Sample records for detailed microscopic study

  1. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    PubMed

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  2. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  3. Using the Blue Gourami in Ethological and Embryological Studies.

    ERIC Educational Resources Information Center

    Thompson, Theresa; Pollak, Edward I.

    1981-01-01

    Lists advantages in the use of the blue gourami in laboratory experiments on reproduction and embryogenesis. Materials and procedures for maintaining and spawning blue gouramis are provided. Also includes details on microscopic examination of developing embryos and histological techniques for microscope slide preparation. (CS)

  4. Transformation of the θ-phase in Mg-Li-Al alloys: a density functional theory study.

    PubMed

    Zhang, Caili; Han, Peide; Zhang, Zhuxia; Dong, Minghui; Zhang, Lili; Gu, Xiangyang; Yang, Yanqing; Xu, Bingshe

    2012-03-01

    In Mg-Li-Al alloys, θ-phase MgAlLi(2) is a strengthening and metastable phase which is liable to be transformed to the equilibrium phase AlLi on overaging. While the structural details of the θ-phase MgAlLi(2) and the microscopic transformation are still unknown. In this paper, the structure of MgAlLi(2) unit cell was determined through X-ray powder diffraction simulation. Microscopic transformation process of θ-phase MgAlLi(2) was discussed in detail using first principles method.

  5. Microscopic Study of Rocks and Minerals in Introductory Geology Courses.

    ERIC Educational Resources Information Center

    Singh, Raman J.

    1983-01-01

    Suggests that introductory geology students, who are mostly nonmajors, would benefit if more laboratory time and the necessary microscopic examination were allowed as part of work on rocks/minerals. Indicates that students need to be taught value/necessity of paying attention to details while gathering data or making observations to make…

  6. The microscopes of Antoni van Leeuwenhoek.

    PubMed

    van Zuylen, J

    1981-03-01

    The seventeenth-century Dutch microscopist, Antoni van Leeuwenhoek, was the first man to make a protracted study of microscopical objects, and, unlike his contemporary Robert Hooke, he viewed by transmitted light. Leeuwenhoek made over 500 of his own, curious, simple microscopes, but now only nine are known to exist. The exact nature of the lenses Leeuwenhoek made, has for long been a puzzle. The existing microscopes have now been examined in detail, and their optical characteristics measured and tabulated. It is proposed that the lens of highest magnification, x 266, was made using a special blown bubble technique.

  7. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT).

    PubMed

    Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J

    2017-07-01

    Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.

  8. Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope.

    PubMed

    Eivazi, Shahram; Afkari, Hoorieh; Bednarik, Roman; Leinonen, Ville; Tukiainen, Markku; Jääskeläinen, Juha E

    2015-07-01

    Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation. This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons' interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope. The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10%. Surgeons, we observed, avoid interaction with the microscope's controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures. The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

  9. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  10. Clinical Investigation Program Report Control Symbol MED 300.

    DTIC Science & Technology

    1983-10-01

    13 Agent Induced Delay of Gastric Emptying. (0) (PR) (P) 1979 The Experimental Fat Embolism Syndrome: An Electron 15 Microscopic Study of Lung in...1981 Investigation of Chronic Phantom Pain. (0) (PR) (P) 25 v Year Page Initiated 1981 Experimental Fat Embolism Syndrome: Basic Studies and 26...14 Detail Summary Sheet Date 3 Oct 83 Prot No.: 79-21 Status: Ongoing Title: The Experimental Fat Embolism Syndrome: An Electron Microscopic Study of

  11. Q: How do Microscopes Work?

    ERIC Educational Resources Information Center

    Zimov, Sarah

    2004-01-01

    Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.

  12. First Atomic Force Microscope Image from Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles.

    The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep.

    This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing.

    Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  13. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  14. Pharmacognostical evaluation of leaf of Bada Rasna [Nelsonia canescens (Lam.) Spreng.; Acanthaceae].

    PubMed

    Acharya, Rabinarayan; Padiya, Riddhish H; Patel, Eisha D; Rudrapa, Harisha C; Shukla, Vinaya J; Chauhan, Malati G

    2012-04-01

    Nelsonia canescens (Lam.) Spreng. (Acanthaceae), a well-known plant in traditional systems of medicine, known as "Bada Rasna" by the traditional practitioners of Odisha, is being used as Rasna for managing pain and inflammation. The detailed macroscopic and microscopic characters of the plant, except its root, are lacking. Hence, it was thought worth to study the leaves of the plant for its detailed morphological and microscopical characters, by following the standard pharmacognostical procedures. The study shows the presence of diacytic stomata in the lower epidermis of lamina, microsphenoidal and prismatic crystals of calcium oxalate in the mesophyll cells, simple and glandular trichomes. The observed major diagnostic characters of the leaf may find useful for its standardization.

  15. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution - an application in higher education.

    PubMed

    Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan

    2015-11-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  16. X-Ray Topographic Studies of Energetic Materials.

    DTIC Science & Technology

    1987-03-01

    role of these defects in crystal growth and in the microplasticity of the solid. 1.1 Experimental Techniques The method chosen for the detailed...the electron microscope. The examinations can be readily extended to detailed studies of the microplasticity of the materials using stress/strain...the availability of large, high quality, single crystals. A considerable part of the initial contract was devoted to the determination of conditions

  17. Microscopic esophagitis and Barrett's esophagus: the histology report.

    PubMed

    Fiocca, Roberto; Mastracci, Luca; Milione, Massimo; Parente, Paola; Savarino, Vincenzo

    2011-03-01

    Gastro-esophageal reflux disease (GERD) is the most common digestive disease in industrialized countries (Europe and North America) and is associated with microscopic changes in the squamous epithelium. However, biopsy is not presently included in the routine diagnostic flow chart of GERD. In contrast, esophageal biopsy is mandatory when diagnosing Barrett's esophagus. High quality histology reports are necessary to provide information on diagnosis and can also be important for research and epidemiological studies. It has been evident for decades that pathology reports vary between institutions and even within a single institution. Standardization of reporting is the best way to ensure that information necessary for patient management is included in pathology reports. This paper details the histological criteria for diagnosing GERD-associated microscopic esophagitis, other forms of esophagitis with specific features and columnar metaplasia in the lower esophagus (Barrett's esophagus). It provides a detailed description of appropriate sampling criteria, individual lesions and how they contribute to the histology report. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd.. All rights reserved.

  18. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  19. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  20. Sedimentological Investigations of the Martian Surface using the Mars 2001 Robotic Arm Camera and MECA Optical Microscope

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.

    1999-01-01

    The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.

  1. Electron holography study of magnetization behavior in the writer pole of a perpendicular magnetic recording head by a 1 MV transmission electron microscope.

    PubMed

    Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.

  2. Numerical Investigation of the Microscopic Heat Current Inside a Nanofluid System Based on Molecular Dynamics Simulation and Wavelet Analysis.

    PubMed

    Jia, Tao; Gao, Di

    2018-04-03

    Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.

  3. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  4. Microscopic and UPLC-UV-MS analyses of authentic and commercial yohimbe (Pausinystalia johimbe) bark samples.

