Pari, Sangavi; Wang, Inger A; Liu, Haizhou; Wong, Bryan M
2017-03-22
Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO4˙(-)) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO4˙(-) in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO4˙(-)-driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO4˙(-)-driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH(-) additions than for SO4˙(-) reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO4˙(-) and other inorganic species.
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Chen, Jianchao; Li, Linwei; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin
2015-10-01
In this study, the experimental and theoretical studies on the structure of β-artemether are presented. The optimized molecular structure, Mulliken atomic charges, vibrational spectra (IR, Raman and vibrational circular dichroism), and molecular electrostatic potential have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (2d, p) basis set. Reliable vibrational assignments for Artemether have been made on the basis of potential energy distribution (PED). The vibrational circular dichroism (VCD) has been explored by ab initio calculations, and then was used to compare with the experimental VCD. The consistence between them confirmed the absolute configuration of Artemether. In addition, HOMO-LUMO of the title compound as well as thermo-dynamical parameters has illustrated the stability of β-artemether.
Partition Density Functional Theory
NASA Astrophysics Data System (ADS)
Wasserman, Adam
2012-02-01
Partition Density Functional Theory (PDFT) is a formally exact method for obtaining molecular properties from self-consistent calculations on isolated fragments [1,2]. For a given choice of fragmentation, PDFT outputs the (in principle exact) molecular energy and density, as well as fragment densities that sum to the correct molecular density. I describe our progress understanding the behavior of the fragment energies as a function of fragment occupations, derivative discontinuities, practical implementation, and applications of PDFT to small molecules. I also discuss implications for ground-state Density Functional Theory, such as the promise of PDFT to circumvent the delocalization error of approximate density functionals. [4pt] [1] M.H. Cohen and A. Wasserman, J. Phys. Chem. A, 111, 2229(2007).[0pt] [2] P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010).
General performance of density functionals.
Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João
2007-10-25
The density functional theory (DFT) foundations date from the 1920s with the work of Thomas and Fermi, but it was after the work of Hohenberg, Kohn, and Sham in the 1960s, and particularly with the appearance of the B3LYP functional in the early 1990s, that the widespread application of DFT has become a reality. DFT is less computationally demanding than other computational methods with a similar accuracy, being able to include electron correlation in the calculations at a fraction of time of post-Hartree-Fock methodologies. In this review we provide a brief outline of the density functional theory and of the historic development of the field, focusing later on the several types of density functionals currently available, and finishing with a detailed analysis of the performance of DFT across a wide range of chemical properties and system types, reviewed from the most recent benchmarking studies, which encompass several well-established density functionals together with the most recent efforts in the field. Globally, an overall picture of the level of performance of the plethora of currently available density functionals for each chemical property is drawn, with particular attention being dedicated to the relative performance of the popular B3LYP density functional.
Partition density functional theory
NASA Astrophysics Data System (ADS)
Nafziger, Jonathan
Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.
Semiclassics in Density Functional Theory
NASA Astrophysics Data System (ADS)
Lee, Donghyung; Cangi, Attila; Elliott, Peter; Burke, Kieron
2009-03-01
Recently, we published an article [1] about the semiclassical origin of density functional theory. We showed that the density and the kinetic energy density of one dimensional finite systems with hard walls can be expressed in terms of the external potential using the semiclassical Green's function method. Here, we show a uniformization scheme for the semiclassical density and the kinetic energy density for turning-point problems.[1] P. Elliott, D. Lee, A. Cangi, and K. Burke, Phys. Rev. Lett. 100, 256406 (2008).
Density-dependent covariant energy density functionals
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
Density functional theory of complex transition densities.
Ernzerhof, Matthias
2006-09-28
We present an extension of Hohenberg-Kohn-Sham density functional theory to the domain of complex local potentials and complex electron densities. The approach is applicable to resonance (Siegert) [Phys. Rev. 56, 750 (1939)] states and other scattering and transport problems that can be described by a normalized state of a Hamiltonian containing a complex local potential. Such Hamiltonians are non-Hermitian and their eigenvalues are in general complex, the imaginary part being inversely proportional to the lifetime of the system. The one-to-one correspondence between complex local potentials nu and complex electron densities rho is established provided that the complex variables are sufficiently close to real local potentials and densities of nondegenerate ground states. We show that the exchange-correlation functionals, contributing to the complex energy, are determined through analytic continuation of their ground-state-theory counterparts. This implies that the exchange-correlation effects on the lifetime of a resonance are, under appropriate conditions, already determined by the functionals of the ground-state theory.
Density functional theory: Foundations reviewed
NASA Astrophysics Data System (ADS)
Kryachko, Eugene S.; Ludeña, Eduardo V.
2014-11-01
transformation (local-scaling of coordinates proceeds through density transformation) and so, because these functionals are constructed from prototype N-particle wavefunctions, the ensuing density functionals already have built-in N-representability conditions. This theory is presented in great detail with the purpose of illustrating an alternative way to HKS-DFT which could be used to improve the construction of HKS-DFT functionals. Let us clearly indicate, however, that although appealing from a theoretical point of view, the actual application of LS-DFT to large systems has not taken place mostly because of technical difficulties. Thus, our aim in introducing this theory is to foster a better understanding of its foundations with the hope that it may promote a cross-hybridization with the already existing approaches. Also, to complete our previous discussion on symmetry, in particular, spin-symmetry, we discuss this issue from the perspective of LS-DFT. Finally, in Section 6, we discuss dispersion molecular forces emphasizing their relevance to DFT approaches.
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
Whitenack, Daniel L; Wasserman, Adam
2012-04-28
Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.
Wave-function functionals for the density
Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht
2011-11-15
We extend the idea of the constrained-search variational method for the construction of wave-function functionals {psi}[{chi}] of functions {chi}. The search is constrained to those functions {chi} such that {psi}[{chi}] reproduces the density {rho}(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals {psi}[{chi}] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals {psi}[{chi}] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W={Sigma}{sub i}r{sub i}{sup n}, n=-2,-1,1,2, W={Sigma}{sub i}{delta}(r{sub i}) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2){Sigma}{sub i}{nabla}{sub i}{sup 2}, the two-particle operators W={Sigma}{sub n}u{sup n}, n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|, and the energy are accurate. We note that the construction of such functionals {psi}[{chi}] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional {psi}[{chi}] is closer to the true wave function.
Studies in Density Functional Theory
NASA Astrophysics Data System (ADS)
Lee, Hsing
The first chapter begins with reviews of density -functional theory and Green's function method. The connections between these two theories are emphasized. Then we present an approximate model of kinetic energy functional and a possible form of the universal functional is given through an equality obeyed by true ground state densities. Chapter two is aimed at developing a general formulation of the response function in density-functional theory. We first give our definition of response functions in the context of functional derivative. The parameter-differentiation technique employed greatly reduces the efforts for computations. The advantage of this method is its numerical simplicity. It is also the aim of this chapter to elucidate the connections between exchange-correlation potential and the response functions. We show that the computations of response functions in the Kohn-Sham formulation will be exact if the so-called uniqueness assumption we present here is true. Various integral formulas for nonlinear response functions are derived here for the first time. In the third chapter we demonstrate that the exchange -correlation functional given in the form of Pade approximation to gradient expansion approximation, yields excellent results when applied to atoms. The coefficients for the Pade approximation are derived by numerical fits to the exchange and exchange -correlation energies of the atoms He through Ar. The fitted non-local gradient corrections are used in the minimization of the Kohn-Sham functional to solve for the exchange and exchange-correlation total energies. The resulting standard deviations in the calculated total energies are 0.0043 for exchange only and 0.0014 for exchange-correlation. The conjoint relation of kinetic and exchange energy functionals is proposed in the fourth chapter. Supportive evidence is given numerically and theoretically. Test cases are the second-row atoms and a group of small molecules with Becke equivalent form, and
Nitrogenase structure and function relationships by density functional theory.
Harris, Travis V; Szilagyi, Robert K
2011-01-01
Modern density functional theory has tremendous potential with matching popularity in metalloenzymology to reveal the unseen atomic and molecular details of structural data, spectroscopic measurements, and biochemical experiments by providing insights into unobservable structures and states, while also offering theoretical justifications for observed trends and differences. An often untapped potential of this theoretical approach is to bring together diverse experimental structural and reactivity information and allow for these to be critically evaluated at the same level. This is particularly applicable for the tantalizingly complex problem of the structure and molecular mechanism of biological nitrogen fixation. In this chapter we provide a review with extensive practical details of the compilation and evaluation of experimental data for an unbiased and systematic density functional theory analysis that can lead to remarkable new insights about the structure-function relationships of the iron-sulfur clusters of nitrogenase.
Triblock copolymer P104 detailed behavior through a density, sound velocity and DLS study
NASA Astrophysics Data System (ADS)
Bravo-Anaya, L. M.; Fierro-Castro, C.; Rharbi, Y.; Martínez, J. F. A. Soltero
2014-05-01
Pluronic triblock copolymers usually present complex phase behavior depending on the number of PEO and PPO blocks contained in the polymer. They have a great dependence to temperature and concentration, both considered as key factors in the pluronic phase behavior. The evaluation of physicochemical properties such as densimetry and sound velocity, as well as the determination of the size distribution profile of particles of P-104/water in solution allow obtaining a detailed temperature-concentration behavior of the system. In this work we present a study of P104/water behavior through density, ultrasound velocity and dynamic slight scattering (DLS) measurements in a wide range of temperatures. The critical micellar temperature (CMT) and the sphere-to-rod micelle transition temperature (GMT) were determinate as a function of concentration.
Density functionals from deep learning
NASA Astrophysics Data System (ADS)
McMahon, Jeffrey
Density-functional theory is a formally exact description of a many-body quantum system in terms of its density; in practice, however, approximations to the universal density functional (DF) are necessary. Machine learning has recently been proposed as a novel approach to discover such a DF (or components of it). Conventional machine learning algorithms, however, are limited in their ability to process data in their raw form, leading to invariance and/or sensitivity issues. In this presentation, an alternative approach based on deep learning will be demonstrated. Deep learning allows computational models that are capable of discovering intricate structure in large and/or high-dimensional data sets with multiple levels of abstraction, and do not suffer from the aforementioned issues. Results from the application of this approach to the prediction of the kinetic-energy DF of noninteracting electrons will be presented. Using theoretical results from computer science, a connection between the underlying model and the theorems of Hohenberg and Kohn will also be suggested.
Scaled density functional theory correlation functionals.
Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B
2007-10-18
We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.
a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.
NASA Astrophysics Data System (ADS)
Cowan, Mark Timothy
The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds
Simmons, N A; Forte, A M; Boschi, L; Grand, S P
2010-03-30
GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are the
EM-Fold: De novo atomic-detail protein structure determination from medium resolution density maps
Lindert, Steffen; Alexander, Nathan; Wötzel, Nils; Karakaş, Mert; Stewart, Phoebe L.; Meiler, Jens
2012-01-01
Electron density maps of membrane proteins or large macromolecular complexes are frequently only determined at medium resolution between 4 Å and 10 Å, either by cryo-electron microscopy (cryoEM) or X-ray crystallography. In these density maps the general arrangement of secondary structure elements is revealed while their directionality and connectivity remain elusive. We demonstrate that the topology of proteins with up to 250 amino acids can be determined from such density maps when combined with a computational protein folding protocol. Furthermore, we accurately reconstruct atomic detail in loop regions and amino acid side chains not visible in the experimental data. The EM-Fold algorithm assembles the secondary structure elements de novo before atomic detail is added using Rosetta. In a benchmark of 27 proteins the protocol consistently and reproducibly achieves models with RMSD values smaller than 3 Å. PMID:22405005
New algebraic formulation of density functional calculation
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab; Arias, T. A.
2000-06-01
This article addresses a fundamental problem faced by the community employing single-particle ab initio methods: the lack of an effective formalism for the rapid exploration and exchange of new methods. To rectify this, we introduce a new, basis-set independent, matrix-based formulation of generalized density functional theories which reduces the development, implementation, and dissemination of new techniques to the derivation and transcription of a few lines of algebra. This new framework enables us to concisely demystify the inner workings of fully functional, highly efficient modern ab initio codes and to give complete instructions for their construction for calculations employing arbitrary basis sets. Within this framework, we also discuss in full detail a variety of leading-edge techniques, minimization algorithms, and highly efficient computational kernels for use with scalar as well as shared and distributed-memory supercomputer architectures.
Detailed balance, quantum distribution functions, and equilibrium of mixtures
NASA Astrophysics Data System (ADS)
Lawrence, W. E.
1999-12-01
We consider systems of nearly free particles (or quasiparticles) interacting by scattering, emission and absorption of radiation, or by physical or chemical transformation. The condition of detailed balance yields the appropriate distribution function for each species, the equality of their temperatures, and a relation for their chemical potentials associated with particle transformations. For example, antiparticles coexisting in equilibrium have opposite chemical potentials, and excitations above the Bose-Einstein condensate have zero chemical potential. For mixtures of classical ideal gases, the law of mass action is obtained.
Detailed map of a cis-regulatory input function
NASA Astrophysics Data System (ADS)
Setty, Y.; Mayo, A. E.; Surette, M. G.; Alon, U.
2003-06-01
Most genes are regulated by multiple transcription factors that bind specific sites in DNA regulatory regions. These cis-regulatory regions perform a computation: the rate of transcription is a function of the active concentrations of each of the input transcription factors. Here, we used accurate gene expression measurements from living cell cultures, bearing GFP reporters, to map in detail the input function of the classic lacZYA operon of Escherichia coli, as a function of about a hundred combinations of its two inducers, cAMP and isopropyl -D-thiogalactoside (IPTG). We found an unexpectedly intricate function with four plateau levels and four thresholds. This result compares well with a mathematical model of the binding of the regulatory proteins cAMP receptor protein (CRP) and LacI to the lac regulatory region. The model is also used to demonstrate that with few mutations, the same region could encode much purer AND-like or even OR-like functions. This possibility means that the wild-type region is selected to perform an elaborate computation in setting the transcription rate. The present approach can be generally used to map the input functions of other genes.
Toward Mapping the Detailed Density Structure of Classical Be Circumstellar Disks
NASA Astrophysics Data System (ADS)
Wisniewski, J. P.; Kowalski, A. F.; Bjorkman, K. S.; Bjorkman, J. E.; Carciofi, A. C.
2007-02-01
The first results from a near-contemporaneous optical and infrared spectroscopic observing program designed to probe the detailed density structure of classical Be circumstellar disks are presented. We report the discovery of asymmetrical infrared emission lines of He I, O I, Fe II, and the Brackett, Paschen, and Pfund series lines of H I that exhibit an opposite V/R orientation (V>R) to that observed for the optical Balmer Hα line (V
Toward Mapping the Detailed Density Structure of Classical Be Circumstellar Disks
NASA Technical Reports Server (NTRS)
Wisniewski, J. P.; Kowalski, A. F.; Bjorkman, K. S.; Bjorkman, J. E.
2005-01-01
We present the preliminary results of near contemporaneous optical and infrared spectroscopic observations of select classical Be stars. We find strong evidence of oppositely oriented V/R hydrogen line profiles in the optical versus infrared spectra of zeta Tau, and briefly discuss how sustained contemporaneous optical and infrared spectroscopic observations might enable us to trace the detailed density structure of classical Be circumstellar disks.
Mezei, Pal Daniel; Csonka, Gabor I; Kallay, Mihaly
2017-09-11
Since its formal introduction, density functional theory has achieved many successes on the fields of molecular and solid-state chemistry. According to its central theorems, the ground state of a many-electron system is fully described by its electron density, and the exact functional minimizes the energy at the exact electron density. For many years of density functional development, it was assumed that the improvements in the energy are accompanied by the improvements in the density, and the approximations approach the exact functional. In a recent analysis (Medvedev et al. Science 2017, 355, 49-52.), it has been pointed out for fourteen first row (Be-Ne) atoms and cations with 2, 4, or 10 electrons that the nowadays popular flexible but physically less rigorous approximate density functionals may provide large errors in the calculated electron densities despite the accurate energies. Although far-reaching conclusions have been drawn in this work, the methodology used by the authors may need improvements. Most importantly, their benchmark set was biased towards small atomic cations with compressed, high electron densities. In our paper, we construct a molecular test set with chemically relevant densities and analyze the performance of several density functional approximations including the less-investigated double hybrids. We apply an intensive error measure for the density, its gradient, and its Laplacian and examine how the errors in the density propagate into the semi-local exchange-correlation energy. While we have confirmed the broad conclusions of Medvedev et al., our different way of analyzing the data has led to conclusions that differ in detail. Finally, seeking for a rationale behind the global hybrid or double hybrid methods from the density's point of view, we also analyze the role of the exact exchange and second-order perturbative correlation mixing in PBE-based global hybrid and double hybrid functional forms.
NASA Astrophysics Data System (ADS)
Joubert, Daniel P.
2012-03-01
It is shown that the density-functional-theory exchange and correlation functionals satisfy 0=γEhx[ρN]+2Ecγ[ρN]-γEhx[ρN-1γ]-2Ecγ[ρN-1γ]+2∫d3r'[ρN-10(r)-ρN-1γ(r)]v0([ρN];r)+∫d3r'[ρN-10(r)-ρN-1γ(r)]r·∇v0([ρN];r)+∫d3r'ρN(r)r·∇vcγ([ρN];r)-∫d3r'ρN-1γ(r)r·∇vcγ([ρN-1γ];r)-∫d3r'fγ(r)r·∇vhxcγ([ρN];r)-2∫d3r'fγ(r)vhxcγ([ρN];r). In the derivation of this equation the adiabatic connection formulation is used, where the ground-state density of an N-electron system ρN is kept constant independent of the electron-electron coupling strength γ. Here Ehx[ρ] is the Hartree plus exchange energy, Ecγ[ρ] is the correlation energy, vhxcγ[ρ] is the Hartree plus exchange-correlation potential, vc[ρ] is the correlation potential, and v0[ρ]is the Kohn-Sham potential. The charge densities ρN and ρN-1γ are the N- and (N-1)-electron ground-state densities of the same Hamiltonian at electron-electron coupling strength γ. fγ(r)=ρN(r)-ρN-1γ(r) is the Fukui function. This equation can be useful in testing the internal self-consistency of approximations to the exchange and correlation functionals. As an example the identity is tested on the analytical Hooke's atom charge density for some frequently used approximate functionals.
Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory.
Kiewisch, Karin; Eickerling, Georg; Reiher, Markus; Neugebauer, Johannes
2008-01-28
In this study, we compare the electron densities for a set of hydrogen-bonded complexes obtained with either conventional Kohn-Sham density functional theory (DFT) calculations or with the frozen-density embedding (FDE) method, which is a subsystem approach to DFT. For a detailed analysis of the differences between these two methods, we compare the topology of the electron densities obtained from Kohn-Sham DFT and FDE in terms of deformation densities, bond critical points, and the negative Laplacian of the electron density. Different kinetic-energy functionals as needed for the frozen-density embedding method are tested and compared to a purely electrostatic embedding. It is shown that FDE is able to reproduce the characteristics of the density in the bonding region even in systems such as the F-H-F(-) molecule, which contains one of the strongest hydrogen bonds. Basis functions on the frozen system are usually required to accurately reproduce the electron densities of supermolecular calculations. However, it is shown here that it is in general sufficient to provide just a few basis functions in the boundary region between the two subsystems so that the use of the full supermolecular basis set can be avoided. It also turns out that electron-density deformations upon bonding predicted by FDE lack directionality with currently available functionals for the nonadditive kinetic-energy contribution.
Noncollinear magnetism in density functional calculations
NASA Astrophysics Data System (ADS)
Peralta, Juan E.; Scuseria, Gustavo E.; Frisch, Michael J.
2007-03-01
We generalize the treatment of the electronic spin degrees of freedom in density functional calculations to the case where the spin vector variables employed in the definition of the energy functional can vary in any direction in space. The expression for the generalized exchange-correlation potential matrix elements is derived for general functionals which among their ingredients include the electron density, its gradient and Laplacian, the kinetic energy density, and nonlocal Hartree-Fock-type exchange. We present calculations on planar Cr clusters that exhibit ground states with noncollinear spin densities due to geometrically frustrated antiferromagnetic interactions.
On Approximation of Distribution and Density Functions.
ERIC Educational Resources Information Center
Wolff, Hans
Stochastic approximation algorithms for least square error approximation to density and distribution functions are considered. The main results are necessary and sufficient parameter conditions for the convergence of the approximation processes and a generalization to some time-dependent density and distribution functions. (Author)
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid−liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Detailed Numerical Simulation of Liquid Jet In Crossflow Atomization with High Density Ratios
NASA Astrophysics Data System (ADS)
Ghods, Sina
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
Maps of current density using density-functional methods.
Soncini, A; Teale, A M; Helgaker, T; De Proft, F; Tozer, D J
2008-08-21
The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered-namely, O(3), CO, PN, and H(2)CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.
Maps of current density using density-functional methods
NASA Astrophysics Data System (ADS)
Soncini, A.; Teale, A. M.; Helgaker, T.; de Proft, F.; Tozer, D. J.
2008-08-01
The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered-namely, O3, CO, PN, and H2CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.
Free energy density functional for adsorption of fluids in nanopores.
Zhou, Shiqi
2010-11-16
A classical free energy density functional, which is isomorphic to a usual effective hard sphere model + mean field approximation for tail contribution, is proposed for treatment of real fluids in inhomogeneous states. In the framework of the classical density functional theory (DFT), the present functional is applied to two representative model fluids, namely, a Lennard-Jones fluid and a hard core attractive Yukawa fluid, subject to influence of various external fields. A comprehensive comparison with simulation results and a detailed analysis show that the present functional holds simultaneously all of the desirable properties inherent in an excellent functional, such as high accuracy, computational simplicity, consistency with a hard wall sum rule, nonrecourse to use of adjustable parameter(s) and weighted densities, reproduction of bulk second-order direct correlation function (DCF) in bulk limit, and applicability to subcritical fluid phenomena.
Spin Density Matrices for Nuclear Density Functionals with Parity Violation
NASA Astrophysics Data System (ADS)
Barrett, Bruce; Giraud, Bertrand
2010-11-01
Within the context of the radial density functional [1], we apply the spin density matrix (SDM) used in atomic and molecular physics [2] to nuclear physics. The vector part of the SDM defines a ``hedgehog'' situation, which exists only if nuclear states contain some amount of parity violation. Thus, looking for the vector profile of the SDM could be used as a test for parity violation in nuclei. The difference between the scalar profile and the vector profile of the SDM will be illustrated by a toy model. [4pt] [1] B. G. Giraud, Phys. Rev. C 78, 014307 (2008).[0pt] [2] A. Goerling, Phys. Rev. A 47, 2783 (1993).
Nagy, A.
2011-09-15
A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).
Nuclear Energy Density Functional for KIDS
NASA Astrophysics Data System (ADS)
Gil, H.; Papakonstantinou, P.; Hyun, C. H.; Park, T.-S.; Oh, Y.
The density functional theory (DFT) is based on the existence and uniqueness of a universal functional $E[\\rho]$, which determines the dependence of the total energy on single-particle density distributions. However, DFT says nothing about the form of the functional. Our strategy is to first look at what we know, from independent considerations, about the analytical density dependence of the energy of nuclear matter and then, for practical applications, to obtain an appropriate density-dependent effective interaction by reverse engineering. In a previous work on homogeneous matter, we identified the most essential terms to include in our "KIDS" functional, named after the early-stage participating institutes. We now present first results for finite nuclei, namely the energies and radii of $^{16,28}$O, $^{40,60}$Ca.
Density Scaling of Noninteracting Kinetic Energy Functionals.
Borgoo, Alex; Tozer, David J
2013-05-14
The influence of imposing an approximate density scaling condition on a noninteracting kinetic energy functional is investigated. A simple generalized gradient approximation (GGA) is presented, which satisfies both the density scaling condition and the usual coordinate scaling condition; the remaining multiplicative constant is determined from an energy criterion. In post-Kohn-Sham calculations, noninteracting kinetic energies of the closed-shell molecules of the G1 set determined using the GGA are a modest improvement over those determined using the corresponding local functional, which does not satisfy the density scaling condition. Potential energy curves of CO, F2, and P2 exhibit binding with the GGA, compared to purely repulsive curves with the local functional. Adjusting the exponent in the GGA form in order to optimize energy accuracy violates the density scaling condition, and two of the diatomics no longer exhibit binding. Results are compared with those from other local/GGA functionals in the literature.
Development of New Density Functional Approximations
NASA Astrophysics Data System (ADS)
Su, Neil Qiang; Xu, Xin
2017-05-01
Kohn-Sham density functional theory has become the leading electronic structure method for atoms, molecules, and extended systems. It is in principle exact, but any practical application must rely on density functional approximations (DFAs) for the exchange-correlation energy. Here we emphasize four aspects of the subject: (a) philosophies and strategies for developing DFAs; (b) classification of DFAs; (c) major sources of error in existing DFAs; and (d) some recent developments and future directions.
Detailed Shape and Evolutionary Behavior of the X-Ray Luminosity Function of Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Miyaji, T.; Hasinger, G.; Salvato, M.; Brusa, M.; Cappelluti, N.; Civano, F.; Puccetti, S.; Elvis, M.; Brunner, H.; Fotopoulou, S.; Ueda, Y.; Griffiths, R. E.; Koekemoer, A. M.; Akiyama, M.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Merloni, A.; Vignali, C.
2015-05-01
We construct the rest-frame 2-10 keV intrinsic X-ray luminosity function (XLF) of active galactic nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field South. We use ˜3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two-power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z ≳0.6. Detailed structures of the AGN downsizing have also been revealed, where the number density curves have two clear breaks at all luminosity classes above log {{L}X}\\gt 43. The two-break structure is suggestive of two-phase AGN evolution, consisting of major merger triggering and secular processes.
Time-Dependent Current Density Functional Theory
NASA Astrophysics Data System (ADS)
Vignale, Giovanni
The nonlocality of the exchange-correlation (xc) potential, i.e., the fact that the xc potential at a certain position depends on the global distribution of the particles in space, is the curse of density functional theory. It is mainly because of this fact that, even after years of intensive studies, the exact form of the xc potential as a functional of the density remains unknown. Nevertheless, it is true that many accurate and useful results can be obtained from the use of an approximation - the local density approximation (LDA) - which ignores the problem altogether.
Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas
2017-02-05
We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Nonlocal kinetic-energy-density functionals
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |
1996-04-01
In this paper we present nonlocal kinetic-energy functionals {ital T}[{ital n}] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. {copyright} {ital 1996 The American Physical Society.}
Photoelectric scanner makes detailed work function maps of metal surface
NASA Technical Reports Server (NTRS)
Rasor, N. S.
1966-01-01
Photoelectric scanning device maps the work function of a metal surface by scanning it with a light spot and measuring the resulting photocurrent. The device is capable of use over a range of surface temperatures.
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Periodic subsystem density-functional theory
NASA Astrophysics Data System (ADS)
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2014-11-01
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Periodic subsystem density-functional theory.
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Density Functionals with Broad Applicability in Chemistry
Zhao, Yan; Truhlar, Donald G.
2008-02-01
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Although density functional theory is widely used in the computational chemistry community, the most popular density functional, B3LYP, has some serious shortcomings: (i) it is better for main-group chemistry than for transition metals; (ii) it systematically underestimates reaction barrier heights; (iii) it is inaccurate for interactions dominated by mediumrange correlation energy, such as van der Waals attraction, aromatic-aromatic stacking, and alkane isomerization energies. We have developed a variety of databases for testing and designing new density functionals. We used these data to design new density functionals, called M06-class (and, earlier, M05-class) functionals, for which we enforced some fundamental exact constraints such as the uniform-electron-gas limit and the absence of self-correlation energy. Our M06-class functionals depend on spin-up and spin-down electron densities (i.e., spin densities), spin density gradients, spin kinetic energy densities, and, for nonlocal (also called hybrid) functionals, Hartree-Fock exchange. We have developed four new functionals that overcome the above-mentioned difficulties: (a) M06, a hybrid meta functional, is a functional with good accuracy “across-theboard” for transition metals, main group thermochemistry, medium-range correlation energy, and barrier heights; (b) M06- 2X, another hybrid meta functional, is not good for transition metals but has excellent performance for main group chemistry, predicts accurate valence and Rydberg electronic excitation energies, and is an excellent functional for aromatic-aromatic stacking interactions; (c) M06-L is not as accurate as M06 for barrier heights but is the most accurate
Nucleon localization within nuclear density functional theory
NASA Astrophysics Data System (ADS)
Zhang, Chunli; Schuetrumpf, Bastian; Nazarewicz, Witold
2016-09-01
Recently, a nucleon localization measure based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic density, the nucleon localization function (NLF) has been shown to be an excellent indicator of cluster correlations. To investigate the cluster structures in light nuclei and study the development of fission fragments in heavy nuclei, we analyse NLFs in deformed nuclei. We use both the deformed harmonic oscillator model and self-consistent nuclear density functional theory (DFT) with energy density functionals UNEDF1 and UNEDF1-HFB, which were optimized for fission studies. In this contribution, we will discuss particle densities and spatial localization functions for deformed configurations of 8Be and 20Ne and along fission pathways of 232Th and 240Pu. We illustrate the usefulness of the NLF by showing how the third hyperdeformed minimum of 232Th can be understood in terms of the ground states of 132Sn and 100Zr. This material is based upon work supported by the U.S. Department of Energy, Office of Science under Award Numbers DOE-DE-NA0002847, DE-SC0013365 (Michigan State University), and DE-SC0008511 (NUCLEI SciDAC-3 collaboration).
Van der Waals density functional: An appropriate exchange functional
NASA Astrophysics Data System (ADS)
Cooper, Valentino R.
2010-04-01
In this Rapid Communication, an exchange functional which is compatible with the nonlocal Rutgers-Chalmers correlation functional [van der Waals density functional (vdW-DF)] is presented. This functional, when employed with vdW-DF, demonstrates remarkable improvements on intermolecular separation distances while further improving the accuracy of vdW-DF interaction energies. The key to the success of this three-parameter functional is its reduction in short-range exchange repulsion through matching to the gradient expansion approximation in the slowly varying/high-density limit while recovering the large reduced gradient, s , limit set in the revised Perdew-Burke-Ernzerhof (revPBE) exchange functional. This augmented exchange functional could be a solution to long-standing issues of vdW-DF lending to further applicability of density-functional theory to the study of relatively large, dispersion bound (van der Waals) complexes.
Error analysis in nuclear density functional theory
NASA Astrophysics Data System (ADS)
Schunck, Nicolas; McDonnell, Jordan D.; Sarich, Jason; Wild, Stefan M.; Higdon, Dave
2015-03-01
Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the Universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.
Connection formulas for thermal density functional theory
Pribram-Jones, A.; Burke, K.
2016-05-23
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Error Analysis in Nuclear Density Functional Theory
Schunck, Nicolas; McDonnell, Jordan D.; Sarich, Jason; Wild, Stefan M.; Higdon, Dave
2015-03-01
Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the Universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.
Koopmans' condition for density-functional theory
Dabo, Ismaila; Ferretti, Andrea; Poilvert, Nicolas; Marzari, Nicola; Li, Yanli; Cococcioni, Matteo
2010-09-15
In approximate Kohn-Sham density-functional theory, self-interaction manifests itself as the dependence of the energy of an orbital on its fractional occupation. This unphysical behavior translates into qualitative and quantitative errors that pervade many fundamental aspects of density-functional predictions. Here, we first examine self-interaction in terms of the discrepancy between total and partial electron removal energies, and then highlight the importance of imposing the generalized Koopmans' condition - that identifies orbital energies as opposite total electron removal energies - to resolve this discrepancy. In the process, we derive a correction to approximate functionals that, in the frozen-orbital approximation, eliminates the unphysical occupation dependence of orbital energies up to the third order in the single-particle densities. This non-Koopmans correction brings physical meaning to single-particle energies; when applied to common local or semilocal density functionals it provides results that are in excellent agreement with experimental data - with an accuracy comparable to that of GW many-body perturbation theory - while providing an explicit total energy functional that preserves or improves on the description of established structural properties.
Unveiling the Detailed Density and Velocity Structures of the Protostellar Core B335
NASA Astrophysics Data System (ADS)
Kurono, Yasutaka; Saito, Masao; Kamazaki, Takeshi; Morita, Koh-Ichiro; Kawabe, Ryohei
2013-03-01
We present an observational study of the protostellar core B335 harboring a low-mass Class 0 source. The observations of the H13CO+(J = 1-0) line emission were carried out using the Nobeyama 45 m telescope and Nobeyama Millimeter Array. Our combined image of the interferometer and single-dish data depicts detailed structures of the dense envelope within the core. We found that the core has a radial density profile of n(r)vpropr -p and a reliable difference in the power-law indices between the outer and inner regions of the core: p ≈ 2 for r >~ 4000 AU and p ≈ 1.5 for r <~ 4000 AU. The dense core shows a slight overall velocity gradient of ~1.0 km s-1 over the scale of 20, 000 AU across the outflow axis. We believe that this velocity gradient represents a solid-body-like rotation of the core. The dense envelope has a quite symmetrical velocity structure with a remarkable line broadening toward the core center, which is especially prominent in the position-velocity diagram across the outflow axis. The model calculations of position-velocity diagrams do a good job of reproducing observational results using the collapse model of an isothermal sphere in which the core has an inner free-fall region and an outer region conserving the conditions at the formation stage of a central stellar object. We derived a central stellar mass of ~0.1 M ⊙, and suggest a small inward velocity, v_{r ≥ r_inf}˜ 0 km s^{-1} in the outer core at >~ 4000 AU. We concluded that our data can be well explained by gravitational collapse with a quasi-static initial condition, such as Shu's model, or by the isothermal collapse of a marginally critical Bonnor-Ebert sphere.
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Density functional calculation of intermolecular potentials.
Nyeland, Carl
2011-06-30
Calculations of intermolecular potentials following the density functional theory (DFT) turn out to be very complicated without using some appropriate approximations. Most often the following three approximations have been considered. In one approximation the disturbed charge distributions during collisions are reduced to sums of undisturbed charge distributions from the colliding species. In another approximation, the so-called local density approximation (LDA), one neglects the fact that the intermolecular potentials that depend on charge densities also depend on gradients in the densities. In a third approximation one assumes that the intermolecular potential can be considered as a sum of two terms: a term for the long-range geometry and a term for the short-range geometry. In this Article the three approximations mentioned will be discussed for numerical accuracy for calculations of potentials between inert gas atoms and for calculations of potentials between surfaces and inert gas atoms. In the discussion a few other approximations will be mentioned too.
Density functional theory studies of etoricoxib
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.
2016-05-01
Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.
Radiative Strength Functions and Level Densities
Schiller, A; Becker, J A; Bernstein, L A; Voinov, A; Guttormsen, M; Hjorth-Jensen, M; Rekstad, J; Siem, S; Mitchell, G E; Tavukcu, E
2002-08-28
Radiative strength functions and level densities have been extracted from primary {gamma}-ray spectra for {sup 27,28}Si, {sup 56,57}Fe, {sup 96,97}Mo, and several rare earth nuclei. An unexpectedly strong ({approx} 1 mb MeV) resonance at 3 MeV in the radiative strength function has been observed for well-deformed rare earth nuclei. The physical origin of this resonance and its connection to the scissors mode is discussed.
