth A.; Reich, Daniel S.; Calabresi, Peter A.; van Zijl, Peter C.M.

    2010-01-01

    Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular microenvironment and have not considered important anatomic details. With the advent of higher-order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging (HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility of simulations of diffusion in complex geometries. Our framework is quantitative, does not require specialized hardware, is easily implemented with little programming experience, and is freely available as open-source software. Models may include compartments with different diffusivities, permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary (e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-derived contrasts. PMID:19739233

  14. Blast TBI Models, Neuropathology, and Implications for Seizure Risk

    PubMed Central

    Kovacs, S. Krisztian; Leonessa, Fabio; Ling, Geoffrey S. F.

    2014-01-01

    Traumatic brain injury (TBI) due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies. PMID:24782820

  15. Single Cell Proteomics in Biomedicine: High-dimensional Data Acquisition, Visualization and Analysis

    PubMed Central

    Su, Yapeng; Shi, Qihui; Wei, Wei

    2017-01-01

    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. PMID:28128880

  16. Light microscopy applications in systems biology: opportunities and challenges

    PubMed Central

    2013-01-01

    Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology. PMID:23578051

  17. [Studies on the structure-activity relationship of retinoids--Hansch analysis and 3D-OSAR studies on specific ligands of retinoid x receptor].

    PubMed

    Huang, N; Chu, F; Guo, Z

    1998-06-01

    Retinoids (Vitamin A, its metabolites and synthetic analogues) play important roles in a variety of biological processes, including cellular differentiation, proliferation and apoptosis. The many diverse actions of retinoids attribute to the ability of regulating transcription of different target genes through activation of multiple retinoid nuclear receptors (RAR of RXR). So, retinoids with selective binding ability to specific receptor may not only have improved therapeutic indices, but may also be invaluable for elucidating the molecular mechanism of retinoidal transcriptional activation. Based on the two dimensional and three dimensional quantitative structure-activity relationships of specific ligands of RXR, we carried out mimesis of environment of ligands interacting with their receptor and, to some extent, mapping the topological and physico-chemical characteristics of receptor. The knowledge of the QSAR study will offer detailed molecular information for design, synthesis and biological evaluation in drug research and development.

  18. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity.

    PubMed

    Kaufman, Alon; Dror, Gideon; Meilijson, Isaac; Ruppin, Eytan

    2006-12-08

    The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations.

  19. Transgenic mouse models enabling photolabeling of individual neurons in vivo.

    PubMed

    Peter, Manuel; Bathellier, Brice; Fontinha, Bruno; Pliota, Pinelopi; Haubensak, Wulf; Rumpel, Simon

    2013-01-01

    One of the biggest tasks in neuroscience is to explain activity patterns of individual neurons during behavior by their cellular characteristics and their connectivity within the neuronal network. To greatly facilitate linking in vivo experiments with a more detailed molecular or physiological analysis in vitro, we have generated and characterized genetically modified mice expressing photoactivatable GFP (PA-GFP) that allow conditional photolabeling of individual neurons. Repeated photolabeling at the soma reveals basic morphological features due to diffusion of activated PA-GFP into the dendrites. Neurons photolabeled in vivo can be re-identified in acute brain slices and targeted for electrophysiological recordings. We demonstrate the advantages of PA-GFP expressing mice by the correlation of in vivo firing rates of individual neurons with their expression levels of the immediate early gene c-fos. Generally, the mouse models described in this study enable the combination of various analytical approaches to characterize living cells, also beyond the neurosciences.

  20. Single-cell proteomics: potential implications for cancer diagnostics.

    PubMed

    Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T

    2016-01-01

    Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.

  1. The cognitive domain of a glider in the game of life.

    PubMed

    Beer, Randall D

    2014-01-01

    This article examines in some technical detail the application of Maturana and Varela's biology of cognition to a simple concrete model: a glider in the game of Life cellular automaton. By adopting an autopoietic perspective on a glider, the set of possible perturbations to it can be divided into destructive and nondestructive subsets. From a glider's reaction to each nondestructive perturbation, its cognitive domain is then mapped. In addition, the structure of a glider's possible knowledge of its immediate environment, and the way in which that knowledge is grounded in its constitution, are fully described. The notion of structural coupling is then explored by characterizing the paths of mutual perturbation that a glider and its environment can undergo. Finally, a simple example of a communicative interaction between two gliders is given. The article concludes with a discussion of the potential implications of this analysis for the enactive approach to cognition.

  2. Determination of the core promoter regions of the Saccharomyces cerevisiae RPS3 gene.

    PubMed

    Joo, Yoo Jin; Kim, Jin-Ha; Baek, Joung Hee; Seong, Ki Moon; Lee, Jae Yung; Kim, Joon

    2009-01-01

    Ribosomal protein genes (RPG), which are scattered throughout the genomes of all eukaryotes, are subjected to coordinated expression. In yeast, the expression of RPGs is highly regulated, mainly at the transcriptional level. Recent research has found that many ribosomal proteins (RPs) function in multiple processes in addition to protein synthesis. Therefore, detailed knowledge of promoter architecture as well as gene regulation is important in understanding the multiple cellular processes mediated by RPGs. In this study, we investigated the functional architecture of the yeast RPS3 promoter and identified many putative cis-elements. Using beta-galactosidase reporter analysis and EMSA, the core promoter of RPS3 containing UASrpg and T-rich regions was corroborated. Moreover, the promoter occupancy of RPS3 by three transcription factors was confirmed. Taken together, our results further the current understanding of the promoter architecture and trans-elements of the Saccharomyces cerevisiae RPS3 gene.

  3. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  4. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles.

    PubMed

    Krpetić, Zeljka; Saleemi, Samia; Prior, Ian A; Sée, Violaine; Qureshi, Rumana; Brust, Mathias

    2011-06-28

    This paper contributes to the debate on how nanosized objects negotiate membrane barriers inside biological cells. The uptake of peptide-modified gold nanoparticles by HeLa cells has been quantified using atomic emission spectroscopy. The TAT peptide from the HIV virus was singled out as a particularly effective promoter of cellular uptake. The evolution of the intracellular distribution of TAT-modified gold nanoparticles with time has been studied in detail by TEM and systematic image analysis. An unusual trend of particles disappearing from the cytosol and the nucleus and accumulating massively in vesicular bodies was observed. Subsequent release of the particles, both by membrane rupture and by direct transfer across the membrane boundary, was frequently found. Ultimately, near total clearing of particles from the cells occurred. This work provides support for the hypothesis that cell-penetrating peptides can enable small objects to negotiate membrane barriers also in the absence of dedicated transport mechanisms.

  5. Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, G.; Wei, J.; Zheng, Z.; Ye, J.; Zeng, S.

    2014-06-01

    The early diagnosis of intestinal metaplasia (IM) in the stomach together with effective therapeutic interventions is crucial to reducing the mortality-rates of the patients associated with gastric cancer. However, it is challenging during conventional white-light endoscopy, and histological analysis remains the ‘gold standard’ for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), for the identification of IM in the stomach. It was found that multiphoton imaging provides cellular and subcellular details to the identification of IM from normal gastric tissues. In particular, there is significant difference in the population density of goblet cells between normal and IM gastric tissues, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early gastric lesions. To our knowledge, this is the first demonstration of the potential of MPM for the identification of IM.

  6. Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study

    PubMed Central

    Ali, H. Raza; Chlon, Leon; Pharoah, Paul D. P.; Caldas, Carlos

    2016-01-01

    Background Immune infiltration of breast tumours is associated with clinical outcome. However, past work has not accounted for the diversity of functionally distinct cell types that make up the immune response. The aim of this study was to determine whether differences in the cellular composition of the immune infiltrate in breast tumours influence survival and treatment response, and whether these effects differ by molecular subtype. Methods and Findings We applied an established computational approach (CIBERSORT) to bulk gene expression profiles of almost 11,000 tumours to infer the proportions of 22 subsets of immune cells. We investigated associations between each cell type and survival and response to chemotherapy, modelling cellular proportions as quartiles. We found that tumours with little or no immune infiltration were associated with different survival patterns according to oestrogen receptor (ER) status. In ER-negative disease, tumours lacking immune infiltration were associated with the poorest prognosis, whereas in ER-positive disease, they were associated with intermediate prognosis. Of the cell subsets investigated, T regulatory cells and M0 and M2 macrophages emerged as the most strongly associated with poor outcome, regardless of ER status. Among ER-negative tumours, CD8+ T cells (hazard ratio [HR] = 0.89, 95% CI 0.80–0.98; p = 0.02) and activated memory T cells (HR 0.88, 95% CI 0.80–0.97; p = 0.01) were associated with favourable outcome. T follicular helper cells (odds ratio [OR] = 1.34, 95% CI 1.14–1.57; p < 0.001) and memory B cells (OR = 1.18, 95% CI 1.0–1.39; p = 0.04) were associated with pathological complete response to neoadjuvant chemotherapy in ER-negative disease, suggesting a role for humoral immunity in mediating response to cytotoxic therapy. Unsupervised clustering analysis using immune cell proportions revealed eight subgroups of tumours, largely defined by the balance between M0, M1, and M2 macrophages, with distinct survival patterns by ER status and associations with patient age at diagnosis. The main limitations of this study are the use of diverse platforms for measuring gene expression, including some not previously used with CIBERSORT, and the combined analysis of different forms of follow-up across studies. Conclusions Large differences in the cellular composition of the immune infiltrate in breast tumours appear to exist, and these differences are likely to be important determinants of both prognosis and response to treatment. In particular, macrophages emerge as a possible target for novel therapies. Detailed analysis of the cellular immune response in tumours has the potential to enhance clinical prediction and to identify candidates for immunotherapy. PMID:27959923

  7. Reversible elementary cellular automaton with rule number 150 and periodic boundary conditions over 𝔽p

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, A.; Rodríguez Sánchez, G.

    2015-03-01

    The study of the reversibility of elementary cellular automata with rule number 150 over the finite state set 𝔽p and endowed with periodic boundary conditions is done. The dynamic of such discrete dynamical systems is characterized by means of characteristic circulant matrices, and their analysis allows us to state that the reversibility depends on the number of cells of the cellular space and to explicitly compute the corresponding inverse cellular automata.

  8. Ontological representation, integration, and analysis of LINCS cell line cells and their cellular responses.

    PubMed

    Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun

    2017-12-21

    Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.