    PubMed

    Raman, Vijayasankar; Avula, Bharathi; Galal, Ahmed M; Wang, Yan-Hong; Khan, Ikhlas A

    2013-01-01

    Yohimbine is the major alkaloid found in the stem bark of yohimbe, Pausinystalia johimbe (Rubiaceae), an evergreen tree native to Africa. The objectives of the current study were to provide a detailed anatomy of yohimbe bark, as well as to determine the quantity of yohimbine in the raw yohimbe products sold online. Twelve commercial raw materials of yohimbe were analyzed by microscopic and ultra performance liquid chromatography-UV-MS methods. The study revealed that three samples were probably adulterated and four other samples contained various levels of impurities. Yohimbine was not detected in one sample, whereas its presence in other samples was found to be in the range 0.1-0.91%. The present work also provides a detailed anatomy of the stem bark of yohimbe, with light and scanning electron microscopy images, for proper identification and authentication.

  5. Electrolyte solutions at curved electrodes. II. Microscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  6. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    PubMed

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  7. A microscopic study investigating the structure of SnSe surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sang-ui; Duong, Anh-Tuan; Cho, Sunglae; Rhim, S. H.; Kim, Jungdae

    2016-09-01

    SnSe has been widely studied due to its many potential applications that take advantage of its excellent thermoelectric, photovoltaic, and optoelectronic properties. However, experimental investigations into the microscopic structure of SnSe remain largely unexplored. Herein, for the first time, the atomic and electronic structures of SnSe surfaces are studied by a home-built low temperature scanning tunneling microscope (STM) and density functional theory (DFT) calculations. The cleaved surface of SnSe is comprised of covalently bonded Se and Sn atoms in zigzag patterns. However, rectangular periodicity was observed in the atomic images of SnSe surfaces for filled and empty state probing. Detailed atomic structures are analyzed by DFT calculations, indicating that the bright extrusions of both filled and empty state images are mostly located at the positions of Sn atoms.

  8. Integrative Discovery Doing Science.

    ERIC Educational Resources Information Center

    Harry, Vickie; Belzer, William

    1990-01-01

    The article details a program in which gifted upper elementary grade students used videomicroscopy in a study of microscopic life in pond water. Each child produced a narrated videotape of a specific species studied. Program evaluation confirmed the motivational benefits of early opportunities with scientific instrumentation and methodology. (DB)

  9. Building an endoscopic ear surgery program.

    PubMed

    Golub, Justin S

    2016-10-01

    This article discusses background, operative details, and outcomes of endoscopic ear surgery. This information will be helpful for those establishing a new program. Endoscopic ear surgery is growing in popularity. The ideal benefit is in totally transcanal access that would otherwise require a larger incision. The endoscope carries a number of advantages over the microscope, as well as some disadvantages. Several key maneuvers can minimize disadvantages. There is a paucity of studies directly comparing outcomes between endoscopic and microscopic approaches for the same procedure. The endoscope is gaining acceptance as a tool for treating otologic diseases. For interested surgeons, this article can help bridge the transition from microscopic to totally transcanal endoscopic ear surgery for appropriate disease.

  10. Development of Scanning Ultrafast Electron Microscope Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less

  11. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.

    PubMed

    Lee, Woochul; Reddy, Pramod

    2011-12-02

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.

  12. The PC9A Filter Screening Tool

    DTIC Science & Technology

    2016-02-01

    conjunction with an optical microscope for identification of other important debris such as glass beads. The FST has now been installed at RAAF East...conservative screening limits need to be sent for detailed laboratory analysis. Laboratory analysis has traditionally involved a manual microscopic ...Electron Microscope with Energy Dispersive Spectroscopy (SEM EDS) to determine the composition and likely source. The Engine Maintenance Manual

  13. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.

    PubMed

    Chen, Ye; Liu, Jonathan T C

    2013-06-01

    Dual-axis confocal (DAC) microscopy has been found to exhibit superior rejection of out-of-focus and multiply scattered background light compared to conventional single-axis confocal microscopy. DAC microscopes rely on the use of separated illumination and collection beam paths that focus and intersect at a single focal volume (voxel) within tissue. While it is generally recognized that the resolution and contrast of a DAC microscope depends on both the crossing angle of the DAC beams, 2θ, and the focusing numerical aperture of the individual beams, α, a detailed study to investigate these dependencies has not been performed. Contrast and resolution are considered as two main criteria to assess the performance of a point-scanned DAC microscope (DAC-PS) and a line-scanned DAC microscope (DAC-LS) as a function of θ and α. The contrast and resolution of these designs are evaluated by Monte-Carlo scattering simulations and diffraction theory calculations, respectively. These results can be used for guiding the optimal designs of DAC-PS and DAC-LS microscopes.

  14. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  15. Soft x-ray imaging with incoherent sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  16. Surprises in low dimensional spin 1/2 magnets - from crystal chemistry to microscopic magnetic models of complex oxides

    NASA Astrophysics Data System (ADS)

    Rosner, Helge

    2011-03-01

    A microscopic understanding of the structure-properties relation in crystalline materials is a main goal of modern solid state chemistry and physics. Due to their peculiar magnetism, low dimensional spin 1/2 systems are often highly sensitive to structural details. Seemingly unimportant structural details can be crucial for the magnetic ground state of a compound, especially in the case of competing interactions, frustration and near-degeneracy. Here, we present for selected, complex Cu 2+ systems that a first principles based approach can reliably provide the correct magnetic model, especially in cases where the interpretation of experimental data meets serious difficulties or fails. We demonstrate that the magnetism of low dimensional insulators crucially depends on the magnetically active orbitals which are determined by details of the ligand field of the magnetic cation. Our theoretical results are in very good agreement with thermodynamic and spectroscopic data and provide deep microscopic insight into topical low dimensional magnets.

  17. New implementation of a shear-force microscope suitable to study topographical features over wide areas

    NASA Astrophysics Data System (ADS)

    Ustione, A.; Cricenti, A.; Piacentini, M.; Felici, A. C.

    2006-09-01

    A new implementation of a shear-force microscope is described that uses a shear-force detection system to perform topographical imaging of large areas (˜1×1mm2). This implementation finds very interesting application in the study of archeological or artistic samples. Three dc motors are used to move a sample during a scan, allowing the probe tip to follow the surface and to face height differences of several tens of micrometers. This large-area topographical imaging mode exploits new subroutines that were added to the existing homemade software; these subroutines were created in Microsoft VISUAL BASIC 6.0 programming language. With this new feature our shear-force microscope can be used to study topographical details over large areas of archaeological samples in a nondestructive way. We show results detecting worn reliefs over a coin.

  18. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  19. Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development

    PubMed Central

    Bertrand, Vincent; Lenne, Pierre-François

    2014-01-01

    Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time. PMID:24836407

  20. Preparing and Restoring Composite Resin Restorations. The Advantage of High Magnification Loupes or the Dental Surgical Operating Microscope.

    PubMed

    Mamoun, John

    2015-01-01

    Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.