Density functional theory: Fixing Jacob's ladder
NASA Astrophysics Data System (ADS)
Car, Roberto
2016-09-01
Density functional theory calculations can be carried out with different levels of accuracy, forming a hierarchy that is often represented by the rungs of a ladder. Now a new method has been developed that significantly improves the accuracy of the 'third rung' when calculating the properties of diversely bonded systems.
Uncertainty Quantification for Nuclear Density Functional Theory
NASA Astrophysics Data System (ADS)
McDonnell, Jordan; Schunck, Nicolas; Nazarewicz, Witold; Higdon, Dave; Sarich, Jason; Wild, Stefan
2014-09-01
Nuclear density functional theory exhibits good overall agreement with measured nuclear masses for medium-mass to heavy nuclei. But the predictions of various models diverge substantially near the neutron and proton drip lines. Quantifying the theory's inherent uncertainty is essential for making reliable predictions. Through a Bayesian analysis, we calculate the theoretical uncertainty for nuclear masses obtained with a Skyrme-class energy density functional. We also assess whether a recent set of mass measurements of neutron-rich nuclei reduces the uncertainty in this model's predictions near the neutron drip line. Nuclear density functional theory exhibits good overall agreement with measured nuclear masses for medium-mass to heavy nuclei. But the predictions of various models diverge substantially near the neutron and proton drip lines. Quantifying the theory's inherent uncertainty is essential for making reliable predictions. Through a Bayesian analysis, we calculate the theoretical uncertainty for nuclear masses obtained with a Skyrme-class energy density functional. We also assess whether a recent set of mass measurements of neutron-rich nuclei reduces the uncertainty in this model's predictions near the neutron drip line. This work was supported by the US Department of Energy under Contracts No. DE-SC0008499 and No. DE-AC52-07NA27344.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Basis convergence of range-separated density-functional theory
Franck, Odile Mussard, Bastien; Luppi, Eleonora Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Detailed structure-function correlations of Bacillus subtilis acetolactate synthase.
Sommer, Bettina; von Moeller, Holger; Haack, Martina; Qoura, Farah; Langner, Clemens; Bourenkov, Gleb; Garbe, Daniel; Loll, Bernhard; Brück, Thomas
2015-01-02
Isobutanol is deemed to be a next-generation biofuel and a renewable platform chemical.1 Non-natural biosynthetic pathways for isobutanol production have been implemented in cell-based and in vitro systems with Bacillus subtilis acetolactate synthase (AlsS) as key biocatalyst.2-6 AlsS catalyzes the condensation of two pyruvate molecules to acetolactate with thiamine diphosphate and Mg(2+) as cofactors. AlsS also catalyzes the conversion of 2-ketoisovalerate into isobutyraldehyde, the immediate precursor of isobutanol. Our phylogenetic analysis suggests that the ALS enzyme family forms a distinct subgroup of ThDP-dependent enzymes. To unravel catalytically relevant structure-function relationships, we solved the AlsS crystal structure at 2.3 Å in the presence of ThDP, Mg(2+) and in a transition state with a 2-lactyl moiety bound to ThDP. We supplemented our structural data by point mutations in the active site to identify catalytically important residues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UNVEILING THE DETAILED DENSITY AND VELOCITY STRUCTURES OF THE PROTOSTELLAR CORE B335
Kurono, Yasutaka; Saito, Masao; Kamazaki, Takeshi; Morita, Koh-Ichiro; Kawabe, Ryohei
2013-03-10
We present an observational study of the protostellar core B335 harboring a low-mass Class 0 source. The observations of the H{sup 13}CO{sup +}(J = 1-0) line emission were carried out using the Nobeyama 45 m telescope and Nobeyama Millimeter Array. Our combined image of the interferometer and single-dish data depicts detailed structures of the dense envelope within the core. We found that the core has a radial density profile of n(r){proportional_to}r {sup -p} and a reliable difference in the power-law indices between the outer and inner regions of the core: p Almost-Equal-To 2 for r {approx}> 4000 AU and p Almost-Equal-To 1.5 for r {approx}< 4000 AU. The dense core shows a slight overall velocity gradient of {approx}1.0 km s{sup -1} over the scale of 20, 000 AU across the outflow axis. We believe that this velocity gradient represents a solid-body-like rotation of the core. The dense envelope has a quite symmetrical velocity structure with a remarkable line broadening toward the core center, which is especially prominent in the position-velocity diagram across the outflow axis. The model calculations of position-velocity diagrams do a good job of reproducing observational results using the collapse model of an isothermal sphere in which the core has an inner free-fall region and an outer region conserving the conditions at the formation stage of a central stellar object. We derived a central stellar mass of {approx}0.1 M{sub Sun }, and suggest a small inward velocity, v{sub r{>=}r{sub i{sub n{sub f}}}}{approx}0 km s{sup -1} in the outer core at {approx}> 4000 AU. We concluded that our data can be well explained by gravitational collapse with a quasi-static initial condition, such as Shu's model, or by the isothermal collapse of a marginally critical Bonnor-Ebert sphere.
Density-functional description of electrides.
Dale, Stephen G; Otero-de-la-Roza, Alberto; Johnson, Erin R
2014-07-28
Electrides are a unique class of ionic solids in which the anions are stoichiometrically replaced by electrons localised within the crystal voids. There are only nine electrides with known crystal structures and their study represents a challenge for theory. A systematic investigation of their electronic structure is conducted using semilocal density-functional theory (DFT) in this article. The band structure is calculated for each electride and a range of techniques including plots of the valence densities, procrystal densities, non-covalent interaction isosurfaces, and Bader's quantum-chemical topology are applied. All of these methods provide consistent results, confirming the presence of localised interstitial electrons and demonstrating that these crystals display a characteristic electronic structure.
Frozen density embedding with hybrid functionals
NASA Astrophysics Data System (ADS)
Laricchia, S.; Fabiano, E.; Della Sala, F.
2010-10-01
The Kohn-Sham equations with constrained electron density are extended to hybrid exchange-correlation (XC) functionals. We derive the frozen density embedding generalized Kohn-Sham (FDE-GKS) scheme which allows to treat the nonlocal exact-exchange in the subsystems. For practical calculations we propose an approximated version of the FDE-GKS in which the nonadditive exchange potential is computed at a semilocal level. The proposed method is applied to compute the ground-state electronic properties of small test systems and selected DNA base pairs. The results of calculations employing the hierarchy of XC functionals BLYP/B3LYP/BHLYP and PBE/PBE0 are presented, in order to analyze the effect of nonlocal exchange contributions, and compared with reference coupled-cluster singles and doubles results. We find that the use of hybrid functionals leads to a significant improvement in the description of ground-state electronic properties of the investigated systems. The semilocal version of the FDE-GKS correctly reproduces the dipole and the electron density distribution of the exact GKS supramolecular system, with errors smaller than the ones obtained using conventional semilocal XC functionals.
NASA Astrophysics Data System (ADS)
Toshihiro, Handa; Takahiro, Yoda; Nario, Kuno
2015-03-01
In the steady state, the probability density function (PDF) of the gaseous interstellar matter (ISM) can be observed as a gas density histogram (GDH) of all cells in the system. We made GDHs of the Milky Way Galaxy (MWG) using Galactic plane surveys in CO lines. We found that the GDH in the MWG is log-normal which suggests that the density structure of the molecular gas is a result of many stochastic processes. Using the Nobeyama CO atlas, we made GDHs of nearby galaxies but in column density. Although some galaxies show log-normal, the others show completely different shapes, suggesting that the density structure of galaxies may be different from galaxy to galaxy.
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2017-08-01
Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.
Teaching Density Functional Theory Through Experiential Learning
NASA Astrophysics Data System (ADS)
Narasimhan, Shobhana
2015-09-01
Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school.
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Black, A J; Topping, J; Durham, B; Farquharson, R G; Fraser, W D
2000-03-01
The effects of pregnancy on bone turnover and the potential risk of developing an osteoporotic fracture in pregnancy are controversial. Utilizing biochemical markers of bone formation and resorption and dual-energy X-ray absorptiometry (DEXA), bone turnover before, during, and after pregnancy was studied in detail. Ten women (mean age 30 years; range 23-40) were recruited. Prepregnancy data were obtained and then a review was performed at 2-week intervals , once pregnancy was confirmed, until 14 weeks of gestation and thereafter monthly until term. Bone mineral density (BMD) was estimated by DEXA scanning of hip, spine, and forearm preconception and postpartum. In addition, BMD of the forearm at 14 weeks and 28 weeks gestation was obtained. All pregnancies had a successful outcome. Urinary free pyridinium cross-links, free pyridinoline (fPyr) and free deoxypyridinoline (fDPyr), were normal prepregnancy (mean [+/-SD]) 14.6 nmol/mmol (1.8) and 5.0 nmol/mmol (1.0) creat, respectively. By 14 weeks, they had increased to 20.8 nmol/mmol (4.3) and 6.1 nmol mmol (1.4) (both p < 0.02) and by 28 weeks to 26.3 nmol/mmol (5.6) and 7.4 nmol/mmol (1.6) (both p < 0.01). The ratio of fPyr to fDPyr remained constant. A similar significant increase was observed in N-telopeptide (NTx). Bone formation was assessed by measurement of carboxyterminal propeptide of type 1 collagen (P1CP) and bone-specific alkaline phosphatase (BSAP). Neither were altered significantly before 28 weeks, but subsequently mean P1CP increased from 110 microg/liter (23) to 235 microg/liter (84) at 38 weeks and mean BSAP increased from 11.1 U/liter (5.0) to 28.6 U/liter (11.1) (p < 0.01 for both variables). Lumbar spine (L1-L4) BMD decreased from a prepregnancy mean of 1.075 g/cm (0.115) to 1.054 g/cm2 (0.150) postpartum (p < 0.05). Total hip BMD decreased from a prepregnancy mean of 0.976 g/cm2 (0.089) to 0.941 g/cm2 (0.097) (p < 0.05). Forearm BMD at midradius, one-third distal and ultradistal decreased but
Computing dispersion interactions in density functional theory
NASA Astrophysics Data System (ADS)
Cooper, V. R.; Kong, L.; Langreth, D. C.
2010-02-01
In this article techniques for including dispersion interactions within density functional theory are examined. In particular comparisons are made between four popular methods: dispersion corrected DFT, pseudopotential correction schemes, symmetry adapted perturbation theory, and a non-local density functional - the so called Rutgers-Chalmers van der Waals density functional (vdW-DF). The S22 benchmark data set is used to evaluate the relative accuracy of these methods and factors such as scalability and transferability are also discussed. We demonstrate that vdW-DF presents an excellent compromise between computational speed and accuracy and lends most easily to full scale application in solid materials. This claim is supported through a brief discussion of a recent large scale application to H2 in a prototype metal organic framework material (MOF), Zn2BDC2TED. The vdW-DF shows overwhelming promise for first-principles studies of physisorbed molecules in porous extended systems; thereby having broad applicability for studies as diverse as molecular adsorption and storage, battery technology, catalysis and gas separations.
A density functional approach to ferrogels
NASA Astrophysics Data System (ADS)
Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.
2017-07-01
Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.
A density functional approach to ferrogels.
Cremer, P; Heinen, M; Menzel, A M; Löwen, H
2017-07-12
Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a 'pairwise pseudopotential'. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an 'external pseudopotential' when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.
Kinetic energy in density-functional theory
NASA Astrophysics Data System (ADS)
Nesbet, R. K.
1998-07-01
While Kohn-Sham theory uses the quantum-mechanical operator for kinetic energy, Thomas-Fermi theory replaces this with an effective local potential. If both theories are based on the exact universal density functional defined by Hohenberg-Kohn theory, it is an interesting question whether they should give the same results for N-electron ground states. This question is examined and answered in the negative. The inconsistency is resolved only by extending the definition of functional derivatives to encompass linear operators. An exact theory must incorporate one-electron energies and occupation numbers derived from Kohn-Sham theory.
Extended screened exchange functional derived from transcorrelated density functional theory
NASA Astrophysics Data System (ADS)
Umezawa, Naoto
2017-09-01
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, HTC, is introduced by a similarity transformation of a many-body Hamiltonian, H , with respect to a complex function F: HTC=1/F H F . It is proved that an expectation value of HTC for a normalized single Slater determinant, Dn, corresponds to the total energy: E [n ] = ⟨Ψn|H |Ψn ⟩ /⟨Ψn|Ψn ⟩ = ⟨Dn|HTC|Dn ⟩ under the two assumptions: (1) The electron density n (r ) associated with a trial wave function Ψn = DnF is v -representable and (2) Ψn and Dn give rise to the same electron density n (r ). This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H- ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, HTC, is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: HTC=1FHF. It is proved that an expectation value of HTC for a normalized single Slater determinant, D(n), corresponds to the total energy: E[n] = ⟨Ψ(n)|H|Ψ(n)⟩/⟨Ψ(n)|Ψ(n)⟩ = ⟨D(n)|HTC|D(n)⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ(n) = D(n)F is v-representable and (2) Ψ(n) and D(n) give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H(-) ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Density functional theory for atomic Fermi gases
NASA Astrophysics Data System (ADS)
Ma, Ping Nang; Pilati, Sebastiano; Troyer, Matthias; Dai, Xi
2012-08-01
The interplay between interaction and inhomogeneity for electrons in solids generates many interesting phenomena, including insulating and metallic behaviour, magnetism, superconductivity, quantum criticality and more exotic phases. Many of the same phenomena appear in ultracold fermionic atoms in optical lattices, which provide clean, controlled and tunable `quantum simulators' to explore the intriguing physics of fermionic systems. Although density functional theory (DFT) is widely used to calculate material properties, it has not yet been applied to cold atomic gases in optical lattices. Here we present a new density functional for short-range interactions (as opposed to Coulomb interactions of electrons), which renders DFT suitable for atomic Fermi gases. This grants us access to an extensive toolset, previously developed for materials simulations, to calculate the static and dynamic properties of atomic Fermi gases in optical lattices and external potentials. Ultracold atom quantum simulators can in turn be used to explore limitations of DFT functionals, and to further improve hybrid functionals, thus forming a bridge between materials simulations and atomic physics.
EM-fold: de novo atomic-detail protein structure determination from medium-resolution density maps.
Lindert, Steffen; Alexander, Nathan; Wötzel, Nils; Karakaş, Mert; Stewart, Phoebe L; Meiler, Jens
2012-03-07
Electron density maps of membrane proteins or large macromolecular complexes are frequently only determined at medium resolution between 4 Å and 10 Å, either by cryo-electron microscopy or X-ray crystallography. In these density maps, the general arrangement of secondary structure elements (SSEs) is revealed, whereas their directionality and connectivity remain elusive. We demonstrate that the topology of proteins with up to 250 amino acids can be determined from such density maps when combined with a computational protein folding protocol. Furthermore, we accurately reconstruct atomic detail in loop regions and amino acid side chains not visible in the experimental data. The EM-Fold algorithm assembles the SSEs de novo before atomic detail is added using Rosetta. In a benchmark of 27 proteins, the protocol consistently and reproducibly achieves models with root mean square deviation values <3 Å.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1986-03-01
We study the analytic properties of the hypernetted-chain (HNC) and soft-mean-spherical (SMSA) theories in the asymptotic high-density limit (AHDL). The scaling properties of the inverse power potentials lead to the introduction of the SMSA-Ewald functions, which correspond to the ``overlap-volume'' functions for hard spheres. The HNC and SMSA theories for soft interactions, as well as the Percus-Yevick theory for hard spheres, feature the same AHDL analytic structure of the pair correlation functions, which is dictated by the hard-sphere Ewald functions. The general discussion is supplemented by detailed results for the one-component plasma. Implications to the analysis of the density-functional theory, of dense matter, near its exact Thomas-Fermi limit are pointed out.
Density Functional Study of Perovskite Superconductor MgCNi3
NASA Astrophysics Data System (ADS)
Kumar, Jagdish; Sharma, Devina; Kumar, Ranjan; Awana, V. P. S.; Ahluwalia, P. K.
2011-12-01
We here report the first principle density functional study of MgCNi3 which crystallize in cubic perovskite structure having critical transition temperature of 8 K. The interesting aspect of this compound is that in normal state it is non magnetic in nature despite conduction electrons in it are derived from partially filled Ni d states, which typically lead to ferromagnetism in metallic Ni and many Ni-based binary alloys. To investigate the detailed microscopic origin of the non magnetic nature we have done density functional based calculations on this compound. The lattice constant is calculated using minimum energy criteria from total energy versus lattice constant plot. By taking the calculated values of lattice constant we have done the precise calculations on the compound using Full Potential Linear Augmented Plane Wave (FP-LAPW) method implemented in ELK code. The electronic density of states is found spin degenerate that corresponds to a non-magnetic ground state. The density of states (DOS) at Fermi level, N(EF) is dominated by Ni-d states. The sharp peak observed just below Fermi level corresponds to van Hove singularity (vHs). The projected density of states (PDOS) suggests a strong hybridization of Ni-3d and C-2p states which is responsible for the observed non magnetic nature of MgCNi3.
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
Recent progress in density functional theory
NASA Astrophysics Data System (ADS)
Truhlar, Donald
2014-03-01
Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.
Modulation Based on Probability Density Functions
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2009-01-01
A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.
Insight and progress in density functional theory
NASA Astrophysics Data System (ADS)
Yang, Weitao; Mori-Sanchez, Paula; Cohen, Aron J.
2012-12-01
Density functional theory of electronic structure is widely and successfully applied in simulations throughout engineering and sciences. However, there are spectacular failures for many predicted properties. The errors include underestimation of the barriers of chemical reactions, the band gaps of materials, the energies of dissociating molecular ions and charge transfer excitation energies. Typical DFT calculations also fail to describe degenerate or near degenerate systems, as arise in the breaking of chemical bonds, and strongly correlated materials. These errors can all be characterized and understood through the perspective of fractional charges and fractional spins introduced recently.
Probability density functions in turbulent channel flow
NASA Technical Reports Server (NTRS)
Dinavahi, Surya P. G.
1992-01-01
The probability density functions (pdf's) of the fluctuating velocity components, as well as their first and second derivatives, are calculated using data from the direct numerical simulations (DNS) of fully developed turbulent channel flow. It is observed that, beyond the buffer region, the pdf of each of these quantities is independent of the distance from the channel wall. It is further observed that, beyond the buffer region, the pdf's for all the first derivatives collapse onto a single universal curve and those of the second derivatives also collapse onto another universal curve, irrespective of the distance from the wall. The kinetic-energy dissipation rate exhibits log normal behavior.
Density functional theory of charged colloidal systems
Chan, Derek Y. C.
2001-06-01
The phase behavior of charged colloidal systems has been studied recently by the density functional theory formalism (DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E >59, 2010 (1999)]. A key feature of this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit of low colloidal densities, the DFT results do not reduce to the familiar Debye-Huckel limiting law nor do the results agree with previous work based on an identical approach but were developed using traditional statistical-mechanical methods [B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci. >105, 216 (1985)]. This paper provides a reconciliation of these differences and comments on the significance of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining thermodynamics and phase behavior.
Constrained density functional for noncollinear magnetism
NASA Astrophysics Data System (ADS)
Ma, Pui-Wai; Dudarev, S. L.
2015-02-01
Energies of arbitrary small- and large-angle noncollinear excited magnetic configurations are computed using a highly accurate constrained density functional theory approach. Numerical convergence and accuracy are controlled by the choice of Lagrange multipliers λI entering the constraining conditions. The penalty part Ep of the constrained energy functional at its minimum is shown to be inversely proportional to λI, enabling a simple, robust, and accurate iterative procedure to be followed to find a convergent solution. The method is implemented as a part of ab initio vasp package, and applied to the investigation of noncollinear B2-like and <001 > double-layer antiferromagnetic configurations of bcc iron, Fe2 dimer, and amorphous iron. Forces acting on atoms depend on the orientations of magnetic moments, and the proposed approach enables constrained self-consistent noncollinear magnetic and structural relaxation of large atomic systems to be carried out.
Density-functional theory for complex fluids.
Wu, Jianzhong; Li, Zhidong
2007-01-01
Density-functional theory (DFT) and its variations provide a fruitful approach to the computational modeling of the microscopic structures and phase behavior of soft-condensed matter. The methodology takes deep root in quantum mechanics but shares a mathematical similarity with a number of classical approaches in statistical mechanics. This review discusses different strategies commonly used to formulate the free-energy functional of complex fluids for either phenomena-oriented applications or as a generic description of the thermodynamic nonideality owing to various components of intermolecular forces. We emphasize the connections among different schemes of DFT approximations, their underlying assumptions, and inherent limitations. We also address extensions of equilibrium DFT to phenomenological theories for the dynamic properties of complex fluids and for the kinetics of phase transitions. In addition, we highlight the recent literature concerning applications of DFT to diverse static and time-dependent phenomena in complex fluids.
Self-contained filtered density function
NASA Astrophysics Data System (ADS)
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Band terminations in density functional theory
Afanasjev, A. V.
2008-11-15
The analysis of the terminating bands has been performed in the relativistic mean field framework. It was shown that nuclear magnetism provides an additional binding to the energies of the specific configuration and this additional binding increases with spin and has its maximum exactly at the terminating state. This suggests that the terminating states can be an interesting probe of the time-odd mean fields provided that other effects can be reliably isolated. Unfortunately, a reliable isolation of these effects is not that simple: many terms of the density functional theories contribute into the energies of the terminating states and the deficiencies in the description of those terms affect the result. The recent suggestion [H. Zdunczuk, W. Satula, and R. A. Wyss, Phys. Rev. C 71, 024305 (2005)] that the relative energies of the terminating states in the N{ne}Z,A{approx}44 mass region given by {delta}E provide unique and reliable constraints on time-odd mean fields and the strength of spin-orbit interaction in density functional theories has been reanalyzed. The current investigation shows that the {delta}E value is affected also by the relative placement of the states with different orbital angular momentum l, namely, the placement of the d (l=2) and f (l=3) states. This indicates the dependence of the {delta}E value on the properties of the central potential.
Probability Density Function at the 3D Anderson Transition
NASA Astrophysics Data System (ADS)
Rodriguez, Alberto; Vasquez, Louella J.; Roemer, Rudolf
2009-03-01
The probability density function (PDF) for the wavefunction amplitudes is studied at the metal-insulator transition of the 3D Anderson model, for very large systems up to L^3=240^3. The implications of the multifractal nature of the state upon the PDF are presented in detail. A formal expression between the PDF and the singularity spectrum f(α) is given. The PDF can be easily used to carry out a numerical multifractal analysis and it appears as a valid alternative to the more usual approach based on the scaling law of the general inverse participation rations.
Determining Ionospheric Irregularity Spectral Density Function from Japan GEONET
NASA Astrophysics Data System (ADS)
Lay, E. H.; Light, M. E.; Parker, P. A.; Carrano, C. S.; Haaser, R. A.
2015-12-01
Japan's GEONET GPS network is the densest GPS monitoring network in the world, with 1200+ receivers over the area of Japan. Measuring and calibrating the integrated total electron content (TEC) from each station has been done in many cases to provide detailed maps of ionospheric disturbances over Japan. We use TEC measurements from Japan's GEONET array to determine an empirically derived description of the 2-dimensional scale sizes of spatial irregularities above Japan. The contributions from various scale sizes will be included in a statistical description for the irregularity spectral density (ISD) function. We will compare the statistics of the spatial irregularities between calm and moderately scintillated conditions.
Classical density functional study of wetting transitions on nanopatterned surfaces
NASA Astrophysics Data System (ADS)
Yatsyshin, P.; Parry, A. O.; Rascón, C.; Kalliadasis, S.
2017-03-01
Even simple fluids on simple substrates can exhibit very rich surface phase behaviour. To illustrate this, we consider fluid adsorption on a planar wall chemically patterned with a deep stripe of a different material. In this system, two phase transitions compete: unbending and pre-wetting. Using microscopic density-functional theory, we show that, for thin stripes, the lines of these two phase transitions may merge, leading to a new two-dimensional-like wetting transition occurring along the walls. The influence of intermolecular forces and interfacial fluctuations on this phase transition and at complete pre-wetting are considered in detail.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.
Dispersion interactions in Density Functional Theory
NASA Astrophysics Data System (ADS)
Andrinopoulos, Lampros; Hine, Nicholas; Mostofi, Arash
2012-02-01
Semilocal functionals in Density Functional Theory (DFT) achieve high accuracy simulating a wide range of systems, but miss the effect of dispersion (vdW) interactions, important in weakly bound systems. We study two different methods to include vdW in DFT: First, we investigate a recent approach [1] to evaluate the vdW contribution to the total energy using maximally-localized Wannier functions. Using a set of simple dimers, we show that it has a number of shortcomings that hamper its predictive power; we then develop and implement a series of improvements [2] and obtain binding energies and equilibrium geometries in closer agreement to quantum-chemical coupled-cluster calculations. Second, we implement the vdW-DF functional [3], using Soler's method [4], within ONETEP [5], a linear-scaling DFT code, and apply it to a range of systems. This method within a linear-scaling DFT code allows the simulation of weakly bound systems of larger scale, such as organic/inorganic interfaces, biological systems and implicit solvation models. [1] P. Silvestrelli, JPC A 113, 5224 (2009). [2] L. Andrinopoulos et al, JCP 135, 154105 (2011). [3] M. Dion et al, PRL 92, 246401 (2004). [4] G. Rom'an-P'erez, J.M. Soler, PRL 103, 096102 (2009). [5] C. Skylaris et al, JCP 122, 084119 (2005).
Density functional theory with fractional orbital occupations.
Chai, Jeng-Da
2012-04-21
In contrast to the original Kohn-Sham (KS) formalism, we propose a density functional theory (DFT) with fractional orbital occupations for the study of ground states of many-electron systems, wherein strong static correlation is shown to be described. Even at the simplest level represented by the local density approximation (LDA), our resulting DFT-LDA is shown to improve upon KS-LDA for multi-reference systems, such as dissociation of H(2) and N(2), and twisted ethylene, while performing similar to KS-LDA for single-reference systems, such as reaction energies and equilibrium geometries. Because of its computational efficiency (similar to KS-LDA), this DFT-LDA is applied to the study of the singlet-triplet energy gaps (ST gaps) of acenes, which are "challenging problems" for conventional electronic structure methods due to the presence of strong static correlation effects. Our calculated ST gaps are in good agreement with the existing experimental and high-level ab initio data. The ST gaps are shown to decrease monotonically with the increase of chain length, and become vanishingly small (within 0.1 kcal/mol) in the limit of an infinitely large polyacene. In addition, based on our calculated active orbital occupation numbers, the ground states for large acenes are shown to be polyradical singlets.
When Density Functional Approximations Meet Iron Oxides.
Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong
2016-10-11
Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe2O3, Fe3O4, and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.
Chemistry by Way of Density Functional Theory
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.
Chemistry by Way of Density Functional Theory
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.
General degeneracy in density functional perturbation theory
NASA Astrophysics Data System (ADS)
Palenik, Mark C.; Dunlap, Brett I.
2017-07-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.
Modeling NMR lineshapes using logspline density functions.
Raz, J; Fernandez, E J; Gillespie, J
1997-08-01
Distortions in the FID and spin echo due to magnetic field inhomogeneity are proved to have a representation as the characteristic function of some probability distribution. In the special case that the distribution is Cauchy, the model reduces to the conventional Lorentzian model. A more general and flexible representation is presented using the Fourier transform of a logspline density. An algorithm for fitting the model is described, the performance of the model and algorithm is investigated in applications to real and simulated data sets, and the logspline approach is compared to a previous Hermitian spline approach and to the Lorentzian model. The logspline model is more parsimonious than the Hermitian spline model, provides a better fit to real data, and is much less biased than the Lorentzian model.
Phases of Polonium via Density Functional Theory
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu J.
2010-01-01
The thermodynamical properties of the main phases of metallic polonium are examined using density functional theory. The exceptional nature of the solid-solid phase transition of α to β Po is underlined: it induces a lowering in symmetry, from cubic to rhombohedral, with increasing temperature. This is explained as the result of a delicate balance between bonding and entropic effects. Overall agreement with existing experimental data is good by state-of-the-art standards. The phonons of Po present Kohn anomalies, and it is shown that the effect of spin-orbit interactions is the inverse of that in normal metals: due to the nonspherical nature of the Fermi Surface, spin-orbit effects reduce nesting and harden most phonon frequencies.
Carrier Modulation Via Waveform Probability Density Function
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2006-01-01
Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.
Carrier Modulation Via Waveform Probability Density Function
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2004-01-01
Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.
Density-functional study of paramagnetic iron
NASA Astrophysics Data System (ADS)
Zhang, Hualei; Johansson, Börje; Vitos, Levente
2011-10-01
By using density-functional theory in combination with the coherent-potential approximation and the disordered local magnetic moment picture, we demonstrate that the competing high-temperature cubic phases of paramagnetic Fe correspond to two distinct total energy minima in the tetragonal (Bain) configurational space. Both the face-centered-cubic (fcc) and the body-centered-cubic (bcc) lattices are dynamically stable, and at static conditions the fcc structure is found to be the thermodynamically stable phase. The theoretical bcc and fcc bulk parameters are in agreement with the experimental data. Due to the shallow energy minimum around the bcc structure, increasing temperature is predicted to stabilize the bcc (δ) phase against the fcc (γ) one.
Building a Universal Nuclear Energy Density Functional
Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Internal density functional theory of molecular systems
NASA Astrophysics Data System (ADS)
Nalewajski, Roman F.
1984-08-01
A thermodynamiclike theory of internal equilibrium and constrained equilibrium states of individual molecular systems is formulated, based on the Legendre transformed density functional theory (LT DFT). The molecular system (nonrelativistic, field free, Born-Oppenheimer or non-Born-Oppenheimer) is treated as the closed composite thermodynamic system, consisting of very small, rigid (open) subsystems (simple systems) containing a multi-(m)-component charged fluid in the presence of an external field. The generalized Levy constrained search construction of various ``thermodynamic'' potentials of LT DFT is given and the local Maxwell relations are derived. The reduction of various second-order partial functional derivatives (system sensitivities) in terms of few independent, basic kernels is described, using the Jacobian determinants technique. The qualitative implications for the basic kernels of the theory, from the Maxwell relations and stability criteria (generalized Le Châtelier and Le Châtelier-Braun principles) are systematically examined. Finally, possible applications of the general formalism in the thermodynamic analysis of the chemical bond, molecular stability, and chemical reactivity are identified.
Density Functional O(N) Calculations
NASA Astrophysics Data System (ADS)
Ordejón, Pablo
1998-03-01
We have developed a scheme for performing Density Functional Theory calculations with O(N) scaling.(P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev. B, 53), 10441 (1996) The method uses arbitrarily flexible and complete Atomic Orbitals (AO) basis sets. This gives a wide range of choice, from extremely fast calculations with minimal basis sets, to greatly accurate calculations with complete sets. The size-efficiency of AO bases, together with the O(N) scaling of the algorithm, allow the application of the method to systems with many hundreds of atoms, in single processor workstations. I will present the SIESTA code,(D. Sanchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65), 453 (1997) in which the method is implemented, with several LDA, LSD and GGA functionals available, and using norm-conserving, non-local pseudopotentials (in the Kleinman-Bylander form) to eliminate the core electrons. The calculation of static properties such as energies, forces, pressure, stress and magnetic moments, as well as molecular dynamics (MD) simulations capabilities (including variable cell shape, constant temperature and constant pressure MD) are fully implemented. I will also show examples of the accuracy of the method, and applications to large-scale materials and biomolecular systems.
A density functional for sparse matter.
Langreth, D C; Lundqvist, B I; Chakarova-Käck, S D; Cooper, V R; Dion, M; Hyldgaard, P; Kelkkanen, A; Kleis, J; Kong, Lingzhu; Li, Shen; Moses, P G; Murray, E; Puzder, A; Rydberg, H; Schröder, E; Thonhauser, T
2009-02-25
Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed for the nonlocal correlations between electrons and applied to various relevant molecules and materials, including to those layered systems like graphite, boron nitride and molybdenum sulfide, to dimers of benzene, polycyclic aromatic hydrocarbons (PAHs), doped benzene, cytosine and DNA base pairs, to nonbonding forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators. Comparison with results from wavefunction calculations for the smaller systems and with experimental data for the extended ones show the vdW-DF path to be promising. This could have great ramifications.
Improving Density Functionals with Quantum Harmonic Oscillators
NASA Astrophysics Data System (ADS)
Tkatchenko, Alexandre
2013-03-01
Density functional theory (DFT) is the most widely used and successful approach for electronic structure calculations. However, one of the pressing challenges for DFT is developing efficient functionals that can accurately capture the omnipresent long-range electron correlations, which determine the structure and stability of many molecules and materials. Here we show that, under certain conditions, the problem of computing the long-range correlation energy of interacting electrons can be mapped to a system of coupled quantum harmonic oscillators (QHOs). The proposed model allows us to synergistically combine concepts from DFT, quantum chemistry, and the widely discussed random-phase approximation for the correlation energy. In the dipole limit, the interaction energy for a system of coupled QHOs can be calculated exactly, thereby leading to an efficient and accurate model for the many-body dispersion energy of complex molecules and materials. The studied examples include intermolecular binding energies, the conformational hierarchy of DNA structures, the geometry and stability of molecular crystals, and supramolecular host-guest complexes (A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012); R. A. DiStasio Jr., A. von Lilienfeld, A. Tkatchenko, PNAS 109, 14791 (2012); A. Tkatchenko, D. Alfe, K. S. Kim, J. Chem. Theory and Comp. (2012), doi: 10.1021/ct300711r; A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., arXiv:1210.8343v1).
Level 2 and level 2.5 large deviation functionals for systems with and without detailed balance
NASA Astrophysics Data System (ADS)
Hoppenau, J.; Nickelsen, D.; Engel, A.
2016-08-01
Large deviation functions are an essential tool in the statistics of rare events. Often they can be obtained by contraction from a so-called level 2 or level 2.5 large deviation functional characterizing the empirical density and current of the underlying stochastic process. For Langevin systems obeying detailed balance, the explicit form of the level 2 functional has been known ever since the mathematical work of Donsker and Varadhan. We rederive the Donsker-Varadhan result using stochastic path-integrals. We than generalize the derivation to level 2.5 large deviation functionals for non-equilibrium steady states and elucidate the relation between the large deviation functionals and different notions of entropy production in stochastic thermodynamics. Finally, we discuss some aspects of the contractions to level 1 large deviation functions and illustrate our findings with examples.