  9. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    NASA Astrophysics Data System (ADS)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  10. Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function

    PubMed Central

    Cortés, Claudio R.; McInerney-Leo, Aideen M.; Vogel, Ida; Rondón Galeano, Maria C.; Leo, Paul J.; Harris, Jessica E.; Anderson, Lisa K.; Keith, Patricia A.; Brown, Matthew A.; Ramsing, Mette; Duncan, Emma L.; Zankl, Andreas; Wicking, Carol

    2016-01-01

    Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background. PMID:27094867

  11. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    PubMed

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution.

    PubMed

    Schmidt, Thorsten; Pasternak, Taras; Liu, Kun; Blein, Thomas; Aubry-Hivet, Dorothée; Dovzhenko, Alexander; Duerr, Jasmin; Teale, William; Ditengou, Franck A; Burkhardt, Hans; Ronneberger, Olaf; Palme, Klaus

    2014-03-01

    To achieve a detailed understanding of processes in biological systems, cellular features must be quantified in the three-dimensional (3D) context of cells and organs. We described use of the intrinsic root coordinate system (iRoCS) as a reference model for the root apical meristem of plants. iRoCS enables direct and quantitative comparison between the root tips of plant populations at single-cell resolution. The iRoCS Toolbox automatically fits standardized coordinates to raw 3D image data. It detects nuclei or segments cells, automatically fits the coordinate system, and groups the nuclei/cells into the root's tissue layers. The division status of each nucleus may also be determined. The only manual step required is to mark the quiescent centre. All intermediate outputs may be refined if necessary. The ability to learn the visual appearance of nuclei by example allows the iRoCS Toolbox to be easily adapted to various phenotypes. The iRoCS Toolbox is provided as an open-source software package, licensed under the GNU General Public License, to make it accessible to a broad community. To demonstrate the power of the technique, we measured subtle changes in cell division patterns caused by modified auxin flux within the Arabidopsis thaliana root apical meristem. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar

    2014-01-01

    The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419

  14. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  15. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps

    PubMed Central

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies. PMID:26192618

  16. Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy; Hamilton, Jason; Verbeck, Guido F.

    2014-12-01

    Electrospray mass spectrometry is now a widely used technique for observing cell content of various biological tissues. However, electrospray techniques (liquid chromatography and direct infusion) often involve lysing a group of cells and extracting the biomolecules of interest, rather than a sensitive, individual cell method to observe local chemistry. Presented here is an approach of combining a nanomanipulator workstation with nanospray mass spectrometry, which allows for extraction of a single cell, followed by rapid mass analysis that can provide a detailed metabolic profile. Triacylglycerol content was profiled with this tool coupled to mass spectrometry to investigate heterogeneity between healthy and tumorous tissues as well as lipid droplet containing adipocytes in vitro as proof of concept. This selective approach provides cellular resolution and complements existing bioanalytical techniques with minimal invasion to samples. In addition, the coupling of nanomanipulation and mass spectrometry holds the potential to be used in a great number of applications for individual organelles, diseased tissues, and in vitro cell cultures for observing heterogeneity even amongst cells and organelles of the same tissue.

  17. Analytical workflow profiling gene expression in murine macrophages

    PubMed Central

    Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2015-01-01

    Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305

  18. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    PubMed Central

    Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping

    2012-01-01

    Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708

  19. Fabrication of Carbohydrate Microarrays by Boronate Formation.

    PubMed

    Adak, Avijit K; Lin, Ting-Wei; Li, Ben-Yuan; Lin, Chun-Cheng

    2017-01-01

    The interactions between soluble carbohydrates and/or surface displayed glycans and protein receptors are essential to many biological processes and cellular recognition events. Carbohydrate microarrays provide opportunities for high-throughput quantitative analysis of carbohydrate-protein interactions. Over the past decade, various techniques have been implemented for immobilizing glycans on solid surfaces in a microarray format. Herein, we describe a detailed protocol for fabricating carbohydrate microarrays that capitalizes on the intrinsic reactivity of boronic acid toward carbohydrates to form stable boronate diesters. A large variety of unprotected carbohydrates ranging in structure from simple disaccharides and trisaccharides to considerably more complex human milk and blood group (oligo)saccharides have been covalently immobilized in a single step on glass slides, which were derivatized with high-affinity boronic acid ligands. The immobilized ligands in these microarrays maintain the receptor-binding activities including those of lectins and antibodies according to the structures of their pendant carbohydrates for rapid analysis of a number of carbohydrate-recognition events within 30 h. This method facilitates the direct construction of otherwise difficult to obtain carbohydrate microarrays from underivatized glycans.

  20. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    ERIC Educational Resources Information Center

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…

  1. Analysis and Synthesis of Adaptive Neural Elements and Assemblies

    DTIC Science & Technology

    1992-12-14

    network, a learning rule (activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning , was...activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning, was demonstrated to support many...network, a learning rule (activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning, was

  2. Using Long-Term Time-Lapse Imaging of Mammalian Cell Cycle Progression for Laboratory Instruction and Analysis

    ERIC Educational Resources Information Center

    Hinchcliffe, Edward H.

    2005-01-01

    Cinemicrography--the capture of moving cellular sequences through the microscope--has been influential in revealing the dynamic nature of cellular behavior. One of the more dramatic cellular events is mitosis, the division of sister chromatids into two daughter cells. Mitosis has been extensively studied in a variety of organisms, both…

  3. An Evaluation of the Efficacy of a Laboratory Exercise on Cellular Respiration

    ERIC Educational Resources Information Center

    Scholer, Anne-Marie; Hatton, Mary

    2008-01-01

    This study is an analysis of the effectiveness of a faculty-designed laboratory experience about a difficult topic, cellular respiration. The activity involves a hands-on model of the cellular-respiration process, making use of wooden ball-and-stick chemistry models and small toy trucks on a table top model of the mitochondrion. Students…

  4. Digital image analysis agrees with visual estimates of adult bone marrow trephine biopsy cellularity.

    PubMed

    Hagiya, A S; Etman, A; Siddiqi, I N; Cen, S; Matcuk, G R; Brynes, R K; Salama, M E

    2018-04-01

    Evaluation of cellularity is an essential component of bone marrow trephine biopsy examination. The standard practice is to report the results as visual estimates (VE). Digital image analysis (DIA) offers the promise of more objective measurements of cellularity. Adult bone marrow trephine biopsy sections were assessed for cellularity by VE. Sections were scanned using an Aperio AT2 Scanscope and analyzed using a Cytonuclear (version 1.4) algorithm on halo software. Intraclass correlation (ICC) was used to assess relatedness between VE and DIA, and between MRI and DIA for a separate subset of patients. Trephine biopsy sections from a subset of patients with bone marrow biopsies uninvolved by malignancy were assessed for age-related changes. Interobserver VE agreement was good to excellent. The ICC value was 0.81 for VE and DIA, and 0.50 for MRI and DIA. Linearity studies showed no statistically significant trend for age-related changes in cellularity in our cohort (r = -.29, P = .06). Agreement was good between VE and DIA. It may be possible to use DIA or VE to measure cellularity in the appropriate clinical scenario. The limited sample size precludes similar determinations for MRI calculations. Further studies examining healthy donors are necessary before making definitive conclusions regarding age and cellularity. © 2017 John Wiley & Sons Ltd.

  5. Design and implementation of a novel mechanical testing system for cellular solids.

    PubMed

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  6. Accurate, Streamlined Analysis of mRNA Translation by Sucrose Gradient Fractionation

    PubMed Central

    Aboulhouda, Soufiane; Di Santo, Rachael; Therizols, Gabriel; Weinberg, David

    2017-01-01

    The efficiency with which proteins are produced from mRNA molecules can vary widely across transcripts, cell types, and cellular states. Methods that accurately assay the translational efficiency of mRNAs are critical to gaining a mechanistic understanding of post-transcriptional gene regulation. One way to measure translational efficiency is to determine the number of ribosomes associated with an mRNA molecule, normalized to the length of the coding sequence. The primary method for this analysis of individual mRNAs is sucrose gradient fractionation, which physically separates mRNAs based on the number of bound ribosomes. Here, we describe a streamlined protocol for accurate analysis of mRNA association with ribosomes. Compared to previous protocols, our method incorporates internal controls and improved buffer conditions that together reduce artifacts caused by non-specific mRNA–ribosome interactions. Moreover, our direct-from-fraction qRT-PCR protocol eliminates the need for RNA purification from gradient fractions, which greatly reduces the amount of hands-on time required and facilitates parallel analysis of multiple conditions or gene targets. Additionally, no phenol waste is generated during the procedure. We initially developed the protocol to investigate the translationally repressed state of the HAC1 mRNA in S. cerevisiae, but we also detail adapted procedures for mammalian cell lines and tissues. PMID:29170751

  7. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles

    PubMed Central

    Wheeler, Richard John

    2015-01-01

    Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196

  8. Phaedra, a protocol-driven system for analysis and validation of high-content imaging and flow cytometry.

    PubMed

    Cornelissen, Frans; Cik, Miroslav; Gustin, Emmanuel

    2012-04-01

    High-content screening has brought new dimensions to cellular assays by generating rich data sets that characterize cell populations in great detail and detect subtle phenotypes. To derive relevant, reliable conclusions from these complex data, it is crucial to have informatics tools supporting quality control, data reduction, and data mining. These tools must reconcile the complexity of advanced analysis methods with the user-friendliness demanded by the user community. After review of existing applications, we realized the possibility of adding innovative new analysis options. Phaedra was developed to support workflows for drug screening and target discovery, interact with several laboratory information management systems, and process data generated by a range of techniques including high-content imaging, multicolor flow cytometry, and traditional high-throughput screening assays. The application is modular and flexible, with an interface that can be tuned to specific user roles. It offers user-friendly data visualization and reduction tools for HCS but also integrates Matlab for custom image analysis and the Konstanz Information Miner (KNIME) framework for data mining. Phaedra features efficient JPEG2000 compression and full drill-down functionality from dose-response curves down to individual cells, with exclusion and annotation options, cell classification, statistical quality controls, and reporting.

  9. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development.