  1. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  2. Microscopy Opening Up New Cancer Discovery Avenues

    Cancer.gov

    Today’s high-powered microscopes are allowing researchers to study the fine details of individual cells and to peer into cells, opening up new avenues of discovery about the inner workings of cells, including the events that can cause healthy cells to tra

  3. (Gene sequencing by scanning molecular exciton microscopy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)

  4. The microscopic world: A demonstration of electron microscopy for younger students

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.

  5. Diffuse-Interface Modelling of Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Addy, Doug; Pradas, Marc; Schmuck, Marcus; Kalliadasis, Serafim

    2016-11-01

    Multiphase flows are ubiquitous in a wide spectrum of scientific and engineering applications, and their computational modelling often poses many challenges associated with the presence of free boundaries and interfaces. Interfacial flows in porous media encounter additional challenges and complexities due to their inherently multiscale behaviour. Here we investigate the dynamics of interfaces in porous media using an effective convective Cahn-Hilliard (CH) equation recently developed in from a Stokes-CH equation for microscopic heterogeneous domains by means of a homogenization methodology, where the microscopic details are taken into account as effective tensor coefficients which are given by a Poisson equation. The equations are decoupled under appropriate assumptions and solved in series using a classic finite-element formulation with the open-source software FEniCS. We investigate the effects of different microscopic geometries, including periodic and non-periodic, at the bulk fluid flow, and find that our model is able to describe the effective macroscopic behaviour without the need to resolve the microscopic details.

  6. Fixation methods for electron microscopy of human and other liver

    PubMed Central

    Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter

    2010-01-01

    For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830

  7. Development of tapered silver-halide fiber tips for a scanning near-field microscope operating in the middle infrared

    NASA Astrophysics Data System (ADS)

    Platkov, Max; Tsun, Alexander; Nagli, Lev; Katzir, Abraham

    2006-12-01

    We have constructed a scanning near-field infrared microscope (SNIM) which was based on a AgClBr fiber probe whose end was etched to form an aperture of a subwavelength diameter. A detailed study of the mechanical properties of a vibrating AgClBr probe was required for proper operation of the SNIM system. We have demonstrated that the system can be used for imaging and for topographic mapping of samples with a subwavelength resolution in the middle infrared. Such a SNIM will be a powerful tool for the study of microelectronic components or subcellular structures in biological cells.

  8. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-28

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

  9. A comparative study of a (0-3) connectivity type composite and core-shell structure of CoFe2O4 - BaTiO3 based on microstructure and magnetic property

    NASA Astrophysics Data System (ADS)

    Das, Avisek; Gorige, Venkataiah

    2018-04-01

    In this work CoFe2O4 (CFO)-BaTiO3 (BTO) composite and core-shell CFO-BTO have been prepared to investigate the effect of microstructure on the magnetic properties. Detailed microstructure analysis has been carried out using X-ray diffraction, field emission scanning electron microscope and transmission electron microscope. Although uniform distribution of CFO is found in BTO matrix for the composite sample, magnetization and coercivity values are more enhanced in core-shell CFO-BTO.

  10. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  11. [Gene sequencing by scanning molecular exciton microscopy]. Progress report, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)

  12. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.

    PubMed

    Hansma, P K; Elings, V B; Marti, O; Bracker, C E

    1988-10-14

    The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.

  13. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  14. Penny for Your Reference

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 April 2004 This close-up image of a penny shows the degree to which the microscopic imager on the Mars Exploration Rover Spirit can zoom in on a target. The penny is seen exactly as it would be on Mars if it were placed under the microscopic imager. This picture was taken by the imager during testing at JPL.

    [figure removed for brevity, see original site] Spirit's Microscopic Vision Demonstrated

    This close-up image of a penny shows the power of the microscopic imager onboard the Mars Exploration Rover Spirit to see fine details. The picture was taken by the imager during testing at JPL.

  15. Molecular and microscopic insights into the persistence of soil organic matter in a red pine rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Microbially-derived carbon inputs to soils play an important role in stabilization of soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is lacking. This study aimed to investigat...

  16. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    PubMed

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  17. Microscopic Statistical Characterisation of the Congested Traffic Flow and Some Salient Empirical Features

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Yoon, Ji Wei; Monterola, Christopher

    We present large scale, detailed analysis of the microscopic empirical data of the congested traffic flow, focusing on the non-linear interactions between the components of the many-body traffic system. By implementing a systematic procedure that averages over relatively unimportant factors, we extract the effective dependence of the acceleration on the gap between the vehicles, velocity and relative velocity. Such relationship is characterised not just by a few vehicles but the traffic system as a whole. Several interesting features of the detailed vehicle-to-vehicle interactions are revealed, including the stochastic distribution of the human responses, relative importance of the non-linear terms in different density regimes, symmetric response to the relative velocity, and the insensitivity of the acceleration to the velocity within a certain gap and velocity range. The latter leads to a multitude of steady-states without a fundamental diagram. The empirically constructed functional dependence of the acceleration on the important dynamical quantities not only gives the detailed collective driving behaviours of the traffic system, it also serves as the fundamental reference for the validations of the deterministic and stochastic microscopic traffic models in the literature.

  18. Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Xu, Chen

    With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.

  19. An innovative approach in microscopic endodontics

    PubMed Central

    Mittal, Sunandan; Kumar, Tarun; Sharma, Jyotika; Mittal, Shifali

    2014-01-01

    The introduction of the dental operating microscope was a turning point in the history of dentistry. It triggered a rapid transition from the conventional world of macro-dentistry to the precise, detailed world of micro-dentistry. However, working at these higher-power magnifications brings the clinician into the realm where even slight hand movements are disruptive. Physiologic hand tremor is a problem resulting in difficulty in mouth mirror placement. Hence, in this paper, a new instrument was designed to overcome the drawback of hand tremors during microscopic endodontics. PMID:24944459

  20. Atomic Structure of Interface States in Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    George, B. M.; Behrends, J.; Schnegg, A.; Schulze, T. F.; Fehr, M.; Korte, L.; Rech, B.; Lips, K.; Rohrmüller, M.; Rauls, E.; Schmidt, W. G.; Gerstmann, U.

    2013-03-01

    Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.

  1. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  2. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  3. Handy Microscopic Close-Range Videogrammetry

    NASA Astrophysics Data System (ADS)

    Esmaeili, F.; Ebadi, H.

    2017-09-01

    The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.

  4. Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Sánchez, L. A.; Moretón, A.; Guada, M.; Rodríguez-Conde, S.; Martínez, O.; González, M. A.; Jiménez, J.

    2018-05-01

    Today's photovoltaic market is dominated by multicrystalline silicon (mc-Si) based solar cells with around 70% of worldwide production. In order to improve the quality of the Si material, a proper characterization of the electrical activity in mc-Si solar cells is essential. A full-wafer characterization technique such as photoluminescence imaging (PLi) provides a fast inspection of the wafer defects, though at the expense of the spatial resolution. On the other hand, a study of the defects at a microscopic scale can be achieved through the light-beam induced current technique. The combination of these macroscopic and microscopic resolution techniques allows a detailed study of the electrical activity of defects in mc-Si solar cells. In this work, upgraded metallurgical-grade Si solar cells are studied using these two techniques.