Reduced density-matrix functionals from many-particle theory
NASA Astrophysics Data System (ADS)
Schade, Robert; Kamil, Ebad; Blöchl, Peter
2017-07-01
In materials with strong electron correlation the proper treatment of local atomic physics described by orbital occupations is crucial. Reduced density-matrix functional theory is a natural extension of density functional theory for systems that are dominated by orbital physics. We review the current state of reduced density-matrix functional theory (RDMFT). For atomic structure relaxations or ab-initio molecular dynamics the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) possesses a number of disadvantages, like the cumbersome evaluation of forces. We therefore describe a method, DFT+RDMFT, that combines many-particle effects based on reduced density-matrix functional theory with a density functional-like framework. A recent development is the construction of density-matrix functionals directly from many-particle theory such as methods from quantum chemistry or many-particle Green's functions. We present the underlying exact theorems and describe current progress towards quantitative functionals.
Stochastic Time-Dependent Current-Density Functional Theory
NASA Astrophysics Data System (ADS)
D'Agosta, Roberto
2008-03-01
Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.
Flexoelectricity from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano
2013-11-01
We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.
Dynamical density functional theory for microswimmers.
Menzel, Andreas M; Saha, Arnab; Hoell, Christian; Löwen, Hartmut
2016-01-14
Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers, the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state," which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.
Dynamical density functional theory for microswimmers
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.; Saha, Arnab; Hoell, Christian; Löwen, Hartmut
2016-01-01
Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers, the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state," which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.
Density functional theory in the solid state
Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.
2014-01-01
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184
Bone mineral density, adiposity, and cognitive functions
Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.
2015-01-01
Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279
Density functional theory in the solid state.
Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J
2014-03-13
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.
Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T
2014-01-21
We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Xianlong, Gao; Polini, Marco; Tosi, M. P.; Campo, Vivaldo L. Jr.; Capelle, Klaus; Rigol, Marcos
2006-04-15
We present an extensive numerical study of the ground-state properties of confined repulsively interacting fermions in one-dimensional optical lattices. Detailed predictions for the atom-density profiles are obtained from parallel Kohn-Sham density-functional calculations and quantum Monte Carlo simulations. The density-functional calculations employ a Bethe ansatz based local-density approximation for the correlation energy that accounts for Luttinger-liquid and Mott-insulator physics. Semianalytical and fully numerical formulations of this approximation are compared with each other and with a cruder Thomas-Fermi-type local-density approximation for the total energy. Precise quantum Monte Carlo simulations are used to assess the reliability of the various local-density approximations, and in conjunction with these provide a detailed microscopic picture of the consequences of the interplay between particle-particle interactions and confinement in one-dimensional systems of strongly correlated fermions.
Partitioned density functional approach for a Lennard-Jones fluid.
Zhou, Shiqi
2003-12-01
The existing classical density functional approach for nonuniform Lennard-Jones fluid, which is based on dividing the Lennard-Jones interaction potential into a short-range, repulsive part, and a smoothly varying, long-range, attractive tail, was improved by dividing the bulk second-order direct correlation function into strongly density-depending short-range part and weakly density-depending long-range part. The latter is treated by functional perturbation expansion truncated at the lowest order whose accuracy depends on how weakly the long-range part depends on the bulk density. The former is treated by the truncated functional perturbation expansion which is rewritten in the form of the simple weighted density approximation and incorporates the omitted higher-order terms by applying Lagrangian theorem of differential calculus to the reformulated form. The two approximations are put into the density profile equation of the density functional theory formalism to predict the density distribution for Lennard-Jones fluid in contact with a hard wall or between two hard walls within the whole density range for reduced temperature T(*)=1.35 and a density point for reduced temperature T(*)=1. The present partitioned density functional theory performs much better than several previous density functional perturbation theory approaches and a recently proposed bridge density functional approximation.
Brorsen, Kurt R; Yang, Yang; Pak, Michael V; Hammes-Schiffer, Sharon
2017-05-04
The development of approximate exchange-correlation functionals is critical for modern density functional theory. A recent analysis of atomic systems suggested that some modern functionals are straying from the path toward the exact functional because electron densities are becoming less accurate while energies are becoming more accurate since the year 2000. To investigate this trend for more chemically relevant systems, the electron densities in the bonding regions and the atomization energies are analyzed for a series of diatomic molecules with 90 different functionals. For hybrid generalized gradient approximation functionals developed since the year 2000, the errors in densities and atomization energies are decoupled; the accuracy of the energies remains relatively consistent while the accuracy of the densities varies significantly. Such decoupling is not observed for generalized gradient and meta-generalized gradient approximation functionals. Analysis of electron densities in bonding regions is found to be important for the evaluation of functionals for chemical systems.
NASA Astrophysics Data System (ADS)
Robledo, L. M.
2010-06-01
I discuss the inadequacy of the 'projected density' prescription to be used in density-dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that, at least for the restoration of spatial symmetries like rotations, translations or parity, the above prescription yields catastrophic results for the energy that drive the intrinsic wave-function to configurations with infinite deformation, thereby preventing its use both in projection after and before variation.
Lithium adsorption on graphite from density functional theory calculations.
Valencia, Felipe; Romero, Aldo H; Ancilotto, Francesco; Silvestrelli, Pier Luigi
2006-08-03
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.
A half century of density functional theory
Zangwill, Andrew
2015-07-15
Today’s most popular method for calculating the electronic structure of atoms, molecules, liquids, solids, and plasmas began as a bold hypothesis: The electron density distribution completely characterizes the ground state of a many-electron system.
Validation of density-functional versus density-functional+U approaches for oxide ultrathin films
NASA Astrophysics Data System (ADS)
Barcaro, Giovanni; Thomas, Iorwerth Owain; Fortunelli, Alessandro
2010-03-01
A comparison between available experimental information and the predictions of density-functional and density-functional+U approaches is presented for oxide ultrathin films grown on single-crystal metal surfaces. Prototypical examples of monolayer phases of an ionic oxide (ZnO), a late transition metal oxide (NiO), and an early transition metal oxide (TiO2) are considered. The aim is to validate the theoretical approaches, focusing on the prediction of structural features and the reproduction of scanning tunneling microscopy images, rationalized in terms of the local density of states of the systems. It is found that it is possible to reasonably estimate the optimal lattice constant of ultrathin supported films and that the inclusion of the Hubbard U term appreciably improves the accuracy of theoretical predictions, especially in the case of nonpolar ultrathin phases of a transition metal oxide. Moreover, the optimal value of U for the oxide layer at the interface with the metal support is found to differ from that appropriate for the bulk oxide, as a consequence of the intermixing of oxide and support electronic states and screening effects.
Electron response in van der Waals density functionals
NASA Astrophysics Data System (ADS)
Hyldgaard, Per
2013-03-01
There is significant interest in density functional theory (DFT) of dispersive or van der Waals (vdW) interactions and in DFT studies of sparse systems where vdW forces contribute to the cohesion and behavior. The Rutgers-Chalmers van der Waals density functional (vdW-DF) method [PRL 92, 246401 (2004); PRB 76, 125112 (2007)] is a nonempirical approach to calculate vdW bonding and for DFT characterizations of sparse matter. The vdW-DF framework is defined by a single exchange-correlation density functional that rests on a plasmon-type description for both semilocal components and for a parameter-free evaluation of nonlocal correlation. My talk summarizes a set of vdW-DF studies that seeks to map and analyze details in the vdW-DF electron-response nature. The purpose is in part to extract consequences that can facilitate an experiment-theory comparison that goes beyond binding geometries and energies. The aim is also to seek implications that can help develop the vdW-DF framework. I present an analysis of the relative importance of morphology, screening (image-plane formation), and collective effects in the vdW-DF description of molecular systems. In addition, I compare vdW-DF results with Cu(111) experiments that tests the electron-response behavior in terms of adsorption-induced band shifts, the form of the overall light-molecule physisorption potential, and the corrugation in the kinetic-energy repulsion of molecules at surfaces. Overall, the vdW-DF studies suggest the importance of benchmarking vdW methods across different length scales and by exploring the variation that arise when related structures have a different balance between exchange repulsion and vdW attraction.
Covariant Density Functional Theory--highlights on recent progress and applications
Meng, J.; Li, J.; Zhao, P. W.; Liang, H. Z.; Yao, J. M.
2011-05-06
The density functional theory with a few number of parameters allows a very successful phenomenological description of ground state properties of nuclei all over the nuclear chart. The recent progress on the application of the covariant density functional theory (CDFT) for nuclear structure and astrophysics as well as its extensions by the group in Beijing is summarized. In particular, its application to magnetic moments is discussed in details.
Parameterized local hybrid functionals from density-matrix similarity metrics.
Janesko, Benjamin G; Scuseria, Gustavo E
2008-02-28
We recently proposed a real-space similarity metric comparing the Kohn-Sham one-particle density matrix to the local spin-density approximation model density matrix [Janesko and Scuseria, J. Chem. Phys. 127, 164117 (2007)]. This metric provides a useful ingredient for constructing local hybrid density functionals that locally mix exact exchange and semilocal density functional theory exchange. Here we present two lines of inquiry: An approximate similarity metric comparing exact versus generalized gradient approximation (GGA), exchange and parameterized mixing functions using these similarity metrics. This approach yields significantly improved thermochemistry, including GGA local hybrids whose thermochemical performance approaches GGA global hybrids.
Density functional theory for Yukawa fluids.
Hatlo, Marius M; Banerjee, Priyanka; Forsman, Jan; Lue, Leo
2012-08-14
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.
Molecular dynamics simulation of liquid water: Hybrid density functionals
Todorova, T; Seitsonen, A; Hutter, J; Kuo, W; Mundy, C
2005-09-12
The structure, dynamical and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta functional, four gradient corrected functionals, the local density and Hartree-Fock approximation. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and under-structured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller averaged numbers of hydrogen bonds and similar hydrogen bond populations as pure density functionals. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than from the corresponding pure density functionals.
Orbital-free kinetic-energy density functionals with a density-dependent kernel
NASA Astrophysics Data System (ADS)
Wang, Yan Alexander; Govind, Niranjan; Carter, Emily A.
1999-12-01
We report linear-response kinetic-energy density functionals, which show significant improvement over the Wang-Teter, Perrot, Smargiassi-Madden, Wang-Govind-Carter functionals, yet still maintain O(N ln N) scaling. Numerical tests show that these functionals, which contain a double-density-dependent kernel, can reproduce the Kohn-Sham results almost exactly for several aluminum bulk phases. We further show that with a sensible choice of the uniform background density, energies of formation for the low-index aluminum surfaces, where the density variations are very large, can be reproduced to within reasonable accuracy.
Exact conditions on the temperature dependence of density functionals
Burke, K.; Smith, J. C.; Grabowski, P. E.; ...
2016-05-15
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. Here, we derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Introduction to Classical Density Functional Theory by a Computational Experiment
ERIC Educational Resources Information Center
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Introduction to Classical Density Functional Theory by a Computational Experiment
ERIC Educational Resources Information Center
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
Crucial role of detailed function, task, timeline, link and human vulnerability analyses in HRA
Ryan, T.G.; Haney, L.N.; Ostrom, L.T.
1992-10-01
This paper addresses one major cause for large uncertainties in human reliability analysis (HRA) results, that is, an absence of detailed function, task, timeline, link and human vulnerability analyses. All too often this crucial step in the HRA process is done in a cursory fashion using word of mouth or written procedures which themselves may incompletely or inaccurately represent the human action sequences and human error vulnerabilities being analyzed. The paper examines the potential contributions these detailed analyses can make in achieving quantitative and qualitative HRA results which are: (1) creditable, that is, minimize uncertainty, (2) auditable, that is, systematically linking quantitative results and qualitative information from which the results are derived, (3) capable of supporting root cause analyses on human reliability factors determined to be major contributors to risk, and (4) capable of repeated measures and being combined with similar results from other analyses to examine HRA issues transcending individual systems and facilities. Based on experience analyzing test and commercial nuclear reactors, and medical applications of nuclear technology, an iterative process is suggested for doing detailed function, task, timeline, link and human vulnerability analyses using documentation reviews, open-ended and structured interviews, direct observations, and group techniques. Finally, the paper concludes that detailed analyses done in this manner by knowledgeable human factors practitioners, can contribute significantly to the credibility, auditability, causal factor analysis, and combining goals of the HRA.
Nagao, Chioko; Nagano, Nozomi; Mizuguchi, Kenji
2014-01-01
Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number of residues and therefore, information about these critical residues can potentially help discriminate detailed functions. However, because these residues must be identified by mutagenesis experiments, the available information is limited, and the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed function prediction methods and computational identification of SDRs. Here we present a novel method for predicting enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs). EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98 and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily.
Nagao, Chioko; Nagano, Nozomi; Mizuguchi, Kenji
2014-01-01
Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number of residues and therefore, information about these critical residues can potentially help discriminate detailed functions. However, because these residues must be identified by mutagenesis experiments, the available information is limited, and the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed function prediction methods and computational identification of SDRs. Here we present a novel method for predicting enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs). EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98 and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily. PMID:24416252
NASA Astrophysics Data System (ADS)
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ˜26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ˜27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ˜24 on 30 processors. The
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The
Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert
2015-05-27
In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons.
NBO analysis and vibrational frequencies of tautomers of citrinin by density functional theory
USDA-ARS?s Scientific Manuscript database
Citrinin is a toxic polyketide contaminant of a number of agricultural commodities, notably Monascus-fermented red rice. Detailed structures and electronic properties of three tautomeric forms of citrinin were investigated using density functional theory calculations at various extended basis sets ...
The Performance of Density Functionals for Sulfate-Water Clusters.
Mardirossian, Narbe; Lambrecht, Daniel S; McCaslin, Laura; Xantheas, Sotiris S; Head-Gordon, Martin
2013-03-12
The performance of 24 density functionals, Hartree-Fock, and MP2 is assessed with respect to the CCSD(T)/CBS* energetics of 49 sulfate-water clusters with three to six water molecules. Included among the density functionals are GGA, meta-GGA, hybrid GGA, hybrid meta-GGA, and double hybrid density functionals, as well as the LDA. Three types of dispersion corrections (VV10, XDM, and -D) are tested in conjunction with these functionals. The 26 methods are compared using the relative and binding energies of the sulfate-water clusters as the main criteria. It was discovered that a majority of the tested density functionals are unable to simultaneously capture the physics necessary to describe both the relative and binding energies of the anionic solvation clusters. The three density functionals with the best overall performance are XYG3, ωB97X-2, and XYGJ-OS. The only other density functional that performs comparably to these three double hybrids is M11. A majority of the density functionals that contain a fraction of exact exchange tend to perform well only for the relative energies, while functionals lacking exact exchange generally perform poorly with respect to both criteria. However, the meta-GGA functional, M11-L, stands out due to its superior performance for the relative energies. While dispersion correction functionals cannot replace the accuracy provided by MP2 correlation, it is shown that the proper combination of a hybrid GGA functional (LC-ωPBE) with a dispersion correction functional (VV10) can lead to drastic improvements in the binding energies of the parent functional, while preserving its performance with respect to the relative energies. Ultimately, however, MP2 has the best overall performance out of the 26 benchmarked methods.
Density functional calculations on hydrocarbon isodesmic reactions
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Selmi, Massimo
1994-06-01
Hartree—Fock, Hartree—Fock-plus-correlation and self-consistent Kohn—Sham calculations are performed on a set of hydrocarbon isodesmic reactions, i.e. reactions among hydrocarbons in which the number and type of carbon—carbon and carbon—hydrogen bonds is conserved. It is found that neither Hartree—Fock nor Kohn—Sham methods correctly predict standard enthalpies, Δ Hr(298 K), of these reactions, even though — for reactions involving molecules containing strained double bonds — the agreement between the theoretical estimates and the experimental values of Δ Hr seems to be improved by the self-consistent solution of the Kohn—Sham equations. The remaining discrepancies are attributed to intramolecular dispersion effects, that are not described by ordinary exchange—correlation functionals, and are eliminated by introducing corrections based on a simple semi-empirical model.
Testing for parity violation in nuclei using spin density matrices for nuclear density functionals
NASA Astrophysics Data System (ADS)
Barrett, B. R.; Giraud, B. G.
2015-06-01
The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.
A perturbative density functional theory for square-well fluids.
Jin, Zhehui; Tang, Yiping; Wu, Jianzhong
2011-05-07
We report a perturbative density functional theory for quantitative description of the structural and thermodynamic properties of square-well fluids in the bulk or at inhomogeneous conditions. The free-energy functional combines a modified fundamental measure theory to account for the short-range repulsion and a quadratic density expansion for the long-range attraction. The long-correlation effects are taken into account by using analytical expressions of the direct correlation functions of bulk fluids recently obtained from the first-order mean-spherical approximation. The density functional theory has been calibrated by extensive comparison with simulation data from this work and from the literature. The theory yields good agreement with simulation results for the radial distribution function of bulk systems and for the density profiles of square-well fluids near the surfaces of spherical cavities or in slit pores over a broad range of the parameter space and thermodynamic conditions.
Postfragmentation density function for bacterial aggregates in laminar flow
NASA Astrophysics Data System (ADS)
Byrne, Erin; Bortz, David M.; Dzul, Steve; Solomon, Michael; Younger, John
2011-04-01
The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation.
Pérez-Jiménez, Angel J; Pérez-Jordá, José M; Illas, Francesc
2004-01-01
A new method to improve the excess spin density obtained from unrestricted Hartree-Fock wave functions in terms of natural orbitals is proposed. Using this modified excess spin density to evaluate the correlation energy by means of density functionals leads to large improvements in the computed magnetic coupling constants of several materials without need to modify the exchange contribution. This is important because it reconciles the density functional theory description with the one provided by multi-determinant wave functions. Using the present approach, the leading contribution to the magnetic coupling constant arises from electron correlation effects. The performance of the new method is illustrated on various materials including high-critical-temperature superconductors parent compounds.
Basal paravian functional anatomy illuminated by high-detail body outline
Wang, Xiaoli; Pittman, Michael; Zheng, Xiaoting; Kaye, Thomas G.; Falk, Amanda R.; Hartman, Scott A.; Xu, Xing
2017-01-01
Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit. PMID:28248287
Detailed first-principles studies on surface energy and work function of hexagonal metals
NASA Astrophysics Data System (ADS)
Ji, De-Peng; Zhu, Quanxi; Wang, Shao-Qing
2016-09-01
The surface energies and work functions for ten kinds of Miller-indices surfaces of hexagonal metals, Be, Mg, Tc, Re, Ru, and Os are calculated by means of the density functional theory (DFT) method. The results show that the metals belonging to the same group have a very similar rule in work functions and surface energies. The work functions of (0001), (01 1 - 1)" separators=",, and (10 1 - 0)" separators=", surfaces are generally larger than the work functions of (11 2 - 1)" separators=",, (11 2 - 2)" separators=",, (11 2 - 3)" separators=",, and (31 4 - 0)" separators=", surfaces. In contrast to work functions, there is more regularity in the crystallographic orientation dependence of surface energies. However, for the metals belonging to different groups, there are always some differences in the exact order of orientation dependence. It is also shown that the work functions and surface energies of the main group metals decrease as they go from top to the bottom in the same group of periodic table, while for the transition metals, they do not always obey this rule.
Density functional theory of the crystal field in dioxides
NASA Astrophysics Data System (ADS)
Diviš, M.; Kuriplach, J.; Richter, M.; Steinbeck, L.
1996-04-01
Presented are the results of ab-initio density functional calculations for PrO2 and UO2 using the general potential LAPW and optimized LCAO method in the local density approximation. The crystal field splitting of ionic Pr4+ and U4+ ground states was calculated and compared with predictions of a superposition model.
Applications and validations of the Minnesota density functionals
NASA Astrophysics Data System (ADS)
Zhao, Yan; Truhlar, Donald G.
2011-01-01
We discuss and review selected recent applications and validations of the Minnesota density functionals, especially the M06 family, emphasizing nanochemistry, organic, inorganic, and biological chemistry, and catalysis and highlighting the broad accuracy of these functionals as compared to previous popular functionals for thermochemistry, kinetics, and noncovalent interactions.
Integration, Continuity and a Connection with Probability Density Functions
ERIC Educational Resources Information Center
Samuels, M.
2006-01-01
This note considers functions of two variables which are continuous on a possibly unbounded closed region in [vertical bar]R[squared], and the functions of one variable obtained by integrating out the other variable over this region. The question of continuity of these functions is investigated, as are connections with joint density and marginal…
NASA Astrophysics Data System (ADS)
Xia, Junchao; Carter, Emily A.
2012-12-01
We propose a density decomposition scheme using a Wang-Govind-Carter- (WGC-) based kinetic energy density functional (KEDF) to accurately and efficiently simulate various covalently bonded molecules and materials within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a highly localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase-ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The decomposition formalism greatly improves numerical stability and accuracy, while retaining computational speed compared to simply applying the original WGC KEDF to covalent materials. The surface energy of Si(100) and various diatomic molecule properties can be stably calculated and also agree well with KSDFT benchmarks. This linear-scaled, computationally efficient, density-partitioned, multi-KEDF scheme opens the door to large-scale simulations of molecules, semiconductors, and insulators with OFDFT.
Making a happy match between orbital-free density functional theory and information energy density
NASA Astrophysics Data System (ADS)
Alipour, Mojtaba
2015-08-01
In the field of computational chemistry within density functional theory (DFT), the orbital-free DFT (OF-DFT) can be considered as a promising approach for simulating large systems. In OF-DFT, only a single relation, the Euler equation, has to be solved independently from the number of electrons. In this work, the Euler equation of OF-DFT is rewritten through a new partition scheme for energy density functional. Next, based on information theory, we reformulate the resulting equation in terms of Onicescu information energy density. Plus, the new forms of Euler equation based on Shannon entropy and Fisher information are presented.
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy.
Vuckovic, Stefan; Gori-Giorgi, Paola
2017-07-06
From a simplified version of the mathematical structure of the strong coupling limit of the exact exchange-correlation functional, we construct an approximation for the electronic repulsion energy at physical coupling strength, which is fully nonlocal. This functional is self-interaction free and yields energy densities within the definition of the electrostatic potential of the exchange-correlation hole that are locally accurate and have the correct asymptotic behavior. The model is able to capture strong correlation effects that arise from chemical bond dissociation, without relying on error cancellation. These features, which are usually missed by standard density functional theory (DFT) functionals, are captured by the highly nonlocal structure, which goes beyond the "Jacob's ladder" framework for functional construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.
Towards a more accurate van der Waals density functional
NASA Astrophysics Data System (ADS)
Hamada, Ikutaro
2014-03-01
The van der Waals density functional (vdW-DF) of Dion et al. [1] has attracted considerable attention, because the functional is able to describe intra- and intermolecular bondings with different natures, e.g., covalent and van der Waals bondings in a seamless fashion within the framework of density functional theory. However, the accuracy of the functional is yet to be improved for the applications to various systems. Here I propose an exchange functional for the second version of vdW-DF [2], which improves the accuracy of vdW-DF. The keys in the improved exchange are the matching to the gradient expansion approximation in the slowly varying limit and the large density gradient behavior set in Becke's exchange (B86b)[3]. Systematic study on gas phase molecules, solids, and molecular adsorption demonstrates the applicability of the proposed functional to a wide variety of materials.
Density functional study of the electric double layer formed by a high density electrolyte.
Henderson, Douglas; Lamperski, Stanisław; Jin, Zhehui; Wu, Jianzhong
2011-11-10
We use a classical density functional theory (DFT) to study the electric double layer formed by charged hard spheres near a planar charged surface. The DFT predictions are found to be in good agreement with recent computer simulation results. We study the capacitance of the charged hard-sphere system at a range of densities and surface charges and find that the capacitance exhibits a local minimum at low ionic densities and small electrode charge. Although this charging behavior is typical for an aqueous electrolyte solution, the local minimum gradually turns into a maximum as the density of the hard spheres increases. Charged hard spheres at high density provide a reasonable first approximation for ionic liquids. In agreement with experiment, the capacitance of this model ionic liquid double layer has a maximum at small electrode charge density.
Gutzwiller density functional theory for correlated electron systems
Ho, K. M.; Schmalian, J.; Wang, C. Z.
2008-02-04
We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.
Density Functional Theory with Dissipation: Transport through Single Molecules
Kieron Burke
2012-04-30
A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.
Reflection-Asymmetric Nuclear Deformations within the Density Functional Theory
Olsen, E; Erler, J; Nazarewicz, W.; Stoitsov, M
2012-01-01
Within the nuclear density functional theory (DFT) we study the effect of reflection- asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver axialhfb that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even- even isotopes of radium and thorium.
Density Functional Studies of Decomposition Processes of Energetic Molecules
1994-11-03
34-- I of Energetic Molecules Dr. Richard S. Miller 6. AUTHOR(S) Peter Politzer, Jorge M. Seminario and M. Edward Grice R&T Code 4131DO2 7. PERFORMING...49) ,’i. " o MW U of. tongi.ig2 Density Functional Studies of Decomposition Processes of Energetic Molecules Peter Politzer, Jorge M. Seminario and...Initio Molecular Orbital Theory, (Wiley-Interscience, New York, 1986). 9. J. M. Seminario , M. Grodzicki and P. Politzer, in Density Functional Methods
Constraints on parton density functions from D0
Hays, Jonathan M.; /Imperial Coll., London
2008-04-01
Five recent results from D0 which either impact or have the potential to impact on uncertainties in parton density functions are presented. Many analyses at D0 are sensitive to the modeling of the partonic structure of the proton. When theoretical and experimental uncertainties are well controlled there exists the possibility for additional constraints on parton density functions (PDF). Five measurements are presented which either have already been included in global parton fits or have the potential to contribute in the future.
Preface: Special Topic on Advances in Density Functional Theory
Yang, Weitao
2014-05-14
This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.
Conditional Probability Density Functions Arising in Bearing Estimation
1994-05-01
and a better known performance measure: the Cramer-Rao bound . 14. SUMECT TEm IL5 NUlMN OF PAMES Probability Density Function, bearing angle estimation...results obtained using the calculated density functions and a better known performance measure: the Cramer-Rao bound . The major results obtained are as...48 15. Sampling Inteval , Propagation Delay, and Covariance Singularities ....... 52 viii List of Figures (continued
Average protein density is a molecular-weight-dependent function.
Fischer, Hannes; Polikarpov, Igor; Craievich, Aldo F
2004-10-01
The mass density of proteins is a relevant basic biophysical quantity. It is also a useful input parameter, for example, for three-dimensional structure determination by protein crystallography and studies of protein oligomers in solution by analytic ultracentrifugation. We have performed a critical analysis of published, theoretical, and experimental investigations about this issue and concluded that the average density of proteins is not a constant as often assumed. For proteins with a molecular weight below 20 kDa, the average density exhibits a positive deviation that increases for decreasing molecular weight. A simple molecular-weight-depending function is proposed that provides a more accurate estimate of the average protein density.
Detailed description of the flexible periodic London-Eyring-Polanyi-Sato potential energy function
NASA Astrophysics Data System (ADS)
Martin-Gondre, L.; Crespos, C.; Larrégaray, P.; Rayez, J. C.; Conte, D.; van Ootegem, B.
2010-02-01
An extension of the periodic London-Eyring-Polanyi-Sato (PLEPS) function has been recently proposed in order to accurately describe the six-dimensional potential energy surface for two atoms interacting with a periodic rigid surface. However, only the main features were presented so that the present paper aims at precisely describing the necessary details to achieve the fitting procedure of the so-called flexible periodic LEPS function (FPLEPS) to a set of ab initio electronic structure calculations. The topology of the resulting global potential energy surface is compared to that of previously developed models, including a state-of-the-art ab initio potential, for N 2 interacting with W(1 0 0). The dynamics of dissociative adsorption using these different models is analyzed.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Global and local curvature in density functional theory
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Cooling Function in Wide Range of Density and Metallicity
NASA Astrophysics Data System (ADS)
Wang, Ye; Ferland, G. J.
2013-06-01
This work focuses on how the plasma cooling function changes with density and metallicity over a wide range of temperature (104 K
Linear response of homogeneous nuclear matter with energy density functionals
NASA Astrophysics Data System (ADS)
Pastore, A.; Davesne, D.; Navarro, J.
2015-03-01
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Density functionals and dimensional renormalization for an exactly solvable model
NASA Astrophysics Data System (ADS)
Kais, S.; Herschbach, D. R.; Handy, N. C.; Murray, C. W.; Laming, G. J.
1993-07-01
We treat an analytically solvable version of the ``Hooke's Law'' model for a two-electron atom, in which the electron-electron repulsion is Coulombic but the electron-nucleus attraction is replaced by a harmonic oscillator potential. Exact expressions are obtained for the ground-state wave function and electron density, the Hartree-Fock solution, the correlation energy, the Kohn-Sham orbital, and, by inversion, the exchange and correlation functionals. These functionals pertain to the ``intermediate'' density regime (rs≥1.4) for an electron gas. As a test of customary approximations employed in density functional theory, we compare our exact density, exchange, and correlation potentials and energies with results from two approximations. These use Becke's exchange functional and either the Lee-Yang-Parr or the Perdew correlation functional. Both approximations yield rather good results for the density and the exchange and correlation energies, but both deviate markedly from the exact exchange and correlation potentials. We also compare properties of the Hooke's Law model with those of two-electron atoms, including the large dimension limit. A renormalization procedure applied to this very simple limit yields correlation energies as good as those obtained from the approximate functionals, for both the model and actual atoms.
Range Separation and Local Hybridization in Density Functional Theory†
Henderson, Thomas M.; Janesko, Benjamin G.; Scuseria, Gustavo E.
2016-01-01
Kohn–Sham density functional theory has become a standard method for modeling energetic, spectroscopic, and chemical reactivity properties of large molecules and solids. Density functional theory provides a rigorous theoretical framework for modeling the many-body exchange-correlation effects that dominate the computational cost of traditional wave function approaches. The advent of hybrid exchange-correlation functionals which incorporate a fraction of nonlocal exact exchange has solidified the prominence of density functional theory within computational chemistry. Hybrids provide accurate treatments of properties such as thermochemistry and molecular geometry. But they also exhibit some rather spectacular failures, and often contain multiple empirical parameters. This article reviews our work on developing novel exchange-correlation functionals that build upon the successes of global hybrids. We focus on more flexible functional forms, including local and range-separated hybrid functionals, constructed to obey known exact constraints and (ideally) to incorporate a minimum of empirical parametrization. The article places our work within the context of some other new approximate density functionals and discusses prospects for future work. PMID:19006280
Reduction of functional capillary density in human brain after stroke.
Gjedde, A; Kuwabara, H; Hakim, A M
1990-05-01
The blood flow of brain tissue often returns to normal after an ischemic episode. As "luxury" rather than "reactive" reperfusion, this hyperemia is associated with low metabolism. It is not known to what extent the high blood flow accompanies a high, normal, or low density of capillaries. The resolution of this question may indicate whether the functional capillary density is variable and, if so, whether it is coupled to blood flow or metabolism. To answer these questions, we defined functional capillaries as capillaries that transport glucose. We then calculated the density of functional capillaries (Dcap) and the mean time of transit of blood through the capillaries (tcap) from hemodynamic variables obtained in vivo by positron tomography of five patients afflicted by cerebral ischemic stroke. Each patient was studied twice, within 36 h of the insult and 1 week later. We identified nominally "ischemic" regions in the first study as cortical gray matter regions, contiguous with the ischemic focus, in which the magnitude of blood flow did not exceed 20 ml 100 g-1 min-1. In these regions, values of metabolism and functional capillary density were proportionately low compared with normal values obtained in the contralateral hemisphere. The studies revealed a reduction of the functional density of exchange vessels in postischemic brain tissue as soon as 36 h after the insult. In "ischemic" regions, within 36 h of the insult, the net extraction of oxygen was inversely related to the capillary transit time and appeared to be limited mainly by the low functional density of the capillaries. Contrary to expectations, the reduced density persisted, even when more than adequate perfusion of the tissue returned. For these reasons, we concluded that changes of the capillary density were associated with changes of the metabolism of the tissue rather than with blood flow.
Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks.
Yao, Kun; Parkhill, John
2016-03-08
We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from an input electron density. The output of the network is used as a nonlocal correction to conventional local and semilocal kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. The density which minimizes the total energy given by the functional is examined in detail. We identify several avenues to improve on this exploratory work, by reducing numerical noise and changing the structure of our functional. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.
Optimization of an exchange-correlation density functional for water
NASA Astrophysics Data System (ADS)
Fritz, Michelle; Fernández-Serra, Marivi; Soler, José M.
2016-06-01
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Density Functional Theory for General Hard-Core Lattice Gases
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Cuesta, José A.
2004-09-01
We put forward a general procedure to obtain an approximate free-energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice, or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.
Can orbital-free density functional theory simulate molecules?
NASA Astrophysics Data System (ADS)
Xia, Junchao; Huang, Chen; Shin, Ilgyou; Carter, Emily A.
2012-02-01
Orbital-free density functional theory (OFDFT), with its attractive linearly scaling computation cost and low prefactor, is one of the most powerful first principles methods for simulating large systems (˜104-106 atoms). However, approximating the electron kinetic energy with density functionals limits the accuracy and generality of OFDFT compared to Kohn-Sham density functional theory (KSDFT). In this work, we test whether the Huang-Carter (HC) kinetic energy density functional (KEDF), which contains the physics to properly describe covalently bonded semiconductor materials, can also be used to describe covalent bonds in molecules. In particular, we calculate a variety of homonuclear diatomic molecules with the HC functional within OFDFT. The OFDFT bond dissociation energy, equilibrium bond length, and vibrational frequency of these dimers are in remarkably good agreement with benchmark KSDFT results, given the lack of orbitals in the calculation. We vary the two parameters λ (controlling the reduced density gradient contribution to the nonlocal kernel) and β (the exponent of the density in the nonlocal term) present in the HC KEDF and find that the optimal λ correlates with the magnitude of the highest occupied molecular orbital - lowest unoccupied molecular orbital energy gap. Although the HC KEDF represents a significant improvement over previous KEDFs in describing covalent systems, deficiencies still exist. Despite the similar overall shape of the KSDFT and OFDFT ground state electron densities, the electron density within the bonding region is still quite different. Furthermore, OFDFT is not yet able to give reasonable description of magnetic states. The energy orderings of the triplet and singlet states of Si2 and Al family dimers are not consistent with KSDFT or experimental results and the spin polarization distributions also differ widely between the two theories.
Force Density Function Relationships in 2-D Granular Media
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.
2004-01-01
An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms
Density functional for ternary non-additive hard sphere mixtures.
Schmidt, Matthias
2011-10-19
Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. © 2011 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Overly, T. B.; Hawley, R. L.; Helm, V.; Morris, E. M.; Chaudhary, R. N.
2015-12-01
We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and detailed neutron-probe (NP) density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 %) from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995-2004 compared to 1985-1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.
Improved association in a classical density functional theory for water
Krebs, Eric J.; Schulte, Jeff B.; Roundy, David
2014-03-28
We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment.