    PubMed

    Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich

    2016-06-21

    The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood. The first fungal STRIPAK was described in Sordaria macrospora, which is a well-established model organism used to study the formation of fungal fruiting bodies, three-dimensional organ-like structures. We analyzed STRIPAK subunit PP2Ac1, catalytic subunit 1 of protein phosphatase PP2A, to study the importance of the catalytic activity of this protein during sexual development. The results of our yeast two-hybrid analysis and tandem affinity purification, followed by mass spectrometry, indicate that PP2Ac1 activity connects STRIPAK with other signaling pathways and thus forms a large interconnected signaling network. Copyright © 2016 Beier et al.

  10. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications

    PubMed Central

    Han, Xianlin; Jiang, Xuntian

    2009-01-01

    Sphingolipidomics, a branch of lipidomics, focuses on the large-scale study of the cellular sphingolipidomes. In the current review, two main approaches for the analysis of cellular sphingolipidomes (i.e. LC-MS- or LC-MS/MS-based approach and shotgun lipidomics-based approach) are briefly discussed. Their advantages, some considerations of these methods, and recent applications of these approaches are summarized. It is the authors’ sincere hope that this review article will add to the readers understanding of the advantages and limitations of each developed method for the analysis of a cellular sphingolipidome. PMID:19690629

  11. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    PubMed

    Zhang, Lingling; Hou, Rui; Su, Hailin; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2012-01-01

    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  12. The armadillo repeat region targets ARVCF to cadherin-based cellular junctions.

    PubMed

    Kaufmann, U; Zuppinger, C; Waibler, Z; Rudiger, M; Urbich, C; Martin, B; Jockusch, B M; Eppenberger, H; Starzinski-Powitz, A

    2000-11-01

    The cytoplasmic domain of the transmembrane protein M-cadherin is involved in anchoring cytoskeletal elements to the plasma membrane at cell-cell contact sites. Several members of the armadillo repeat protein family mediate this linkage. We show here that ARVCF, a member of the p120 (ctn) subfamily, is a ligand for the cytoplasmic domain of M-cadherin, and characterize the regions involved in this interaction in detail. Complex formation in an in vivo environment was demonstrated in (1) yeast two-hybrid screens, using a cDNA library from differentiating skeletal muscle and part of the cytoplasmic M-cadherin tail as a bait, and (2) mammalian cells, using a novel experimental system, the MOM recruitment assay. Immunoprecipitation and in vitro binding assays confirmed this interaction. Ectopically expressed EGFP-ARVCF-C11, an N-terminal truncated fragment, targets to junctional structures in epithelial MCF7 cells and cardiomyocytes, where it colocalizes with the respective cadherins, beta-catenin and p120 (ctn). Hence, the N terminus of ARVCF is not required for junctional localization. In contrast, deletion of the four N-terminal armadillo repeats abolishes this ability in cardiomyocytes. Detailed mutational analysis revealed the armadillo repeat region of ARVCF as sufficient and necessary for interaction with the 55 membrane-proximal amino acids of the M-cadherin tail.

  13. Mechanic stress generated by a time-varying electromagnetic field on bone surface.

    PubMed

    Ye, Hui

    2018-03-19

    Bone cells sense mechanical load, which is essential for bone growth and remodeling. In a fracture, this mechanism is compromised. Electromagnetic stimulation has been widely used to assist in bone healing, but the underlying mechanisms are largely unknown. A recent hypothesis suggests that electromagnetic stimulation could influence tissue biomechanics; however, a detailed quantitative understanding of EM-induced biomechanical changes in the bone is unavailable. This paper used a muscle/bone model to study the biomechanics of the bone under EM exposure. Due to the dielectric properties of the muscle/bone interface, a time-varying magnetic field can generate both compressing and shear stresses on the bone surface, where many mechanical sensing cells are available for cellular mechanotransduction. I calculated these stresses and found that the shear stress is significantly greater than the compressing stress. Detailed parametric analysis suggests that both the compressing and shear stresses are dependent on the geometrical and electrical properties of the muscle and the bone. These stresses are also functions of the orientation of the coil and the frequency of the magnetic field. It is speculated that the EM field could apply biomechanical influence to fractured bone, through the fine-tuning of the controllable field parameters. Graphical abstract Mechanic stress on bone surface in a time-varying magnetic field.

  14. The systematic annotation of the three main GPCR families in Reactome.

    PubMed

    Jassal, Bijay; Jupe, Steven; Caudy, Michael; Birney, Ewan; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2010-07-29

    Reactome is an open-source, freely available database of human biological pathways and processes. A major goal of our work is to provide an integrated view of cellular signalling processes that spans from ligand-receptor interactions to molecular readouts at the level of metabolic and transcriptional events. To this end, we have built the first catalogue of all human G protein-coupled receptors (GPCRs) known to bind endogenous or natural ligands. The UniProt database has records for 797 proteins classified as GPCRs and sorted into families A/1, B/2 and C/3 on the basis of amino acid sequence. To these records we have added details from the IUPHAR database and our own manual curation of relevant literature to create reactions in which 563 GPCRs bind ligands and also interact with specific G-proteins to initiate signalling cascades. We believe the remaining 234 GPCRs are true orphans. The Reactome GPCR pathway can be viewed as a detailed interactive diagram and can be exported in many forms. It provides a template for the orthology-based inference of GPCR reactions for diverse model organism species, and can be overlaid with protein-protein interaction and gene expression datasets to facilitate overrepresentation studies and other forms of pathway analysis. Database URL: http://www.reactome.org.

  15. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: Functional divergence of the dilysine ER retrieval motif in plant cells

    USDA-ARS?s Scientific Manuscript database

    Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, t...

  16. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells

    USDA-ARS?s Scientific Manuscript database

    Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, ...

  17. Frozen tissue preparation for high-resolution multiplex histological analyses of human brain specimens.

    PubMed

    Shao, Fangjie; Jiang, Wenhong; Gao, Qingqing; Li, Baizhou; Sun, Chongran; Wang, Qiyuan; Chen, Qin; Sun, Bing; Shen, Hong; Zhu, Keqing; Zhang, Jianmin; Liu, Chong

    2017-10-01

    The availability of a comprehensive tissue library is essential for elucidating the function and pathology of human brains. Considering the irreplaceable status of the formalin-fixation-paraffin-embedding (FFPE) preparation in routine pathology and the advantage of ultra-low temperature to preserve nucleic acids and proteins for multi-omics studies, these methods have become major modalities for the construction of brain tissue libraries. Nevertheless, the use of FFPE and snap-frozen samples is limited in high-resolution histological analyses because the preparation destroys tissue integrity and/or many important cellular markers. To overcome these limitations, we detailed a protocol to prepare and analyze frozen human brain samples that is particularly suitable for high-resolution multiplex immunohistological studies. As an alternative, we offered an optimized procedure to rescue snap-frozen tissues for the same purpose. Importantly, we provided a guideline to construct libraries of frozen tissue with minimal effort, cost and space. Taking advantage of this new tissue preparation modality to nicely preserve the cellular information that was otherwise damaged using conventional methods and to effectively remove tissue autofluorescence, we described the high-resolution landscape of the cellular composition in both lower-grade gliomas and glioblastoma multiforme samples. Our work showcases the great value of fixed frozen tissue in understanding the cellular mechanisms of CNS functions and abnormalities.

  18. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots

    PubMed Central

    Breger, Joyce; Delehanty, James B; Medintz, Igor L

    2015-01-01

    The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379

  19. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter

    2012-10-01

    During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.

  1. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  2. Host responses in human skin after conventional intradermal injection or microneedle administration of virus-like-particle influenza vaccine.

    PubMed

    Pearton, Marc; Pirri, Daniela; Kang, Sang-Moo; Compans, Richard W; Birchall, James C

    2013-10-01

    Miniaturized microneedle devices are being developed for painlessly targeting vaccines to the immune cell populations in skin. As skin immunization studies are generally restricted to animal models however, where skin architecture and immunity is greatly different to human, surprisingly little is known about the local human response to intradermal (ID) vaccines. Here surgically excised human skin is used to explore for the first time the complex molecular and cellular host responses to a candidate influenza vaccine comprising nanoparticulate virus-like-particles (VLPs), administered via conventional hypodermic injection or reduced scale microneedles. Responses at the molecular level are determined by microarray analysis (47,296 discrete transcripts) and validated by quantitative PCR (96 genes). Cellular response is probed through monitoring migration of dendritic cells in viable skin tissue. Gene expression mapping, ontological analysis, and qPCR reveal up-regulation of a host of genes responsible for key immunomodulatory processes and host viral response, including cell recruitment, activation, migration, and T cell interaction following both ID and microneedle injection of VLPs; the response from the microneedles being more subtle. Significant morphological and migratory changes to skin dendritic cells are also apparent following microneedle VLP delivery. This is the first study displaying the global, multifaceted immunological events that occur at the site of vaccine deposition in human skin and will subsequently influence the degree and nature of innate and adaptive immune responses. An increased understanding of the detailed similarities and differences in response against antigen administered via different delivery modalities will inform the development of improved vaccines and vaccine delivery systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury.

    PubMed

    Wink, Steven; Hiemstra, Steven W; Huppelschoten, Suzanne; Klip, Janna E; van de Water, Bob

    2018-05-01

    Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.

  4. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma.

    PubMed

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-10-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.

  5. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

    PubMed Central

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-01-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637

  6. High-purity flow sorting of early meiocytes based on DNA analysis of guinea pig spermatogenic cells.

    PubMed

    Rodríguez-Casuriaga, Rosana; Geisinger, Adriana; Santiñaque, Federico F; López-Carro, Beatriz; Folle, Gustavo A

    2011-08-01

    Mammalian spermatogenesis is still nowadays poorly understood at the molecular level. Testis cellular heterogeneity is a major drawback for spermatogenic gene expression studies, especially when research is focused on stages that are usually very short and poorly represented at the cellular level such as initial meiotic prophase I (i.e., leptotene [L] and zygotene [Z]). Presumably, genes whose products are involved in critical meiotic events such as alignment, pairing and recombination of homologous chromosomes are expressed during the short stages of early meiotic prophase. Aiming to characterize mammalian early meiotic gene expression, we have found the guinea pig (Cavia porcellus) as an especially attractive model. A detailed analysis of its first spermatogenic wave by flow cytometry (FCM) and optical microscopy showed that guinea pig testes exhibit a higher representation of early meiotic stages compared to other studied rodents, partly because of their longer span, and also as a result of the increased number of cells entering meiosis. Moreover, we have found that adult guinea pig testes exhibit a peculiar 4C DNA content profile, with a bimodal peak for L/Z and P spermatocytes that is absent in other rodents. Besides, we show that this unusual 4C peak allows the separation by FCM of highly pure L/Z spermatocyte populations aside from pachytene ones, even from adult individuals. To our knowledge, this is the first report on an accurate and suitable method for highly pure early meiotic prophase cell isolation from adult mammals, and thus sets an interesting approach for gene expression studies aiming at a deeper understanding of the molecular groundwork underlying male gamete production. Copyright © 2011 International Society for Advancement of Cytometry.