  5. Collection and Analysis of Aircraft Emitted Particles

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1999-01-01

    The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.

  6. Soft x-ray spectromicroscopy using compact scanning transmission x-ray microscope at the photon factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta

    We report the stability and recent performances of a new type of scanning transmission X-ray microscopy. The optics and compact design of the microscope realized mobility and robust performance. Detailed consideration to the vibration control will be described. The insertion device upgraded to elliptical polarization undulator enabled linear dichroism and circular dichroism experiments.

  7. Smaller than We Normally See: The Fascination of Microscopy Is Not Restricted to Biology

    ERIC Educational Resources Information Center

    Evennett, Peter

    2011-01-01

    Microscopes are especially useful for observing fine detail in biological specimens. However, there are many other small items that may be examined with microscopes, and it is important to introduce children to low-magnification images of items they can recognise before moving on to such large magnification that what they observe has no obvious…

  8. Scanned gate microscopy of inter-edge channel scattering in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Woodside, Michael T.; Vale, Chris; McEuen, Paul L.; Kadow, C.; Maranowski, K. D.; Gossard, A. C.

    2000-03-01

    Novel scanned probe techniques have recently been used to study in detail the microscopic properties of 2D electron gases in the quantum Hall regime [1]. We report local measurements of the scattering between edge states in a quantum Hall conductor with non-equilibrium edge state populations. Using an atomic force microscope (AFM) tip as a local gate to perturb the edge states, we find that the scattering is dominated by individual, microscopic scattering sites, which we directly image and characterise. The dependence of the scattering on the AFM tip voltage reveals that it involves tunneling both through quasi-bound impurity states and through disorder-induced weak links between the edge states. [1] S. H. Tessmer et al., Nature 392, 51 (1998); K. L. McCormick et al., Phys. Rev. B 59, 4654 (1999); A. Yacoby et al., Solid State Comm. 111, 1 (1999).

  9. The Cell as a Candy Factory

    ERIC Educational Resources Information Center

    Crooks, Jane; Sheldon, Pam

    2005-01-01

    How can teachers explain the functioning of something students cannot see with their own eyes? Often, the study of cells is the first exposure that students have to the microscopic world. Even then, they can only make out a few of the details: cell wall, cell membrane, nucleus, sometimes a few chloroplasts. How can teachers help students gain an…

  10. A next generation positron microscope and a survey of candidate samples for future positron studies

    NASA Astrophysics Data System (ADS)

    Dull, Terry Lou

    A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify the Point Defect Model, a detailed, but as yet microscopically unconfirmed, theory of the corrosive breakdown of passive films. DBS results supportive of the PDM were observed. Graphitic carbon fibers were also studied and DBS indicated the presence of a 200 nm thick outer fiber skin possibly characterized by a high degree of graphitic crystallite alignment.

  11. Microscopic investigation of cavitation erosion damage in metals

    NASA Technical Reports Server (NTRS)

    Hackworh, J. V.; Adler, W. F.

    1974-01-01

    The results of research to identify the cavitation erosion damage mechanisms at the microscopic level for three metals (aluminum, stainless steel, and titanium) representing a range of properties and microstructure are presented. The metals were exposed to cavitation generated in distilled water by a 20-kHz ultrasonic facility operating at a vibration amplitude of 2 mils. Representative properties of the metals and experimental details are summarized. Replicas of the eroded surfaces of the specimens obtained periodically during exposure were examined with a transmission electron microscope to follow progression of the erosion damage and identify dominant erosion mechanisms as a function of exposure time. Eroded surfaces of selected specimens were also examined with a scanning electron microscope to assist in the interpretation.

  12. Microstructures and properties of rapidly solidified alloys

    NASA Technical Reports Server (NTRS)

    Shechtman, D.; Horowitz, E.

    1984-01-01

    The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.

  13. Experimental evidence for the microscopic mechanism of the unusual spin-induced electric polarization in GdMn2O5

    NASA Astrophysics Data System (ADS)

    Yahia, G.; Damay, F.; Chattopadhyay, S.; Balédent, V.; Peng, W.; Kim, S. W.; Greenblatt, M.; Lepetit, M.-B.; Foury-Leylekian, P.

    2018-02-01

    We report in this paper the temperature evolution of the magnetic structure of GdMn2O5 , in the range 2-40 K, studied by neutron diffraction on an isotope-enriched powder. We detail a thorough analysis of the microscopic mechanisms needed to release the different magnetic frustrations that are at the origin of the polarization. In addition to the usual exchange-striction term, known to be at the origin of the polarization in this family, an additional exchange-striction effect between the Gd3 + and Mn3 + spins is found to be responsible for the very large polarization in the Gd compound.

  14. Non Destructive 3D X-Ray Imaging of Nano Structures & Composites at Sub-30 NM Resolution, With a Novel Lab Based X-Ray Microscope

    DTIC Science & Technology

    2006-11-01

    NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include

  15. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    NASA Astrophysics Data System (ADS)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  16. Nanoimaging using soft X-ray and EUV laser-plasma sources

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2018-01-01

    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  17. Current at Metal-Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Kern, Klaus

    2012-02-01

    Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.

  18. A Study on Project Priority Evaluation Method on Road Slope Disaster Prevention Management

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Nobuyasu; Ohtsu, Hiroyasu; Izu, Ryuutarou

    To improve the safety and security of driving while coping with today's stagnant economy and frequent natural disasters, road slopes should be appropriately managed. To achieve the goals, road managers should establish project priority evaluation methods for each stage of road slope management by clarifying social losses that would result by drops in service levels. It is important that road managers evaluate a project priority properly to manage the road slope effectively. From this viewpoint, this study proposed "project priority evaluation methods" in road slope disaster prevention, which use available slope information at each stage of road slope management under limited funds. In addition, this study investigated the effect of managing it from the high slope of the priority by evaluating a risk of slope failure. In terms of the amount of available information, staged information provision is needed ranging from macroscopic studies, which involves evaluation of the entire route at each stage of decision making, to semi- and microscopic investigations for evaluating slopes, and microscopic investigations for evaluating individual slopes. With limited funds, additional detailed surveys are difficult to perform. It is effective to use the slope risk assessment system, which was constructed to complement detailed data, to extract sites to perform precise investigations.