A revised density function for molecular surface definition in continuum solvent models
Ye, Xiang; Wang, Jun; Luo, Ray
2014-01-01
A revised density function is developed to define the molecular surface for the numerical Poisson-Boltzmann methods to achieve a better convergence and higher numerical stability. The new density function does not use any predefined functional form but is numerically optimized to reproduce the reaction field energies computed with the solvent excluded surface definition. An exhaustive search in the parameter space is utilized in the optimization using a wide-range training molecules including proteins, nucleic acids, and peptides in both folded and unfolded conformations. A cubic-spline function is introduced to guarantee good numerical behavior of the new density function. Our test results show that the average relative energy errors computed with the revised density function are uniformly lower than 1% for both training and test molecules with different sizes and conformations. Our transferability analysis shows that the performance of the new method is mostly size and conformation independent. A detailed analysis further shows that the numerical forces computed with the revised density function converge better with respect to the grid spacing and are numerically more stable in tested peptides. PMID:24723844
Density functional calculations of spin-wave dispersion curves.
NASA Astrophysics Data System (ADS)
Kleinman, Leonard; Niu, Qian
1998-03-01
Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.
New link between conceptual density functional theory and electron delocalization.
Matito, Eduard; Putz, Mihai V
2011-11-17
In this paper we give a new definition of the softness kernel based on the exchange-correlation density. This new kernel is shown to correspond to the change of electron fluctuation upon external perturbation, thus helping to bridge the gap between conceptual density functional theory and some tools describing electron localization in molecules. With the aid of a few computational calculations on diatomics we illustrate the performance of this new computational tool.
Density functionals that recognize covalent, metallic, and weak bonds.
Sun, Jianwei; Xiao, Bing; Fang, Yuan; Haunschild, Robin; Hao, Pan; Ruzsinszky, Adrienn; Csonka, Gábor I; Scuseria, Gustavo E; Perdew, John P
2013-09-06
Computationally efficient semilocal approximations of density functional theory at the level of the local spin density approximation (LSDA) or generalized gradient approximation (GGA) poorly describe weak interactions. We show improved descriptions for weak bonds (without loss of accuracy for strong ones) from a newly developed semilocal meta-GGA (MGGA), by applying it to molecules, surfaces, and solids. We argue that this improvement comes from using the right MGGA dimensionless ingredient to recognize all types of orbital overlap.
Density functional study of condensation in capped capillaries
NASA Astrophysics Data System (ADS)
Yatsyshin, P.; Savva, N.; Kalliadasis, S.
2015-07-01
We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤slant {{T}\\text{cw}} ) or continuous (at T\\gt {{T}\\text{cw}} ), where {{T}\\text{cw}} is the capillary wetting temperature. At T \\gt {{T}\\text{cw}} , the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.
Density functional theory for semiflexible and cyclic polyatomic fluids.
Cao, Dapeng; Wu, Jianzhong
2004-09-01
The effects of bond angle and chain stiffness on the structures of semiflexible polyatomic fluids are investigated by incorporating the bending potential into a density functional theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 2368 (2002)] that combines a modified fundamental measure theory for the excluded-volume effects and the first-order thermodynamics perturbation theory for the chain connectivity. The refined density functional theory faithfully reproduces the density profiles and conformational properties of a variety of triatomic fluids near a hard wall in which extensive Monte Carlo simulation data are available. In particular, the theory is able to capture the structures of rigid cyclic trimers where all segments are identical. The variation of local density profiles with respect to the chain length of confined polyatomic fluids is also explored. For quadratomic fluids confined in slit pores, the density profile of the middle segments exhibits novel double peaks that are absent in a fully flexible chain model. In addition, the density functional theory is applied to predicting the conformational properties and adsorption behavior of heterogeneous triatomic fluids of type "ABB" mimicking surfactant molecules. The competition between surface adsorption and self-association of trimers consisting of surface active and self-binding "A" segments and neutral "B" segment is explored. (c) 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Greenman, Loren; Whitley, Heather D.; Whaley, K. Birgitta
2013-10-01
We present density functional theory calculations of phosphorus dopants in bulk silicon and of several properties relating to their use as spin qubits for quantum computation. Rather than a mixed pseudopotential or a Heitler-London approach, we have used an explicit treatment for the phosphorus donor and examined the detailed electronic structure of the system as a function of the isotropic doping fraction, including lattice relaxation due to the presence of the impurity. Doping electron densities (ρdoped-ρbulk) and spin densities (ρ↑-ρ↓) are examined in order to study the properties of the dopant electron as a function of the isotropic doping fraction. Doping potentials (Vdoped-Vbulk) are also calculated for use in calculations of the scattering cross sections of the phosphorus dopants, which are important in the understanding of electrically detected magnetic resonance experiments. We find that the electron density around the dopant leads to nonspherical features in the doping potentials, such as trigonal lobes in the (001) plane at energy scales of +12 eV near the nucleus and of -700 meV extending away from the dopants. These features are generally neglected in effective mass theory and will affect the coupling between the donor electron and the phosphorus nucleus. Our density functional calculations reveal detail in the densities and potentials of the dopants which are not evident in calculations that do not include explicit treatment of the phosphorus donor atom and relaxation of the crystal lattice. These details can also be used to parametrize tight-binding models for simulation of large-scale devices.
Sorption on deformable solids. Density functional theory approach.
Berim, Gersh O; Ruckenstein, Eli
2011-11-17
A modified density functional theory is proposed to describe fluid adsorption and absorption by a solid, the density of which is nonhomogeneous near the interface. The density distribution of the solid is not provided by apriori assumptions, but is obtained via the minimization of an appropriate thermodynamic potential. The theory considers a mixture of two components in a slitlike pore. One of them, the fluid, is in contact with a reservoir containing the same kind of molecules and can be described through a grand canonical ensemble. The other component has strong interactions between its molecules. As a consequence, it forms a solid in the slit which can be treated as a canonical ensemble of a fixed number of molecules. The theory predicts both an intrinsic (in the absence of fluid) change in the solid density near the interface and a solid density variation as the fluid density in the reservoir is changed. In addition, it reveals that the oscillations that occur in the fluid density when the solid density is uniform are damped by the nonuniform solid. The theory provides the amounts of fluid adsorbed as well as absorbed by the solid.
Configuration interaction in symmetry-conserving covariant density functional theory
NASA Astrophysics Data System (ADS)
Zhao, P. W.; Ring, P.; Meng, J.
2016-10-01
A new method to calculate spectroscopic properties of deformed nuclei is proposed: configuration interaction on top of projected density functional theory (CI-PDFT). The general concept of this approach is discussed in the framework of covariant density functional theory and its validity is illustrated in an application to the yrast band of the nucleus 54Cr. It is found that the experimentally observed excitation energies for the yrast band in 54Cr can be well reproduced. In contrast to conventional shell-model calculations, there is no core and only a relatively small number of configurations is sufficient for a satisfying description. No new parameters are necessary, because the effective interaction is derived from an universal density functional given in the literature.
The AM05 density functional applied to solids.
Mattsson, Ann E; Armiento, Rickard; Paier, Joachim; Kresse, Georg; Wills, John M; Mattsson, Thomas R
2008-02-28
We show that the AM05 functional [Armiento and Mattsson, Phys. Rev. B 72, 085108 (2005)] has the same excellent performance for solids as the hybrid density functionals tested in Paier et al. [J. Chem. Phys. 124, 154709 (2006); 125, 249901 (2006)]. This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. Hartree-Fock hybrid calculations are typically an order of magnitude slower than local or semilocal density functionals such as AM05, which is of a regular semilocal generalized gradient approximation form. The performance of AM05 is on average found to be superior to selecting the best of local density approximation and PBE for each solid. By comparing data from several different electronic-structure codes, we have determined that the numerical errors in this study are equal to or smaller than the corresponding experimental uncertainties.
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Perspective: Kohn-Sham density functional theory descending a staircase.
Yu, Haoyu S; Li, Shaohong L; Truhlar, Donald G
2016-10-07
This article presents a perspective on Kohn-Sham density functional theory (KS-DFT) for electronic structure calculations in chemical physics. This theory is in widespread use for applications to both molecules and solids. We pay special attention to several aspects where there are both concerns and progress toward solutions. These include: 1. The treatment of open-shell and inherently multiconfigurational systems (the latter are often called multireference systems and are variously classified as having strong correlation, near-degeneracy correlation, or high static correlation; KS-DFT must treat these systems with broken-symmetry determinants). 2. The treatment of noncovalent interactions. 3. The choice between developing new functionals by parametrization, by theoretical constraints, or by a combination. 4. The ingredients of the exchange-correlation functionals used by KS-DFT, including spin densities, the magnitudes of their gradients, spin-specific kinetic energy densities, nonlocal exchange (Hartree-Fock exchange), nonlocal correlation, and subshell-dependent corrections (DFT+U). 5. The quest for a universal functional, where we summarize some of the success of the latest Minnesota functionals, namely MN15-L and MN15, which were obtained by optimization against diverse databases. 6. Time-dependent density functional theory, which is an extension of DFT to treat time-dependent problems and excited states. The review is a snapshot of a rapidly moving field, and-like Marcel Duchamp-we hope to convey progress in a stimulating way.
Perspective: Kohn-Sham density functional theory descending a staircase
NASA Astrophysics Data System (ADS)
Yu, Haoyu S.; Li, Shaohong L.; Truhlar, Donald G.
2016-10-01
This article presents a perspective on Kohn-Sham density functional theory (KS-DFT) for electronic structure calculations in chemical physics. This theory is in widespread use for applications to both molecules and solids. We pay special attention to several aspects where there are both concerns and progress toward solutions. These include: 1. The treatment of open-shell and inherently multiconfigurational systems (the latter are often called multireference systems and are variously classified as having strong correlation, near-degeneracy correlation, or high static correlation; KS-DFT must treat these systems with broken-symmetry determinants). 2. The treatment of noncovalent interactions. 3. The choice between developing new functionals by parametrization, by theoretical constraints, or by a combination. 4. The ingredients of the exchange-correlation functionals used by KS-DFT, including spin densities, the magnitudes of their gradients, spin-specific kinetic energy densities, nonlocal exchange (Hartree-Fock exchange), nonlocal correlation, and subshell-dependent corrections (DFT+U). 5. The quest for a universal functional, where we summarize some of the success of the latest Minnesota functionals, namely MN15-L and MN15, which were obtained by optimization against diverse databases. 6. Time-dependent density functional theory, which is an extension of DFT to treat time-dependent problems and excited states. The review is a snapshot of a rapidly moving field, and—like Marcel Duchamp—we hope to convey progress in a stimulating way.
Energy density functional for nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Erler, J.; Horowitz, C. J.; Nazarewicz, W.; Rafalski, M.; Reinhard, P.-G.
2013-04-01
Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [Annu. Rev. Nucl. Part. Sci.ARPSDF0163-899810.1146/annurev-nucl-102711-095018 62, 485 (2012)].Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars.Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals—a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties—are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one.Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius.Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but
Exploration of a modified density dependence in the Skyrme functional
Erler, J.; Reinhard, P.-G.; Kluepfel, P.
2010-10-15
A variant of the basic Skyrme-Hartree-Fock functional is considered dealing with a new form of density dependence. It employs only integer powers and thus will allow a more sound basis for projection schemes (particle number, angular momentum). We optimize the new functional with exactly the same adjustment strategy as used in an earlier study with a standard Skyrme functional. This allows direct comparisons of the performance of the new functional relative to the standard one. We discuss various observables: bulk properties of finite nuclei, nuclear matter, giant resonances, superheavy elements, and energy systematics. The new functional performs at least as well as the standard one, but offers a wider range of applicability (e.g., for projection) and more flexibility in the regime of high densities.
Kinetic-energy density functional: Atoms and shell structure
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |
1996-09-01
We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. {copyright} {ital 1996 The American Physical Society.}
On the evolution of the density probability density function in strongly self-gravitating systems
Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.
2014-02-01
The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P{sub V} (ρ)∝ρ{sup –1.54} for the (volume-weighted) PDF and P{sub M} (ρ)∝ρ{sup –0.54} for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.
On the Evolution of the Density Probability Density Function in Strongly Self-gravitating Systems
NASA Astrophysics Data System (ADS)
Girichidis, Philipp; Konstandin, Lukas; Whitworth, Anthony P.; Klessen, Ralf S.
2014-02-01
The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form PV (ρ)vpropρ-1.54 for the (volume-weighted) PDF and PM (ρ)vpropρ-0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.
Course 4: Density Functional Theory, Methods, Techniques, and Applications
NASA Astrophysics Data System (ADS)
Chrétien, S.; Salahub, D. R.
Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions
Nonlinear eigenvalue problems in Density Functional Theory calculations
Fattebert, J
2009-08-28
Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.
Crystallization induced by multiple seeds: dynamical density functional approach.
Neuhaus, T; Schmiedeberg, M; Löwen, H
2013-12-01
Using microscopic dynamical density functional theory, we calculate the dynamical formation of polycrystals by following the crystal growth around multiple crystalline seeds imposed to an undercooled fluid. Depending on the undercooling and the size ratio as well as the relative crystal orientation of two neighboring seeds, three possibilities of the final state emerge, namely no crystallization at all, formation of a monocrystal, or two crystallites separated by a curved grain boundary. Our results, which are obtained for two-dimensional hard disk systems using a fundamental-measure density functional, shed new light on the particle-resolved structure and growth of polycrystalline material in general.
Density functional theory modeling of multilayer "epitaxial" graphene oxide.
Zhou, Si; Bongiorno, Angelo
2014-11-18
CONSPECTUS: Graphene oxide (GO) is a complex material of both fundamental and applied interest. Elucidating the structure of GO is crucial to achieve control over its properties and technological applications. GO is a nonstoichiometric and hygroscopic material with a lamellar structure, and its physical chemical properties depend critically on synthesis procedures and postsynthesis treatments. Numerous efforts are in place to both understand and exploit this versatile layered carbon material. This Account reports on recent density functional theory (DFT) studies of "epitaxial" graphene oxide (hereafter EGO), a type of GO obtained by oxidation of graphene films grown epitaxially on silicon carbide. Here, we rely on selected X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), and X-ray diffraction (XRD) measurements of EGO, and we discuss in great detail how we utilized DFT-based techniques to project out from the experimental data basic atomistic information about the chemistry and structure of these films. This Account provides an example as to how DFT modeling can be used to elucidate complex materials such as GO from a limited set of experimental information. EGO exhibits a uniform layered structure, consisting of a stack of graphene planes hosting predominantly epoxide and hydroxyl groups, and water molecules intercalated between the oxidized carbon layers. Here, we first focus on XPS measurements of EGO, and we use DFT to generate realistic model structures, calculate core-level chemical shifts, and through the comparison with experiment, gain insight on the chemical composition and metastability characteristics of EGO. DFT calculations are then used to devise a simplistic but accurate simulation scheme to study thermodynamic and kinetic stability and to predict the intralayer structure of EGO films aged at room temperature. Our simulations show that aged EGO encompasses layers with nanosized oxidized domains presenting a high concentration of
"Sloppy" nuclear energy density functionals: Effective model reduction
NASA Astrophysics Data System (ADS)
Nikšić, Tamara; Vretenar, Dario
2016-08-01
Concepts from information geometry are used to analyze parameter sensitivity for a nuclear energy density functional, representative of a class of semiempirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are "sloppy," namely, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, sloppy functionals exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the range of parameter sensitivity. Using the manifold boundary approximation method, we illustrate how to systematically construct effective nuclear density functionals of successively lower dimension in parameter space until sloppiness is eventually eliminated and the resulting functional contains only stiff combinations of parameters.
Dynamics of localized particles from density functional theory
NASA Astrophysics Data System (ADS)
Reinhardt, J.; Brader, J. M.
2012-01-01
A fundamental assumption of the dynamical density functional theory (DDFT) of colloidal systems is that a grand-canonical free-energy functional may be employed to generate the thermodynamic driving forces. Using one-dimensional hard rods as a model system, we analyze the validity of this key assumption and show that unphysical self-interactions of the tagged particle density fields, arising from coupling to a particle reservoir, are responsible for the excessively fast relaxation predicted by the theory. Moreover, our findings suggest that even employing a canonical functional would not lead to an improvement for many-particle systems, if only the total density is considered. We present several possible schemes to suppress these effects by incorporating tagged densities. When applied to confined systems, we demonstrate, using a simple example, that DDFT necessarily leads to delocalized tagged particle density distributions, which do not respect the fundamental geometrical constraints apparent in Brownian dynamics simulation data. The implication of these results for possible applications of DDFT to treat the glass transition are discussed.
Density functionals for the strong-interaction limit
NASA Astrophysics Data System (ADS)
Seidl, Michael; Perdew, John P.; Kurth, Stefan
2000-07-01
The strong-interaction limit of density-functional (DF) theory is simple and provides information required for an accurate resummation of DF perturbation theory. Here we derive the point-charge-plus-continuum (PC) model for that limit, and its gradient expansion. The exchange-correlation (xc) energy Exc[ρ]≡∫10dαWα[ρ] follows from the xc potential energies Wα at different interaction strengths α>=0 [but at fixed density ρ(r)]. For small α~0, the integrand Wα is obtained accurately from perturbation theory, but the perturbation expansion requires resummation for moderate and large α. For that purpose, we present density functionals for the coefficients in the asymptotic expansion Wα-->W∞+W'∞α-1/2 for α-->∞ in the PC model. WPC∞ arises from strict correlation, and W'PC∞ from zero-point vibration of the electrons around their strictly correlated distributions. The PC values for W∞ and W'∞ agree with those from a self-correlation-free meta-generalized gradient approximation, both for atoms and for atomization energies of molecules. We also (i) explain the difference between the PC cell and the exchange-correlation hole, (ii) present a density-functional measure of correlation strength, (iii) describe the electron localization and spin polarization energy in a highly stretched H2 molecule, and (iv) discuss the soft-plasmon instability of the low-density uniform electron gas.
Nuclear energy density functional and the nuclear α decay
NASA Astrophysics Data System (ADS)
Lim, Yeunhwan; Oh, Yongseok
2017-03-01
The nuclear α decay of heavy nuclei is investigated based on the nuclear energy density functional, which leads to the α potential inside the parent nucleus in terms of the proton and neutron density profiles of the daughter nucleus. We use the Skyrme force model, Gogny force model, and relativistic mean-field model to get the nucleon density profiles inside heavy nuclei. Once the nucleon density profiles are determined, the parameters of the nuclear α potential are fitted to the observed α decay half-lives of heavy nuclei. This approach is then applied to predict unknown α decay half-lives of heavy nuclei. To estimate the Q values of unobserved α decays, we make use of the liquid droplet model.
Average protein density is a molecular-weight-dependent function
Fischer, Hannes; Polikarpov, Igor; Craievich, Aldo F.
2004-01-01
The mass density of proteins is a relevant basic biophysical quantity. It is also a useful input parameter, for example, for three-dimensional structure determination by protein crystallography and studies of protein oligomers in solution by analytic ultracentrifugation. We have performed a critical analysis of published, theoretical, and experimental investigations about this issue and concluded that the average density of proteins is not a constant as often assumed. For proteins with a molecular weight below 20 kDa, the average density exhibits a positive deviation that increases for decreasing molecular weight. A simple molecular-weight-depending function is proposed that provides a more accurate estimate of the average protein density. PMID:15388866
Fractional spin in reduced density-matrix functional theory.
Helbig, N; Theodorakopoulos, G; Lathiotakis, N N
2011-08-07
We study the behavior of different functionals of the one-body reduced density matrix (1RDM) for systems with fractional z-component of the total spin. We define these systems as ensembles of integer spin states. It is shown that, similarly to density functional theory, the error in the dissociation of diatomic molecules is directly related to the deviation from constancy of the atomic total energies as functions of the fractional spin. However, several functionals of the 1RDM show a size inconsistency which leads to additional errors. We also investigate the difference between a direct evaluation of the energy of an ensemble of integer-spin systems and a direct minimization of the energy of a fractional-spin system.
Density-based mixing parameter for hybrid functionals
NASA Astrophysics Data System (ADS)
Marques, Miguel A. L.; Vidal, Julien; Oliveira, Micael J. T.; Reining, Lucia; Botti, Silvana
2011-01-01
A very popular ab initio scheme to calculate electronic properties in solids is the use of hybrid functionals in density functional theory (DFT) that mixes a portion of the Fock exchange with DFT functionals. In spite of its success, a major problem still remains, related to the use of one single mixing parameter for all materials. Guided by physical arguments that connect the mixing parameter to the dielectric properties of the solid, and ultimately to its band gap, we propose a method to calculate this parameter from the electronic density alone. This approach is able to cut significantly the error of traditional hybrid functionals for large and small gap materials, while retaining a good description of the structural properties. Moreover, its implementation is simple and leads to a negligible increase of the computational time.
NASA Astrophysics Data System (ADS)
Sutton, Phil J.; Kusmartsev, Feo V.
2014-04-01
Saturn's rings, reminiscent of an early Solar system present a unique opportunity to investigate experimentally some mechanisms thought to be responsible for planet and planetesimal formation in protoplanetary discs. Here, we extended the comparison of our numerical models of Prometheus encountering the F ring employing non-interacting and interacting particles. Higher resolution analysis revealed that the density increases known to exist at channel edges is more complex and localized than previously thought. Asymmetry between density increases on channel edges revealed that the channel edge facing way from Prometheus to be the most stable but with lowest maximum increases. However, on the channel edge facing Prometheus the interacting model showed large chaotic fluctuations in the maximum density of some clumps, much larger than those of the other channel. The likely cause of this asymmetry is a variance in localized turbulence introduced into the F ring by Prometheus. High-resolution velocity dispersion maps showed that there was a spatial link between the highest densities and the highest velocity dispersions in the interacting model. Thus, suggesting that the high velocity dispersion we see is the reason for the observed inhomogeneous distribution of fans (evidence of embedded moonlets) on some of the channel edges facing Prometheus.
Semilocal density functional obeying a strongly tightened bound for exchange
Sun, Jianwei; Perdew, John P.; Ruzsinszky, Adrienn
2015-01-01
Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb–Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic “meta-GGA made very simple” (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew–Burke–Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules. PMID:25561554
Semilocal density functional obeying a strongly tightened bound for exchange.
Sun, Jianwei; Perdew, John P; Ruzsinszky, Adrienn
2015-01-20
Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb-Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic "meta-GGA made very simple" (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew-Burke-Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules.
Clustering and pasta phases in nuclear density functional theory
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
2017-05-23
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Subsystem real-time time dependent density functional theory
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-01
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Dynamic density functional theory versus kinetic theory of simple fluids.
Marini Bettolo Marconi, Umberto; Melchionna, Simone
2010-09-15
By combining methods of kinetic and density functional theory, we present a description of molecular fluids which accounts for their microscopic structure and thermodynamic properties as well as their hydrodynamic behavior. We focus on the evolution of the one-particle phase space distribution, rather than on the evolution of the average particle density which features in dynamic density functional theory. The resulting equation can be studied in two different physical limits: diffusive dynamics, typical of colloidal fluids without hydrodynamic interaction where particles are subject to overdamped motion resulting from coupling with a solvent at rest, and inertial dynamics, typical of molecular fluids. Finally, we propose an algorithm to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the lattice Boltzmann method.
Probability density functions of instantaneous Stokes parameters on weak scattering
NASA Astrophysics Data System (ADS)
Chen, Xi; Korotkova, Olga
2017-10-01
The single-point probability density functions (PDF) of the instantaneous Stokes parameters of a polarized plane-wave light field scattered from a three-dimensional, statistically stationary, weak medium with Gaussian statistics and Gaussian correlation function have been studied for the first time. Apart from the scattering geometry the PDF distributions of the scattered light have been related to the illumination's polarization state and the correlation properties of the medium.
Lehtovaara, Lauri; Havu, Ville; Puska, Martti
2009-08-07
We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials or similar treatments are required. The nonuniform discretization also allows the use of large simulation cells, and therefore avoids any boundary effects.
Angular Momentum Dependent Orbital Free Density Functional Theory
NASA Astrophysics Data System (ADS)
Ke, Youqi; Libisch, Florian; Xia, Junchao; Wang, Lin-Wang; Carter, Emily A.
2013-03-01
We report a novel and general formalism for linear scaling, angular momentum dependent (AMD) orbital free (OF) density functional theory (DFT) to advance the accuracy and applicability of OFDFT. To introduce angular momentum dependence in OFDFT, we devise a hybrid scheme by partitioning the system into muffin-tin spheres and an interstitial region: the electron density inside the spheres is expressed by a set of Kohn-Sham (KS) DFT derived atom-centered basis functions combined with an on-site density matrix NR. A general OFDFT total energy functional is introduced with a crucial nonlocal energy term ENL which is neglected in conventional implementations of OFDFT. ENL corrects the errors due to the use of approximate kinetic energy density functionals and local pseudopotentials for ion-electron interactions. We approximate ENL to include AMD contributions inside the spheres: as a first step, a linear dependence on the NR is considered with a set of AMD energies ERl.ERlare determined by fitting a small set of bulk properties to KSDFT. We find AMD-OFDFT offers substantial improvements over conventional OFDFT, as we show for various properties of the transition metal Ti and its alloys (TixAl1-x) .
Is Density Functional Theory adequate for quantum transport?
NASA Astrophysics Data System (ADS)
Burke, Kieron
2007-03-01
Density functional calculations for the electronic conductance of single molecules attached to leads are now common. I'll examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, XC corrections to the current are missed by the standard methodology. Finally, I will compare and contrast several new methodologies that go beyond the present standard approach of applying the Landauer formula to ground-state DFT. Self-interaction errors in density functional calculations of electronictransport, C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett. 95, 146402 (2005) The Dramatic Role of the Exchange-Correlation Potential in ab initio Electron Transport Calculations, S-H. Ke, H.U. Baranger, and W. Yang, cond-mat/0609367. Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula, M. Koentopp, K. Burke, and F. Evers, Phys. Rev. B Rapid Comm., 73, 121403 (2006). Density Functional Theory of the Electrical Conductivity of Molecular Devices, K. Burke, Roberto Car, and Ralph Gebauer, Phys. Rev. Lett. 94, 146803 (2005). Density functional calculations of nanoscale conductance, Connie Chang, Max Koentopp, Kieron Burke, and Roberto Car, in prep.
Implementation Strategies for Orbital-dependent Density Functionals
NASA Astrophysics Data System (ADS)
Bento, Marsal E.; Vieira, Daniel
2016-12-01
The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.
Density functional theory is straying from the path toward the exact functional.
Medvedev, Michael G; Bushmarinov, Ivan S; Sun, Jianwei; Perdew, John P; Lyssenko, Konstantin A
2017-01-06
The theorems at the core of density functional theory (DFT) state that the energy of a many-electron system in its ground state is fully defined by its electron density distribution. This connection is made via the exact functional for the energy, which minimizes at the exact density. For years, DFT development focused on energies, implicitly assuming that functionals producing better energies become better approximations of the exact functional. We examined the other side of the coin: the energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals. We found that these densities became closer to the exact ones, reflecting theoretical advances, until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.
2017-01-01
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke–Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke–Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps. PMID:28402113
Tran, Fabien; Blaha, Peter
2017-05-04
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; ...
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less
Kvaal, Simen; Helgaker, Trygve
2015-11-14
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
Medvedev, Michael G; Bushmarinov, Ivan S; Sun, Jianwei; Perdew, John P; Lyssenko, Konstantin A
2017-05-05
Kepp argues in his Comment, among other concerns, that the atomic densities we have considered are not relevant to molecular bonding. However, this does not change the main conclusion of our study, that unconstrained fitting of flexible functional forms can make a density functional more interpolative but less widely predictive. Copyright © 2017, American Association for the Advancement of Science.
libKEDF: An accelerated library of kinetic energy density functionals.
Dieterich, Johannes M; Witt, William C; Carter, Emily A
2017-06-30
Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital-free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A comparative study of atomic oxygen adsorption at Pd surfaces from Density Functional Theory
NASA Astrophysics Data System (ADS)
Bukas, Vanessa J.; Reuter, Karsten
2017-04-01
Based on density functional theory, we present a detailed investigation into the on-surface adsorption of atomic oxygen at all three low-index Pd facets in the low-coverage regime. Relying on one consistent computational framework allows for a systematic comparison with respect to surface symmetry, while discerning trends in the adsorption geometries, energies, work functions, and electron densities. We overall find a persisting degree of O-Pd hybridization that is accompanied by minimal charge transfer from the substrate to the adsorbate, thereby resulting in comparable binding energies and diffusion barriers at the three surfaces. Small differences in reactivity are nevertheless reflected in subtle variations of the underlying electronic structure which do not, however, follow the expected order according to atom packing density.
"Sloppy" nuclear energy density functionals. II. Finite nuclei
NASA Astrophysics Data System (ADS)
Nikšić, T.; Imbrišak, M.; Vretenar, D.
2017-05-01
A study of parameter sensitivity of nuclear energy density functionals, initiated in the first part of this work [Nikšić and Vretenar, Phys. Rev. C 94, 024333 (2016), 10.1103/PhysRevC.94.024333], is extended by the inclusion of data on ground-state properties of finite nuclei in the application of the manifold boundary approximation method (MBAM). Density functionals used in self-consistent mean-field calculations, and nuclear structure models based on them, are generally "sloppy" and exhibit an exponential range of sensitivity to parameter variations. Concepts of information geometry are used to identify the presence of effective functionals of lower dimension in parameter space associated with parameter combinations that can be tightly constrained by data. The MBAM is used in an iterative procedure that systematically reduces the complexity and dimension of parameter space of a sloppy functional, with properties of nuclear matter and data on finite nuclei determining not only the values of model parameters but also the optimal functional form of the density dependence.
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
Numerical Density-to-Potential Inversions in Time-dependent Density Functional Theory
NASA Astrophysics Data System (ADS)
Jensen, Daniel; Inchaustegui, Jean Pierre; Wasserman, Adam
2014-03-01
Time-dependent Density Functional Theory (TDDFT) is a formally exact method for solving the quantum many-body problem. In Kohn-Sham TDDFT, a fictitious noninteracting system is defined that exactly reproduces the time-dependent density of the interacting system. The potential that determines this noninteracting system (the time-dependent Kohn-Sham potential) has been proven to exist under certain restrictions, but finding the exact Kohn-Sham potential for a given density remains challenging. We show that this ill-posed inverse problem requires some form of regularization to produce realistic Kohn-Sham potentials. We explore various forms of regularization and illustrate how they work on simple one-dimensional model systems. We also show how our method can be applied to problems with both particle-in-a-box and periodic boundary conditions subject to oscillating electric fields.
NASA Astrophysics Data System (ADS)
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
A Scalable Implementation of Van der Waals Density Functionals
NASA Astrophysics Data System (ADS)
Wu, Jun; Gygi, Francois
2010-03-01
Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
Simple spin correction of unrestricted density-functional calculation
NASA Astrophysics Data System (ADS)
Ovchinnikov, Alexander A.; Labanowski, Jan K.
1996-06-01
The unrestricted Hartree-Fock and unrestricted Kohn-Sham calculations generally result in spin-contaminated solutions. Moreover, the energies from these calculations cannot be directly compared with the results of corresponding restricted calculations since the latter yield higher energies due to restrictions imposed on the form of the wave function. We present here a simple method of correcting the mixed spin energies resulting from unrestricted Hartree-Fock or density-functional theory calculations and removing the foreign spin components. The method allows for elimination of higher-multiplet components from the given mixed spin state solution by performing unrestricted calculations at the same fixed geometry for the higher multiplets and the state under consideration. The performance of the method is illustrated with several examples of density-functional calculations of radical species. The current method is also variational in nature and can be further extended in a self-consistent field fashion.
Efficient Computation of Exchange Energy Density with Gaussian Basis Functions.
Liu, Fenglai; Kong, Jing
2017-06-13
Density functional theory (DFT) is widely applied in chemistry and physics. Still it fails to correctly predict quantitatively or even qualitatively for systems with significant nondynamic correlation. Several DFT functionals were proposed in recent years to treat the nondynamic correlation, most of which added the exact exchange energy density as a new variable. This quantity, calculated as Hartree-Fock (HF) exchange energy density, is the computational bottleneck for calculations with these new functionals. We present an implementation of an efficient seminumerical algorithm in this paper as a solution for this computational bottleneck. The method scales quadratically with respect to the molecular size and the basis set size. The scheme, exact for the purpose of computing the HF exchange energy density, is favored for medium-sized basis sets and can be competitive even for large basis sets with efficient grids when compared with our previous approximate resolution-of-identity scheme. It can also be used as a seminumerical integration scheme to compute the HF exchange energy and matrix on a standard atom-centered grid. Calculations on a series of alanine peptides show that for large basis sets the seminumerical scheme becomes competitive to the conventional analytical method and can be about six times faster for aug-cc-pvtz basis. The practicality of the algorithm is demonstrated through a local hybrid self-consistent calculation of the acenes-20 molecule.
Efficient molecular density functional theory using generalized spherical harmonics expansions
NASA Astrophysics Data System (ADS)
Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc
2017-09-01
We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ (r, Ω) around the solute is a function of the position r ≡(x ,y ,z ) and of the three Euler angles Ω≡(θ ,ϕ ,ψ ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ (r, Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.
Relations among several nuclear and electronic density functional reactivity indexes
NASA Astrophysics Data System (ADS)
Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel
2003-11-01
An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.
Multiphase aluminum equations of state via density functional theory
NASA Astrophysics Data System (ADS)
Sjostrom, Travis; Crockett, Scott; Rudin, Sven
2016-10-01
We have performed density functional theory (DFT) based calculations for aluminum in extreme conditions of both pressure and temperature, up to five times compressed ambient density, and over 1 000 000 K in temperature. In order to cover such a domain, DFT methods including phonon calculations, quantum molecular dynamics, and orbital-free DFT are employed. The results are then used to construct a SESAME equation of state for the aluminum 1100 alloy, encompassing the fcc, hcp, and bcc solid phases as well as the liquid regime. We provide extensive comparison with experiment, and based on this we also provide a slightly modified equation of state for the aluminum 6061 alloy.
Prediction of Dislocation Cores in Aluminum from Density Functional Theory
NASA Astrophysics Data System (ADS)
Woodward, C.; Trinkle, D. R.; Hector, L. G., Jr.; Olmsted, D. L.
2008-02-01
The strain field of isolated screw and edge dislocation cores in aluminum are calculated using density-functional theory and a flexible boundary condition method. Nye tensor density contours and differential displacement fields are used to accurately bound Shockley partial separation distances. Our results of 5 7.5 Å (screw) and 7.0 9.5 Å (edge) eliminate uncertainties resulting from the wide range of previous results based on Peierls-Nabarro and atomistic methods. Favorable agreement of the predicted cores with limited experimental measurements demonstrates the need for quantum mechanical treatment of dislocation cores.
Perspective: Fundamental aspects of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Perspective: Fundamental aspects of time-dependent density functional theory.
Maitra, Neepa T
2016-06-14
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Dispersion corrections to density functionals for water aromatic interactions.
Zimmerli, Urs; Parrinello, Michele; Koumoutsakos, Petros
2004-02-08
We investigate recently published methods for extending density functional theory to the description of long-range dispersive interactions. In all schemes an empirical correction consisting of a C6r(-6) term is introduced that is damped at short range. The coefficient C6 is calculated either from average molecular or atomic polarizabilities. We calculate geometry-dependent interaction energy profiles for the water benzene cluster and compare the results with second-order Møller-Plesset calculations. Our results indicate that the use of the B3LYP functional in combination with an appropriate mixing rule and damping function is recommended for the interaction of water with aromatics.