  7. Poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation.

    PubMed

    Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin

    2018-04-11

    Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.

  8. Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial.

    PubMed

    Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram

    2018-02-01

    The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.

  9. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  10. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity.

    PubMed

    Weber, Joerg R; Tuomanen, Elaine I

    2007-03-01

    Bacterial meningitis is still an important infectious disease causing death and disability. Invasive bacterial infections of the CNS generate some of the most powerful inflammatory responses known in medicine. Although the components of bacterial cell surfaces are now chemically defined in exquisite detail and the interaction with several receptor pathways has been discovered, it is only very recently that studies combining these advanced biochemical and cell biological tools have been done. Additional to the immunological response direct bacterial toxicity has been identified as an important contributor to neuronal damage. A detailed understanding of the complex interaction of bacterial toxicity and host response may generate opportunities for innovative and specific neuroprotective therapies.

  11. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.

  12. Automated Cellient(™) cytoblocks: better, stronger, faster?

    PubMed

    Prendeville, S; Brosnan, T; Browne, T J; McCarthy, J

    2014-12-01

    Cytoblocks (CBs), or cell blocks, provide additional morphological detail and a platform for immunocytochemistry (ICC) in cytopathology. The Cellient(™) system produces CBs in 45 minutes using methanol fixation, compared with traditional CBs, which require overnight formalin fixation. This study compares Cellient and traditional CB methods in terms of cellularity, morphology and immunoreactivity, evaluates the potential to add formalin fixation to the Cellient method for ICC studies and determines the optimal sectioning depth for maximal cellularity in Cellient CBs. One hundred and sixty CBs were prepared from 40 cytology samples (32 malignant, eight benign) using four processing methods: (A) traditional; (B) Cellient (methanol fixation); (C) Cellient using additional formalin fixation for 30 minutes; (D) Cellient using additional formalin fixation for 60 minutes. Haematoxylin and eosin-stained sections were assessed for cellularity and morphology. ICC was assessed on 14 cases with a panel of antibodies. Three additional Cellient samples were serially sectioned to determine the optimal sectioning depth. Scoring was performed by two independent, blinded reviewers. For malignant cases, morphology was superior with Cellient relative to traditional CBs (P < 0.001). Cellularity was comparable across all methods. ICC was excellent in all groups and the addition of formalin at any stage during the Cellient process did not influence the staining quality. Serial sectioning through Cellient CBs showed optimum cellularity at 30-40 μm with at least 27 sections obtainable. Cellient CBs provide superior morphology to traditional CBs and, if required, formalin fixation may be added to the Cellient process for ICC. Optimal Cellient CB cellularity is achieved at 30-40 μm, which will impact on the handling of cases in daily practice. © 2014 John Wiley & Sons Ltd.

  13. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124

  14. Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process

    PubMed Central

    Murphy, John R.

    2011-01-01

    Research on diphtheria and anthrax toxins over the past three decades has culminated in a detailed understanding of their structure function relationships (e.g., catalytic (C), transmembrane (T), and receptor binding (R) domains), as well as the identification of their eukaryotic cell surface receptor, an understanding of the molecular events leading to the receptor-mediated internalization of the toxin into an endosomal compartment, and the pH triggered conformational changes required for pore formation in the vesicle membrane. Recently, a major research effort has been focused on the development of a detailed understanding of the molecular interactions between each of these toxins and eukaryotic cell factors that play an essential role in the efficient translocation of their respective catalytic domains through the trans-endosomal vesicle membrane pore and delivery into the cell cytosol. In this review, I shall focus on recent findings that have led to a more detailed understanding of the mechanism by which the diphtheria toxin catalytic domain is delivered to the eukaryotic cell cytosol. While much work remains, it is becoming increasingly clear that the entry process is facilitated by specific interactions with a number of cellular factors in an ordered sequential fashion. In addition, since diphtheria, anthrax lethal factor and anthrax edema factor all carry multiple coatomer I complex binding motifs and COPI complex has been shown to play an essential role in entry process, it is likely that the initial steps in catalytic domain entry of these divergent toxins follow a common mechanism. PMID:22069710

  15. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-05-01

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  16. T Cell Cosignaling Molecules in Transplantation.

    PubMed

    Ford, Mandy L

    2016-05-17

    The ultimate outcome of alloreactivity versus tolerance following transplantation is potently influenced by the constellation of cosignaling molecules expressed by immune cells during priming with alloantigen, and the net sum of costimulatory and coinhibitory signals transmitted via ligation of these molecules. Intense investigation over the last two decades has yielded a detailed understanding of the kinetics, cellular distribution, and intracellular signaling networks of cosignaling molecules such as the CD28, TNF, and TIM families of receptors in alloimmunity. More recent work has better defined the cellular and molecular mechanisms by which engagement of cosignaling networks serve to either dampen or augment alloimmunity. These findings will likely aid in the rational development of novel immunomodulatory strategies to prolong graft survival and improve outcomes following transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Detection of ovarian matrix metalloproteinase mRNAs by in situ hybridization.

    PubMed

    Rosewell, Katherine L; Curry, Thomas E

    2009-01-01

    In situ hybridization represents a powerful technique to localize DNA or RNA of interest at the chromosomal or cellular level. In endocrine tissues composed of diverse and varied cell types, in situ hybridization has allowed the identification of specific cells responsible for the expression of genes controlling the function of the tissue. Our laboratory has routinely used this approach to understand the cellular expression of genes associated with the growth of the ovarian follicle, rupture of the follicle, and transformation of the ruptured follicle into the corpus luteum. The current study outlines the procedural details of in situ detection of mRNA in tissues and illustrates the utility of this approach in identifying the ovarian cells expressing the matrix metalloproteinases and their endogenous inhibitors, the TIMPs, in the human ovary.

  18. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examplesmore » to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.« less

  19. The role of TREX in gene expression and disease

    PubMed Central

    Heath, Catherine G.; Viphakone, Nicolas; Wilson, Stuart A.

    2016-01-01

    TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems. PMID:27679854

  20. Age-related hearing impairment and the triad of acquired hearing loss

    PubMed Central

    Yang, Chao-Hui; Schrepfer, Thomas; Schacht, Jochen

    2015-01-01

    Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise. PMID:26283913

  1. Revealing fine microstructural morphology in the living human retina using Optical Coherence Tomography with pancorrection

    NASA Astrophysics Data System (ADS)

    Torti, C.; Považay, B.; Hofer, B.; Unterhuber, A.; Hermann, B.; Drexler, W.

    2008-09-01

    Ultra-high speed optical coherence tomography employing an ultra-broadband light source has been combined with adaptive optics utilizing a single high stroke deformable mirror and chromatic aberration compensation. The reduction of motion artefacts, geometric and chromatic aberrations (pancorrection) permits to achieve an isotropic resolution of 2-3 μm in the human eye. The performance of this non-invasive imaging modality enables to resolve cellular structures including cone photoreceptors, nerve fibre bundles and collagenous plates of the lamina cribrosa, and retinal pigment epithelial (RPE) cells in the human retina in vivo with superior detail. Alterations of cellular morphology due to cone degeneration in a colour-blind subject are investigated in ultra-high resolution with selective depth sectioning for the first time.

  2. Non-contact full-field optical coherence tomography: a novel tool for in vivo imaging of the human cornea (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mazlin, Viacheslav; Dalimier, Eugénie; Grieve, Katharine F.; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    According to the World Health Organization (WHO), corneal diseases alongside with cataract and retinal diseases are major causes of blindness worldwide. For the 95.5% of corneal blindness cases, prevention or rehabilitation could have been possible without negative consequences for vision, provided that disease is diagnosed early. However, diagnostics at the early stage requires cellular-level resolution, which is not achieved with routinely used Slit-lamp and OCT instruments. Confocal microscopy allows examination of the cornea at a resolution approaching histological detail, however requires contact with a patient's eye. The recently developed full-field OCT technique, in which 2D en face tangential optical slices are directly recorded on a camera, was successfully applied for ex vivo eye imaging. However, in vivo human eye imaging has not been demonstrated yet. Here we present a novel non-contact full-field OCT system, which is capable of imaging in air and, therefore, shows potential for in vivo cornea imaging in patients. The first cellular-level resolution ex vivo images of cornea, obtained in a completely non-contact way, were demonstrated. We were able to scan through the entire cornea (400 µm) and resolve epithelium, Bowman's layer, stroma and endothelium. FFOCT images of the human cornea in vivo were obtained for the first time. The epithelium structures and stromal keratocyte cells were distinguishable. Both ex vivo and in vivo images were acquired with a large (1.26 mm x 1.26 mm) field of view. Cellular details in obtained images make this device a promising candidate for realization of high-resolution in vivo cornea imaging.