  19. Novel Concept of Attaching Endoscope Holder to Microscope for Two Handed Endoscopic Tympanoplasty.

    PubMed

    Khan, Mubarak M; Parab, Sapna R

    2016-06-01

    The well established techniques in tympanoplasty are routinely performed with operating microscopes for many decades now. Endoscopic ear surgeries provide minimally invasive approach to the middle ear and evolving new science in the field of otology. The disadvantage of endoscopic ear surgeries is that it is one-handed surgical technique as the non-dominant left hand of the surgeon is utilized for holding and manipulating the endoscope. This necessitated the need for development of the endoscope holder which would allow both hands of surgeon to be free for surgical manipulation and also allow alternate use of microscope during tympanoplasty. To report the preliminary utility of our designed and developed endoscope holder attachment gripping to microscope for two handed technique of endoscopic tympanoplasty. Prospective Non Randomized Clinical Study. Our endoscope holder attachment for microscope was designed and developed to aid in endoscopic ear surgery and to overcome the disadvantage of single handed endoscopic surgery. It was tested for endoscopic Tympanoplasty. The design of the endoscope holder attachment is described in detail along with its manipulation and manoeuvreing. A total of 78 endoholder assisted type 1 endoscopic cartilage tympanoplasties were operated to evaluate its feasibility for the two handed technique and to evaluate the results of endoscopic type 1 cartilage tympanoplasty. In early follow up period ranging from 6 to 20 months, the graft uptake was seen in 76 ears with one residual perforation and 1 recurrent perforations giving a success rate of 97.435 %. Our endocsope holder attachment for gripping microscope is a good option for two handed technique in endoscopic type 1 cartilage tympanoplasty. The study reports the successful application and use of our endoscope holder attachment for gripping microscope in two handed technique of endoscopic type 1 cartilage tympanoplasty and comparable results with microscopic techniques. IV.

  20. Method to deterministically study photonic nanostructures in different experimental instruments.

    PubMed

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  1. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    NASA Astrophysics Data System (ADS)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  2. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  3. Scanning near-field optical microscopy.

    PubMed

    Vobornik, Dusan; Vobornik, Slavenka

    2008-02-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  4. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  5. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  6. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  7. A first generation cytogenetic ideogram for the Florida manatee (Trichechus manatus latirostris) based on multiple chromosome banding techniques

    USGS Publications Warehouse

    Gray, B.A.; Zori, Roberto T.; McGuire, P.M.; Bonde, R.K.

    2002-01-01

    Detailed chromosome studies were conducted for the Florida manatee (Trichechus manatus latirostris) utilizing primary chromosome banding techniques (G- and Q-banding). Digital microscopic imaging methods were employed and a standard G-banded karyotype was constructed for both sexes. Based on chromosome banding patterns and measurements obtained in these studies, a standard karyotype and ideogram are proposed. Characterization of additional cytogenetic features of this species by supplemental chromosome banding techniques, C-banding (constitutive heterochromatin), Ag-NOR staining (nucleolar organizer regions), and DA/DAPI staining, was also performed. These studies provide detailed cytogenetic data for T. manatus latirostris, which could enhance future genetic mapping projects and interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  8. First results for custom-built low-temperature (4.2 K) scanning tunneling microscope/molecular beam epitaxy and pulsed laser epitaxy system designed for spin-polarized measurements

    NASA Astrophysics Data System (ADS)

    Foley, Andrew; Alam, Khan; Lin, Wenzhi; Wang, Kangkang; Chinchore, Abhijit; Corbett, Joseph; Savage, Alan; Chen, Tianjiao; Shi, Meng; Pak, Jeongihm; Smith, Arthur

    2014-03-01

    A custom low-temperature (4.2 K) scanning tunneling microscope system has been developed which is combined directly with a custom molecular beam epitaxy facility (and also including pulsed laser epitaxy) for the purpose of studying surface nanomagnetism of complex spintronic materials down to the atomic scale. For purposes of carrying out spin-polarized STM measurements, the microscope is built into a split-coil, 4.5 Tesla superconducting magnet system where the magnetic field can be applied normal to the sample surface; since, as a result, the microscope does not include eddy current damping, vibration isolation is achieved using a unique combination of two stages of pneumatic isolators along with an acoustical noise shield, in addition to the use of a highly stable as well as modular `Pan'-style STM design with a high Q factor. First 4.2 K results reveal, with clear atomic resolution, various reconstructions on wurtzite GaN c-plane surfaces grown by MBE, including the c(6x12) on N-polar GaN(0001). Details of the system design and functionality will be presented.

  9. [Fatigue damage analysis of porcelain in all-ceramic crowns].

    PubMed

    Liu, Yi-hong; Feng, Hai-lan; Liu, Guang-hua; Shen, Zhi-jian

    2010-02-18

    To investigate the fatigue damage mechanism of porcelain, and its relation with the microscopic defects in clinically failed all-ceramic crowns. Collecting the bilayered all-ceramic crowns failed in vivo. The fractured surfaces and occlusial surfaces of failed crowns were examined by an optical microscope followed by detailed fractography investigations using a field emission scanning electron microscope. When chemical impurities were of concern, energy-dispersive X-ray spectroscopy analysis was performed to examine chemical composition. A standard practice for fractography failure analysis of advanced ceramics is applied to disclose the fracture mode, and damage character. Three types of fracture features are defined as breakdown of the entire crown, and porcelain chipping-off/delamination. Alumina crowns were usually characterized by breakdown of the entire crown, while zirconia crowns by porcelain chipping-off and delamination. The fatigue damage of porcelain was classified into surface wear, cone crack, and porcelain delamination. The observed microscopic defects in this study included air bubbles and impurity particles. The multi-point occlusial contacts were recommended in all-ceramic restorations clinically. The thickness of porcelain is important for the anti-fatigue ability of porcelain. Cautions have to be taken to avoid contaminations during the veneering processes.

  10. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys

    PubMed Central

    Liu, R.; Zhang, Z. J.; Li, L. L.; An, X. H.; Zhang, Z. F.

    2015-01-01

    In this study, the concept of “twinning induced plasticity (TWIP) alloys” is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, “TWIP copper alloys” was proposed following the concept of “TWIP steels”, as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. “dynamic development”, “planarity”, as well as “orientation selectivity” were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general “TWIP effect”. Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general “TWIP effect”, may provide useful strategies for designing high-performance engineering materials. PMID:25828192

  11. [Observation by transmission electron microscope and identification of endophytic bacteria isolated from Bursaphelenchus xylophilus and B. mucronatus].

    PubMed

    Yuan, Weimin; Wu, Xiaoqin; Ye, Jianren; Tian, Xiaojing

    2011-08-01

    The pine wood nematode, Bursaphlenchus xylophilus, morphologically similar to B. mucronatus, is the pathogen of pine wilt disease. This study was focused on the endophytic bacteria present in these nematodes. Detailed observations were made on sections of all parts of the two types of nematodes by transmission electron microscope. The nematodes were surface-sterilized by soaking in 1% mercuric chloride and antibiotic mixture, and then ground and cultured on nutrient agar plate. The physiological and biochemical characteristics combined with molecular characterization of bacteria were analyzed and identified. Endophytic bacteria were found in intestines of the two nematodes by transmission electron microscope observations. On the basis of surface sterilization, total three bacteria strains were obtained from B. xylophilus and B. mucronatus. These bacteria belong to Stenotrophomonas and Ewingella. It confirms the presence of endophytic bacteria in Bursaphelenchus xylophilus and B. mucronatus and these bacteria may play a physical and ecological roles in nematodes.

  12. Fundamental quantum noise mapping with tunnelling microscopes tested at surface structures of subatomic lateral size.

    PubMed

    Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke

    2013-10-21

    We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.