Density differences for near-Hartree-Fock atomic wave functions
NASA Astrophysics Data System (ADS)
Schmider, Hartmut; Sagar, Robin P.; Smith, Vedene H., Jr.
1994-05-01
The widely used near-Hartree-Fock functions of Clementi and Roetti [At. Data Nucl. Data Tables 14, 177 (1974)] are compared with the newer functions of Bunge et al. [At. Data Nucl. Tables 53, 113 (1993)] by means of different measures of functional distance on the charge density ρ for the atoms He to Xe. The results are correlated with the energy improvement, and an empriical relation between the linear deviation in the first derivative of ρ and the total energy is reported.
Ab initio derivation of model energy density functionals
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2016-08-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy
NASA Astrophysics Data System (ADS)
Perdew, John P.; Constantin, Lucian A.
2007-04-01
We construct a Laplacian-level meta-generalized-gradient-approximation (meta-GGA) for the noninteracting (Kohn-Sham orbital) positive kinetic energy density τ of an electronic ground state of density n . This meta-GGA is designed to recover the fourth-order gradient expansion τGE4 in the appropriate slowly varying limit and the von Weizsäcker expression τW=∣∇n∣2/(8n) in the rapidly varying limit. It is constrained to satisfy the rigorous lower bound τW(r)⩽τ(r) . Our meta-GGA is typically a strong improvement over the gradient expansion of τ for atoms, spherical jellium clusters, jellium surfaces, the Airy gas, Hooke’s atom, one-electron Gaussian density, quasi-two-dimensional electron gas, and nonuniformly scaled hydrogen atom. We also construct a Laplacian-level meta-GGA for exchange and correlation by employing our approximate τ in the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA density functional. The Laplacian-level TPSS gives almost the same exchange-correlation enhancement factors and energies as the full TPSS, suggesting that τ and ∇2n carry about the same information beyond that carried by n and ∇n . Our kinetic energy density integrates to an orbital-free kinetic energy functional that is about as accurate as the fourth-order gradient expansion for many real densities (with noticeable improvement in molecular atomization energies), but considerably more accurate for rapidly varying ones.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-01
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Husowitz, B; Talanquer, V
2007-02-07
Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.
NASA Astrophysics Data System (ADS)
Baker, Thomas E.; Wagner, Lucas O.; Stoudenmire, E. Miles; White, Steven R.; Burke, Kieron
2014-03-01
Kohn-Sham Density Functional Theory (DFT) is a mathematically exact method that requires approximation to the exchange correlation energy which may exclude features seen in experiment or provide inadequate estimates. Meanwhile, we may use Density Matrix Renormalization Group (DMRG), a numerical method which can accurately treat strongly correlated electrons in one dimension, to find exact DFT quantities such as the Kohn-Sham potential. We use DMRG in one dimension as a benchmark to test new functionals. Further, recommendations for calculations in two and three dimensional systems are discussed as well as computational proof of principles. We graciously acknowledge the support of the Department of Energy (DE-SC0008696). L.O.W. also thanks the Korean Global Research Network Grant (No. NRF-2010-220-C00017).
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Surendran, Harikrishnan; Vasudevan, Karthikeyan
2015-06-26
One of the basic premises of drawing samples from populations is that the samples are representative of the populations. However, error in sampling is poorly recognized, and it goes unnoticed especially in community ecology. By combining traditional open quadrats used for sampling forest floor herpetofauna with intensive bounded quadrats, we explore the effect of sampling error on estimates of species richness, diversity, and density in the Andaman Islands. Fisher's α measure of species diversity and second order jackknife estimate of species richness were not sensitive to number of individuals sampled. Sampling error resulted in underestimation of density in both frogs and lizards. It influenced relative abundance of individual species resulting in underestimation of abundance of small or camouflaged species; and also resulted in low precision in lizard species richness estimates. Sampling error resulted in underestimation of abundance of small, fossorial or camouflaged species. Imperfect detection from less intensive sampling method results incorrect estimates of abundance of herpetofauna. Fisher's α for species diversity and second order jackknife for species richness were robust measures. These have strong implications on inferences made from previous studies as well as sampling strategies for future studies. It is essential that these shortfalls are accounted for while communities are sampled or when datasets are compared.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Differentiable but exact formulation of density-functional theory.
Kvaal, Simen; Ekström, Ulf; Teale, Andrew M; Helgaker, Trygve
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density-in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg-Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ((ε)E, (ε)F) that converge to (E, F) pointwise everywhere as ε → 0(+), and such that (ε)F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau-Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy (ε)E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ((ε)E, (ε)F). The Moreau-Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of (ε)F, a rigorous formulation of Kohn-Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn-Sham theory.
NASA Astrophysics Data System (ADS)
Ruggenthaler, Michael; Flick, Johannes; Pellegrini, Camilla; Appel, Heiko; Tokatly, Ilya V.; Rubio, Angel
2014-07-01
In this work, we give a comprehensive derivation of an exact and numerically feasible method to perform ab initio calculations of quantum particles interacting with a quantized electromagnetic field. We present a hierarchy of density-functional-type theories that describe the interaction of charged particles with photons and introduce the appropriate Kohn-Sham schemes. We show how the evolution of a system described by quantum electrodynamics in Coulomb gauge is uniquely determined by its initial state and two reduced quantities. These two fundamental observables, the polarization of the Dirac field and the vector potential of the photon field, can be calculated by solving two coupled, nonlinear evolution equations without the need to explicitly determine the (numerically infeasible) many-body wave function of the coupled quantum system. To find reliable approximations to the implicit functionals, we present the appropriate Kohn-Sham construction. In the nonrelativistic limit, this density-functional-type theory of quantum electrodynamics reduces to the density-functional reformulation of the Pauli-Fierz Hamiltonian, which is based on the current density of the electrons and the vector potential of the photon field. By making further approximations, e.g., restricting the allowed modes of the photon field, we derive further density-functional-type theories of coupled matter-photon systems for the corresponding approximate Hamiltonians. In the limit of only two sites and one mode we deduce the appropriate effective theory for the two-site Hubbard model coupled to one photonic mode. This model system is used to illustrate the basic ideas of a density-functional reformulation in great detail and we present the exact Kohn-Sham potentials for our coupled matter-photon model system.
Density versus spin-density functional in DFT+U and DFT+DMFT
NASA Astrophysics Data System (ADS)
Park, Hyowon; Millis, Andrew; Marianetti, Chris
2015-03-01
The construction of multi-variable effective action theories such as DFT+U and DFT+DMFT requires the choice of a local subspace of correlated orbitals and an additional variable being either the charge density or spin density. This talk examines the differences between using charge-only and spin-dependent exchange-correlation functionals with the aim of providing guidance for constructing more sophisticated beyond-density functional theories. The widely used spin-dependent approximations to the exchange-correlation functional are found to lead to a large and in some cases unphysical effective exchange coupling within the correlated subspace. Additionally, the differences between Wannier and Projector based definitions of the correlated orbitals are examined, and only small differences are found provided that the orbitals are orthonormal and strongly localized. These results are documented in the context of the rare earth nickelates. This work is supported under the Grant DOE-ER-046169 and under the FAME grant, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Optimization of a van der Waals Density Functional for water
NASA Astrophysics Data System (ADS)
Fritz, Michelle; Fernandez-Serra, Marivi; Soler, Jose M.
2015-03-01
In particularly delicate systems, like liquid water, ab initio exchange and correlation functionals are simply not accurate enough for many practical applications. In these cases, fitting the functional to reference data is a sensible alternative to empirical interatomic potentials. However, a global optimization requires functional forms that depend on many parameters and the usual trial and error strategy becomes cumbersome and suboptimal. We present a general and powerful optimization scheme called data projection onto parameter space (DPPS). In an arbitrarily large parameter space, DPPS expands the vector of unknown parameters in vectors of known data. Poorly sampled subspaces are determined by the physically-motivated functional shape of ab initio functionals, using Bayes' theory to combine this prior information with reference energies and electron densities of monomers, clusters, and condensed phases of water. We aknowledge support from FIS2012-37549 (MF and JMS) and DOE Early Career Award No. DE-SC0003871 (M.-V.F.-S.)
Functional responses: a question of alternative prey and predator density.
Tschanz, Britta; Bersier, Louis-Felix; Bacher, Sven
2007-05-01
Throughout the study of ecology, there has been a growing realization that indirect effects among species cause complexity in food webs. Understanding and predicting the behavior of ecosystems consequently depends on our ability to identify indirect effects and their mechanisms. The present study experimentally investigates indirect interactions arising between two prey species that share a common predator. In a natural field experiment, we introduced different densities of mealworms (Tenebrio molitor), an alternative prey, to a previously studied predator-prey system in which paper wasps (Polistes dominulus) preyed on shield beetle larvae (Cassida rubiginosa). We tested if alternative prey affects predation on the first prey (i.e., the predator-dependent functional response of paper wasps) by modifying either interference among predators or the effective number of predators foraging on shield beetles. Presence of mealworms significantly reduced the effective number of predators, whereas predator interference was not affected. In this way, the experimentally introduced alternative prey altered the wasps' functional response and thereby indirectly influenced C. rubiginosa density. In all prey-density combinations offered, paper wasps constantly preferred T. molitor. This led to an asymmetrical, indirect interaction between both prey species: an increase in mealworm density significantly relaxed predation on C. rubiginosa, whereas an increase in C. rubiginosa density intensified predation on mealworms. Such asymmetrical outcomes of a fixed food preference can significantly affect the population dynamics of the species involved. In spite of the repeated finding of a Type III functional response in this system, our experiment did not reveal switching behavior in paper wasps. The variety of mechanisms underlying direct and indirect interactions within our study system exemplifies the importance of incorporating alternative prey when investigating the impact of a
Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions
Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun
2015-01-01
We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case. PMID:26472080
Bond energy decomposition analysis for subsystem density functional theory
NASA Astrophysics Data System (ADS)
Beyhan, S. Maya; Götz, Andreas W.; Visscher, Lucas
2013-03-01
We employed an explicit expression for the dispersion (D) energy in conjunction with Kohn-Sham (KS) density functional theory and frozen-density embedding (FDE) to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein Rubredoxin. We use this data to assess the accuracy of an FDE-D approach for the calculation of intermolecular interactions. To better analyze the calculated interaction energies we furthermore propose a new energy decomposition scheme that is similar to the well-known KS bond formation analysis [F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem. 15, 1 (2000), 10.1002/9780470125922.ch1], but differs in the electron densities used to define the bond energy. The individual subsystem electron densities of the FDE approach sum to the total electron density which makes it possible to define bond energies in terms of promotion energies and an explicit interaction energy. We show that for the systems considered only a few freeze-and-thaw cycles suffice to reach convergence in these individual bond energy components, illustrating the potential of FDE-D as an efficient method to calculate intermolecular interactions.
Bond energy decomposition analysis for subsystem density functional theory.
Beyhan, S Maya; Götz, Andreas W; Visscher, Lucas
2013-03-07
We employed an explicit expression for the dispersion (D) energy in conjunction with Kohn-Sham (KS) density functional theory and frozen-density embedding (FDE) to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein Rubredoxin. We use this data to assess the accuracy of an FDE-D approach for the calculation of intermolecular interactions. To better analyze the calculated interaction energies we furthermore propose a new energy decomposition scheme that is similar to the well-known KS bond formation analysis [F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem. 15, 1 (2000)], but differs in the electron densities used to define the bond energy. The individual subsystem electron densities of the FDE approach sum to the total electron density which makes it possible to define bond energies in terms of promotion energies and an explicit interaction energy. We show that for the systems considered only a few freeze-and-thaw cycles suffice to reach convergence in these individual bond energy components, illustrating the potential of FDE-D as an efficient method to calculate intermolecular interactions.
Predator density and the functional responses of coral reef fish
NASA Astrophysics Data System (ADS)
Stier, A. C.; White, J. W.
2014-03-01
Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper ( Cephalopholis fulva) feeding on the bluehead wrasse ( Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.
Open-system Kohn-Sham density functional theory.
Zhou, Yongxi; Ernzerhof, Matthias
2012-03-07
A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics
Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Rex, M.; Löwen, H.
2009-02-01
A dynamical density functional theory (DDFT) for translational Brownian dynamics is derived which includes hydrodynamic interactions. The theory reduces to the simple Brownian DDFT proposed by Marconi and Tarazona (U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); J. Phys.: Condens. Matter 12, A413 (2000)) when hydrodynamic interactions are neglected. The derivation is based on Smoluchowski’s equation for the time evolution of the probability density with pairwise hydrodynamic interactions. The theory is applied to hard-sphere colloids in an oscillating spherical optical trap which switches periodically in time from a stable confining to an unstable potential. Rosenfeld’s fundamental measure theory for the equilibrium density functional is used and hydrodynamics are incorporated on the Rotne-Prager level. The results for the time-dependent density profiles are compared to extensive Brownian dynamics simulations which are performed on the same Rotne-Prager level and excellent agreement is obtained. It is further found that hydrodynamic interactions damp and slow the dynamics of the confined colloid cluster in comparison to the same situation with neglected hydrodynamic interactions.
Precise effective masses from density functional perturbation theory
NASA Astrophysics Data System (ADS)
Laflamme Janssen, J.; Gillet, Y.; Poncé, S.; Martin, A.; Torrent, M.; Gonze, X.
2016-05-01
The knowledge of effective masses is a key ingredient to analyze numerous properties of semiconductors, like carrier mobilities, (magneto)transport properties, or band extrema characteristics yielding carrier densities and density of states. Currently, these masses are usually calculated using finite-difference estimation of density functional theory (DFT) electronic band curvatures. However, finite differences require an additional convergence study and are prone to numerical noise. Moreover, the concept of effective mass breaks down at degenerate band extrema. We assess the former limitation by developing a method that allows to obtain the Hessian of DFT bands directly, using density functional perturbation theory. Then, we solve the latter issue by adapting the concept of "transport equivalent effective mass" to the k .p ̂ framework. The numerical noise inherent to finite-difference methods is thus eliminated, along with the associated convergence study. The resulting method is therefore more general, more robust, and simpler to use, which makes it especially appropriate for high-throughput computing. After validating the developed techniques, we apply them to the study of silicon, graphane, and arsenic. The formalism is implemented into the abinit software and supports the norm-conserving pseudopotential approach, the projector augmented-wave method, and the inclusion of spin-orbit coupling. The derived expressions also apply to the ultrasoft pseudopotential method.
Scrutinizing "Invisible" astatine: A challenge for modern density functionals.
Sergentu, Dumitru-Claudiu; David, Grégoire; Montavon, Gilles; Maurice, Rémi; Galland, Nicolas
2016-06-05
The main-group 6p elements did not receive much attention in the development of recent density functionals. In many cases it is still difficult to choose among the modern ones a relevant functional for various applications. Here, we illustrate the case of astatine species (At, Z = 85) and we report the first, and quite complete, benchmark study on several properties concerning such species. Insights on geometries, transition energies and thermodynamic properties of a set of 19 astatine species, for which reference experimental or theoretical data has been reported, are obtained with relativistic (two-component) density functional theory calculations. An extensive set of widely used functionals is employed. The hybrid meta-generalized gradient approximation (meta-GGA) PW6B95 functional is overall the best choice. It is worth noting that the range-separated HSE06 functional as well as the old and very popular B3LYP and PBE0 hybrid-GGAs appear to perform quite well too. Moreover, we found that astatine chemistry in solution can accurately be predicted using implicit solvent models, provided that specific parameters are used to build At cavities. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ultra-nonlocality in density functional theory for photo-emission spectroscopy
Uimonen, A.-M.; Stefanucci, G.; Leeuwen, R. van
2014-05-14
We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.
Modeling of nanoscale liquid mixture transport by density functional hydrodynamics
NASA Astrophysics Data System (ADS)
Dinariev, Oleg Yu.; Evseev, Nikolay V.
2017-06-01
Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.
Nonequilibrium Anderson model made simple with density functional theory
NASA Astrophysics Data System (ADS)
Kurth, S.; Stefanucci, G.
2016-12-01
The single-impurity Anderson model is studied within the i-DFT framework, a recently proposed extension of density functional theory (DFT) for the description of electron transport in the steady state. i-DFT is designed to give both the steady current and density at the impurity, and it requires the knowledge of the exchange-correlation (xc) bias and on-site potential (gate). In this work we construct an approximation for both quantities which is accurate in a wide range of temperatures, gates, and biases, thus providing a simple and unifying framework to calculate the differential conductance at negligible computational cost in different regimes. Our results mark a substantial advance for DFT and may inform the construction of functionals applicable to other correlated systems.
Excitations and benchmark ensemble density functional theory for two electrons
Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.
2014-05-14
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Density-Functional Theory of the Fractional Quantum Hall Effect.
Zhao, Jianyun; Thakurathi, Manisha; Jain, Manish; Sen, Diptiman; Jain, J K
2017-05-12
A conceptual difficulty in formulating the density-functional theory of the fractional quantum Hall effect is that while in the standard approach the Kohn-Sham orbitals are either fully occupied or unoccupied, the physics of the fractional quantum Hall effect calls for fractionally occupied Kohn-Sham orbitals. This has necessitated averaging over an ensemble of Slater determinants to obtain meaningful results. We develop an alternative approach in which we express and minimize the grand canonical potential in terms of the composite fermion variables. This provides a natural resolution of the fractional-occupation problem because the fully occupied orbitals of composite fermions automatically correspond to fractionally occupied orbitals of electrons. We demonstrate the quantitative validity of our approach by evaluating the density profile of fractional Hall edge as a function of temperature and the distance from the delta dopant layer and showing that it reproduces edge reconstruction in the expected parameter region.
Covariant density functional theory: The role of the pion
Lalazissis, G. A.; Karatzikos, S.; Serra, M.; Otsuka, T.; Ring, P.
2009-10-15
We investigate the role of the pion in covariant density functional theory. Starting from conventional relativistic mean field (RMF) theory with a nonlinear coupling of the {sigma} meson and without exchange terms we add pions with a pseudovector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the noncentral contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.
Analyzing the financial crisis using the entropy density function
NASA Astrophysics Data System (ADS)
Oh, Gabjin; Kim, Ho-yong; Ahn, Seok-Won; Kwak, Wooseop
2015-02-01
The risk that is created by nonlinear interactions among subjects in economic systems is assumed to increase during an abnormal state of a financial market. Nevertheless, investigating the systemic risk in financial markets following the global financial crisis is not sufficient. In this paper, we analyze the entropy density function in the return time series for several financial markets, such as the S&P500, KOSPI, and DAX indices, from October 2002 to December 2011 and analyze the variability in the entropy value over time. We find that the entropy density function of the S&P500 index during the subprime crisis exhibits a significant decrease compared to that in other periods, whereas the other markets, such as those in Germany and Korea, exhibit no significant decrease during the market crisis. These findings demonstrate that the S&P500 index generated a regular pattern in the return time series during the financial crisis.
Neutrinoless double-beta decay in covariant density functional theory
Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.
2015-10-15
We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME’s) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME’s can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.
Accelerating Density Functional Calculations with Graphics Processing Unit.
Yasuda, Koji
2008-08-01
An algorithm is presented for graphics processing units (GPUs), which execute single-precision arithmetic much faster than commodity microprocessors (CPUs), to calculate the exchange-correlation term in ab initio density functional calculations. The algorithm was implemented and applied to two molecules, taxol and valinomycin. The errors in the total energies were about 10(-5) a.u., which is accurate enough for practical usage. If the exchange-correlation term is split into a simple analytic model potential and the correction to it, and only the latter is calculated with the GPU, the energy error is decreased by an order of magnitude. The resulting time to compute the exchange-correlation term is smaller than it is on the latest CPU by a factor of 10, indicating that a GPU running the proposed algorithm accelerates the density functional calculation considerably.
Exact probability-density function for phase-measurement interferometry
NASA Astrophysics Data System (ADS)
Ho, Keang-Po; Kahn, Joseph M.
1995-09-01
Conventional analyses of the accuracy of phase-measurement interferometry derive a figure of merit that is either a variance or a signal-to-noise ratio. We derive the probability-density function of the phase-measurement output, so that the measurement confidence interval can be determined. We include both laser phase noise and additive Gaussian noise, and we consider both unmodulated interferometers and those employing phase or frequency modulation. For both unmodulated and modulated interferometers the confidence interval can be obtained by numerical integration of the probability-density function. For the modulated interferometer we derive a series summation for the confidence interval. For both unmodulated and modulated interferometers we derive approximate analytical expressions for the confidence interval, which we show to be extremely accurate at high signal-to-noise ratios.
Resveratrol preserves cerebrovascular density and cognitive function in aging mice.
Oomen, Charlotte A; Farkas, Eszter; Roman, Viktor; van der Beek, Eline M; Luiten, Paul G M; Meerlo, Peter
2009-01-01
Resveratrol, a natural polyphenol abundant in grapes and red wine, has been reported to exert numerous beneficial health effects. Among others, acute neuroprotective effects of resveratrol have been described in several models of neurodegeneration, both in vitro and in vivo. In the present study we examined the neuroprotective effects of long-term dietary supplementation with resveratrol in mice on behavioral, neurochemical and cerebrovascular level. We report a preserved cognitive function in resveratrol-treated aging mice, as shown by an enhanced acquisition of a spatial Y-maze task. This was paralleled by a higher microvascular density and a lower number of microvascular abnormalities in comparison to aging non-treated control animals. We found no effects of resveratrol supplementation on cholinergic cell number or fiber density. The present findings support the hypothesis that resveratrol exerts beneficial effects on the brain by maintaining cerebrovascular health. Via this mechanism resveratrol can contribute to the preservation of cognitive function during aging.
Density-Functional Theory of the Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Zhao, Jianyun; Thakurathi, Manisha; Jain, Manish; Sen, Diptiman; Jain, J. K.
2017-05-01
A conceptual difficulty in formulating the density-functional theory of the fractional quantum Hall effect is that while in the standard approach the Kohn-Sham orbitals are either fully occupied or unoccupied, the physics of the fractional quantum Hall effect calls for fractionally occupied Kohn-Sham orbitals. This has necessitated averaging over an ensemble of Slater determinants to obtain meaningful results. We develop an alternative approach in which we express and minimize the grand canonical potential in terms of the composite fermion variables. This provides a natural resolution of the fractional-occupation problem because the fully occupied orbitals of composite fermions automatically correspond to fractionally occupied orbitals of electrons. We demonstrate the quantitative validity of our approach by evaluating the density profile of fractional Hall edge as a function of temperature and the distance from the delta dopant layer and showing that it reproduces edge reconstruction in the expected parameter region.
Autoionization in time-dependent density-functional theory
NASA Astrophysics Data System (ADS)
Kapoor, V.
2016-06-01
We compute the exact exchange-correlation potential of the time-dependent density-functional theory (TDDFT) for the correlated process of autoionization. The potential develops barriers which regulate the autoionization rate. TDDFT employing known and practicable exchange-correlation potentials does not capture any autoionization dynamics. Approximate exchange-correlation potentials capturing such dynamics would necessarily require memory effects and are unlikely to be developed, as will be illustrated.
Density functional theory across chemistry, physics and biology
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-01-01
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg–Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181
Association between lung function and airway wall density
NASA Astrophysics Data System (ADS)
Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.
2009-02-01
Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.
Finite-size instabilities in nuclear energy density functionals
Hellemans, V.; Heenen, P.-H.; Bender, M.
2012-10-20
The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.
Excitons in Time-Dependent Density-Functional Theory.
Ullrich, Carsten A; Yang, Zeng-hui
2016-01-01
This chapter gives an overview of the description of the optical and dielectric properties of bulk insulators and semiconductors in time-dependent density-functional theory (TDDFT), with an emphasis on excitons. We review the linear-response formalism for periodic solids, discuss excitonic exchange-correlation kernels, calculate exciton binding energies for various materials, and compare the treatment of excitons with TDDFT and with the Bethe-Salpeter equation.
Ferromagnetic elements by epitaxial growth: A density functional prediction
NASA Astrophysics Data System (ADS)
Schönecker, Stephan; Richter, Manuel; Koepernik, Klaus; Eschrig, Helmut
2012-01-01
The periodic table contains only six natural elements with a ferromagnetic ground state. For example, the metal uranium, which is magnetically ordered in many compounds, is paramagnetic in all its known elemental bulk phases. Also, the iron-group elements ruthenium and osmium are known to be bulk paramagnets. We predict by means of density functional calculations that epitaxial growth of uranium, ruthenium, or osmium on suitable substrates may allow stabilization of bulklike films with tetragonal structures showing ferromagnetic order.
Probability Density Function Method for Langevin Equations with Colored Noise
Wang, Peng; Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.
2013-04-05
We present a novel method to derive closed-form, computable PDF equations for Langevin systems with colored noise. The derived equations govern the dynamics of joint or marginal probability density functions (PDFs) of state variables, and rely on a so-called Large-Eddy-Diffusivity (LED) closure. We demonstrate the accuracy of the proposed PDF method for linear and nonlinear Langevin equations, describing the classical Brownian displacement and dispersion in porous media.
Density functional theory across chemistry, physics and biology.
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-03-13
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.
Plato: A localised orbital based density functional theory code
NASA Astrophysics Data System (ADS)
Kenny, S. D.; Horsfield, A. P.
2009-12-01
The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available
FDE-vdW: A van der Waals inclusive subsystem density-functional theory
Kevorkyants, Ruslan; Pavanello, Michele; Eshuis, Henk
2014-07-28
We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.
FDE-vdW: A van der Waals inclusive subsystem density-functional theory
NASA Astrophysics Data System (ADS)
Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele
2014-07-01
We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.
FDE-vdW: A van der Waals inclusive subsystem density-functional theory.
Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele
2014-07-28
We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.
A Wigner Monte Carlo approach to density functional theory
Sellier, J.M. Dimov, I.
2014-08-01
In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn–Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales very well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn–Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.
Probability density functions for hyperbolic and isodiachronic locations.
Spiesberger, John L; Wahlberg, Magnus
2002-12-01
Animal locations are sometimes estimated with hyperbolic techniques by estimating the difference in distances of their sounds between pairs of receivers. Each pair specifies the animal's location to a hyperboloid because the speed of sound is assumed to be spatially homogeneous. Sufficient numbers of intersecting hyperboloids specify the location. A nonlinear method is developed for computing probability density functions for location. The method incorporates a priori probability density functions for the receiver locations, the speed of sound, winds, and the errors in the differences in travel time. The traditional linear approximation method overestimates bounds for probability density functions by one or two orders of magnitude compared with the more accurate nonlinear method. The nonlinear method incorporates a generalization of hyperbolic methods because the average speed of sound is allowed to vary between different receivers and the source. The resulting "isodiachronic" surface is the locus of points on which the difference in travel time is constant. Isodiachronic locations yield correct location errors in situations where hyperbolic methods yield incorrect results, particularly when the speed of propagation varies significantly between a source and different receivers.
Chemical reactivity in the framework of pair density functional theories.
Otero, Nicolás; Mandado, Marcos
2012-05-15
Chemical reactivity descriptors are derived within the framework of the pair density functional theory. These indices provide valuable information about bonding rearrangements and activating mechanisms upon electrophilic or nucleophilic reactions. Indices derived and tested in this work represent nonlocal counterparts of the local reactivity indices derived in the context of conceptual density functional theory (CDFT) and frequently used in reactivity studies; the Fukui function, the local softness and the dual descriptor. In this work, we show how these nonlocal indices provide a quantum chemical basis to explain the success of qualitative resonance models in chemical reactivity predictions. Also, local information is implicitly contained as CDFT indices are obtained by simple integration. As illustrative examples, we have considered in this work the Markovnikov's rule, the reactivity of enolate anion, the nucleophilic conjugate addition to α,β-unsaturated compounds and the electrophilic aromatic substitution of benzene derivatives. The densities used in this work were obtained with Hartree-Fock, Kohn-Sham DFT, and singles and doubles configuration interaction (CISD) approaches.
Density functional wavelet calculation of solid state systems
NASA Astrophysics Data System (ADS)
Daykov, I. P.; Engeness, T. D.; Arias, T. A.
2001-03-01
We present, to our knowledge, the first all-electron wavelet calculations of the electronic structure of solids within density functional theory. To make these calculations competitive with traditional approaches, we employ recent developments in algorithms for multiresolution analysis (MRA) which speed density functional calculations by three to four orders of magnitude[1,2]. MRA provides a fully systematic, integrated treatment of core and valence electrons and is ideal for exploring the limits of the accuracy of density functional theory in the calculation of EELS spectra, which involve matrix elements between the core and valence states. We shall present results for EELS spectra as well as the resolution of technical issues which arise in carrying out solid-state calculations within a wavelet-like basis. [1] ``Multiscale computation with interpolating wavelets,'' by Ross A. Lippert, T.A. Arias and Alan Edelman, Journal of Computational Physics, 140:2, 278--310 (1 March 1998). Preprint: http://xxx.lanl.gov/abs/cond-mat/9805283 . [2] ``Multiresolution analysis of electronic structure: semicardinal and wavelet bases,'' T.A. Arias, Reviews of Modern Physics 71:1, 267--311 (January 1999). Preprint: http://xxx.lanl.gov/abs/cond-mat/9805262 .
Density functional theories of surface interactions in salt solutions.
Forsman, Jan
2009-02-14
Most current density functional theories rely upon the presence of hard cores, also between ions of like charge. These hard cores should in principle reflect exchange repulsion. However, by the way in which these theories are formulated, the hard cores effectively determine the range of ion-ion correlations. This is because the mutual repulsion between like-charged ions is truncated below the corresponding hard sphere diameter. In most relevant applications, at least those related to ion correlations and surface forces in colloidal dispersions, exchange repulsion between like-charged ions is unimportant. This can easily be demonstrated by simulations. Unfortunately, the hard cores can in practice serve as fitting parameters in calculations with traditional density functional theory. In this work, we present alternative density functional theories to describe aqueous salt solutions. In these approaches, an approximation of the relevant "Coulomb hole" that results from correlations between like-charged ions is calculated for the system under study. Hence, our theories are completely free from fitting parameters, and the results are appropriately insensitive to the exchange repulsion acting between ions of like charge. The theories are evaluated by comparing predictions with simulation data, with an emphasis on ion correlations and surface interactions.
Linear Scaling Density Functional Calculations with Gaussian Orbitals
NASA Technical Reports Server (NTRS)
Scuseria, Gustavo E.
1999-01-01
Recent advances in linear scaling algorithms that circumvent the computational bottlenecks of large-scale electronic structure simulations make it possible to carry out density functional calculations with Gaussian orbitals on molecules containing more than 1000 atoms and 15000 basis functions using current workstations and personal computers. This paper discusses the recent theoretical developments that have led to these advances and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational quantum chemistry programs for the prediction of molecular structure and properties.
Atomistic force field for alumina fit to density functional theory
Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul
2013-11-28
We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.
Conformational Analysis of Thioether Musks Using Density Functional Theory
Setzer, William N.
2009-01-01
A conformational analysis of nine macrocyclic thioether musks has been carried out using molecular mechanics (MMFF), density functional theory (DFT) using both B3LYP and M06 functionals, as well as Hartree-Fock and post-Hartree-Fock (MP2) ab initio methods. 6-Thia-, 10-thia- and 4-methyl-5-thia-14-tetradecananolide, 4-thia-, 7-thia-, 11-thia- and 12-thia-15-pentadecanolide and 6-thia- and 12-thia-16-hexadecanolide were modeled. Unfortunately, there was little agreement between the computational methods at the levels of theory used in this study. PMID:20111690
Surface regulated arsenenes as Dirac materials: From density functional calculations
NASA Astrophysics Data System (ADS)
Yuan, Junhui; Xie, Qingxing; Yu, Niannian; Wang, Jiafu
2017-02-01
Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.
Advances in time-dependent current-density functional theory
NASA Astrophysics Data System (ADS)
Berger, Arjan
In this work we solve the problem of the gauge dependence of molecular magnetic properties (magnetizabilities, circular dichroism) using time-dependent current-density functional theory [1]. We also present a new functional that accurately describes the optical absorption spectra of insulators, semiconductors and metals [2] N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger Phys. Rev. Lett. 114, 066404 (2015) J.A. Berger, Phys. Rev. Lett. 115, 137402 (2015) This study has been partially supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the Programme des Investissements d'Avenir.
Density functional theory and chromium: Insights from the dimers
Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael; Walter, Michael
2015-03-28
The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences between functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.
Many-body theory and Energy Density Functionals
NASA Astrophysics Data System (ADS)
Baldo, M.
2016-07-01
In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach.
Current density partitioning in time-dependent current density functional theory
Mosquera, Martín A.; Wasserman, Adam
2014-05-14
We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.
Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
Generation of time histories with a specified auto spectral density and probability density function
Smallwood, D.O.
1996-08-01
It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulic shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.
Differentiable but exact formulation of density-functional theory
Kvaal, Simen Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M.
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ({sup ε}E, {sup ε}F) that converge to (E, F) pointwise everywhere as ε → 0{sup +}, and such that {sup ε}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ε}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ε}E, {sup ε}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ε}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.
Orbital nodal surfaces: Topological challenges for density functionals
NASA Astrophysics Data System (ADS)
Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan
2017-06-01
Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.
Differentiable but exact formulation of density-functional theory
NASA Astrophysics Data System (ADS)
Kvaal, Simen; Ekström, Ulf; Teale, Andrew M.; Helgaker, Trygve
2014-05-01
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg-Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any ɛ > 0, pairs of conjugate functionals (ɛE, ɛF) that converge to (E, F) pointwise everywhere as ɛ → 0+, and such that ɛF is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau-Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy ɛE(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for (ɛE, ɛF). The Moreau-Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of ɛF, a rigorous formulation of Kohn-Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn-Sham theory.
Time-dependent Partition Density-functional Theory
NASA Astrophysics Data System (ADS)
Mosquera, Martin; Wasserman, Adam
2012-02-01
We present an extension of time-dependent density functional theory that allows to partition the time-dependent external potential in terms of localized molecular fragment potentials. As a consequence, localized time-dependent densities arise for each molecular fragment. To enforce the condition that the sum of fragments must add up to the exact total density, a new quantity termed ``time-dependent partition potential'' is introduced. The Runge-Gross theorem is employed to show that there is a quasi one-to-one correspondence between the partition potential and the electronic density. The corresponding quantum-mechanical actions are derived by using the van Leeuwen's action and are used to derive a decomposition of the partition potential which allows for practical approximations. Linear response formulas are deduced to obtain the transition energies, and an approximation is suggested to obtain localized excitations in large molecular systems. Finally, numerical illustration of our theory is shown for one-dimensional fermions under the influence of a laser field.
Density-functional theory for polar fluids at functionalized surfaces. I. Fluid-wall association
NASA Astrophysics Data System (ADS)
Tripathi, Sandeep; Chapman, Walter G.