  3. Usefulness of Cellular Analysis of Bronchoalveolar Lavage Fluid for Predicting the Etiology of Pneumonia in Critically Ill Patients

    PubMed Central

    Hong, Hyo-Lim; Kim, Sung-Han; Huh, Jin Won; Sung, Heungsup; Lee, Sang-Oh; Kim, Mi-Na; Jeong, Jin-Yong; Lim, Chae-Man; Kim, Yang Soo; Woo, Jun Hee; Koh, Younsuck

    2014-01-01

    Background The usefulness of bronchoalveolar lavage (BAL) fluid cellular analysis in pneumonia has not been adequately evaluated. This study investigated the ability of cellular analysis of BAL fluid to differentially diagnose bacterial pneumonia from viral pneumonia in adult patients who are admitted to intensive care unit. Methods BAL fluid cellular analysis was evaluated in 47 adult patients who underwent bronchoscopic BAL following less than 24 hours of antimicrobial agent exposure. The abilities of BAL fluid total white blood cell (WBC) counts and differential cell counts to differentiate between bacterial and viral pneumonia were evaluated using receiver operating characteristic (ROC) curve analysis. Results Bacterial pneumonia (n = 24) and viral pneumonia (n = 23) were frequently associated with neutrophilic pleocytosis in BAL fluid. BAL fluid median total WBC count (2,815/µL vs. 300/µL, P<0.001) and percentage of neutrophils (80.5% vs. 54.0%, P = 0.02) were significantly higher in the bacterial pneumonia group than in the viral pneumonia group. In ROC curve analysis, BAL fluid total WBC count showed the best discrimination, with an area under the curve of 0.855 (95% CI, 0.750–0.960). BAL fluid total WBC count ≥510/µL had a sensitivity of 83.3%, specificity of 78.3%, positive likelihood ratio (PLR) of 3.83, and negative likelihood ratio (NLR) of 0.21. When analyzed in combination with serum procalcitonin or C-reactive protein, sensitivity was 95.8%, specificity was 95.7%, PLR was 8.63, and NLR was 0.07. BAL fluid total WBC count ≥510/µL was an independent predictor of bacterial pneumonia with an adjusted odds ratio of 13.5 in multiple logistic regression analysis. Conclusions Cellular analysis of BAL fluid can aid early differential diagnosis of bacterial pneumonia from viral pneumonia in critically ill patients. PMID:24824328

  4. New Frontiers and Challenges for Single-Cell Electrochemical Analysis.

    PubMed

    Zhang, Jingjing; Zhou, Junyu; Pan, Rongrong; Jiang, Dechen; Burgess, James D; Chen, Hong-Yuan

    2018-02-23

    Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.

  5. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection

    PubMed Central

    Swart, A. Leoni; Harrison, Christopher F.; Eichinger, Ludwig; Steinert, Michael; Hilbi, Hubert

    2018-01-01

    Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of “effector” proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors. PMID:29552544

  6. Long-term microfluidic glucose and lactate monitoring in hepatic cell culture

    PubMed Central

    Prill, Sebastian; Jaeger, Magnus S.; Duschl, Claus

    2014-01-01

    Monitoring cellular bioenergetic pathways provides the basis for a detailed understanding of the physiological state of a cell culture. Therefore, it is widely used as a tool amongst others in the field of in vitro toxicology. The resulting metabolic information allows for performing in vitro toxicology assays for assessing drug-induced toxicity. In this study, we demonstrate the value of a microsystem for the fully automated detection of drug-induced changes in cellular viability by continuous monitoring of the metabolic activity over several days. To this end, glucose consumption and lactate secretion of a hepatic tumor cell line were continuously measured using microfluidically addressed electrochemical sensors. Adapting enzyme-based electrochemical flat-plate sensors, originally designed for human whole-blood samples, to their use with cell culture medium supersedes the common manual and laborious colorimetric assays and off-line operated external measurement systems. The cells were exposed to different concentrations of the mitochondrial inhibitor rotenone and the cellular response was analyzed by detecting changes in the rates of the glucose and lactate metabolism. Thus, the system provides real-time information on drug-induced liver injury in vitro. PMID:24926387

  7. Molecular and cellular aspects of rhabdovirus entry.

    PubMed

    Albertini, Aurélie A V; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves

    2012-01-01

    Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell.

  8. Molecular and Cellular Aspects of Rhabdovirus Entry

    PubMed Central

    Albertini, Aurélie A. V.; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves

    2012-01-01

    Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell. PMID:22355455

  9. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Expression of different functional isoforms in haematopoiesis.

    PubMed

    Grech, Godfrey; Pollacco, Joel; Portelli, Mark; Sacco, Keith; Baldacchino, Shawn; Grixti, Justine; Saliba, Christian

    2014-01-01

    Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5' untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5' exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.

  11. Review of combined isotopic and optical nanoscopy

    PubMed Central

    Richter, Katharina N.; Rizzoli, Silvio O.; Jähne, Sebastian; Vogts, Angela; Lovric, Jelena

    2017-01-01

    Abstract. Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the “history” of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology. PMID:28466025

  12. DNA methylation in memory formation: Emerging insights

    PubMed Central

    Heyward, Frankie D.; Sweatt, J. David

    2016-01-01

    The establishment of synaptic plasticity and long-term memory requires lasting cellular and molecular modifications that, as a whole, must endure despite the rapid turnover of their constituent parts. Such a molecular feat must be mediated by a stable, self-perpetuating, cellular information storage mechanism. DNA methylation, being the archetypal cellular information storage mechanism, has been heavily implicated as being necessary for stable activity-dependent transcriptional alterations within the central nervous system (CNS). This review details the foundational discoveries from both gene-targeted, as well as whole-genome sequencing, studies that have successfully brought DNA methylation to our attention as a chief regulator of activity- and experience-dependent transcriptional alterations within the CNS. We present a hypothetical framework with which the disparate experimental findings dealing with distinct manipulations of the DNA methylation, and their effect on memory, might be resolved while taking into account the unique impact activity-dependent alterations in DNA methylation potentially have on both memory promoting and memory-suppressing gene expression. And last, we discuss potential avenues for future inquiry into the role of DNA methylation during remote memory formation. PMID:25832671

  13. A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures

    NASA Astrophysics Data System (ADS)

    Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.

    2016-04-01

    Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.

  14. A comparative analysis of electronic and molecular quantum dot cellular automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umamahesvari, H., E-mail: umamaheswarihema@gmail.com, E-mail: ajithavijay1@gmail.com; Ajitha, D., E-mail: umamaheswarihema@gmail.com, E-mail: ajithavijay1@gmail.com

    This paper presents a comparative analysis of electronic quantum-dot cellular automata (EQCA) and Magnetic quantum dot Cellular Automata (MQCA). QCA is a computing paradigm that encodes and processes information by the position of individual electrons. To enhance the high dense and ultra-low power devices, various researches have been actively carried out to find an alternative way to continue and follow Moore’s law, so called “beyond CMOS technology”. There have been several proposals for physically implementing QCA, EQCA and MQCA are the two important QCAs reported so far. This paper provides a comparative study on these two QCAs.

  15. Cellular instability in rapid directional solidification - Bifurcation theory

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Davis, S. H.

    1992-01-01

    Merchant and Davis performed a linear stability analysis on a model for the directional solidification of a dilute binary alloy valid for all speeds. The analysis revealed that nonequilibrium segregation effects modify the Mullins and Sekerka cellular mode, whereas attachment kinetics has no effect on these cells. In this paper, the nonlinear stability of the steady cellular mode is analyzed. A Landau equation is obtained that determines the amplitude of the cells. The Landau coefficient here depends on both nonequilibrium segregation effects and attachment kinetics. This equation gives the ranges of parameters for subcritical bifurcation (jump transition) or supercritical bifurcation (smooth transition) to cells.

  16. Cellular interface morphologies in directional solidification. II - The effect of grain boundaries

    NASA Technical Reports Server (NTRS)

    Ungar, Lyle H.; Brown, Robert A.

    1984-01-01

    A singular perturbation analysis valid for small grain-boundary slopes is used with the one-sided model for solidification to show that grain boundaries introduce imperfections into the symmetry of the developing cellular interfaces which rupture the junction between the family of planar shapes and the bifurcating cellular families. Undulating interfaces are shown to develop first near grain boundaries, and to evolve with decreasing temperature gradient either by a smooth transition from the almost planar family or by a sudden jump to moderate-amplitude cellular forms, depending on the growth rate.

  17. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    NASA Astrophysics Data System (ADS)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  18. Effect of posttranslational modifications on enzyme function and assembly.

    PubMed

    Ryšlavá, Helena; Doubnerová, Veronika; Kavan, Daniel; Vaněk, Ondřej

    2013-10-30

    The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  20. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Structural, evolutionary and genetic analysis of the histidine biosynthetic "core" in the genus Burkholderia.

    PubMed

    Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato

    2009-12-01

    In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.

  2. Shunting inhibitory cellular neural networks with chaotic external inputs

    NASA Astrophysics Data System (ADS)

    Akhmet, M. U.; Fen, M. O.

    2013-06-01

    Taking advantage of external inputs, it is shown that shunting inhibitory cellular neural networks behave chaotically. The analysis is based on the Li-Yorke definition of chaos. Appropriate illustrations which support the theoretical results are depicted.

  3. A data model and database for high-resolution pathology analytical image informatics.

    PubMed

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming increasingly feasible for basic, clinical, and translational research studies to produce thousands of whole-slide images. Systematic analysis of these large datasets requires efficient data management support for representing and indexing results from hundreds of interrelated analyses generating very large volumes of quantifications such as shape and texture and of classifications of the quantified features. We have designed a data model and a database to address the data management requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines. The data model represents virtual slide related image, annotation, markup and feature information. The database supports a wide range of metadata and spatial queries on images, annotations, markups, and features. We currently have three databases running on a Dell PowerEdge T410 server with CentOS 5.5 Linux operating system. The database server is IBM DB2 Enterprise Edition 9.7.2. The set of databases consists of 1) a TMA database containing image analysis results from 4740 cases of breast cancer, with 641 MB storage size; 2) an algorithm validation database, which stores markups and annotations from two segmentation algorithms and two parameter sets on 18 selected slides, with 66 GB storage size; and 3) an in silico brain tumor study database comprising results from 307 TCGA slides, with 365 GB storage size. The latter two databases also contain human-generated annotations and markups for regions and nuclei. Modeling and managing pathology image analysis results in a database provide immediate benefits on the value and usability of data in a research study. The database provides powerful query capabilities, which are otherwise difficult or cumbersome to support by other approaches such as programming languages. Standardized, semantic annotated data representation and interfaces also make it possible to more efficiently share image data and analysis results.