  13. An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were usedmore » for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.« less

  15. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains.

    PubMed

    Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S

    2015-10-01

    Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.

  16. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    DOE PAGES

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; ...

    2017-12-20

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. Here, these results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less

  17. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less

  18. Direct microscopic image and measurement of the atomization process of a port fuel injector

    NASA Astrophysics Data System (ADS)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  19. Effect of Silicon in U-10Mo Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, Elizabeth J.; Devaraj, Arun; Kovarik, Libor

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showedmore » that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.« less

  20. SCANNING NEAR-FIELD OPTICAL MICROSCOPY

    PubMed Central

    Vobornik, Dušan; Vobornik, Slavenka

    2008-01-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution. PMID:18318675

  1. Brainstem cavernous malformations: anatomical, clinical, and surgical considerations.

    PubMed

    Giliberto, Giuliano; Lanzino, Desiree J; Diehn, Felix E; Factor, David; Flemming, Kelly D; Lanzino, Giuseppe

    2010-09-01

    Symptomatic brainstem cavernous malformations carry a high risk of permanent neurological deficit related to recurrent hemorrhage, which justifies aggressive management. Detailed knowledge of the microscopic and surface anatomy is important for understanding the clinical presentation, predicting possible surgical complications, and formulating an adequate surgical plan. In this article the authors review and illustrate the surgical and microscopic anatomy of the brainstem, provide anatomoclinical correlations, and illustrate a few clinical cases of cavernous malformations in the most common brainstem areas.

  2. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    PubMed

    Rosenegger, David G; Tran, Cam Ha T; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  3. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    PubMed Central

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  4. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  5. Peristome as a potential tool for delimiting Bryum Hedw. (Bryaceae) from India.

    PubMed

    Bansal, Pooja; Nath, Virendra

    2018-02-26

    The peristome, an interesting and important taxonomic structure used in the systematics of mosses, is for the first time studied in detail for 21 taxa of Bryum, which constitute a fraction of Indian representatives. Macro- and micro-morphological characters including color, size and length of two components of peristome, tapering pattern, median line, and papillosity at upper part under light microscope; width of exostome border, number and inner surface of ventral trabeculae, presence or absence of longitudinal/oblique septae between ventral trabeculae, pattern of exostome surface and height of endostomial basal membrane, adherence, perforations, and surface of cilia under scanning electron microscope were examined to bring out submicroscopic differences. Detail surface structure of eight taxa, viz., B. apalodictyoides, B. evanidinerve, B. pachytheca, B. pseudotriquetrum var. subrotundum, B. reflexifolium, B. thomsonii, B. tuberosum, and B. turbinatum, under LM and nine species, namely, B. apalodictyoides, B. apiculatum, B. argenteum, B. billarderi, B. dichotomum, B. evanidinerve, B. recurvulum, B. turbinatum, and B. uliginosum, under SEM is being provided for the first time. Description of peristome surface and a key based on SEM and other taxonomical features is also being provided. The data obtained from the present study suggest that the species of this genus can easily be distinguished on the basis of peristomial surface pattern.

  6. Preparation of Unconsolidated Sands for Microscopy Laboratory Exercises.

    ERIC Educational Resources Information Center

    Cameron, Barry; Jones, J. Richard

    1988-01-01

    Describes a technique of impregnating small amounts of sandy sediment in a quick curing resin for microscopic examination. Details the preparation of materials. Suggests laboratory exercises based on this preparation. (CW)

  7. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    PubMed Central

    Usuki, T; Ohshima, T; Sakuma, Y; Kawabe, M; Okada, Y; Takemoto, K; Miyazawa, T; Hirose, S; Nakata, Y; Takatsu, M; Yokoyama, N

    2006-01-01

    An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  8. Unraveling the temperature and voltage dependence of magnetic field effects in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Janssen, Paul; Wouters, Steinar H. W.; Cox, Matthijs; Koopmans, Bert

    2013-11-01

    In recent years, it was discovered that the current through an organic semiconductor, sandwiched between two non-magnetic electrodes, can be changed significantly by applying a small magnetic field. This surprisingly large magnetoresistance effect, often dubbed as organic magnetoresistance (OMAR), has puzzled the young field of organic spintronics during the last decade. Here, we present a detailed study on the voltage and temperature dependence of OMAR, aiming to unravel the lineshapes of the magnetic field effects and thereby gain a deeper fundamental understanding of the underlying microscopic mechanism. Using a full quantitative analysis of the lineshapes, we are able to extract all linewidth parameters and the voltage and temperature dependencies are explained with a recently proposed trion mechanism. Moreover, explicit microscopic simulations show a qualitative agreement to the experimental results.

  9. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals.

    PubMed

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P

    2013-12-01

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  10. Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination.

    PubMed

    Canetta, Elisabetta; Montiel, Kimberley; Adya, Ashok K

    2009-10-30

    The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.

  11. Construction and Application of a Terahertz Scanning Near-Field Microscope for Study of Correlated Electron Materials at Cryogenic Temperatures and Nanometer Length Scales

    NASA Astrophysics Data System (ADS)

    Stinson, Harry Theodore, III

    This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.

  12. Microscopic and macroscopic instabilities in finitely strained porous elastomers

    NASA Astrophysics Data System (ADS)

    Michel, J. C.; Lopez-Pamies, O.; Ponte Castañeda, P.; Triantafyllidis, N.

    2007-05-01

    The present work is an in-depth study of the connections between microstructural instabilities and their macroscopic manifestations—as captured through the effective properties—in finitely strained porous elastomers. The powerful second-order homogenization (SOH) technique initially developed for random media, is used for the first time here to study the onset of failure in periodic porous elastomers and the results are compared to more accurate finite element method (FEM) calculations. The influence of different microgeometries (random and periodic), initial porosity, matrix constitutive law and macroscopic load orientation on the microscopic buckling (for periodic microgeometries) and macroscopic loss of ellipticity (for all microgeometries) is investigated in detail. In addition to the above-described stability-based onset-of-failure mechanisms, constraints on the principal solution are also addressed, thus giving a complete picture of the different possible failure mechanisms present in finitely strained porous elastomers.

  13. [The segmentation of urinary cells--a first step in the automated processing in urine cytology (author's transl)].

    PubMed

    Liedtke, C E; Aeikens, B

    1980-01-01

    By segmentation of cell images we understand the automated decomposition of microscopic cell scenes into nucleus, plasma and background. A segmentation is achieved by using information from the microscope image and prior knowledge about the content of the scene. Different algorithms have been investigated and applied to samples of urothelial cells. A particular algorithm based on a histogram approach which can be easily implemented in hardware is discussed in more detail.

  14. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.

  15. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  16. Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.

    PubMed

    Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G

    2016-12-29

    The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.