2003-12-01
We present a novel perturbation density-functional theory (DFT) to describe adsorption of associating fluids on surfaces activated with polar sites to which fluid molecules can bond or associate, such as water adsorbing on activated carbon, silica, clay minerals, etc. Association is modeled within the framework of first order thermodynamic perturbation theory (TPT1). In this first of two papers, we explore in detail the changes brought about in a system due to fluid-wall (FW) association. Hence fluid-fluid association is not considered here. However, the theory can be coupled with existing DF theories of associating fluids to study the interplay between the wall-fluid and fluid-fluid association as is shown in a future paper by S. Tripathi. The proposed theory, in excellent agreement with simulations, shows that FW association significantly changes the fluid structure and adsorption behavior. The theory accurately predicts the distribution of bonded and nonbonded species away from the surface, adsorption characteristics and surface coverage over a range of conditions commonly found in several real systems. The most striking feature of the theory is that in addition to properties away from the wall, it also estimates the distribution of the fluid along the surface, or the three-dimensional (3D) structure, despite being one-dimensional (1D) in form.
Density-dependence of functional spiking networks in vitro
Ham, Michael I; Gintautuas, Vadas; Rodriguez, Marko A; Bettencourt, Luis M A; Bennett, Ryan; Santa Maria, Cara L
2008-01-01
During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.
Generalized Pauli constraints in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Marques, Miguel A. L.
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
Downlink Probability Density Functions for EOS-McMurdo Sound
NASA Technical Reports Server (NTRS)
Christopher, P.; Jackson, A. H.
1996-01-01
The visibility times and communication link dynamics for the Earth Observations Satellite (EOS)-McMurdo Sound direct downlinks have been studied. The 16 day EOS periodicity may be shown with the Goddard Trajectory Determination System (GTDS) and the entire 16 day period should be simulated for representative link statistics. We desire many attributes of the downlink, however, and a faster orbital determination method is desirable. We use the method of osculating elements for speed and accuracy in simulating the EOS orbit. The accuracy of the method of osculating elements is demonstrated by closely reproducing the observed 16 day Landsat periodicity. An autocorrelation function method is used to show the correlation spike at 16 days. The entire 16 day record of passes over McMurdo Sound is then used to generate statistics for innage time, outage time, elevation angle, antenna angle rates, and propagation loss. The levation angle probability density function is compared with 1967 analytic approximation which has been used for medium to high altitude satellites. One practical result of this comparison is seen to be the rare occurrence of zenith passes. The new result is functionally different than the earlier result, with a heavy emphasis on low elevation angles. EOS is one of a large class of sun synchronous satellites which may be downlinked to McMurdo Sound. We examine delay statistics for an entire group of sun synchronous satellites ranging from 400 km to 1000 km altitude. Outage probability density function results are presented three dimensionally.
Bone mineral density and functional measures in patients with arthrogryposis.
Spencer, Hillard T; Bowen, Richard E; Caputo, Kimberly; Green, Terri A; Lawrence, John F
2010-01-01
Patients with arthrogryposis often report decreased ambulation and physical activity. Given that skeletal mineralisation is responsive to force, we identified the need to characterize bone mineral density and functional measures in this population, and conducted a cross-sectional study to establish a reference for future investigations. Thirty consecutive patients aged 5 to 18 years with either the diagnosis of amyoplasia or nonsyndromic arthrogryposis with predominantly lower extremity involvement underwent bone densitometry testing, and lumbar spine Z-scores were calculated against an age and sex-matched control population as is customary in children. Pediatric outcomes data collection instrument (PODCI) and functional independence measure for Children (WeeFIM) assessment forms were completed. Mean Z-scores, PODCI, and WeeFIM scores were calculated. Statistical analysis was performed to compare lumbar spine Z-scores between patients divided by ambulatory status and to correlate WeeFIM and PODCI scores. Mean lumbar spine Z-score was -0.47, with 73% of Z-scores being <0. Mean Z-score among nonambulators or home ambulators was -1.05, as compared to a mean Z-score among limited and unlimited community ambulators of -0.14 with a trend toward significance (P=0.10), and a dose-response relationship between higher bone density and increasing ambulatory function. Mean WeeFIM self-care and mobility quotient scores were 67.5/100 and 70.9/100, respectively. PODCI normative scores were decreased for upper extremity (10/50), transfer/basic mobility (-17/50), and sports/physical function (4/50), but normal in pain/comfort (45/50) and happiness (49/50). A linear relationship was noted between functional ambulation level and WeeFIM quotient and PODCI normative scores. There was good correlation between WeeFIM mobility and PODCI transfers and basic mobility standardised scores (R=0.86). This is the first study to measure bone mineral density in children with arthrogryposis, and
Time-dependent density-functional description of nuclear dynamics
NASA Astrophysics Data System (ADS)
Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Matsuo, Masayuki; Yabana, Kazuhiro
2016-10-01
The basic concepts and recent developments in the time-dependent density-functional theory (TDDFT) for describing nuclear dynamics at low energy are presented. The symmetry breaking is inherent in nuclear energy density functionals, which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in the description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, the quantum fluctuations associated with slow collective motions are explicitly treated assuming that time evolution of densities is determined by a few collective coordinates and momenta. The concept of collective submanifold is introduced in the phase space associated with the TDDFT and used to quantize the collective dynamics. Selected applications are presented to demonstrate the usefulness and quality of the new approaches. Finally, conceptual differences between nuclear and electronic TDDFT are discussed, with some recent applications to studies of electron dynamics in the linear response and under a strong laser field.
Density functional calculation of transition metal adatom adsorption on graphene.
Mao, Yuliang; Yuan, Jianmei; Zhong, Jianxin
2008-03-19
The functionalization of graphene (a single graphite layer) by the addition of transition metal atoms of Mn, Fe and Co to its surface has been investigated computationally using density functional theory. In the calculation, the graphene surface supercell was constructed from a single layer of graphite (0001) surface separated by vertical vacuum layers 2 nm thick. We found that the center of the hexagonal ring formed by carbon from graphene is the most stable site for Mn, Fe, Co to stay after optimization. The calculated spin-polarized band structures of the graphene encapsulating the Mn adatom indicate that the conduction bands are modified and move down due to the coupling between the Mn atom and graphene. For Fe adsorbed on the graphene surface, it is semi-half-metallic, and the spin polarization P is found to be 100%. The system of Co adatom on graphene exhibits metallic electronic structure due to the density of states (DOS) peak at the band center with both majority and minority spins. Local density of states analyses indicate a larger promotion of 4s electrons into the 3d state in Fe and Co, resulting in lower local moments compared to an Mn adatom on the graphite surface.
Density functional theory for inhomogeneous ring polymeric fluids.
Jiang, Jian; Xu, Xiaofei; Cao, Dapeng
2012-10-01
The modeling of ring polymers remains a challenge in classical density functional theory (DFT) due to the difficulty in solving the direct bond connectivity of the ring architecture without free ends. By considering the feature that all of the segments in a ring are equivalent, we give an algorithm to solve the integral of direct bond connectivity for ideal ring polymers, and therefore propose a DFT for inhomogeneous ring polymers, where the excess free energy functional is extended from an equation of state (EOS). This EOS exhibits better agreement than other EOSs for the compressibility factors, compared to Monte Carlo data. Importantly, the DFT satisfactorily reproduces the data of the configurational-bias Monte Carlo (CBMC) simulations for ring polymers. The local density profiles from the DFT show that the bead density of inhomogeneous ring fluids is independent of ring size, which is also confirmed by the CBMC simulations. Interestingly, the behavior of solvation force for ring polymers is quite similar to that of the polymers with infinite chain length.
Density functional theory: Its origins, rise to prominence, and future
NASA Astrophysics Data System (ADS)
Jones, R. O.
2015-07-01
In little more than 20 years, the number of applications of the density functional (DF) formalism in chemistry and materials science has grown in an astonishing fashion. The number of publications alone shows that DF calculations make up a huge success story, and many younger colleagues are surprised to learn that the widespread application of density functional methods, particularly in chemistry, began only after 1990. This is indeed unexpected, because the origins are usually traced to the papers of Hohenberg, Kohn, and Sham more than a quarter of a century earlier. The DF formalism, its applications, and prospects were reviewed for this journal in 1989. About the same time, the combination of DF calculations with molecular dynamics promised to provide an efficient way to study structures and reactions in molecules and extended systems. This paper reviews the development of density-related methods back to the early years of quantum mechanics and follows the breakthrough in their application after 1990. The two examples from biochemistry and materials science are among the many current applications that were simply far beyond expectations in 1990. The reasons why—50 years after its modern formulation and after two decades of rapid expansion—some of the most cited practitioners in the field are concerned about its future are discussed.
NASA Astrophysics Data System (ADS)
Higuchi, Katsuhiko; Niwa, Hiroyasu; Higuchi, Masahiko
2017-10-01
We present the current-density functional theory for the superconductor immersed in the magnetic field. The order parameter of the superconducting state, transverse component of the paramagnetic current-density, and electron density are chosen as basic variables that uniquely determine the equilibrium properties of the system. In order to construct this theory, the development of the approximate form of the exchange-correlation (xc) energy functional is indispensable as well as the derivation of the effective single-particle equation which makes it possible to reproduce the equilibrium densities mentioned above. The rigorous expression of the xc-energy functional is derived using the technique of the coupling-constant integration. Furthermore, the approximate form of the xc energy functional is proposed such that the energy gap resulting from the effective single-particle equation is consistent with the attractive interaction energy of the system.
NASA Astrophysics Data System (ADS)
Thiele, M.; Kümmel, S.
2014-02-01
We present a scheme for numerically reconstructing the exact and the Kohn-Sham time-dependent density-density response functions, and from their inverse the numerical representation of the exact frequency-dependent exchange-correlation kernel fxc of time-dependent Kohn-Sham density-functional theory. We investigate the exact fxc in detail for a system that is known to show strong memory effects. The reconstructed kernel fulfills the appropriate sum rule. Using it in linear response calculations, we show how the exact fxc, due to its frequency dependence, yields the exact excitation energies, including the ones of double excitation character.
Massively parallel density functional calculations for thousands of atoms: KKRnano
NASA Astrophysics Data System (ADS)
Thiess, A.; Zeller, R.; Bolten, M.; Dederichs, P. H.; Blügel, S.
2012-06-01
Applications of existing precise electronic-structure methods based on density functional theory are typically limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in material science, e.g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-Kohn-Rostoker (KKR) Green's-function method. We conceptualized, developed, and optimized KKRnano for large-scale applications of many thousands of atoms without compromising on the precision of a full-potential all-electron method, i.e., it is a method without any shape approximation of the charge density or potential. A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level parallelization allows for an efficient use of up to 100000 processors on the latest generation of supercomputers. The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and showing scaling results for NiPd alloys up to 8192 atoms and 65536 processors. At the end, we present an order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the KKR Green's-function approach by introducing a truncation of the electron scattering to a local cluster of atoms, the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling calculations of more
Charge transfer in time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Maitra, Neepa T.
2017-10-01
Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.
Revisiting the Fermi Surface in Density Functional Theory
NASA Astrophysics Data System (ADS)
Das, Mukunda P.; Green, Frederick
2016-06-01
The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.
Nuclear chiral and magnetic rotation in covariant density functional theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Zhao, Pengwei
2016-05-01
Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.
Formaldehyde adsorption on carbon nanotubes fragment by density functional theory
NASA Astrophysics Data System (ADS)
Chen, D.; Yuan, Yong J.
2017-07-01
The interaction between formaldehyde (HCOH) and pristine single-walled carbon nanotube (SWCNT) fragment was investigated by density functional theory (DFT) to evaluate the detection of HCOH. The simulation results demonstrated less adsorption on surface of SWCNT and doped CNTs, while a HCOH molecule tended to be chemisorbed to the C atom located on SWCNT’s edge positions with larger binding energy of 1.742 eV and smaller binding distance of 1.351 Å. Furthermore, charge transfer and density of states study indicated that the electronic properties changed evidently in the most stable HCOH-SWCNT system, and were mainly around the Fermi level. More importantly, the adsorption of HCOH affected the electronic conductance of SWCNT. It is expected that the results could provide a useful theoretical guidance for the investigation of molecular films interface bonding and design of HCOH sensing devices.
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2015-01-21
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.
Applications of large-scale density functional theory in biology
NASA Astrophysics Data System (ADS)
Cole, Daniel J.; Hine, Nicholas D. M.
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Time-dependent density functional theory for open quantum systems
NASA Astrophysics Data System (ADS)
Tempel, David; Aspuru-Guzik, Alan
2012-02-01
We present the extension of time-dependent density functional theory (TDDFT) to the realm of open quantum systems (OQS). OQS-TDDFT allows a first principles description of electronic systems undergoing non-unitary dynamics due to coupling with a bath, such as that arising from molecular vibrations, solvent degrees of freedom or photon modes of the electromagnetic field. We first prove extensions of the Runge-Gross and van Leeuwen theorems to OQS-TDDFT, which rigorously establish it as a formally exact theory. We then discuss development of approximate OQS-TDDFT functionals, exact conditions on these functionals, as well as future challenges. Finally, we will discuss the application of OQS-TDDFT in obtaining broadened absorption spectra.
Nonlocal van der Waals density functional made simple and efficient
NASA Astrophysics Data System (ADS)
Sabatini, Riccardo; Gorni, Tommaso; de Gironcoli, Stefano
2013-01-01
We present a simple revision of the VV10 nonlocal density functional by Vydrov and Van Voorhis [J. Chem. Phys.JCPSA60021-960610.1063/1.3521275 133, 244103 (2010)] for dispersion interactions. Unlike the original functional our modification allows nonlocal correlation energy and its derivatives to be efficiently evaluated in a plane wave framework along the lines pioneered by Román-Pérez and Soler [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.096102 103, 096102 (2009)]. Our revised functional maintains the outstanding precision of the original VV10 in noncovalently bound complexes and performs well in representative covalent, ionic, and metallic solids.
[Capillary density and respiratory function in the external intercostal muscle].
Jiménez-Fuentes, M A; Gea, J; Aguar, M C; Minguella, J; Lloreta, J; Félez, M; Broquetas, J
1999-11-01
Changes in lung function have been related to adaptive structural modifications in respiratory muscles. To evaluate the capillary density (Dcap) of the external intercostal muscle in patients with chronic obstructive pulmonary disease (COPD), and its possible relation to respiratory function. Forty-two individuals (61 +/- 9 years old) underwent conventional lung function testing and evaluation of respiratory muscles (maximum pressures at rest and a tolerance test using Martyn's technique). The sample included 10 subjects with normal lung function and 32 COPD patients (FEV1 between 13 and 78% of reference), in stable phase and with no respiratory insufficiency (PaO2 > 60 mmHg). A local biopsy of the external intercostal muscle was taken from all subjects at the fifth intercostal space (anterior axillary [correction of axile]) on the non-dominant side. The sample was processed for morphometry and fiber typing with ATPase staining and for quantifying capillarity with Gomori's trichrome staining. The mean diameter was 61 +/- 10 micrograms, with type I fibers predominating (56 +/- 11%). Dcap was 2.8 +/- 0.6 capillaries/fiber (equivalent to 1.02 +/- 0.37 capillaries/mm2 of fibrillary surface). The number of capillaries/fiber was significantly higher in patients with severe COPD (FEV1 < 50% ref) than in controls (3.0 +/- 0.6 versus 2.3 +/- 0.5, p < 0.01) and was inversely related to FEV1 (r = -0.395, p < 0.01). Muscle capillarity was unrelated to other function variables, including markers of respiratory muscle function and gas exchange. The structural remodelling of external intercostal muscles in COPD patients also includes an increase in density of interfibrillary capillaries. This increase is proportional to the severity of obstruction and probably reflects an adaptive phenomenon.
De Laender, Frederik; Taub, Frieda B; Janssen, Colin R
2011-12-01
Understanding whether and to what extent ecosystem functions respond to chemicals is a major challenge in environmental toxicology. The available data gathered by ecosystem-level experiments (micro- and mesocosms) often describe the responses of taxa densities to stress. However, whether these responses are proportional to the responses of associated ecosystem functions to stress is unclear. By combining a carbon budget modeling technique with data from a standardized microcosm experiment with a known community composition, we quantified three ecosystem functions (net primary production [NPP], net mesozooplankton production [NZP], and net bacterial production [NBP]) at three Cu concentrations, with a control. Changes of these ecosystem functions with increasing chemical concentrations were not always proportional to the Cu effects on the densities of the contributing functional groups. For example, Cu treatments decreased mesozooplankton density by 100-fold and increased phytoplankton density 10- to 100-fold while increasing NZP and leaving NPP unaltered. However, in contrast, Cu affected microzooplankton and the associated function (NBP) in a comparable way. We illustrate that differences in the response of phytoplankton/mesozooplankton densities and the associated ecosystem functions to stress occur because functional rates (e.g., photosynthesis rates/ingestion rates) vary among Cu treatments and in time. These variations could be explained by food web ecology but not by direct Cu effects, indicating that ecology may be a useful basis for understanding environmental effects of stressors.
Density Functional Study of Perovskite Superconductor MgCNi{sub 3}
Kumar, Jagdish; Sharma, Devina; Kumar, Ranjan; Awana, V. P. S.; Ahluwalia, P. K.
2011-12-12
We here report the first principle density functional study of MgCNi{sub 3} which crystallize in cubic perovskite structure having critical transition temperature of 8 K. The interesting aspect of this compound is that in normal state it is non magnetic in nature despite conduction electrons in it are derived from partially filled Ni d states, which typically lead to ferromagnetism in metallic Ni and many Ni-based binary alloys. To investigate the detailed microscopic origin of the non magnetic nature we have done density functional based calculations on this compound. The lattice constant is calculated using minimum energy criteria from total energy versus lattice constant plot. By taking the calculated values of lattice constant we have done the precise calculations on the compound using Full Potential Linear Augmented Plane Wave (FP-LAPW) method implemented in ELK code. The electronic density of states is found spin degenerate that corresponds to a non-magnetic ground state. The density of states (DOS) at Fermi level, N(E{sub F}) is dominated by Ni-d states. The sharp peak observed just below Fermi level corresponds to van Hove singularity (vHs). The projected density of states (PDOS) suggests a strong hybridization of Ni-3d and C-2p states which is responsible for the observed non magnetic nature of MgCNi{sub 3}.
Characterizing the Spatial Density Functions of Neural Arbors
NASA Astrophysics Data System (ADS)
Teeter, Corinne Michelle
Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within
Progress at the interface of wave-function and density-functional theories
Gidopoulos, Nikitas I.
2011-04-15
The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.
Graphene oxide and adsorption of chloroform: A density functional study
NASA Astrophysics Data System (ADS)
Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth
2016-05-01
Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.
INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS
Potter, Kristin; Kirby, Robert M.; Xiu, Dongbin; Johnson, Chris R.
2013-01-01
The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic) features present within the field. In this paper, we present a visualization system that allows the user to examine two-dimensional data sets in which PDF (or CDF) information is available at any position within the domain. The tool provides a contour display showing the normed difference between the PDFs and an ansatz PDF selected by the user and, furthermore, allows the user to interactively examine the PDF at any particular position. Canonical examples of the tool are provided to help guide the reader into the mapping of stochastic information to visual cues along with a description of the use of the tool for examining data generated from an uncertainty quantification exercise accomplished within the field of electrophysiology. PMID:23543120
Relativistic cosmology number densities and the luminosity function
NASA Astrophysics Data System (ADS)
Iribarrem, A. S.; Lopes, A. R.; Ribeiro, M. B.; Stoeger, W. R.
2012-03-01
Aims: This paper studies the connection between the relativistic number density of galaxies down the past light cone in a Friedmann-Lemaître-Robertson-Walker spacetime with non-vanishing cosmological constant and the galaxy luminosity function (LF) data. It extends the redshift range of previous results presented in Albani et al. (2007, ApJ, 657, 760), where the galaxy distribution was studied out to z = 1. Observational inhomogeneities were detected at this range. This research also searches for LF evolution in the context of the framework advanced by Ribeiro and Stoeger (2003, ApJ, 592, 1), further developing the theory linking relativistic cosmology theory and LF data. Methods: Selection functions are obtained using the Schechter parameters and redshift parametrization of the galaxy LF obtained from an I-band selected dataset of the FORS deep field galaxy survey in the redshift range 0.5 ≤ z ≤ 5.0 for its blue bands and 0.75 ≤ z ≤ 3.0 for its red ones. Differential number counts, densities and other related observables are obtained, and then used with the calculated selection functions to study the empirical radial distribution of the galaxies in a fully relativistic framework. Results: The redshift range of the dataset used in this work, which is up to five times larger than the one used in previous studies, shows an increased relevance of the relativistic effects of expansion when compared to the evolution of the LF at the higher redshifts. The results also agree with the preliminary ones presented in Albani et al., suggesting a power-law behavior of relativistic densities at high redshifts when they are defined in terms of the luminosity distance.
Harris-type van der Waals density functional scheme
NASA Astrophysics Data System (ADS)
Berland, Kristian; Londero, Elisa; Schröder, Elsebeth; Hyldgaard, Per
2013-07-01
Biomolecular systems that involve thousands of atoms are difficult to address with standard density functional theory (DFT) calculations. With the development of sparse-matter methods such as the van der Waals density functional (vdW-DF) method [M. Dion , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.246401 92, 246401 (2004)], it is now possible to include the dispersive forces in DFT which are necessary to describe the cohesion and behavior of these systems. vdW-DF implementations can be as efficient as those for traditional DFT. Yet, the computational costs of self-consistently determining the electron wave functions and hence the kinetic-energy repulsion still limit the scope of sparse-matter DFT. We propose to speed up sparse-matter calculations by using the Harris scheme [J. Harris, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.31.1770 31, 1770 (1985)]; that is, we propose to perform electronic relaxations only for separated fragments (molecules) and use a superposition of fragment densities as a starting point to obtain the total energy non-self-consistently. We evaluate the feasibility of this approach for an adaption of the Harris scheme for non-self-consistent vdW-DF (sfd-vdW-DF). We study four molecular dimers with varying degrees of polarity and find that the sfd scheme accurately reproduces standard non-self-consistent vdW-DF for van der Waals dominated systems but is less accurate for those dominated by polar interactions. Results for the S22 set of typical organic molecular dimers are promising.
Density Functional Theory Investigation of Sodium Azide at High Pressure
NASA Astrophysics Data System (ADS)
Steele, Brad; Landerville, Aaron; Oleynik, Ivan
2013-03-01
Sodium azide is intriguing because it could potentially be used as a precursor to a high-nitrogen energetic material. Furthermore, recent absorption and Raman spectroscopic results have shown that novel nitrogen structures may indeed be attainable from sodium azide. First-principles density functional theory calculations were performed to characterize possible novel crystalline structures of sodium azide including their atomic structure, vibrational properties, Raman spectra, and equation of state up to 90 GPa. Calculated Raman peaks and intensities show good agreement with experiment.
Density Functional Theory Investigation of Sodium Azide at High Pressure
NASA Astrophysics Data System (ADS)
Steele, Brad; Landerville, Aaron; Oleynik, Ivan
2013-06-01
Sodium azide is being investigated as a potential precursor to a high-nitrogen content energetic material. Changes in the experimentally measured raman spectra under compression and high temperature indicate that a structural change may have taken place. Accurate mode assignments of new peaks arising in the raman spectra have been inconclusive. In this work, the first order raman spectra of sodium azide's alpha and beta phases are calculated using Density Function Pertubation Theory (DFPT) under compression and expansion. Normal mode assignments are made and compared to experiment. In addition, the equation of state of both phases is obtained up to 90 GPa.
Dynamical density functional theory with hydrodynamic interactions in confined geometries
NASA Astrophysics Data System (ADS)
Goddard, B. D.; Nold, A.; Kalliadasis, S.
2016-12-01
We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.
Augmented Lagrangian method for constrained nuclear density functional theory
NASA Astrophysics Data System (ADS)
Staszczak, A.; Stoitsov, M.; Baran, A.; Nazarewicz, W.
2010-10-01
The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multi-dimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves the accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.
Relativistic Energy Density Functionals: Exotic modes of excitation
Vretenar, D.; Paar, N.; Marketin, T.
2008-11-11
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
Density Functional Study of the structural properties in Tamoxifen
NASA Astrophysics Data System (ADS)
de Coss-Martinez, Romeo; Tapia, Jorge A.; Quijano-Quiñones, Ramiro F.; Canto, Gabriel I.
2013-03-01
Using the density functional theory, we have studied the structural properties of Tamoxifen. The calculations were performed with two methodological approaches, which were implemented in SIESTA and Spartan codes. For SIESTA, we considerate a linear combination of atomic orbitals method, using pseudopotentials and the van der Waals approximation for the exchange-correlation potential. Here we analyzed and compared the atomic structure between our results and other theoretical study. We found differences in the bond lengths between the results, that could be attributed to code approaches in each one. This work was supported under Grant FOMIX 2011-09 N: 170297 of Ph.D. A. Tapia.
Quantification of Uncertainties in Nuclear Density Functional Theory
NASA Astrophysics Data System (ADS)
Schunck, N.; McDonnell, J. D.; Higdon, D.; Sarich, J.; Wild, S.
2015-01-01
Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.
Quantification of Uncertainties in Nuclear Density Functional Theory
Schunck, N.; McDonnell, J.D.; Higdon, D.; Sarich, J.; Wild, S.
2015-01-15
Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
Continuation of probability density functions using a generalized Lyapunov approach
NASA Astrophysics Data System (ADS)
Baars, S.; Viebahn, J. P.; Mulder, T. E.; Kuehn, C.; Wubs, F. W.; Dijkstra, H. A.
2017-05-01
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.
DENSITY-FUNCTIONAL STUDY OF Zr-BASED ACTINIDE ALLOYS
Landa, A; Soderlind, P; Turchi, P; Vitos, L; Ruban, A
2008-06-26
Density-functional formalism is applied to study the phase equilibria in the U-Zr system. The obtained ground-state properties of the {gamma} (bcc) and {delta} (C32) phases are in good agreement with experimental data. The decomposition curve for the {gamma}-based U-Zr solutions is calculated. We argue that stabilization of the {delta}-UZr{sub 2} phase relative to the {alpha}-Zr (hcp) structure is due to an increase of the Zr d-band occupancy that occurs when U is alloyed with Zr.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
Density functional theory for hydrogen storage materials: successes and opportunities
NASA Astrophysics Data System (ADS)
Hector, L. G., Jr.; Herbst, J. F.
2008-02-01
Solid state systems for hydrogen storage continue to be the focus of considerable international research, driven to a large extent by technological demands, especially for mobile applications. Density functional theory (DFT) has become a valuable tool in this effort. It has greatly expanded our understanding of the properties of known hydrides, including electronic structure, hydrogen bonding character, enthalpy of formation, elastic behavior, and vibrational energetics. Moreover, DFT holds substantial promise for guiding the discovery of new materials. In this paper we discuss, within the context of results from our own work, some successes and a few shortcomings of state-of-the-art DFT as applied to hydrogen storage materials.
Atomic volumes and polarizabilities in density-functional theory.
Kannemann, Felix O; Becke, Axel D
2012-01-21
Becke and Johnson introduced an ad hoc definition of atomic volume [J. Chem. Phys. 124, 014204 (2006)] in order to obtain atom-in-molecule polarizabilities from free-atom polarizabilities in their nonempirical exchange-hole dipole moment model of dispersion interactions. Here we explore the dependence of Becke-Johnson atomic volumes on basis sets and density-functional approximations and provide reference data for all atoms H-Lr. A persuasive theoretical foundation for the Becke-Johnson definition is also provided.
Nuclear clustering in the energy density functional approach
Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.
2015-10-15
Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.
Closure-based density functional theory applied to interfacial colloidal fluids.
Lu, Mingqing; Bevan, Michael A; Ford, David M
2007-12-04
The behavior of dense colloidal fluids near surfaces can now be probed in great detail with experimental techniques like confocal microscopy. In fact, we are approaching a point where quantitative comparisons of experiment with particle-level theory, such as classical density functional theory (DFT), are appropriate. In a forward sense, we may use a known surface potential to predict a particle density distribution function from DFT; in an inverse sense, we may use an experimentally measured particle density distribution function to predict the underlying surface potential from DFT. In this paper, we tested the ability of the closure-based DFT of Zhou and Ruckenstein (J. Chem. Phys. 2000, 112, 8079-8082) to perform forward and inverse calculations on potential models commonly employed for colloidal particles and surfaces. To reduce sources of uncertainty in this initial study, Monte Carlo simulation results played the role of experimental data. The combination of Rogers-Young and modified-Verlet closures consistently performed well across the different potential models. For a reasonable range of choices of the density, temperature, and potential parameters, the inversion procedure yielded particle-surface potentials to an accuracy on the order of 0.1kT.
NASA Astrophysics Data System (ADS)
Kolincio, Kamil; Pérez, Olivier; Hébert, Sylvie; Fertey, Pierre; Pautrat, Alain
2016-06-01
Detailed structural and magnetotransport properties of monophosphate tungsten bronze Kx(PO2)4(WO3)8 single crystals are reported. Both galvanomagnetic and thermal properties are shown to be consistent with a charge density wave electronic transition due to hidden nesting of the quasi-1D portion of the Fermi surface. We also observe the enhancement of electronic anisotropy due to reconstruction of the Fermi surface at the Peierls transition. The resistivity presents a thermal hysteresis suggesting a first-order nature characteristic of a strong-coupling scenario. However, other measurements such as the change of carrier density demonstrate a second-order Peierls scenario with weak-coupling features. We suggest that the structural transition driven by the residual strain in the K-P-O environment is responsible for the resistivity hysteresis and modifies the Fermi surface which then helps the rise to the second-order Peierls instability.
Joint density-functional theory and its application to systems in solution
NASA Astrophysics Data System (ADS)
Petrosyan, Sahak A.
The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional
Empirical relaxation function and spectral density for underdamped vibrations at low temperatures
NASA Astrophysics Data System (ADS)
Toutounji, Mohamad
2009-03-01
A new relaxation function which accounts for electronic dephasing (electronic phase loss and excited state lifetime) is presented, whose applicability for underdamped motion at low temperatures is examined in detail. This new empirical relaxation function φ(t ) yields linear and nonlinear spectral/temporal profiles that render accurate dephasing time in the underdamped regime. The relaxation function φ(t ) is normally expressed in terms of the coupling functions Mj' and Mj″ on which the time evolution of the vibrational modes in question depends. The corresponding spectral density, which is a central quantity in probing dynamics, is derived and compared to that of the multimode Brownian oscillator model. Derivation and discussion of the new position and momentum autocorrelation functions in terms of our new spectral density are presented. While the position autocorrelation function plays a key role in representing solvation structure in polar or nonpolar medium, the momentum correlation function projects out the molecular vibrational motion. The Liouville space generating function (LGF) for harmonic and anharmonic systems is expressed in terms of our new empirical φ(t ) and spectral density, leading to more physical observation. Several statistical quantities are derived from the position and momentum correlation function, which in turn contribute to LGF. Model calculations reflecting the infinite population decay in the low temperature limit in linear and nonlinear spectroscopic signals are presented. The herein quantum dipole moment correlation function is compared to that derived in [M. Toutounji, J. Chem. Phys. 118, 5319 (2003)] using mixed quantum-classical dynamics framework, yielding reasonable results, in fact identical at higher temperatures. The results herein are found to be informative, useful, and consistent with experiments.
Hybrid density-functional calculations of phonons in LaCoO3
NASA Astrophysics Data System (ADS)
Gryaznov, Denis; Evarestov, Robert A.; Maier, Joachim
2010-12-01
Phonon frequencies at Γ point in nonmagnetic rhombohedral phase of LaCoO3 were calculated using density-functional theory with hybrid exchange correlation functional PBE0. The calculations involved a comparison of results for two types of basis functions commonly used in ab initio calculations, namely, the plane-wave approach and linear combination of atomic orbitals, as implemented in VASP and CRYSTAL computer codes, respectively. A good qualitative, but also within an error margin of less than 30%, a quantitative agreement was observed not only between the two formalisms but also between theoretical and experimental phonon frequency predictions. Moreover, the correlation between the phonon symmetries in cubic and rhombohedral phases is discussed in detail on the basis of group-theoretical analysis. It is concluded that the hybrid PBE0 functional is able to predict correctly the phonon properties in LaCoO3 .
Ab initio molecular dynamics using hybrid density functionals.
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost
2008-06-07
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab initio molecular dynamics using hybrid density functionals
NASA Astrophysics Data System (ADS)
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Electronic properties of graphene nanoribbons: A density functional investigation
Kumar, Sandeep Sharma, Hitesh
2015-05-15
Density functional theory calculations have been performed on graphene nano ribbons (GNRs) to investigate the electronic properties as a function of chirality, size and hydrogenation on the edges. The calculations were performed on GNRs with armchair and zigzag configurations with 28, 34, 36, 40, 50, 56, 62, 66 carbon atoms. The structural stability of AGNR and ZGNR increases with the size of nanoribbon where as hydrogenation of GNR tends to lowers their structural stability. All GNRs considered have shown semiconducting behavior with HOMO-LUMO gap decreasing with the increase in the GNR size. The hydrogenation of GNR decreases its HOMO-LUMO gap significantly. The results are in agreement with the available experimental and theoretical results.
BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)
Nazarewicz, Witold
2012-07-01
The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N.; McDonnell, J. D.; Higdon, D.; Sarich, J.; Wild, S. M.
2015-12-23
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces (see Duguet et al., this Topical Issue), energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Towards the island of stability with relativistic energy density functionals
Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.
2012-10-20
Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
A numerical efficient way to minimize classical density functional theory.
Edelmann, Markus; Roth, Roland
2016-02-21
The minimization of the functional of the grand potential within the framework of classical density functional theory in three spatial dimensions can be numerically very demanding. The Picard iteration, that is often employed, is very simple and robust but can be rather slow. While a number of different algorithms for optimization problems have been suggested, there is still great need for additional strategies. Here, we present an approach based on the limited memory Broyden algorithm that is efficient and relatively simple to implement. We demonstrate the performance of this algorithm with the minimization of an inhomogeneous bulk structure of a fluid with competing interactions. For the problems we studied, we find that the presented algorithm improves performance by roughly a factor of three.
NASA Astrophysics Data System (ADS)
Lutsker, V.; Aradi, B.; Niehaus, T. A.
2015-11-01
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.
Lutsker, V.; Niehaus, T. A.; Aradi, B.
2015-11-14
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.
NASA Astrophysics Data System (ADS)
Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2008-07-01
We derive an analytic form of the Wang-Govind-Carter (WGC) [Wang , Phys. Rev. B 60, 16350 (1999)] kinetic energy density functional (KEDF) with the density-dependent response kernel. A real-space aperiodic implementation of the WGC KEDF is then described and used in linear scaling orbital-free density functional theory (OF-DFT) calculations.