  4. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Kahkashan; Sil, Parames C., E-mail: parames@jcbose.ac.in

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks.more » Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2 mediated antioxidant defense machinery takes place. • Islet cells undergo apoptosis (via ER/mitochondrial dependent/independent pathways). • Curcumin protects pancreatic β-cells from the adverse effects of cellular stress.« less

  5. A liquid chromatography/tandem mass spectrometry assay for the analysis of atomoxetine in human plasma and in vitro cellular samples

    PubMed Central

    Appel, David I.; Brinda, Bryan; Markowitz, John S.; Newcorn, Jeffrey H.; Zhu, Hao-Jie

    2012-01-01

    A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography- tandem mass spectrometry (LC-MS/MS) was developed. This assay represents the first LC-MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3-atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/ml and 10 nM for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3 ng/ml to 900 ng/ml and 10 nM to 10 μM for human plasma and cellular samples, respectively (r2 > 0.999). The intra- and inter-day assay accuracy and precision were evaluated using quality control samples at 3 different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect, and recovery were also successfully demonstrated. The present assay is superior to previously published LC-MS and LC-MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. PMID:22275222

  6. Simulations of Living Cell Origins Using a Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  7. Simulations of living cell origins using a cellular automata model.

    PubMed

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  8. Feasibility of using cellular telephone data to determine the truckshed of intermodal facilities.

    DOT National Transportation Integrated Search

    2010-03-01

    In order to determine the feasibility of using cellular telephone location data in deriving the geographic extent : (truckshed) from intermodal facilities, this study was conducted to determine the feasibility analysis in three aspects: : technology,...

  9. Cell phone data and travel behavior research: symposium summary report

    DOT National Transportation Integrated Search

    2014-07-01

    This report summarizes the key themes from a symposium held on February 12, 2014, to discuss opportunities and challenges using cellular location data for national travel behavior analysis. Participants discussed the availability of cellular data and...

  10. 78 FR 66929 - Intent To Conduct a Detailed Economic Impact Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... EXPORT-IMPORT BANK Intent To Conduct a Detailed Economic Impact Analysis AGENCY: Policy and... Federal Register notice informing the public of its intent to conduct a detailed economic impact analysis... subject to a detailed economic impact analysis. DATES: The Federal Register notice published on August 5...

  11. Compartmental genomics in living cells revealed by single-cell nanobiopsy.

    PubMed

    Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader

    2014-01-28

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.

  12. Statistical mechanics of two-dimensional shuffled foams: prediction of the correlation between geometry and topology.

    PubMed

    Durand, Marc; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Talebi, Shirin Ataei; Graner, François

    2011-10-14

    We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.

  13. The NIH Library of Integrated Network-Based Cellular Signatures (LINCS) Program | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    By generating and making public data that indicates how cells respond to various genetic and environmental stressors, the LINCS project will help us gain a more detailed understanding of cell pathways and aid efforts to develop therapies that might restore perturbed pathways and networks to their normal states. The LINCS website is a source of information for the research community and general public about the LINCS project. This website along with the LINCS Data Portal contains details about the assays, cell types, and perturbagens that are currently part of the library, as well as links to participating sites, data releases from the sites, and software that can be used for analyzing the data.

  14. Robust imaging and gene delivery to study human lymphoblastoid cell lines.

    PubMed

    Jolly, Lachlan A; Sun, Ying; Carroll, Renée; Homan, Claire C; Gecz, Jozef

    2018-06-20

    Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.

  15. Celastrol reverses palmitic acid (PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA.

    PubMed

    Zhang, Xue; Wang, Ying; Ge, Hui-Ya; Gu, Yi-Jun; Cao, Fan-Fan; Yang, Chun-Xin; Uzan, Georges; Peng, Bin; Zhang, Deng-Hai

    2018-04-18

    Elevated plasma statured fatty acids (FFAs) cause TLR4/MD2 activation-dependent inflammation and insulin tolerance, which account for the occurrence and development of obesity. It has been confirmed that statured palmitic acid (PA) (the most abundant FFA) could bind MD2 to cause cellular inflammation. The natural compound celastrol could improve obesity, which is suggested via inhibiting inflammation, yet the detailed mechanism for celastrol is still unclear. As celastrol is reported to directly target MD2, we thought disrupting the binding between FFAs and MD2 might be one of the ways for celastrol to inhibit FFAs-caused inflammation and insulin resistance. In this study, we found evidence to support our hypothesis: celastrol could reverse PA-caused TLR4/MD2 activation-dependent insulin resistance, as determined by glucose-lowering ability, cellular glucose uptake, insulin action-related proteins and TLR4/MD2/NF-κB activation. Bioinformatics and cellular experiments showed that both celastrol and PA could bind MD2, and that celastrol could expel PA from cells. Finally, celastrol could reverse high fat diet caused hyperglycemia and obesity, and liver NF-kB activations. Taking together, we proved that celastrol could reverses PA-caused TLR4-MD2 activation-dependent insulin resistance via disrupting PA binding to MD2. © 2018 Wiley Periodicals, Inc.

  16. AAA+ Machines of Protein Destruction in Mycobacteria.

    PubMed

    Alhuwaider, Adnan Ali H; Dougan, David A

    2017-01-01

    The bacterial cytosol is a complex mixture of macromolecules (proteins, DNA, and RNA), which collectively are responsible for an enormous array of cellular tasks. Proteins are central to most, if not all, of these tasks and as such their maintenance (commonly referred to as protein homeostasis or proteostasis) is vital for cell survival during normal and stressful conditions. The two key aspects of protein homeostasis are, (i) the correct folding and assembly of proteins (coupled with their delivery to the correct cellular location) and (ii) the timely removal of unwanted or damaged proteins from the cell, which are performed by molecular chaperones and proteases, respectively. A major class of proteins that contribute to both of these tasks are the AAA+ (ATPases associated with a variety of cellular activities) protein superfamily. Although much is known about the structure of these machines and how they function in the model Gram-negative bacterium Escherichia coli , we are only just beginning to discover the molecular details of these machines and how they function in mycobacteria. Here we review the different AAA+ machines, that contribute to proteostasis in mycobacteria. Primarily we will focus on the recent advances in the structure and function of AAA+ proteases, the substrates they recognize and the cellular pathways they control. Finally, we will discuss the recent developments related to these machines as novel drug targets.

  17. Analysis of the Cellular Stress Response During Ebola Virus Infection by Immunofluorescence.

    PubMed

    Nelson, Emily V; Schmidt, Kristina M

    2017-01-01

    In this chapter, the use of immunofluorescence analysis as a tool to examine stress granule (SG) formation in Ebola virus (EBOV)-infected cells is described. The following protocol focuses on the process of inducing and analyzing the cellular stress response, including treatment of cells with inducers and inhibitors of the SG formation, and also describes EBOV infection, DNA transfection, and the usage of different cell lines.

  18. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  19. Cellular Electron Cryotomography: Toward Structural Biology In Situ.

    PubMed

    Oikonomou, Catherine M; Jensen, Grant J

    2017-06-20

    Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.

  20. Reducing radiation-induced gastrointestinal toxicity — the role of the PHD/HIF axis

    PubMed Central

    Olcina, Monica M.; Giaccia, Amato J.

    2016-01-01

    Radiotherapy is an effective treatment strategy for cancer, but a significant proportion of patients experience radiation-induced toxicity due to damage to normal tissue in the irradiation field. The use of chemical or biological approaches aimed at reducing or preventing normal tissue toxicity induced by radiotherapy is a long-held goal. Hypoxia-inducible factors (HIFs) regulate the production of factors that may protect several cellular compartments affected by radiation-induced toxicity. Pharmacological inhibitors of prolyl hydroxylase domain–containing enzymes (PHDs), which result in stabilization of HIFs, have recently been proposed as a new class of radioprotectors. In this review, radiation-induced toxicity in the gastrointestinal (GI) tract and the main cellular compartments studied in this context will be discussed. The effects of PHD inhibition on GI radioprotection will be described in detail. PMID:27548524

  1. A Cellular Automaton model for pedestrian counterflow with swapping

    NASA Astrophysics Data System (ADS)

    Tao, Y. Z.; Dong, L. Y.

    2017-06-01

    In this paper, we propose a new floor field Cellular Automaton (CA) model with considering the swapping behaviors of pedestrians. The neighboring pedestrians in opposite directions take swapping in a probability decided by the linear density of pedestrian flow. The swapping which happens simultaneously with the normal movement is introduced to eliminate the gridlock in low density region. Numerical results show that the fundamental diagram is in good agreement with the measured data. Then the model is applied to investigate the counterflow and four typical states such as free flow, lane, intermediate and congestion states are found. More attention is paid on the intermediate state which lane-formation and local congestions switch in an irregular manner. The swapping plays a vital role in reducing the gridlock. Furthermore, the influence of the corridor size and individual's eyesight on counterflow are discussed in detail.

  2. Genetic heterogeneity in wild isolates of cellular slime mold social groups.

    PubMed

    Sathe, Santosh; Kaushik, Sonia; Lalremruata, Albert; Aggarwal, Ramesh K; Cavender, James C; Nanjundiah, Vidyanand

    2010-07-01

    This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal.

  3. Understanding and targeting a novel plant viral proteinase/substrate interaction. Final report, July 1, 1989--June 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, W.

    1995-10-01

    The past 3 years of funding have focused our efforts on trying to understand the molecular basis of a unique substrate interaction displayed by a viral proteinase. We have made good progress and during this funding period we have made four contributions to the scientific literature and have developed the application of the proteinase in the expression and purification of recombinant fusion proteins. A comprehensive review of virus-encoded proteinases, written during the funding period, emphazing the tremendous similarity of viral proteinases with their cellular counterparts and at the same time detail the unique characteristics which permit them to function inmore » a cellular environment. The focus of the research effort was the tobacco etch virus (TEV) 27kDa NIa proteinase.« less

  4. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors

    PubMed Central

    Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.

    2016-01-01

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297

  5. Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.

    PubMed

    Holland, Ashling

    2018-01-01

    Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.

  6. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    PubMed Central

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  7. Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

    PubMed Central

    Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K

    2014-01-01

    The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840

  8. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    PubMed

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  9. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  10. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography.

    PubMed

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  11. RAPTOR controls developmental growth transitions by altering the hormonal and metabolic balance.