  17. Introduction to magnification in endodontics.

    PubMed

    Arens, Donald E

    2003-01-01

    Dentistry has recently recognized the practicality and benefits of treating damaged and diseased oral tissues under high magnification levels. Initially, enhanced vision was more-or-less restricted to the use of prescription bifocals, awkward magnifying loops, and heavy cumbersome telephoto glasses; the microscope drew little interest and was quickly viewed as another useless and expensive dental gadget. However, owing to the very nature and demands of the therapy, endodontists were quick to accept and adopt this technology, and the manufacturers were quick to adapt and market their surgical microscopes to the endodontic office. Since acceptance leads to progression, we are currently witnessing manufacturers adapting the microscopic and other magnifying lenses to other areas of dentistry. However, choosing and purchasing a microscope involves a great number of issues, including the adequacy of one's present vision, the type of practice conducted, the demands one places on the quality of his or her dentistry, and the amount of time and expense one wishes to devote to becoming competent in using magnification. In addition, one must become familiar with what the different levels of magnification offer, what different depths and widths of field meet their normal practice needs, the amount of space required for the equipment, and whether the investment is cost effective. This article details all of the benefits as well as the difficulties encountered when embarking on a magnification journey. The art of dentistry is based on precision. The human naked eye is capable of distinguishing fine detail, but it is no match for what can be accomplished when an image is sharpened and enlarged. The microscope and other forms of magnification fill that need, especially for accomplishing endodontic procedures.

  18. Discopersicus n. gen., a New Member of the Family Tylenchidae Örley, 1880 with Detailed SEM Study on Two Known Species of the Genus Discotylenchus Siddiqi, 1980 (Nematoda; Tylenchidae) from Iran.

    PubMed

    Yaghoubi, Ali; Pourjam, Ebrahim; Álvarez-Ortega, Sergio; Liébanas, Gracia; Atighi, Mohammad Reza; Pedram, Majid

    2016-09-01

    Discopersicus iranicus n. gen., n. comb., previously described from Iran as a new species under the genus Discotylenchus , is illustrated using light microscope and scanning electron microscope (SEM) observations and further studied using molecular characters. SEM studies revealed the newly proposed genus has oblique amphidial apertures on the lateral sides of the lip region. SEM images are also provided for two species of Discotylenchus , namely D. discretus and D. brevicaudatus , as the first SEM study of the genus . These results confirmed longitudinal amphidial aperture type on lateral sides of the lip region in genus Discotylenchus , as noted by Siddiqi while erecting the genus with D. discretus as the type species . Molecular phylogenetic analyses using partial small subunit (SSU) and large subunit (LSU) rDNA sequences revealed the affinity of the genus Discopersicus n. gen. with members of the subfamily Boleodorinae, as supported by morphological characters (mainly, the oblique amphidial opening).

  19. Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich

    2006-01-01

    Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.

  20. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    PubMed

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  1. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  3. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues

    NASA Astrophysics Data System (ADS)

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  4. Wide field video-rate two-photon imaging by using spinning disk beam scanner

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko

    2018-02-01

    The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.

  5. Extracellular vesicles of calcifying turkey leg tendon characterized by immunocytochemistry and high voltage electron microscopic tomography and 3-D graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; McKee, M. D.; Nanci, A.; Song, M. J.; Kiyonaga, S.; Arena, J.; McEwen, B.

    1992-01-01

    To gain insight into the structure and possible function of extracellular vesicles in certain calcifying vertebrate tissues, normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo, have been studied in two separate investigations, one concerning the electron microscopic immunolocalization of the 66 kDa phosphoprotein, osteopontin, and the other detailing the organization and distribution of mineral crystals associated with the vesicles as determined by high voltage microscopic tomography and 3-D graphic image reconstruction. Immunolabeling shows that osteopontin is related to extracellular vesicles of the tendon in the sense that its initial presence appears coincident with the development of mineral associated with the vesicle loci. By high voltage electron microscopy and 3-D imaging techniques, mineral crystals are found to consist of small irregularly shaped particles somewhat randomly oriented throughout individual vesicles sites. Their appearance is different from that found for the mineral observed within calcifying tendon collagen, and their 3-D disposition is not regularly ordered. Possible spatial and temporal relationships of vesicles, osteopontin, mineral, and collagen are being examined further by these approaches.

  6. Scaling of chaos in strongly nonlinear lattices.

    PubMed

    Mulansky, Mario

    2014-06-01

    Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.

  7. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    PubMed

    Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-01-01

    Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  8. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  9. Microscopic description of exciton polaritons in direct two-band semiconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  10. Mathematical approach to nonlocal interactions using a reaction-diffusion system.

    PubMed

    Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu

    2017-06-01

    In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.

  11. Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization.

    PubMed

    Hedges, Lester O; Whitelam, Stephen

    2011-10-28

    We have only rules of thumb with which to predict how a material will crystallize, chief among which is Ostwald's rule of stages. It states that the first phase to appear upon transformation of a parent phase is the one closest to it in free energy. Although sometimes upheld, the rule is without theoretical foundation and is not universally obeyed, highlighting the need for microscopic understanding of crystallization controls. Here we study in detail the crystallization pathways of a prototypical model of patchy particles. The range of crystallization pathways it exhibits is richer than can be predicted by Ostwald's rule, but a combination of simulation and analytic theory reveals clearly how these pathways are selected by microscopic parameters. Our results suggest strategies for controlling self-assembly pathways in simulation and experiment.

  12. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  13. Obtaining macroscopic quantities for the contact line problem from Density Functional Theory using asymptotic methods

    NASA Astrophysics Data System (ADS)

    Sibley, David; Nold, Andreas; Kalliadasis, Serafim

    2015-11-01

    Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  14. Martian Rock Harrison in Color, Showing Crystals

    NASA Image and Video Library

    2014-01-29

    This view of a Martian rock target called /Harrison merges images from two cameras onboard NASA Curiosity Mars rover to provide both color and microscopic detail. The elongated crystals are likely feldspars, and the matrix is pyroxene-dominated.

  15. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  16. Multiple beam interference confocal microscopy: a tool for morphological investigation of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio

    2000-05-01

    Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.

  17. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  18. High resolution imaging of latent fingerprints by localized corrosion on brass surfaces.

    PubMed

    Goddard, Alex J; Hillman, A Robert; Bond, John W

    2010-01-01

    The Atomic Force Microscope (AFM) is capable of imaging fingerprint ridges on polished brass substrates at an unprecedented level of detail. While exposure to elevated humidity at ambient or slightly raised temperatures does not change the image appreciably, subsequent brief heating in a flame results in complete loss of the sweat deposit and the appearance of pits and trenches. Localized elemental analysis (using EDAX, coupled with SEM imaging) shows the presence of the constituents of salt in the initial deposits. Together with water and atmospheric oxygen--and with thermal enhancement--these are capable of driving a surface corrosion process. This process is sufficiently localized that it has the potential to generate a durable negative topographical image of the fingerprint. AFM examination of surface regions between ridges revealed small deposits (probably microscopic "spatter" of sweat components or transferred particulates) that may ultimately limit the level of ridge detail analysis.

  19. [Influence of autoclave sterilization on dimensional stability and detail reproduction of 5 additional silicone impression materials].