Hybrid Density Functionals Tuned towards Fulfillment of Fundamental DFT Conditions
NASA Astrophysics Data System (ADS)
Scheffler, Matthias
2014-03-01
Hybrid exchange-correlation functionals (XC), e.g. PBE0 and HSE, have significantly improved the theoretical description of molecules and solids. Their degree of exact-exchange admixture (α) is in principle a functional of the electron density, but the functional form is not known. In this talk, I will discuss fundamental conditions of exact density-functional theory (DFT) that enable us to find the optimal choice of α for ground-state calculations. In particular, I will discuss the fact that the highest occupied Kohn-Sham level of an N-electron system (ɛHOMO(N)) should be constant for fractional particle numbers between N and N-1 and equals the ionization potential (IP), as given by the total-energy difference. In practice, we realize this in three different ways. XC(α) will be optimized (opt-XC) until it (i) fulfills the condition: ɛHOMO(N) =ɛHOMO (N-1/2) or the Kohn-Sham HOMO agrees with the ionization potential computed in a more sophisticated approach ɛHOMO(N) = IP such as (ii) the G0W0 @opt-XC method or (iii) CCSD(T) or full CI. Using such an opt-XC is essential for describing electron transfer between (organic) molecules, as exemplified by the TTF/TCNQ dimer. It also yields vertical ionization energies of the G2 test set of quantum chemistry with a mean absolute percentage error of only ~3%. Furthermore, our approach removes the starting-point uncertainty of GW calculations and thus bears some resemblance to the consistent starting point scheme and quasiparticle self-consistent GW. While our opt-XC approach yields large α values for small molecules in the gas phase, we find that α needs to be 0.25 or less for organic molecules adsorbed on metals. Work performed in collaboration with V. Atalla, N.A. Richter, S.V. Levchenko, and P. Rinke
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2007-06-01
Atomistic simulations employing Density Functional Theory (DFT) have recently emerged as a powerful way of increasing our understanding of materials and processes in high energy density physics. Knowledge of the properties of water (equation of state, electrical conductivity, diffusion, low-energy opacity) is essential for correctly describing the physics of giant planets as well as shock waves in water. Although a qualitative picture of water electrical conductivity has emerged, the necessary quantitative information is scarce over a wide range of temperature and density. Since experiments can only access certain areas of phase space, and often require modeling as a part of the analysis, Quantum Molecular Dynamics simulations play a vital role. Using finite-temperature density functional theory (FT-DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/ superionic/ electronic liquid). The ionic contribution to the conduction is calculated from proton diffusion and the electronic contribution is calculated using the Kubo-Greenwood formula. The calculations are performed with VASP, a plane-wave pseudo-potential code. There is a rapid transition to ionic conduction at 2000 K and 2 g/cm^3, whereas electronic conduction dominates at temperatures at and above 6000 K&[tilde;1]. Contrary to earlier results using the Car-Parrinello method&[tilde;2], we predict that the fluid bordering the superionic phase is conducting above 4000 K and 100 GPa. Our comprehensive use of FT-DFT explains the new findings. The calculated conductivity is compared to experimental data. I gratefully acknowledge Mike Desjarlais, my collaborator in this effort. The LDRD office at Sandia supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL
Fluids Density Functional Theory of Diblock Copolymers for Electrolyte Applications
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
We use classical, fluids density functional theory (fDFT) to study microphase separation in block copolymer systems. We are motivated by systems used as battery electrolytes or in other transport applications, in which the two blocks of the system have different mechanical, dielectric, and transport properties that allow one phase to act as a charge/penetrant carrier and the other to make the film mechanically strong. We find density profiles of penetrants, showing to what degree they segregate into the A phase and their concentration near the interface, depending on the penetrant-A and penetrant-B interaction strengths as well as the A-B segregation strength. We also study the effect of tapering, or adding a gradient region (taper) between the pure A and B blocks of an AB diblock copolymer; the taper changes in composition along its length from pure A to pure B (or from B to A for an inverse taper). The effect of both penetrants and tapering on microphase domain spacing as a function of segregation strength will be discussed. Adjusting taper length allows one to tune the phase behavior of the system for easier processing or access to specific desired microphase structures. Based upon work supported by NSF Grant 1454343 and DOE Grant SC0014209.
Direct Neutron Capture Calculations with Covariant Density Functional Theory Inputs
NASA Astrophysics Data System (ADS)
Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, Michael S.; Arbanas, Goran; Kozub, Ray L.
2014-09-01
Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Supported by the U.S. Dept. of Energy, Office of Nuclear Physics.
Molecular acidity: A quantitative conceptual density functional theory description.
Liu, Shubin; Schauer, Cynthia K; Pedersen, Lee G
2009-10-28
Accurate predictions of molecular acidity using ab initio and density functional approaches are still a daunting task. Using electronic and reactivity properties, one can quantitatively estimate pKa values of acids. In a recent paper [S. B. Liu and L. G. Pedersen, J. Phys. Chem. A 113, 3648 (2009)], we employed the molecular electrostatic potential (MEP) on the nucleus and the sum of valence natural atomic orbital (NAO) energies for the purpose. In this work, we reformulate these relationships on the basis of conceptual density functional theory and compare the results with those from the thermodynamic cycle method. We show that MEP and NAO properties of the dissociating proton of an acid should satisfy the same relationships with experimental pKa data. We employ 27 main groups and first to third row transition metal-water complexes as illustrative examples to numerically verify the validity of these strong linear correlations. Results also show that the accuracy of our approach and that of the conventional method through the thermodynamic cycle are statistically similar.
Insight into Structural Phase Transitions from Density Functional Theory
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn
2014-03-01
Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.
Nuclear charge radii: density functional theory meets Bayesian neural networks
NASA Astrophysics Data System (ADS)
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Garcia-Aldea, David; Alvarellos, J. E.
2008-02-15
We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved.
NASA Astrophysics Data System (ADS)
Wang, Ziyue; Zhuang, Pengfei
2017-07-01
The pion superfluid and the corresponding Goldstone and soft modes are investigated in a two-flavor quark-meson model with a functional renormalization group. By solving the flow equations for the effective potential and the meson two-point functions at finite temperature and isospin density, the critical temperature for the superfluid increases sizeably in comparison with solving the flow equation for the potential only. The spectral function for the soft mode shows clearly a transition from meson gas to quark gas with increasing temperature and a crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer pairing of quarks with increasing isospin density.
Cuny, Jerome; Korchagina, Kseniia; Menakbi, Chemseddine; Mineva, Tzonka
2017-03-01
Application of ab initio molecular dynamics to study free energy surfaces (FES) is still not commonly performed because of the extensive sampling required. Indeed, it generally necessitates computationally costly simulations of more than several hundreds of picoseconds. To achieve such studies, efficient density functional theory (DFT) formalisms, based on various levels of approximate computational schemes, have been developed, and provide a good alternative to commonly used DFT implementations. We report benchmark results on the conformational change FES of alanine dipeptide obtained with auxiliary density functional theory (ADFT) and second- and third-order density functional tight-binding (DFTB) methods coupled to metadynamics simulations. The influence of an explicit water solvent is also studied with DFTB, which was made possible by its lower computational cost compared to ADFT. Simulations lengths of 2.1 and 15 ns were achieved with ADFT and DFTB, respectively, in a reasonably short computational time. ADFT leads to a free energy difference (ΔF eq-ax) of ∼ -3 kcal mol(-1) between the two low energy conformers, C7eq and C7ax, which is lower by only 1.5 kcal mol(-1) than the ΔF eq-ax computed with DFTB. The two minima in ADFT FES are separated by an energy barrier of 9 kcal mol(-1), which is higher than the DFTB barriers by 2-4 kcal mol(-1). Despite these small quantitative differences, the DFTB method reveals FES shapes, confor-mation geometries and energies of the stationary points in good agreement with these found with ADFT. This validates the promising applicability of DFTB to FES of reactions occurring in larger-size systems placed in complex environments.
NASA Astrophysics Data System (ADS)
Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.
2008-04-01
The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the
Swart, Marcel; Solà, Miquel; Bickelhaupt, F Matthias
2007-07-15
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions. Copyright (c) 2007 Wiley Periodicals, Inc.
Beyond Vmax and Km: How details of enzyme function influence geochemical cycles
NASA Astrophysics Data System (ADS)
Steen, A. D.
2015-12-01
Enzymes catalyze the vast majority of chemical reactions relevant to geomicrobiology. Studies of the activities of enzymes in environmental systems often report Vmax (the maximum possible rate of reaction; often proportional to the concentration of enzymes in the system) and sometimes Km (a measure of the affinity between enzymes and their substrates). However, enzyme studies - particularly those related to enzymes involved in organic carbon oxidation - are often limited to only those parameters, and a relatively limited and mixed set of enzymes. Here I will discuss some novel methods to assay and characterize the specific sets of enzymes that may be important to the carbon cycle in aquatic environments. First, kinetic experiments revealed the collective properties of the complex mixtures of extracellular peptidases that occur where microbial communities are diverse. Crystal structures combined with biochemical characterization of specific enzymes can yield more detailed information about key steps in organic carbon transformations. These new techniques have the potential to provide mechanistic grounding to geomicrobiological models.
Multiscale time-dependent density functional theory: Demonstration for plasmons
NASA Astrophysics Data System (ADS)
Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J.
2017-08-01
Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.
Daubechies wavelets for linear scaling density functional theory
Mohr, Stephan; Ratcliff, Laura E.; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Boulanger, Paul; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10 000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
Towards simple orbital-dependent density functionals for molecular dissociation
NASA Astrophysics Data System (ADS)
Zhang, Igor Ying; Richter, Patrick; Scheffler, Matthias
2015-03-01
Density functional theory (DFT) is one of the leading first-principles electronic-structure theories. However, molecular dissociation remains a challenge, because it requires a well-balanced description of the drastically different electronic structure at different bond lengths. One typical and well-documented case is the dissociation of both H2+ and H2, for which all popular DFT functionals fail. We start from the Bethe-Goldstone equation to propose a simple orbital-dependent correlation functional which generalizes the linear adiabatic connection approach. The resulting scheme is based on second-order perturbation theory (PT2), but includes the self-consistent coupling of electron-hole pairs, which ensures the correct H2 dissociation limit and gives a finite correlation energy for systems with a (near)-degenerate energy gap. This coupling PT2-like (CPT2) approximation delivers a significant improvement over all existing functionals for both H2 and H2+ dissociation. We will demonstrate the reason for this improvement analytically for H2 in a minimal basis.
Structural Stability and Functional Remodeling of High-Density Lipoproteins
Gursky, Olga
2015-01-01
Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review our biophysical studies that revealed kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests functional role of structural disorder. A mechanism for conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL form discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease. PMID:25749369
Curvature and frontier orbital energies in density functional theory
NASA Astrophysics Data System (ADS)
Kronik, Leeor; Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Baer, Roi
2013-03-01
Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump'' by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of DFT. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.
Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.
Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu
2016-05-01
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.
NASA Astrophysics Data System (ADS)
García-Aldea, David; Alvarellos, J. E.
2009-03-01
We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).
Hydrodynamic modes and the density-density correlation function of a supersolid
NASA Astrophysics Data System (ADS)
Yoo, Chi-Deuk
2005-11-01
Recently Kim and Chan have observed the Non-classical Rotational Inertia of solid ^4He in Vycor glass [1] and in bulk [2] below around 200mK, and have interpreted their results as the onset of a supersolid phase [3]. As an alternative to detecting the supersolid phase, it is interesting to see whether a supersolid has a second sound mode analogous to a superfluid. We have derived hydrodynamics for a supersolid, and calculated the hydrodynamic mode frequencies for an isotropic supersolid, obtaining a longitudinal second sound mode. In addition, we have calculated the density-density correlation function in linear response theory, and find that one of the central Rayleigh peaks of a normal solid splits into two Brillouin peaks at φ=±c2q in supersolid phase, where c2 is the second sound speed of a supersolid. This behavior could be reveiled in a light scattering experiment from the solid.[1] E. Kim and M. H. W. Chan, Nature 427, 225 (2004). [2] E. Kim and M. H. W. Chan, Science 305, 1941 (2004). [3] A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).
Benchmarking Density Functionals for Chemical Bonds of Gold.
Kepp, Kasper P
2017-03-09
Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark against 51 experimental bond enthalpies of AuX systems and seven additional polyatomic and cationic molecules. Twelve density functionals were tested, covering meta functionals, hybrids with variable HF exchange, double-hybrid, dispersion-corrected, and nonhybrid GGA functionals. The defined benchmark data set probes all types of bonding to gold from very electronegative halides that force Au(+) electronic structure, via covalently bonded systems, hard and soft Lewis acids and bases that either work against or complement the softness of gold, the Au2 molecule probing gold's bond with itself, and weak bonds between gold and noble gases. Zero-point vibrational corrections are relatively small for Au-X bonds, ∼ 11-12 kJ/mol except for Au-H bonds. Dispersion typically provides ∼5 kJ/mol of the total bond enthalpy but grows with system size and is 10 kJ/mol for AuXe and AuKr. HF exchange and LYP correlation produce weaker bonds to gold. Most functionals provide similar trend accuracy, though somewhat lower for M06 and M06L, but very different numerical accuracy. Notably, PBE and TPSS functionals with dispersion display the smallest numerical errors and very small mean signed errors (0-6 kJ/mol), i.e. no bias toward over- or under-binding. Errors are evenly distributed versus atomic number, suggesting that relativistic effects are treated fairly; the mean absolute error is almost halved from B3LYP (45 kJ/mol) to TPSS and PBE (23 kJ/mol, including difficult cases); 23 kJ/mol is quite respectable considering the diverse bonds to gold and the complication of relativistic effects. Thus, studies that use DFT with effective core potentials for gold chemistry, with no alternative due
Cluster density functional theory for lattice models based on the theory of Möbius functions
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Cuesta, José A.
2005-08-01
Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Möbius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Möbius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.
Enzymatic catalysis: the emerging role of conceptual density functional theory.
Roos, Goedele; Geerlings, Paul; Messens, Joris
2009-10-15
Experimentalists and quantum chemists are living in a different world. A wealth of theoretical enzymology-related publications is hardly known by experimentalists, and vice versa. Our aim is to bring both worlds together and to show the powerful possibilities of a multidisciplinary approach to study subtle details of complicated enzymatic processes to a broad readership. MD simulations and QM/MM approaches often focus on the calculation of reaction paths based on activation energies, which is a time-consuming task. A valuable alternative is the reactivity descriptors founded in conceptual DFT like softness, electrophilicity, and the Fukui function, which describe the kinetic aspects of a reaction in terms of the response to perturbations in N and/or upsilon(r), typical for a chemical reaction, of the reagents in the ground state. As such, the relative energies at the beginning of the reaction predict a sequence of activation energies only based on the properties of the reactants (Figure 5 ). In 2003, Geerlings et al. published a key review giving a detailed description of the principles and concepts of conceptual DFT and highlighting its success to study generalized acid/base reactions including addition, substitution, and elimination reactions. Since the time that this review appeared, conceptual DFT has proven its strength in literally hundreds of papers with application to organic and inorganic reactions. Its role in unravelling enzymatic reaction mechanisms, in handling experimentally difficult accessible biochemical problems, and in the interpretation of biochemical experimental observations is emerging and very promising.
NASA Astrophysics Data System (ADS)
Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao
2016-06-01
Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu-C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).
Gerth, Christina; Zawadzki, Robert J; Werner, John S; Héon, Elise
2009-06-01
The objective of the paper is to study the retinal microstructure and function in a patient with autosomal recessive bestrophinopathy (ARB). Retinal function and morphology assessment in a patient diagnosed with a biallelic mutation in the BEST1 gene (heterozygote mutations: Leu88del17 and A195V) included: full-field electroretinogram (ffERG) and multifocal electroretinogram (mfERG), electro-oculogram (EOG) testing, and imaging with a high-resolution Fourier-domain optical coherence tomography (Fd-OCT) system (UC Davis Medical Center; axial resolution: 4.5 microm, acquisition speed: 9 frames/s, 1,000 A-scans/frame) combined with a flexible scanning head (Bioptigen Inc.). The 11-year old asymptomatic boy showed a well-demarcated retinopathy with deposits. Functional assessment revealed normal visual acuity, reduced central mfERG responses, delayed rod and rod-cone b-wave ffERG responses, and reduced light rise in the EOG. Fd-OCT demonstrated RPE deposits, photoreceptor detachment, elongated and thickened photoreceptor outer segments, but preserved inner retinal layers. In conclusion, ARB associated retinal dystrophy shows functional and morphological changes that overlap with classic Best disease. For the first time, high-resolution imaging provided in vivo evidence of RPE and photoreceptor involvement in ARB.
Computer simulations of crystal structures using density functional theory
NASA Astrophysics Data System (ADS)
Zeng, Yueping
During past several decades, first principles pseudopotential methods based on density functional theory have provided the basis for the majority of first-principles calculations of the ground state electronic properties of a wide variety of condensed matter systems. However, as the numerical accuracy of these calculations has improved, it has become apparent that there are some sizable discrepancies between the calculations and the experimental measurements of the ground state properties of many of these materials. Part of the difficulty comes in determining the form of the exchange-correlation interaction, the local-density approximation (LDA) and generalized-gradient approximation (GGA) being the most common forms. It is important to explore the limits of density-functional theory and of the LDA and GGA forms of the exchange-correlation functional. Another difficulty lies in determining the accuracy of the frozen core approximation which is the basis of first-principles pseudopotential methods. In this context, simulations of the transition metal material FeSsb2 and of the SiC (100) surface are very important. This thesis describes an effort to simulate the ground state properties of materials using density functional theory (DFT) with focus on investigation of the exchange-correlation functional and the frozen-core approximation. Comparison of the calculations with experiments for FeSsb2 and for the SiC (100) surface using first-principles pseudopotential and the all-electron linearized-augmented-plane-wave (LAPW) methods are analyzed. Advantages of using the recently developed new projector-augmented-wave (PAW) ideas, which reduce the gap between the all-electron LAPW and first-principles pseudopotential methods are discussed. Test results for bulk materials silicon, diamond, and SiC are presented. Analysis of the reliability of the frozen-core approximation and of the pseudopotential theory for the cohesive energy indicates that for materials containing the
A Density Functional Theory Study of Formaldehyde Adsorption on Ceria
Mei, Donghai; Deskins, N. Aaron; Dupuis, Michel
2007-11-01
Molecular adsorption of formaldehyde on the stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory. Two adsorption modes (strong chemisorbed and weak physisorbed) were identified on both surfaces. This is consistent with recent experimental observations. On the (111) surface, formaldehyde strongly chemisorbs with an adsorption energy of 0.86 eV to form a dioxymethylene-like structure, in which a surface O lifts from the surface to bind with the C of formaldehyde. A weak physisorbed state with adsorption energy of 0.28 eV was found with the O of formaldehyde interacting with a surface Ce. On the (110) surface, dioxymethyelene formation was also observed, with an adsorption energy of 1.31 eV. The weakly adsorbed state of formaldehyde on the (110) surface was energetically comparable to the weak adsorption state on the (111) surface, but adsorption occurred through a formaldehyde C and surface O interaction. Analysis of the local density of states and charge density differences after adsorption shows that strong covalent bonding occurs between the C of formaldehyde and surface O when dioxymethylene forms. Calculated vibrational frequencies also confirm dioxymethylene formation. Our results also show that as the coverage increases, the adsorption of formaldehyde on the (111) surface becomes weak, but is nearly unaffected on the (110) surface. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. Computing time was made under a Computational Grand Challenge “Computational Catalysis”. Part of the computing time was also granted by the National Energy Research Scientific Computing
Ionic versus covalent character in lanthanide complexes. A hybrid density functional study
NASA Astrophysics Data System (ADS)
Adamo, Carlo; Maldivi, Pascale
1997-04-01
The geometric structures and harmonic vibrational frequencies of La, Gd and Lu trihalides have been investigated by a hybrid density functional/Hartree-Fock approach coupled with a relativistic effective core potential. The adequacy of this electronic protocol is confirmed by the fairly good agreement with experimental data and with those obtained by more expensive post-HF computations. A detailed analysis of the electronic density has been performed using the natural bond localization procedure and its recent extension to natural electronic resonance theory to understand the role of charge transfer in the bonding of lanthanide complexes. This approach underlines the role of electrostatic interactions in the lanthanide-halogen bond, even if a charge transfer mechanism plays a role, especially in the more weakly bonded bromide and iodide derivatives.
The chemistry of acetone at extreme conditions by density functional molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ferrante, Francesco; Celso, Fabrizio Lo; Triolo, Roberto; Taleyarkhan, Rusi P.
2011-02-01
Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm-3. These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail.
The chemistry of acetone at extreme conditions by density functional molecular dynamics simulations.
Ferrante, Francesco; Lo Celso, Fabrizio; Triolo, Roberto; Taleyarkhan, Rusi P
2011-02-14
Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm(-3). These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail.
Corsini, Niccolò R C; Greco, Andrea; Hine, Nicholas D M; Molteni, Carla; Haynes, Peter D
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Corsini, Niccolò R. C. Greco, Andrea; Haynes, Peter D.; Hine, Nicholas D. M.; Molteni, Carla
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Simplified Computation for Nonparametric Windows Method of Probability Density Function Estimation.
Joshi, Niranjan; Kadir, Timor; Brady, Michael
2011-08-01
Recently, Kadir and Brady proposed a method for estimating probability density functions (PDFs) for digital signals which they call the Nonparametric (NP) Windows method. The method involves constructing a continuous space representation of the discrete space and sampled signal by using a suitable interpolation method. NP Windows requires only a small number of observed signal samples to estimate the PDF and is completely data driven. In this short paper, we first develop analytical formulae to obtain the NP Windows PDF estimates for 1D, 2D, and 3D signals, for different interpolation methods. We then show that the original procedure to calculate the PDF estimate can be significantly simplified and made computationally more efficient by a judicious choice of the frame of reference. We have also outlined specific algorithmic details of the procedures enabling quick implementation. Our reformulation of the original concept has directly demonstrated a close link between the NP Windows method and the Kernel Density Estimator.
NASA Astrophysics Data System (ADS)
Sibley, David; Nold, Andreas; Kalliadasis, Serafim
2015-11-01
Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Nuclear structure and dynamics with density functional theory
NASA Astrophysics Data System (ADS)
Stetcu, Ionel
2015-10-01
Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.
Density functional theory and phytochemical study of 8-hydroxyisodiospyrin
NASA Astrophysics Data System (ADS)
Ullah, Zakir; Ata-ur-Rahman; Fazl-i-Sattar; Rauf, Abdur; Yaseen, Muhammad; Hassan, Waseem; Tariq, Muhammad; Ayub, Khurshid; Tahir, Asif Ali; Ullah, Habib
2015-09-01
Comprehensive theoretical and experimental studies of a natural product, 8-hydroxyisodiospyrin (HDO) have been carried out. Based on the correlation of experimental and theoretical data, an appropriate computational model was developed for obtaining the electronic, spectroscopic, and thermodynamic parameters of HDO. First of all, the exact structure of HDO is confirmed from the nice correlation of theory and experiment, prior to determination of its electroactive nature. Hybrid density functional theory (DFT) is employed for all theoretical simulations. The experimental and predicted IR and UV-vis spectra [B3LYP/6-31+G(d,p) level of theory] have excellent correlation. Inter-molecular non-covalent interaction of HDO with different gases such as NH3, CO2, CO, H2O is investigated through geometrical counterpoise (gCP) i.e., B3LYP-gCP-D3/6-31G∗ method. Furthermore, the inter-molecular interaction is also supported by geometrical parameters, electronic properties, thermodynamic parameters and charge analysis. All these characterizations have corroborated each other and confirmed the electroactive nature (non-covalent interaction ability) of HDO for the studied gases. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap of HDO have been estimated for the first time theoretically.
Density functional study of Pu2C3
NASA Astrophysics Data System (ADS)
Yang, Rong; Tang, Bin; Gao, Tao; Ao, Bing Yun
2017-08-01
The structural, magnetic, electronic, vibrational, thermodynamic and elastic properties of plutonium sesquicarbide (Pu2C3) are investigated based on density functional theory. The use of the Hubbard term to describe the 5 f electrons of plutonium is discussed according the lattice parameters and magnetism. The calculated lattice constants, magnetism and density of states agree well with the experimental data or other theoretical calculations. The Pu-C bonds of Pu2C3 have a mixture of covalent character and ionic character, while covalent character is stronger than ionic character. The phonon frequencies and the assignment of infrared-active, Raman-active and silent modes at Γ point are obtained. Furthermore, the enthalpy difference H-H298, entropy S, heat capacity and linear thermal expansion coefficient α of Pu2C3 have been calculated and compared with the available data. Lastly, the calculated elastic properties predict that Pu2C3 is ductile metal. In addition, the effect of spin-orbit coupling on the structural, magnetic, and electronic properties of Pu2C3 has been discussed. We hope that our results can provide a useful reference for further theoretical and experimental research on Pu2C3.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Building A Universal Nuclear Energy Density Functional (UNEDF)
Joe Carlson; Dick Furnstahl; Mihai Horoi; Rusty Lusk; Witek Nazarewicz; Esmond Ng; Ian Thompson; James Vary
2012-09-30
During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
Curvature and Frontier Orbital Energies in Density Functional Theory.
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi
2012-12-20
Perdew et al. discovered two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points. (ii) Across an integer number of electrons, the exchange-correlation potential "jumps" by a constant, known as the derivative discontinuity (DD). Here we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT the two properties are two sides of the same coin. The absence of a DD dictates deviation from piecewise linearity, but the latter, appearing as curvature, can be used to correct for the former, thereby restoring the physical meaning of orbital energies. A simple correction scheme for any semilocal and hybrid functional, even Hartree-Fock theory, is shown to be effective on a set of small molecules, suggesting a practical correction for the infamous DFT gap problem. We show that optimally tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and that this can be used as a sound theoretical basis for novel tuning strategies.
Insights into phase transitions and entanglement from density functional theory
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2016-11-01
Density functional theory (DFT) has met great success in solid state physics, quantum chemistry and in computational material sciences. In this work we show that DFT could shed light on phase transitions and entanglement at finite temperatures. Specifically, we show that the equilibrium state of an interacting quantum many-body system which is in thermal equilibrium with a heat bath at a fixed temperature is a universal functional of the first derivatives of the free energy with respect to temperature and other control parameters respectively. This insight from DFT enables us to express the average value of any physical observable and any entanglement measure as a universal functional of the first derivatives of the free energy with respect to temperature and other control parameters. Since phase transitions are marked by the nonanalytic behavior of free energy with respect to control parameters, the physical quantities and entanglement measures may present nonanalytic behavior at critical point inherited from their dependence on the first derivative of free energy. We use two solvable models to demonstrate these ideas. These results give new insights for phase transitions and provide new profound connections between entanglement and phase transitions in interacting quantum many-body physics.
Particle-vibration coupling within covariant density functional theory
Litvinova, E.; Ring, P.; Tselyaev, V.
2007-06-15
Covariant density functional theory, which has so far been applied only within the framework of static and time-dependent mean-field theory, is extended to include particle-vibration coupling (PVC) in a consistent way. Starting from a conventional energy functional, we calculate the low-lying collective vibrations in the relativistic random phase approximation (RRPA) and construct an energy-dependent self-energy for the Dyson equation. The resulting Bethe-Salpeter equation in the particle-hole (p-h) channel is solved in the time blocking approximation (TBA). No additional parameters are used, and double counting is avoided by a proper subtraction method. The same energy functional, i.e., the same set of coupling constants, generates the Dirac-Hartree single-particle spectrum, the static part of the residual p-h interaction, and the particle-phonon coupling vertices. Therefore, a fully consistent description of nuclear excited states is developed. This method is applied for an investigation of damping phenomena in the spherical nuclei with closed shells {sup 208}Pb and {sup 132}Sn. Since the phonon coupling terms enrich the RRPA spectrum with a multitude of p-hxphonon components, a noticeable fragmentation of the giant resonances is found, which is in full agreement with experimental data and with results of the semiphenomenological nonrelativistic approach.
Plasmon modes of bilayer molybdenum disulfide: A density functional study.
Torbatian, Zahra; Asgari, Reza
2017-08-17
We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS2 ) using the density functional theory together with the random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of bilayer MoS2 system is found to be sensitive to either electron or hole doping and it is owing to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted. A damped high- energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits √q in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode). . © 2017 IOP Publishing Ltd.
Density Functional Theory Study on Interaction between Catechin and Thymine
NASA Astrophysics Data System (ADS)
Cai, Wan-fei; Zheng, Yan; Li, Lai-cai; Tian, An-min
2012-12-01
The interacting patterns and mechanism of the catechin and thymine have been investigated with the density functional theory Becke's three-parameter nonlocal exchange functional and the Lee, Yang, and Parr nonlocal correlation functional (B3LYP) method by 6-31+G* basis set. Thirteen stable structures for the catechin-thymine complexes have been found which form two hydrogen bonds at least. The vibrational frequencies are also studied at the same level to analyze these complexes. The results indicated that catechin interacted with thymine by three different hydrogen bonds as N—H···O, C—H···O, O—H···O and the complexes are mainly stabilized by the hydrogen bonding interactions. Theories of atoms in molecules and natural bond orbital have been adopted to investigate the hydrogen bonds involved in all systems. The interaction energies of all complexes have been corrected for basis set superposition error, which are from -18.15 kJ/mol to -32.99 kJ/mol. The results showed that the hydrogen bonding contribute to the interaction energies dominantly. The corresponding bonds stretching motions in all complexes are red-shifted relative to that of the monomer, which is in agreement with experimental results.
Density functional theory for comprehensive orbital energy calculations
NASA Astrophysics Data System (ADS)
Nakata, Ayako; Tsuneda, Takao
2013-08-01
This study reveals the reason core 1s orbital energies and the highest occupied molecular orbital (HOMO) energies of hydrogen and rare gas atoms are underestimated by long-range corrected (LC) density functional theory (DFT), which quantitatively reproduces the HOMO energies of other systems and the lowest unoccupied molecular orbital (LUMO) energies. Applying the pseudospectral regional (PR) self-interaction correction (SIC) drastically improved the underestimated orbital energies in LC-DFT calculations, while maintaining or improving the accuracies in the calculated valence HOMO and LUMO energies. This indicates that the self-interaction error in exchange functionals causes the underestimations of core 1s orbital energies and the HOMO energies of hydrogen and rare gas atoms in LC-DFT calculations. To clarify the reason for the improvement, the fractional occupation dependences of total electronic energies and orbital energies were examined. The calculated results clearly showed that the LC-PR functional gives almost linear dependences of total electronic energies for a slight decrease in the occupation number of core 1s orbitals, although this linear dependence disappears for significant decrease due to the shrinking of exchange self-interaction regions. It was also clarified that the PRSIC hardly affects the occupation number dependences of the total electronic energies and orbital energies for the fractional occupations of HOMOs and LUMOs. As a result, it was concluded that core orbital energies are obtained accurately by combining LC-DFT with PRSIC.
Specification of optical components using the power spectral density function
Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.
1995-06-20
This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.
Density functional theory for comprehensive orbital energy calculations.
Nakata, Ayako; Tsuneda, Takao
2013-08-14
This study reveals the reason core 1s orbital energies and the highest occupied molecular orbital (HOMO) energies of hydrogen and rare gas atoms are underestimated by long-range corrected (LC) density functional theory (DFT), which quantitatively reproduces the HOMO energies of other systems and the lowest unoccupied molecular orbital (LUMO) energies. Applying the pseudospectral regional (PR) self-interaction correction (SIC) drastically improved the underestimated orbital energies in LC-DFT calculations, while maintaining or improving the accuracies in the calculated valence HOMO and LUMO energies. This indicates that the self-interaction error in exchange functionals causes the underestimations of core 1s orbital energies and the HOMO energies of hydrogen and rare gas atoms in LC-DFT calculations. To clarify the reason for the improvement, the fractional occupation dependences of total electronic energies and orbital energies were examined. The calculated results clearly showed that the LC-PR functional gives almost linear dependences of total electronic energies for a slight decrease in the occupation number of core 1s orbitals, although this linear dependence disappears for significant decrease due to the shrinking of exchange self-interaction regions. It was also clarified that the PRSIC hardly affects the occupation number dependences of the total electronic energies and orbital energies for the fractional occupations of HOMOs and LUMOs. As a result, it was concluded that core orbital energies are obtained accurately by combining LC-DFT with PRSIC.
Jordan, Daniel K; Mazziotti, David A
2005-02-22
Two classes of linear-scaling methods to replace diagonalization of the one-particle Hamiltonian matrix in density functional theory are compared to each other. Purification takes a density matrix with the correct eigenfunctions and corrects the occupation numbers; density matrix minimization takes a density matrix with correct occupation numbers and corrects the eigenfunctions by rotating the orbitals. Computational comparisons are performed through modification of the MondoSCF program on water clusters and the protein endothelin. A purification scheme and a density matrix minimization scheme, based on the 1,2-contracted Schrodinger equation [D. A. Mazziotti, J. Chem. Phys. 115, 8305 (2001)] are implemented in large systems.
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
NASA Astrophysics Data System (ADS)
Mohazzabi, Pirooz
2017-09-01
Using molecular dynamics simulations, binary collision density in a dense non-ideal gas with Lennard-Jones interactions is investigated. It is shown that the functional form of the dependence of collision density on particle density and collision diameter remains the same as that for an ideal gas. The temperature dependence of the collision density, however, has a very different form at low temperatures, where it decreases as temperature increases. But at higher temperatures the functional form becomes the same as that for an ideal gas.
Dynamic kinetic energy potential for orbital-free density functional theory.
Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang
2011-04-14
A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.
Coherent states/density functional theory approach to molecular dynamics
NASA Astrophysics Data System (ADS)
Tsereteli, Kakha; Yan, Yun-an; Morales, Jorge A.
2006-03-01
We present a combined coherent states (CS)/density functional theory approach to molecular dynamics within the electron nuclear dynamics framework. Nuclei are described by a product of narrow, frozen Gaussian wave packets that is approximately separable into translational, rotational, and vibrational CS parts. Electrons are described by a single-determinantal Thouless CS in a time-dependent Kohn-Sham fashion. This novel approach improves several features of the Car-Parrinello method by providing an ab initio CS Lagrangian, a quasi-classical CS description for the nuclei, and a non-redundant representation of a general electronic single-determinantal state. Preliminary simulations of the H + + H 2 reaction at ELab = 30 eV are also presented.
Simulation of sprays using a Lagrangian filtered density function approach
NASA Astrophysics Data System (ADS)
Liu, Wanjiao; Garrick, Sean
2013-11-01
Sprays and atomization have wide applications in industry, including combustion/engines, pharmaceutics and agricultural spraying. Due to the complexity of the underlying processes, much of the underlying phenomena are not fully understood. Numerical simulation may provide ways to investigate atomization and spray dynamics. Large eddy simulation (LES) is a practical approach to flow simulation as it resolves only the large-scale structures while modeling the sub-grid scale (SGS) effects. We combine a filtered density function (FDF) based approach with a Lagrangian volume-of-fluid method to perform LES. This resulting methodology is advantageous in that it has no diffusive or dissipative numerical errors, and the highly non-linear surface tension force appears in closed form thus the modeling of the SGS surface tension is not needed when simulating turbulent, multiphase flows. We present the methodology and some results for the simulation of multiphase jets.