    PubMed

    Salem, Mohamed A; Li, Yan; Bajdzienko, Krzysztof; Fisahn, Joachim; Watanabe, Mutsumi; Hoefgen, Rainer; Schöttler, Mark Aurel; Giavalisco, Patrick

    2018-04-23

    Vegetative growth requires the systemic coordination of numerous cellular processes, which are controlled by regulatory proteins that monitor extra- and intra-cellular cues and translate them into growth decisions. In eukaryotes, one of the central factors regulating growth is the Ser/Thr protein kinase Target of Rapamycin (TOR), which forms complexes with regulatory proteins. To understand the function of one such regulatory protein, Regulatory-Associated Protein of TOR 1B (RAPTOR1B) in plants, we analyzed the effect of raptor1b mutations on growth and physiology in Arabidopsis thaliana by detailed phenotyping, metabolomic, lipidomic, and proteomic analysis. Mutation of RAPTR1B resulted in a strong reduction of TOR kinase activity, leading to massive changes in central carbon and nitrogen metabolism, accumulation of excess starch, and induction of autophagy. These shifts led to a significant, reduction of plant growth that occurred non-linearly during developmental stage transtions.. This phenotype was accompanied by changes in cell morphology and tissue anatomy. In contrast to previous studies in rice, we found that the Arabidopsis raptor1b mutation did not affect chloroplast development or photosynthetic electron transport efficiency; however, it resulted in decreased CO2 assimilation rate and increased stomatal conductance. The raptor1b mutants also had reduced abscisic acid levels. Surprisingly, ABA feeding experiments resulted in partial complementation of the growth phenotypes, indicating the tight interaction between TOR function and hormone synthesis and signaling in plants. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  12. Surface active stabilizer Tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristl, Julijana; Teskac, Karmen; Milek, Miha

    Solid lipid nanoparticles (SLN) have been praised for their advantageous drug delivery properties such as biocompatibility, controlled release and passive drug targeting. However, the cytotoxicity of SLN and their ingredients, especially over a longer time period, has not been investigated in detail. We examined the critical issues regarding the use of a surface active stabilizer Tyloxapol (Tyl) for the preparation of solid lipid particles (SLP) and their effects on cellular functions and viability. SLP composed of behenate, phospholipids and a stabilizer, Tyloxapol or Lutrol (Lut), were prepared by the lipid melt method, labeled with a fluorescent dye and tested onmore » Jurkat or HEK293 cells. The nano-sized particles were rapidly internalized and exhibited cytoplasmic localization. Incubation of cells with SLP-Tyl resulted in a dose- and time-dependent cytostatic effect, and also caused moderate and delayed cytotoxicity. Tyloxapol solution or SLP-Tyl dispersion caused the detachment of HEK293 cells, a decrease in cell proliferation and alterations in cellular morphology. Cell cycle analysis revealed that, while the unfavourable effects of SLP-Tyl and Tyloxapol solution are similar initially, longer incubation results in partial recovery of cells incubated with the dispersion of SLP-Tyl, whereas the presence of Tyloxapol solution induces apoptotic cell death. These findings indicate that Tyloxapol is an unfavourable stabilizer of SLP used for intracellular delivery and reinforce the role of stabilizers in a design of SLP with minimal cytotoxic properties.« less

  13. Mechanical perturbation control of cardiac alternans

    NASA Astrophysics Data System (ADS)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  14. A Proteomic Study of Brassinosteroid Response in Arabidopsis

    PubMed Central

    Deng, Zhiping; Zhang, Xin; Tang, Wenqiang; Oses-Prieto, Juan A; Suzuki, Nagi; Gendron, Joshua M; Chen, Huanjing; Guan, Shenheng; Chalkley, Robert J.; Peterman, T. Kaye; Burlingame, Alma L.; Wang, Zhi-Yong

    2010-01-01

    Summary The plant steroid hormones brassinosteroids (BRs) play an important role in a wide range of developmental and physiological processes. How BR signaling regulates diverse processes remains unclear. To understand the molecular details of BR responses, we have performed a proteomic study of BR-regulated proteins in Arabidopsis using two-dimensional difference gel electrophoresis (2-D DIGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 42 BR-regulated proteins, which are predicted to play potential roles in BR regulation of specific cellular processes, such as signaling, cytoskeleton rearrangement, vesicle trafficking, and biosynthesis of hormones and vitamins. Analyses of the BR insensitive mutant bri1-116 and BR hypersensitive mutant bzr1-1D identified 5 proteins (PATL1, PATL2, THI1, AtMDAR3 and NADP-ME2) affected by both BR-treatment and in the mutants, suggesting their importance in BR action. Selected proteins were further studied using insertion knockout mutants or immunoblotting. Interestingly, about 80% of the BR-responsive proteins were not identified in previous microarray studies, and direct comparison between protein- and RNA changes in BR mutants revealed a very weak correlation. RT-PCR analysis of selected genes revealed gene-specific kinetic relationships between RNA and protein responses. Furthermore, BR-regulated posttranslational modification of BiP2 protein was detected as spot shifts in 2-D DIGE. This study provides novel insights into the molecular networks that link BR signaling to specific cellular and physiological responses. PMID:17848588

  15. Impact of inflammation on iron stores in involved and non-involved psoriatic skin

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Ynsa, M. D.; Alves, L. C.; Teixeira, P.; Ferreira, J.; Filipe, P.

    2015-04-01

    Accumulating evidence supports a role for cellular Fe in cell proliferation, inflammation, and disease tolerance. Psoriasis is a severe inflammatory and hyper proliferative condition of human skin whose aetiology remains poorly understood. Herein, we performed nuclear microscopy techniques to quantify with cellular resolution and high sensitivity the concentration of Fe in lesional (psoriatic plaques) and non-lesional adjacent skin of psoriatic patients. Fe contents were measured across skin depth and along epidermal strata either by quantitatively imaging Fe distribution in regions of interest, or by determining Fe profiles through analysis of sequential points along selected transepts. Both procedures require deconvolution of spectra to project quantitative elemental data through the application of different software codes. Using these approaches a detailed quantitative distribution of Fe was resolved. We show that in both lesional and non-lesional skin, the epidermal profiles of Fe contents showed a peak at the basal layer and that Fe concentration along the basal layer was not uniformly distributed. Typically, Fe levels were significantly higher in epidermal ridges relative to regions above dermal papillae. Lesional skin displayed excess Fe over extended regions above basal layer. In conclusion, we found significantly increased Fe deposits in the epidermis of psoriatic patients, particularly in areas of epidermal hyper proliferation. These findings suggest an important role for Fe in the pathogenesis of psoriasis. They also raise the possibility that manipulation of Fe levels in the skin may become relevant for the clinical management of psoriasis.

  16. Discrimination of Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS

    NASA Astrophysics Data System (ADS)

    Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.

    2018-03-01

    Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.

  17. The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle.

    PubMed

    Carradori, Dario; Barreau, Kristell; Eyer, Joël

    2016-02-01

    Carbocyanines are fluorescent lipophilic cationic dyes used since the early 1980s as neuronal tracers. Several applications of these compounds have been developed thanks to their low cell toxicity, lateral diffusion within the cellular membranes, and good photostability. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate (DiD) is an interesting component of this family because, in addition to the classic carbocyanine properties, it has a longer wavelength compared with its analogues. That makes DiD an excellent carbocyanine for labeling cells and tissues with significant intrinsic fluorescence. Drug encapsulation, drug delivery, and cellular transplantation are also fields using DiD-based systems where having detailed knowledge about its behavior as a single entity is important. Recently, promising studies concerned neural stem cells from the subventricular zone of the lateral ventricle in the brain (their natural niche) and their potential therapeutic use. Here, we show that DiD is able to label these stem cells in vitro and present basilar information concerning its pharmacokinetics, concentrations, and microscope protocols. Moreover, when DiD is injected in vivo in the cerebrospinal fluid present in the lateral ventricle of rat, it also labels stem cells as well as myelinated structures of the caudoputamen. This analysis provides a database to consult when planning experiments concerning DiD and neural stem cells from the subventricular zone. © 2015 Wiley Periodicals, Inc.

  18. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs.

    PubMed

    Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn

    2017-05-22

    The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.

  19. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    PubMed

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  20. β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis

    PubMed Central

    Wang, Yichen; Terrell, Anne M.; Riggio, Brittany A.; Anand, Deepti; Lachke, Salil A.; Duncan, Melinda K.

    2017-01-01

    Purpose Previous research showed that the absence of β1-integrin from the mouse lens after embryonic day (E) 13.5 (β1MLR10) leads to the perinatal apoptosis of lens epithelial cells (LECs) resulting in severe microphthalmia. This study focuses on elucidating the molecular connections between β1-integrin deletion and this phenotype. Methods RNA sequencing was performed to identify differentially regulated genes (DRGs) in β1MLR10 lenses at E15.5. By using bioinformatics analysis and literature searching, Egr1 (early growth response 1) was selected for further study. The activation status of certain signaling pathways (focal adhesion kinase [FAK]/Erk, TGF-β, and Akt signaling) was studied via Western blot and immunohistochemistry. Mice lacking both β1-integrin and Egr1 genes from the lenses were created (β1MLR10/Egr1−/−) to study their relationship. Results RNA sequencing identified 120 DRGs that include candidates involved in the cellular stress response, fibrosis, and/or apoptosis. Egr1 was investigated in detail, as it mediates cellular stress responses in various cell types, and is recognized as an upstream regulator of numerous other β1MLR10 lens DRGs. In β1MLR10 mice, Egr1 levels are elevated shortly after β1-integrin loss from the lens. Further, pErk1/2 and pAkt are elevated in β1MLR10 LECs, thus providing the potential signaling mechanism that causes Egr1 upregulation in the mutant. Indeed, deletion of Egr1 from β1MLR10 lenses partially rescues the microphthalmia phenotype. Conclusions β1-integrin regulates the appropriate levels of Erk1/2 and Akt phosphorylation in LECs, whereas its deficiency results in the overexpression of Egr1, culminating in reduced cell survival. These findings provide insight into the molecular mechanism underlying the microphthalmia observed in β1MLR10 mice. PMID:28763805

  1. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks

    PubMed Central

    Simmons, Alan J.; Scurrah, Cherie’ R.; McKinley, Eliot T.; Herring, Charles A.; Irish, Jonathan M.; Washington, Mary K.; Coffey, Robert J.; Lau, Ken S.