Direct recursive identification of the Preisach hysteresis density function
NASA Astrophysics Data System (ADS)
Ruderman, Michael
2013-12-01
In this paper, a novel direct method of recursive identification of the Preisach hysteresis density function is proposed. Using the discrete dynamic Preisach model, which is a state-space realization of the classical scalar Preisach model, the method is designed based on the output increment error. After giving the general formulation, the identification scheme implemented for a discretized Preisach plane is introduced and evaluated through the use of numerical simulations. Two cases of Gaussian mixtures are considered for mapping the hysteresis system to be identified. The parameter convergence is shown for a low-pass filtered white-noise input. Further, the proposed identification method is applied to a magnetism-related application example, where the flux linkage hysteresis of a proportional solenoid is assumed from the measurements, and then the inverse of a standard demagnetization procedure is utilized as the identification sequence.
Density Functional Approach and Random Matrix Theory in Proteogenesis
NASA Astrophysics Data System (ADS)
Yamanaka, Masanori
2017-02-01
We study the energy-level statistics of amino acids by random matrix theory. The molecular orbital and the Kohn-Sham orbital energies are calculated using ab initio and density-functional formalisms for 20 different amino acids. To generate statistical data, we performed a multipoint calculation on 10000 molecular structures produced via a molecular dynamics simulation. For the valence orbitals, the energy-level statistics exhibit repulsion, but the universality in the random matrix cannot be determined. For the unoccupied orbitals, the energy-level statistics indicate an intermediate distribution between the Gaussian orthogonal ensemble and the semi-Poisson statistics for all 20 different amino acids. These amino acids are considered to be in a type of critical state.
Fundamental gap of molecular crystals via constrained density functional theory
NASA Astrophysics Data System (ADS)
Droghetti, Andrea; Rungger, Ivan; Das Pemmaraju, Chaitanya; Sanvito, Stefano
2016-05-01
The energy gap of a molecular crystal is one of the most important properties since it determines the crystal charge transport when the material is utilized in electronic devices. This is, however, a quantity difficult to calculate and standard theoretical approaches based on density functional theory (DFT) have proven unable to provide accurate estimates. In fact, besides the well-known band-gap problem, DFT completely fails in capturing the fundamental gap reduction occurring when molecules are packed in a crystal structures. The failure has to be associated with the inability of describing the electronic polarization and the real space localization of the charged states. Here we describe a scheme based on constrained DFT, which can improve upon the shortcomings of standard DFT. The method is applied to the benzene crystal, where we show that accurate results can be achieved for both the band gap and also the energy level alignment.
Reproducibility in density functional theory calculations of solids.
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn; Blaha, Peter; Blügel, Stefan; Blum, Volker; Caliste, Damien; Castelli, Ivano E; Clark, Stewart J; Dal Corso, Andrea; de Gironcoli, Stefano; Deutsch, Thierry; Dewhurst, John Kay; Di Marco, Igor; Draxl, Claudia; Dułak, Marcin; Eriksson, Olle; Flores-Livas, José A; Garrity, Kevin F; Genovese, Luigi; Giannozzi, Paolo; Giantomassi, Matteo; Goedecker, Stefan; Gonze, Xavier; Grånäs, Oscar; Gross, E K U; Gulans, Andris; Gygi, François; Hamann, D R; Hasnip, Phil J; Holzwarth, N A W; Iuşan, Diana; Jochym, Dominik B; Jollet, François; Jones, Daniel; Kresse, Georg; Koepernik, Klaus; Küçükbenli, Emine; Kvashnin, Yaroslav O; Locht, Inka L M; Lubeck, Sven; Marsman, Martijn; Marzari, Nicola; Nitzsche, Ulrike; Nordström, Lars; Ozaki, Taisuke; Paulatto, Lorenzo; Pickard, Chris J; Poelmans, Ward; Probert, Matt I J; Refson, Keith; Richter, Manuel; Rignanese, Gian-Marco; Saha, Santanu; Scheffler, Matthias; Schlipf, Martin; Schwarz, Karlheinz; Sharma, Sangeeta; Tavazza, Francesca; Thunström, Patrik; Tkatchenko, Alexandre; Torrent, Marc; Vanderbilt, David; van Setten, Michiel J; Van Speybroeck, Veronique; Wills, John M; Yates, Jonathan R; Zhang, Guo-Xu; Cottenier, Stefaan
2016-03-25
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.
Self-consistent polarization density functional theory: Application to Argon
Maerzke, Katie A.; Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.; Siepmann, J. I.
2009-03-12
We present a comprehensive set of results for argon, a case study in weak interactions, using the selfconsistent polarization density functional theory (SCP-DFT). With minimal parameterization, SCPDFT is found is give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic (fcc) crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.
Density functional theory for chiral nematic liquid crystals.
Belli, S; Dussi, S; Dijkstra, M; van Roij, R
2014-08-01
Even though chiral nematic phases were the first liquid crystals experimentally observed more than a century ago, the origin of the thermodynamic stability of cholesteric states is still unclear. In this Rapid Communication we address the problem by means of a density functional theory for the equilibrium pitch of chiral particles. When applied to right-handed hard helices, our theory predicts an entropy-driven cholesteric phase, which can be either right or left handed, depending not only on the particle shape but also on the thermodynamic state. We explain the origin of the chiral ordering as an interplay between local nematic alignment and excluded-volume differences between left- and right-handed particle pairs.
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-01-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471
Descriptions of carbon isotopes within the energy density functional theory
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Plutonium: The density-functional-theory point of view
Soderlind, P; Landa, A
2008-10-30
Density-functional theory (DFT) is a remarkably successful tool for describing many metals throughout the Periodic Table. Here we present the results of this theory when applied to plutonium metal, the perhaps most complex and difficult-to-model metal of all. The fundamental product of DFT is the ground-state total energy. In the case of Pu, we show that DFT produces total energies that can predict the complex phase diagram accurately. Focusing on the {delta} phase, we show that DFT electronic structure is consistent with measured photoemission spectra. The observed non-magnetic state of {delta}-Pu could possibly be explained in DFT by spin moments, likely disordered, that are magnetically neutralized by anti-parallel aligned orbital moments. As an alternative to this non-magnetic model an extension of DFT with enhanced orbital polarization is presented in which magnetism can be suppressed.
Time-dependent density functional theory for quantum transport.
Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing
2010-09-21
Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.
Elastic constants of β -eucryptite studied by density functional theory
NASA Astrophysics Data System (ADS)
Narayanan, Badri; Reimanis, Ivar E.; Fuller, Edwin R., Jr.; Ciobanu, Cristian V.
2010-03-01
The five independent elastic constants of hexagonal β -eucryptite have been determined using density functional theory total energy calculations. The calculated values agree well, to within 15%, with the experimental data. Using the calculated elastic constants, the linear compressibility of β -eucryptite parallel to the c axis, χc , and perpendicular to it, χa , have been evaluated. These values are in close agreement to those obtained from experimentally known elastic constants, but are in contradiction to those obtained through direct measurements based on a three-terminal technique. The calculated compressibility parallel to the c axis was found to have a positive value rather than a negative one as obtained from the three-terminal technique. We demonstrate that χc must be positive and discuss the implications of a positive χc in the context of explaining the negative bulk thermal expansion of β -eucryptite.
Density functional theory study of hexagonal carbon phases.
Wang, Zhibin; Gao, Faming; Li, Na; Qu, Nianrui; Gou, Huiyang; Hao, Xianfeng
2009-06-10
It is reported frequently that the new carbon phases may be harder than diamond (Wang et al 2004 Proc. Natl Acad. Sci. 101 13699 and Mao et al 2003 Science 302 425). However, the mechanism is still unclear. In this paper we systematically investigate the structural, electronic, and mechanical properties of the diamond polytypes using first-principles density functional calculations. The results show that the bulk modulus and shear modulus for the hexagonal form of diamond approach those of diamond, suggesting they might be hard and low compressibility materials. According to the semiempirical method for hardness based on the Mulliken overlap population, the hardnesses for hexagonal forms have been evaluated and compared to diamond. The results indicate that these phases are superhard. More importantly, the bonds in some specific directions of the hexagonal phases are harder than those in diamond, which may lead to the noticeable indentation marks on the diamond anvils observed in experiments.
Superconductivity in layered binary silicides: A density functional theory study
NASA Astrophysics Data System (ADS)
Flores-Livas, José A.; Debord, Régis; Botti, Silvana; San Miguel, Alfonso; Pailhès, Stéphane; Marques, Miguel A. L.
2011-11-01
A class of metal disilicides (of the form XSi2, where X is a divalent metal) crystallizes in the EuGe2 structure, formed by hexagonal corrugated silicon planes intercalated with metal atoms. These compounds are superconducting like other layered superconductors, such as MgB2. Moreover, their properties can be easily tuned either by external pressure or by negative chemical pressure (i.e., by changing the metal), which makes disilicides an ideal testbed to study superconductivity in layered systems. In view of this, we present an extensive density functional theory study of the electronic and phonon band structures as well as the electron-phonon interaction of metal disilicides. Our results explain the variation of the superconducting transition temperature with pressure and the species of the intercalating atom, and allow us to predict superconductivity for compounds not yet synthesized belonging to this family.
The photochemistry of transition metal complexes using density functional theory.
Garino, Claudio; Salassa, Luca
2013-07-28
The use of density functional theory (DFT) and time-dependent DFT (TD-DFT) to study the photochemistry of metal complexes is becoming increasingly important among chemists. Computational methods provide unique information on the electronic nature of excited states and their atomic structure, integrating spectroscopy observations on transient species and excited-state dynamics. In this contribution, we present an overview on photochemically active transition metal complexes investigated by DFT. In particular, we discuss a representative range of systems studied up to now, which include CO- and NO-releasing inorganic and organometallic complexes, haem and haem-like complexes dissociating small diatomic molecules, photoactive anti-cancer Pt and Ru complexes, Ru polypyridyls and diphosphino Pt derivatives.
Density functional theory and simulations of colloidal triangular prisms.
Marechal, Matthieu; Dussi, Simone; Dijkstra, Marjolein
2017-03-28
Nanopolyhedra form a versatile toolbox to investigate the effect of particle shape on self-assembly. Here we consider rod-like triangular prisms to gauge the effect of the cross section of the rods on liquid crystal phase behavior. We also take this opportunity to implement and test a previously proposed version of fundamental measure density functional theory (0D-FMT). Additionally, we perform Monte Carlocomputer simulations and we employ a simpler Onsager theory with a Parsons-Lee correction. Surprisingly and disappointingly, 0D-FMT does not perform better than the Tarazona and Rosenfeld's version of fundamental measure theory (TR-FMT). Both versions of FMT perform somewhat better than the Parsons-Lee theory. In addition, we find that the stability regime of the smectic phase is larger for triangular prisms than for spherocylinders and square prisms.
Density Functional Plus Dynamical Mean Field Theory of Correlated Oxides
NASA Astrophysics Data System (ADS)
Millis, Andrew
2015-03-01
The density functional plus dynamical mean field method is outlined and a few recent successes including applications to spin crossover molecules, oxide superlattices and metal-insulator transitions in bulk transition metals are outlined. Insights from the method into the essential role played by lattice distortions (both rotations and bond length changes) in determining the phase diagrams of correlated materials are presented. The key theoretical issue of the double counting correction is outlined, different approaches are compared, and a connection to the energy level differences between strongly and weakly correlated orbitals is presented. Charge transfer across oxide interfaces shown to depend crucially on the double counting correction, suggesting that experiments on oxide superlattices may provide insights into this important problem. Future directions are discussed. This work is performed in collaboration with Jia Chen, Hung Dang, Hyowon Park and Chris Marianetti. This research supported by the DOE Office of Science, Grant ER 046169.
Vibrational spectroscopy and density functional theory study of 4-mercaptophenol
NASA Astrophysics Data System (ADS)
Li, Ran; Ji, Wei; Chen, Lei; Lv, Haiming; Cheng, Jianbo; Zhao, Bing
2014-03-01
In this paper, 4-mercaptophenol (4-MPH) was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. All FTIR and Raman bands of the compound obtained experimentally were assigned based on the modeling results obtained at the B3LYP/6-311 + G** level. Our calculated vibrational frequencies are in good agreement with the experimental vales. The molecular electrostatic potential surface calculation was performed and the result suggested that the 4-MPH has two hydrogen bond donors and three hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311 + G** level.
Density functional theory for inhomogeneous associating chain fluids.
Bryk, P; Sokołowski, S; Pizio, O
2006-07-14
We propose a nonlocal density functional theory for associating chain molecules. The chains are modeled as tangent spheres, which interact via Lennard-Jones (12,6) attractive interactions. A selected segment contains additional, short-ranged, highly directional interaction sites. The theory incorporates an accurate treatment of the chain molecules via the intramolecular potential formalism and should accurately describe systems with strongly varying external fields, e.g., attractive walls. Within our approach we investigate the structure of the liquid-vapor interface and capillary condensation of a simple model of associating chains with only one associating site placed on the first segment. In general, the properties of inhomogeneous associating chains depend on the association energy. Similar to the bulk systems we find the behavior of associating chains of a given length to be in between that for the nonassociating chains of the same length and that for the nonassociating chains twice as large.
Native defects in Tl6SI4: Density functional calculations
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Du, Mao-Hua
2015-05-01
Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.
Nitrotyrosine adsorption on defective graphene: A density functional theory study
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2015-06-01
We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.
Machine-learned approximations to Density Functional Theory Hamiltonians
NASA Astrophysics Data System (ADS)
Hegde, Ganesh; Bowen, R. Chris
2017-02-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
Density functional study of cucurbituril and its sulfur analogue
NASA Astrophysics Data System (ADS)
Pichierri, Fabio
2004-05-01
The molecular and electronic structures of cucurbituril (CB) and its sulfur analogue, thia-cucurbituril (TCB), have been investigated by means of density functional theory (DFT) calculations. The HOMO-LUMO (H-L) energy gap of CB is ˜7 eV and it decreases at ˜4 eV upon replacement of its twelve oxygen atoms with sulphur atoms. The vertical ionization potential (IP) of CB and TCB are rather large, being ˜7 and 6 eV, respectively. The vertical electron affinity (EA) of CB calculated in the gas-phase is negative (about -2 eV), thus suggesting that its anion is thermodynamically unstable. On the other hand, formation of the TCB anion might be favoured in electron-donating solvents since its calculated vertical EA is close to zero. An analysis of the Kohn-Sham frontier orbitals of CB and TCB indicates that neither the HOMO nor the LUMO is degenerate.
Machine-learned approximations to Density Functional Theory Hamiltonians.
Hegde, Ganesh; Bowen, R Chris
2017-02-15
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
Native defects in Tl6SI4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges andmore » large static dielectric constant, which provides effective screening of charged defects and impurities.« less
Density functional theory studies of HCOOH decomposition on Pd(111)
NASA Astrophysics Data System (ADS)
Scaranto, Jessica; Mavrikakis, Manos
2016-08-01
The investigation of formic acid (HCOOH) decomposition on transition metal surfaces is important to derive useful insights for vapor phase catalysis involving HCOOH and for the development of direct HCOOH fuel cells (DFAFC). Here we present the results obtained from periodic, self-consistent, density functional theory (DFT-GGA) calculations for the elementary steps involved in the gas-phase decomposition of HCOOH on Pd(111). Accordingly, we analyzed the minimum energy paths for HCOOH dehydrogenation to CO2 + H2 and dehydration to CO + H2O through the carboxyl (COOH) and formate (HCOO) intermediates. Our results suggest that HCOO formation is easier than COOH formation, but HCOO decomposition is more difficult than COOH decomposition, in particular in the presence of co-adsorbed O and OH species. Therefore, both paths may contribute to HCOOH decomposition. CO formation goes mainly through COOH decomposition.
The "JK-only" approximation in density matrix functional and wave function theory.
Kollmar, Christian
2004-12-15
Various energy functionals applying the "JK-only" approximation which leads to two-index two-electron integrals instead of four-index two-electron integrals in the electron-electron interaction term of the electronic energy are presented. Numerical results of multiconfiguration self-consistent field calculations for the best possible "JK-only" wave function are compared to those obtained from the pair excitation multiconfiguration self-consistent (PEMCSCF) method and two versions of density matrix functional theory. One of these is derived making explicit use of some necessary conditions for N representability of the second-order density matrix. It is shown that this method models the energy functional based on the best possible "JK-only" wave function with good accuracy. The calculations also indicate that only a minor fraction of the total correlation energy is incorporated by "JK-only" approaches for larger molecules.
Origin of anomeric effect: A density functional steric analysis
Huang, Ying; Zhong, Ai-Guo; Yang, Qinsong; Liu, Shubin
2011-01-01
The anomeric effect (the tendency of heteroatomic substituents adjacent to a heteroatom within the cyclohexane ring to prefer the axial orientation instead of the sterically less hindered equatorial position) is traditionally explained through either the dipole moment repulsion or the hyperconjugation effect. In this work, by employing our recent work in density functional steric analysis, we provide a novel two-component explanation, which is consistent with the common belief in chemistry that the effect has a stereoelectronic origin. With α-D-glucopyranose as the prototype, we systematically explore its conformational space and generate 32 isomers, leading to a total of 80 axial–equatorial conformation pairs. The energy difference analysis of these pairs shows that while statistically speaking the tendency is valid, the anomeric effect is not always true and can be violated. Three energy components, exchange–correlation, classical electrostatic, and density functional steric, are found to be directly proportional to the total energy difference between axial and equatorial isomers. We also found that the total dipole moment change, not the hyperconjugation effect, is a reasonable indicator of the total energy difference. However, all these correlations alone are not strong enough to provide a compellingly convincing explanation for the general validity of the effect. With the help of strong correlations between energy components, an explanation with two energy components, steric and electrostatic, was proposed in this work. We show that the axial–equatorial energy difference in general, with the anomeric effect as a special case, is dictated by two factors of the stereoelectronic origin, steric hindrance and classical electrostaticinteractions, synchronously working together. Another explanation in terms of exchange–correlation and electrostaticinteractions has also been obtained in this work.
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
2016-09-01
Previous research on optical surface scatter either assumed for the ACV (Auto-Covariance function) a simple analytical but unrealistic Gaussian form or depended on intensive numerical integrations. Measurements of polished optical surfaces indicate they accurately follow a simple inverse power law for the BSDF (Bi-directional Scatter Distribution Function) and the related PSD (Power Spectral Density) of their random height variations, i.e. they are fractal-like. By applying the appropriate limits to the scale-invariant (no intrinsic correlation length) PSD, a general analytic form for the corresponding ACV and STF (Surface or Scatter Transfer Function) can be derived. Combined with other Fourier-Bessel transform pairs, it's possible to accurately simulate the effect of not only diffraction and aberrations such as defocus (via the system OTF or Optical Transfer Function) but also surface and particulate scatter on the incoherent imaging of highcontrast fine-detail scenes. Simple examples of Gaussian and point objects are first presented followed by application to digital cameras that require integrating the aerial image over each pixel's active area. The needed subsampling for a camera with over ten million pixels (each only few microns in size) requires two-dimensional FFTs (Fast Fourier Transforms) of many gigabytes to accurately perform the detailed imaging calculations.
Covariant density functional theory: Global performance and rotating nuclei
NASA Astrophysics Data System (ADS)
Ray, Debisree
Covariant density functional theory (CDFT) is a modern theoretical tool for the description of nuclear structure physics. Here different physical properties of the ground and excited states in atomic nuclei have been investigated within the CDFT framework employing three major classes of the state-of-the-art covariant energy density functionals. The global performance of CEDFs for even-even nuclei are investigated and the systematic theoretical uncertainties are estimated within the set of four CEDFs in known regions of the nuclear chart and their propagation towards the neutron drip line. Large-scale axial relativistic Hartree-Bogoliubov (RHB) calculations are performed for even-even nuclei to calculate different ground state observables. The predictions for the two-neutron drip line are also compared in a systematic way with the non-relativistic results. CDFT has been applied for systematic study of extremely deformed, rotating N ˜ Z nuclei of the A ˜ 40 mass region. At spin zero such structures are located at high energies which prevents their experimental observation. The rotation acts as a tool to bring these exotic shapes down to the yrast line so that their observation could become possible with a future generation detectors such as GRETA or AGATA. The major physical observables of such structures, the underlying single-particle structure and the spins at which they become yrast or near yrast are defined. The search for the fingerprints of clusterization and molecular structures is performed and the configurations with such features are discussed. CDFT has been applied to study fission barriers of superheavy nuclei and related systematic theoretical uncertainties in the predictions of inner fission barrier heights in super- heavy elements. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental
A detailed study of nucleon structure function in nuclei in the valence quark region
Bianchi, N.
1994-04-01
The so called {open_quotes}EMC effect{close_quotes} discovered during the 1980`s, has caused a big controversy in the community of nuclear and high energy physicists; during the last ten years, five experiments have been performed in different laboratories and several hundreds of papers about the possible interpretation of the modification of the nucleon structure function inside nuclei have been published. However, from the experimental point of view, the main goal of four experiments (EMC, BCDMS, NMC, FNAL) has been to emphasize the region of low x{sub b}, where shadowing effects appear. In the region of valence quarks and nuclear effects (x{sub b} > 0.1 - 0.2) the most reliable data presently available are from the SLAC E139 experiment performed in 1983 with only 80 hours of beam time. New precise data in the valence quark region are necessary to measure separate structure functions F{sub 2}(x{sub b}, Q{sup 2}) and R{sup lt}(x{sub b},Q{sup 2}) = {sigma}{sub l}/{sigma}{sub t}, and to investigate the real A-dependence of the ratio between bound and free-nucleon structure functions which is not completely defined by the SLAC data. Moreover, from the nuclear physics point of view, a measurement on some unexplored nuclei, like {sup 3}He and {sup 48}Ca, would be of great interest. The intermediate scaling region (0.1 < x{sub b} < 0.7) would be accessible at CEBAF if the machine energy will reach 6-8 GeV, as suggested by all the tests performed on the RF cavities. This physics program has been already presented in two letter of intents.
Ryan, T.G.; Haney, L.N.; Ostrom, L.T.
1992-01-01
This paper addresses one major cause for large uncertainties in human reliability analysis (HRA) results, that is, an absence of detailed function, task, timeline, link and human vulnerability analyses. All too often this crucial step in the HRA process is done in a cursory fashion using word of mouth or written procedures which themselves may incompletely or inaccurately represent the human action sequences and human error vulnerabilities being analyzed. The paper examines the potential contributions these detailed analyses can make in achieving quantitative and qualitative HRA results which are: (1) creditable, that is, minimize uncertainty, (2) auditable, that is, systematically linking quantitative results and qualitative information from which the results are derived, (3) capable of supporting root cause analyses on human reliability factors determined to be major contributors to risk, and (4) capable of repeated measures and being combined with similar results from other analyses to examine HRA issues transcending individual systems and facilities. Based on experience analyzing test and commercial nuclear reactors, and medical applications of nuclear technology, an iterative process is suggested for doing detailed function, task, timeline, link and human vulnerability analyses using documentation reviews, open-ended and structured interviews, direct observations, and group techniques. Finally, the paper concludes that detailed analyses done in this manner by knowledgeable human factors practitioners, can contribute significantly to the credibility, auditability, causal factor analysis, and combining goals of the HRA.
NASA Astrophysics Data System (ADS)
Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke
2010-12-01
In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j
NASA Astrophysics Data System (ADS)
Park, Hyowon; Millis, Andrew J.; Marianetti, Chris A.
2015-07-01
Modern extensions of density functional theory such as the density functional theory plus U and the density functional theory plus dynamical mean field theory require choices, including selection of variable (charge vs spin density) for the density functional and specification of the correlated subspace. This paper examines these issues in the context of the "plus U" extensions of density functional theory, in which additional correlations on specified correlated orbitals are treated using a Hartree-Fock approximation. Differences between using charge-only or spin-density-dependent exchange-correlation functionals and between Wannier and projector-based definitions of the correlated orbitals are considered on the formal level and in the context of the structural energetics of the rare-earth nickelates. It is demonstrated that theories based on spin-dependent exchange-correlation functionals can lead to large and in some cases unphysical effective on-site exchange couplings. Wannier and projector-based definitions of the correlated orbitals lead to similar behavior near ambient pressure, but substantial differences are observed at large pressures. Implications for other beyond density functional methods such as the combination of density functional and dynamical mean field theory are discussed.
A density functional for core-valence correlation energy
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-01
A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.
Reduced density-matrix functional theory: Correlation and spectroscopy
Di Sabatino, S.; Romaniello, P.; Berger, J. A.; Reining, L.
2015-07-14
In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.
Electrochemical phase diagrams for Ti oxides from density functional calculations
NASA Astrophysics Data System (ADS)
Huang, Liang-Feng; Rondinelli, James M.
2015-12-01
Developing an accurate simulation method for the electrochemical stability of solids, as well as understanding the physics related with its accuracy, is critically important for improving the performance of compounds and predicting the stability of new materials in aqueous environments. Herein we propose a workflow for the accurate calculation of first-principles electrochemical phase (Pourbaix) diagrams. With this scheme, we study the electrochemical stabilities of Ti and Ti oxides using density-functional theory. First, we find the accuracy of an exchange-correlation functional in predicting formation energies and electrochemical stabilities is closely related with the electronic exchange interaction therein. Second, the metaGGA and hybrid functionals with a more precise description of the electronic exchange interaction lead to a systematic improvement in the accuracy of the Pourbaix diagrams. Furthermore, we show that accurate Ti Pourbaix diagrams also require that thermal effects are included through vibrational contributions to the free energy. We then use these diagrams to explain various experimental electrochemical phenomena for the Ti-O system, and show that if experimental formation energies for Ti oxides, which contain contributions from defects owing to their generation at high (combustion) temperatures, are directly used to predict room temperature Pourbaix diagrams then significant inaccuracies result. In contrast, the formation energies from accurate first-principles calculations, e.g., using metaGGA and hybrid functionals, are found to be more reliable. Finally, to facilitate the future application of our accurate electrochemical phase equilibria diagrams, the variation of the Ti Pourbaix diagrams with aqueous ion concentration is also provided.
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-08
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
NASA Astrophysics Data System (ADS)
Yang, Yang; Brorsen, Kurt R.; Culpitt, Tanner; Pak, Michael V.; Hammes-Schiffer, Sharon
2017-09-01
Multicomponent density functional theory (DFT) enables the consistent quantum mechanical treatment of both electrons and protons. A major challenge has been the design of electron-proton correlation (epc) functionals that produce even qualitatively accurate proton densities. Herein an electron-proton correlation functional, epc17, is derived analogously to the Colle-Salvetti formalism for electron correlation and is implemented within the nuclear-electronic orbital (NEO) framework. The NEO-DFT/epc17 method produces accurate proton densities efficiently and is promising for diverse applications.
Yang, Yang; Brorsen, Kurt R; Culpitt, Tanner; Pak, Michael V; Hammes-Schiffer, Sharon
2017-09-21
Multicomponent density functional theory (DFT) enables the consistent quantum mechanical treatment of both electrons and protons. A major challenge has been the design of electron-proton correlation (epc) functionals that produce even qualitatively accurate proton densities. Herein an electron-proton correlation functional, epc17, is derived analogously to the Colle-Salvetti formalism for electron correlation and is implemented within the nuclear-electronic orbital (NEO) framework. The NEO-DFT/epc17 method produces accurate proton densities efficiently and is promising for diverse applications.
Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G
2014-04-28
Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.
Antisites in III-V semiconductors: Density functional theory calculations
Chroneos, A.; Tahini, H. A.; Schwingenschlögl, U.; Grimes, R. W.
2014-07-14
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.
Extracting electron transfer coupling elements from constrained density functional theory
NASA Astrophysics Data System (ADS)
Wu, Qin; Van Voorhis, Troy
2006-10-01
Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.
Computational characterization of sodium selenite using density functional theory.
Barraza-Jiménez, Diana; Flores-Hidalgo, Manuel Alberto; Galvan, Donald H; Sánchez, Esteban; Glossman-Mitnik, Daniel
2011-04-01
In this theoretical study we used density functional theory to calculate the molecular and crystalline structures of sodium selenite. Our structural results were compared with experimental data. From the molecular structure we determined the ionization potential, electronic affinity, and global reactivity parameters like electronegativity, hardness, softness and global electrophilic index. A significant difference in the IP and EA values was observed, and this difference was dependent on the calculation method used (employing either vertical or adiabatic energies). Thus, values obtained for the electrophilic index (2.186 eV from vertical energies and 2.188 eV from adiabatic energies) were not significantly different. Selectivity was calculated using the Fukui functions. Since the Mulliken charge study predicted a negative value, it is recommended that AIM should be used in selectivity characterization. It was evident from the selectivity index that sodium atoms are the most sensitive sites to nucleophilic attack. The results obtained in this work provide data that will aid the characterization of compounds used in crop biofortification.
Can density cumulant functional theory describe static correlation effects?
Mullinax, J Wayne; Sokolov, Alexander Yu; Schaefer, Henry F
2015-06-09
We evaluate the performance of density cumulant functional theory (DCT) for capturing static correlation effects. In particular, we examine systems with significant multideterminant character of the electronic wave function, such as the beryllium dimer, diatomic carbon, m-benzyne, 2,6-pyridyne, twisted ethylene, as well as the barrier for double-bond migration in cyclobutadiene. We compute molecular properties of these systems using the ODC-12 and DC-12 variants of DCT and compare these results to multireference configuration interaction and multireference coupled-cluster theories, as well as single-reference coupled-cluster theory with single, double (CCSD), and perturbative triple excitations [CCSD(T)]. For all systems the DCT methods show intermediate performance between that of CCSD and CCSD(T), with significant improvement over the former method. In particular, for the beryllium dimer, m-benzyne, and 2,6-pyridyne, the ODC-12 method along with CCSD(T) correctly predict the global minimum structures, while CCSD predictions fail qualitatively, underestimating the multireference effects. Our results suggest that the DC-12 and ODC-12 methods are capable of describing emerging static correlation effects but should be used cautiously when highly accurate results are required. Conveniently, the appearance of multireference effects in DCT can be diagnosed by analyzing the DCT natural orbital occupations, which are readily available at the end of the energy computation.
Metallophilic interactions from dispersion-corrected density-functional theory
Otero-de-la-Roza, Alberto Mallory, Joel D.; Johnson, Erin R.
2014-05-14
In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH{sub 3}){sub 4}]{sup +} cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal.
Density functional steric analysis of linear and branched alkanes.
Ess, Daniel H; Liu, Shubin; De Proft, Frank
2010-12-16
Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.
Density Functional Steric Analysis of Linear and Branched Alkanes
Ess, Daniel H.; Liu, Shubin; De Proft, Frank
2010-11-18
Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E_{e}[[ρ]), an electrostatic energy term (E_{e}[ρ]), and a fermionic quantum energy term (E_{q}[[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.
Solvation of complex surfaces via molecular density functional theory.
Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel
2012-12-14
We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.
Augmented Lagrangian formulation of orbital-free density functional theory
Suryanarayana, Phanish Phanish, Deepa
2014-10-15
We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-order finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.
Acrolein impairs the cholesterol transport functions of high density lipoproteins.
Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy
2015-01-01
High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.
Self-interaction corrections in density functional theory
Tsuneda, Takao; Hirao, Kimihiko
2014-05-14
Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.
Hardness of FeB4: density functional theory investigation.
Zhang, Miao; Lu, Mingchun; Du, Yonghui; Gao, Lili; Lu, Cheng; Liu, Hanyu
2014-05-07
A recent experimental study reported the successful synthesis of an orthorhombic FeB4 with a high hardness of 62(5) GPa [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013)], which has reignited extensive interests on whether transition-metal borides compounds will become superhard materials. However, it is contradicted with some theoretical studies suggesting transition-metal boron compounds are unlikely to become superhard materials. Here, we examined structural and electronic properties of FeB4 using density functional theory. The electronic calculations show the good metallicity and covalent Fe-B bonding. Meanwhile, we extensively investigated stress-strain relations of FeB4 under various tensile and shear loading directions. The calculated weakest tensile and shear stresses are 40 GPa and 25 GPa, respectively. Further simulations (e.g., electron localization function and bond length along the weakest loading direction) on FeB4 show the weak Fe-B bonding is responsible for this low hardness. Moreover, these results are consistent with the value of Vickers hardness (11.7-32.3 GPa) by employing different empirical hardness models and below the superhardness threshold of 40 GPa. Our current results suggest FeB4 is a hard material and unlikely to become superhard (>40 GPa).
Augmented Lagrangian formulation of orbital-free density functional theory
NASA Astrophysics Data System (ADS)
Suryanarayana, Phanish; Phanish, Deepa
2014-10-01
We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas-Fermi-von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-order finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.
Density functional computations for inner-shell excitation spectroscopy
NASA Astrophysics Data System (ADS)
Hu, Ching-Han; Chong, Delano P.
1996-11-01
The 1 s → π ∗ inner-shell excitation spectra of seven molecules have been studied using density functional theory along with the unrestricted generalized transition state (uGTS) approach. The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). A scaling procedure based on Clementi and Raimondi's rules for atomic screening is applied to the cc-pVTZ basis set of atoms where a partial core-hole is created in the uGTS calculations. The average absolute deviation between our predicted 1 s → π ∗ excitations eneergies and experimental values is only 0.16 eV. Singlet-triplet splittings of C 1 s → π ∗ transitions of CO, C 2H 2, C 2H 4, and C 6H 6 also agree with experimental observations. The average absolute deviation of our predicted core-electron binding energies and term values is 0.23 and 0.29 eV, respectively.
NASA Astrophysics Data System (ADS)
Lovett, Ronald
1988-06-01
All predictive theories for the spatial variation of the density in an inhomogeneous system can be constructed by approximating exact, nonlinear integral equations which relate the density and pair correlation functions of the system. It is shown that the set of correct kernels in the exact integral equations for the density is on the boundary between the set of kernels for which the integral equations have no solution for the density and the set for which the integral equations have a multiplicity of solutions. Thus arbitrarily small deviations from the correct kernel can make these integral equations insoluble. A heuristic model equation is used to illustrate how the density functional problem can be so sensitive to the approximation made to the correlation function kernel and it is then shown explicitly that this behavior is realized in the relation between the density and the direct correlation function and in the lowest order BGYB equation. Functional equations are identified for the kernels in these equations which are satisified by the correct kernels, which guarantee a unique solution to the integral equations, and which provide a natural constraint on approximations which can be used in density functional theory. It is also shown that this sensitive behavior is a general property of density functional problems and that the methodology for constructing the constraints is equally general. A variety of applications of density functional theory are reviewed to illustrate practical consequences of this sensitivity.
NASA Astrophysics Data System (ADS)
Lipparini, Enrico; Pederiva, Francesco
2016-08-01
The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.
Transport through correlated systems with density functional theory.
Kurth, S; Stefanucci, G
2017-10-18
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Transport through correlated systems with density functional theory
NASA Astrophysics Data System (ADS)
Kurth, S.; Stefanucci, G.
2017-10-01
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer–Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Understanding density functional theory (DFT) and completing it in practice
Bagayoko, Diola
2014-12-15
We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.