    2016-01-01

    Cellular heterogeneity poses a significant challenge to understanding tissue level phenotypes and confounds conventional bulk analyses. To facilitate the analysis of signaling at the single-cell level in human tissues, we applied mass cytometry using CyTOF (Cytometry Time-of-Flight) to formalin-fixed paraffin-embedded (FFPE) normal and diseased intestinal specimens. We developed and validated a technique called FFPE-DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue), a single-cell approach for characterizing native signaling states from embedded solid tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor α (TNF-α) in intestinal enterocytes, goblet cells and enteroendocrine cells, implicating the role of the downstream RAS-RAF-MEK-ERK signaling pathway in dictating goblet cell identity. In addition, application of FFPE-DISSECT, mass cytometry, and data-driven computational analyses to human colon specimens confirmed reduced differentiation in colorectal cancer (CRC) compared to normal colon, and revealed quantitative increases in inter- and intra-tissue heterogeneity in CRC with regards to the modular regulation of signaling pathways. Specifically, modular co-regulation of the kinases P38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in the proliferative compartment of the normal colon was loss in CRC, as evidenced by their impaired coordination over samplings of single cells in tissue. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, such as microsatellite instability and mutations in KRAS and BRAF, allows rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. FFPE-DISSECT coupled of mass cytometry can be used for deriving cellular landscapes from archived patient samples, beyond CRC, and as a high resolution tool for disease characterization and subtyping. PMID:27729552

  2. Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes.

    PubMed

    Tabaja, Nassif; Yuan, Zhenyu; Oswald, Franz; Kovall, Rhett A

    2017-06-23

    The Notch pathway is a cell-to-cell signaling mechanism that is essential for tissue development and maintenance, and aberrant Notch signaling has been implicated in various cancers, congenital defects, and cardiovascular diseases. Notch signaling activates the expression of target genes, which are regulated by the transcription factor CSL (CBF1/RBP-J, Su(H), Lag-1). CSL interacts with both transcriptional corepressor and coactivator proteins, functioning as both a repressor and activator, respectively. Although Notch activation complexes are relatively well understood at the structural level, less is known about how CSL interacts with corepressors. Recently, a new RBP-J (mammalian CSL ortholog)-interacting protein termed RITA has been identified and shown to export RBP-J out of the nucleus, thereby leading to the down-regulation of Notch target gene expression. However, the molecular details of RBP-J/RITA interactions are unclear. Here, using a combination of biochemical/cellular, structural, and biophysical techniques, we demonstrate that endogenous RBP-J and RITA proteins interact in cells, map the binding regions necessary for RBP-J·RITA complex formation, and determine the X-ray structure of the RBP-J·RITA complex bound to DNA. To validate the structure and glean more insights into function, we tested structure-based RBP-J and RITA mutants with biochemical/cellular assays and isothermal titration calorimetry. Whereas our structural and biophysical studies demonstrate that RITA binds RBP-J similarly to the RAM (RBP-J-associated molecule) domain of Notch, our biochemical and cellular assays suggest that RITA interacts with additional regions in RBP-J. Taken together, these results provide molecular insights into the mechanism of RITA-mediated regulation of Notch signaling, contributing to our understanding of how CSL functions as a transcriptional repressor of Notch target genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Stressing on the nucleolus in cardiovascular disease.

    PubMed

    Hariharan, Nirmala; Sussman, Mark A

    2014-06-01

    The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. © 2013.

  4. Convergence behavior of delayed discrete cellular neural network without periodic coefficients.

    PubMed

    Wang, Jinling; Jiang, Haijun; Hu, Cheng; Ma, Tianlong

    2014-05-01

    In this paper, we study convergence behaviors of delayed discrete cellular neural networks without periodic coefficients. Some sufficient conditions are derived to ensure all solutions of delayed discrete cellular neural network without periodic coefficients converge to a periodic function, by applying mathematical analysis techniques and the properties of inequalities. Finally, some examples showing the effectiveness of the provided criterion are given. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cytomics - importance of multimodal analysis of cell function and proliferation in oncology.

    PubMed

    Tárnok, A; Bocsi, J; Brockhoff, G

    2006-12-01

    Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.

  6. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms.

    PubMed

    Neu, Thomas R; Kuhlicke, Ute

    2017-02-10

    Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems.  Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.

  7. Real-time analysis of endogenous protoporphyrin IX fluorescence from δ-aminolevulinic acid and its derivatives reveals distinct time- and dose-dependent characteristics in vitro

    NASA Astrophysics Data System (ADS)

    Kiesslich, Tobias; Helander, Linda; Illig, Romana; Oberdanner, Christian; Wagner, Andrej; Lettner, Herbert; Jakab, Martin; Plaetzer, Kristjan

    2014-08-01

    Photodynamic therapy (PDT) and photodiagnosis based on the intracellular production of the photosensitizer protoporphyrin IX (PPIX) by administration of its metabolic precursor δ-aminolevulinic acid (ALA) achieved their breakthrough upon the clinical approval of MAL (ALA methyl ester) and HAL (ALA hexyl ester). For newly developed ALA derivatives or application in new tumor types, in vitro determination of PPIX formation involves multiparametric experiments covering variable pro-drug concentrations, medium composition, time points of analysis, and cell type(s). This study uses a fluorescence microplate reader with a built-in temperature and atmosphere control to investigate the high-resolution long-term kinetics (72 h) of cellular PPIX fueled by administration of either ALA, MAL, or HAL for each 10 different concentrations. For simultaneous proliferation correction, A431 cells were stably transfected with green fluorescent protein. The results indicate that the peak PPIX level is a function of both, incubation concentration and period: maximal PPIX is generated with 1 to 2-mM ALA/MAL or 0.125-mM HAL; also, the PPIX peak shifts to longer incubation periods with increasing pro-drug concentrations. The results underline the need for detailed temporal analysis of PPIX formation to optimize ALA (derivative)-based PDT or photodiagnosis and highlight the value of environment-controlled microplate readers for automated in vitro analysis.

  8. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    PubMed

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular immunity, repair, and homeostasis in the rumen epithelium, thereby leading to the switch of concentrate effects from positive to negative with regard to animal production and health. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  10. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.

    PubMed

    Impelluso, Thomas J

    2003-06-01

    An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.

  11. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches

    PubMed Central

    Wagner, Alixandra; Eldawud, Reem; White, Andrew; Agarwal, Sushant; Stueckle, Todd A.; Sierros, Konstantinos A.; Rojanasakul, Yon; Gupta, Rakesh K.; Dinu, Cerasela Zoica

    2016-01-01

    Background Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. Methods Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts’ to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. Results Our analysis of byproducts’ chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. Conclusions Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. General significance The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials. PMID:27612663

  12. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana

    PubMed Central

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke

    2017-01-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173

  13. Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy.

    PubMed

    Chemes, Hector E

    2013-01-01

    Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.

  14. How-to-Do-It: Demonstrating the Effects of Stress on Cellular Membranes.

    ERIC Educational Resources Information Center

    Vodopich, Darrell S.; Moore, Randy

    1989-01-01

    Describes two simple procedures allowing students to experiment with living membranes and to relate their results to fundamental membrane structure. Provides instructions for determining the effects of temperature and organic solvent stress on cellular membranes, and spectrophotometric analysis. (RT)

  15. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Jennifer E.; Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL79, New Orleans, LA 70112; Fewell, Claire

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lowermore » in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.« less

  16. Transparent metal model study of the use of a cellular growth front to form aligned monotectic composite materials

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1988-01-01

    The purpose of this work was to resolve a scientific controversy in the understanding of how second phase particles become aligned during unidirectional growth of a monotectic alloy. A second aspect was to make the first systematic observations of the solidification behavior of a monotectic alloy during cellular growth in-situ. This research provides the first systematic transparent model study of cellular solidification. An interface stability diagram was developed for the planar to cellular transition of the succinonitrile glycerol (SNG) system. A method was developed utilizing Fourier Transform Infrared Spectroscopy which allows quantitative compositional analysis of directionally solidified SNG along the growth axis. To determine the influence of cellular growth front on alignment for directionally solidified monotectic alloys, the planar and cellular growth morphology was observed in-situ for SNG between 8 and 17 percent glycerol and for a range of over two orders of magnitude G/R.

  17. Global analysis of bacterial transcription factors to predict cellular target processes.

    PubMed

    Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer

    2004-03-01

    Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.

  18. Species identification of corynebacteria by cellular fatty acid analysis.

    PubMed

    Van den Velde, Sandra; Lagrou, Katrien; Desmet, Koen; Wauters, Georges; Verhaegen, Jan

    2006-02-01

    We evaluated the usefulness of cellular fatty acid analysis for the identification of corynebacteria. Therefore, 219 well-characterized strains belonging to 21 Corynebacterium species were analyzed with the Sherlock System of MIDI (Newark, DE). Most Corynebacterium species have a qualitative different fatty acid profile. Corynebacterium coyleae (subgroup 1), Corynebacterium riegelii, Corynebacterium simulans, and Corynebacterium imitans differ only quantitatively. Corynebacterium afermentans afermentans and C. coyleae (subgroup 2) have both a similar qualitative and quantitative profile. The commercially available database (CLIN 40, MIDI) identified only one third of the 219 strains correctly at the species level. We created a new database with these 219 strains. This new database was tested with 34 clinical isolates and could identify 29 strains correctly. Strains that remained unidentified were 2 Corynebacterium aurimucosum (not included in our database), 1 C. afermentans afermentans, and 2 Corynebacterium pseudodiphtheriticum. Cellular fatty acid analysis with a self-created database can be used for the identification and differentiation of corynebacteria.

  19. High-Throughput Single-Cell RNA Sequencing and Data Analysis.

    PubMed

    Sagar; Herman, Josip Stefan; Pospisilik, John Andrew; Grün, Dominic

    2018-01-01

    Understanding biological systems at a single cell resolution may reveal several novel insights which remain masked by the conventional population-based techniques providing an average readout of the behavior of cells. Single-cell transcriptome sequencing holds the potential to identify novel cell types and characterize the cellular composition of any organ or tissue in health and disease. Here, we describe a customized high-throughput protocol for single-cell RNA-sequencing (scRNA-seq) combining flow cytometry and a nanoliter-scale robotic system. Since scRNA-seq requires amplification of a low amount of endogenous cellular RNA, leading to substantial technical noise in the dataset, downstream data filtering and analysis require special care. Therefore, we also briefly describe in-house state-of-the-art data analysis algorithms developed to identify cellular subpopulations including rare cell types as well as to derive lineage trees by ordering the identified subpopulations of cells along the inferred differentiation trajectories.

  20. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

Top