    PubMed

    Xu, Tong-kai; Sun, Zhi-hui; Jiang, Yong

    2012-03-01

    To evaluate the dimensional stability and detail reproduction of five additional silicone impression materials after autoclave sterilization. Impressions were made on the ISO 4823 standard mold containing several marking lines, in five kinds of additional silicone. All the impressions were sterilized by high temperature and pressure (135 °C, 212.8 kPa) for 25 min. Linear measurements of pre-sterilization and post-sterilization were made with a measuring microscope. Statistical analysis utilized single-factor analysis with pair-wise comparison of mean values when appropriate. Hypothesis testing was conducted at alpha = 0.05. No significant difference was found between the pre-sterilization and post-sterilization conditions for all locations, and all the absolute valuse of linear rate of change less than 8%. All the sterilization by the autoclave did not affect the surfuce detail reproduction of the 5 impression materials. The dimensional stability and detail reproduction of the five additional silicone impression materials in the study was unaffected by autoclave sterilization.

  20. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  1. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  2. Morphological observation and characterization of the Pseudoregma bambucicola with the scanning electron microscope.

    PubMed

    Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing

    2017-11-01

    Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.

  3. Authentication of Valeriana procera Kunth and comparative account of five Valeriana species.

    PubMed

    Joshi, Vaishali C; Navarrete, Andres; Khan, Ikhlas A

    2005-01-01

    Valeriana procera Kunth (Mexican Valerian) is a commercially important species, sometimes used as a substitute for Valeriana officinalis L., an important sedative in herbal medicine. A detailed macroscopic and microscopic account was provided for V. procera Kunth and a comparison was made between the wild and cultivated samples of V. procera Kunth. Macro- and microscopic comparative analyses were performed to differentiate V. procera Kunth from V. officinalis L. and other commercially important Valerian species such as V. jatamansi Jones, Valeriana edulis Nutt, and V. sitchensis Bong.

  4. Automated video-microscopic imaging and data acquisition system for colloid deposition measurements

    DOEpatents

    Abdel-Fattah, Amr I.; Reimus, Paul W.

    2004-12-28

    A video microscopic visualization system and image processing and data extraction and processing method for in situ detailed quantification of the deposition of sub-micrometer particles onto an arbitrary surface and determination of their concentration across the bulk suspension. The extracted data includes (a) surface concentration and flux of deposited, attached and detached colloids, (b) surface concentration and flux of arriving and departing colloids, (c) distribution of colloids in the bulk suspension in the direction perpendicular to the deposition surface, and (d) spatial and temporal distributions of deposited colloids.

  5. New species and new records of Crinipellis from tropical and subtropical forests of the east coast of Mexico.

    PubMed

    Bandala, Victor Manuel; Ryoo, Rhim; Montoya, Leticia; Ka, Kang-Hyeon

    2012-01-01

    Crinipellis brunneoaurantiaca, C. pallidibrunnea and C. rubella are described as new species and their taxonomic position is discussed. The two former were collected in subdeciduous tropical forest and the latter in the montane cloud forest, all from the east coast of Mexico (central Veracruz). Crinipellis podocarpi, C. pseudostipitaria var. mesites, C. setipes, recorded in montane cloud forest, and C. tucumanensis, collected in subdeciduous tropical forest, also are discussed. Detailed macro- and microscopic descriptions, illustrations of distinctive microscopic characters and plates are presented for each species.

  6. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    PubMed

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  7. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    PubMed Central

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  8. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.

    PubMed Central

    Greenstein, Joseph L; Winslow, Raimond L

    2002-01-01

    The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments. PMID:12496068

  9. Band Excitation for Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen

    2017-01-02

    The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less

  10. Scanning electron microscopic appearance of rat otocyst of the twelfth postcoital day: elaboration of a method.

    PubMed

    Marovitz, W F; Khan, K M

    1977-01-01

    A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.

  11. Multiresolution multiscale active mask segmentation of fluorescence microscope images

    NASA Astrophysics Data System (ADS)

    Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena

    2009-08-01

    We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.

  12. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less

  13. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    DOE PAGES

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less

  14. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.

    PubMed

    Matsubara, Hiroki; Kikugawa, Gota; Ishikiriyama, Mamoru; Yamashita, Seiji; Ohara, Taku

    2017-09-21

    Thermal conductivity of a material can be comprehended as being composed of microscopic building blocks relevant to the energy transfer due to a specific microscopic process or structure. The building block is called the partial thermal conductivity (PTC). The concept of PTC is essential to evaluate the contributions of various molecular mechanisms to heat conduction and has been providing detailed knowledge of the contribution. The PTC can be evaluated by equilibrium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD) in different manners: the EMD evaluation utilizes the autocorrelation of spontaneous heat fluxes in an equilibrium state whereas the NEMD one is based on stationary heat fluxes in a non-equilibrium state. However, it has not been fully discussed whether the two methods give the same PTC or not. In the present study, we formulate a Green-Kubo relation, which is necessary for EMD to calculate the PTCs equivalent to those by NEMD. Unlike the existing theories, our formulation is based on the local equilibrium hypothesis to describe a clear connection between EMD and NEMD simulations. The equivalence of the two derivations of PTCs is confirmed by the numerical results for liquid methane and butane. The present establishment of the EMD-NEMD correspondence makes the MD analysis of PTCs a robust way to clarify the microscopic origins of thermal conductivity.

  15. Computational Biochemistry-Enzyme Mechanisms Explored.

    PubMed

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  16. Hard X-ray Microscopic Images of the Human Hair

    NASA Astrophysics Data System (ADS)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo

    2007-01-01

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  17. Coating on Rock Beside a Young Martian Crater

    NASA Image and Video Library

    2010-03-24

    This image from the microscopic imager on NASA Mars Exploration Rover Opportunity shows details of the coating on a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.

  18. Super-family P2 C-96-125 observed by Japan-URSS Joint Emulsion Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Shibuya, E. H.

    1985-01-01

    A detailed description of the event detected in the second chamber of Japan-URSS Collaboration is presented. A preliminary description was already published and from that time a careful microscopic scanning was carried out.

  19. Visual neuroscience before the neuron.

    PubMed

    Wade, Nicholas J

    2004-01-01

    Visual neuroscience is considered to be a contemporary concern, based in large part on relating characteristics of neural functioning to visual experience. It presupposes a detailed knowledge of neural activity for which the neuron doctrine is a fundamental tenet. However, long before either the neuron doctrine had been advanced or the nerve cell had been described, attempts were made to estimate the dimensions of nerve fibres from measures of visual resolution. In the seventeenth century, the microscopes of Hooke and van Leeuwenhoek were unable to resolve structures as small as nerves adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibres but his experiments on the limits of visual resolution. Hooke determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the terminations of fibres of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibres were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibres in the retina as one 7200th part of an inch (0.0035 mm), based on the resolution of one minute of arc as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli. The measurement of visual acuity was refined by Mayer in 1755, with dots, gratings, and grids used as stimuli. In the 1830s, Treviranus fused the microscopic and acuity approaches to determine the dimensions of nerve fibres. His indirect estimates of the dimensions of retinal fibres were close to those derived from microscopic observation. However, the suggestion that the retina consisted of terminations of nerve fibres influenced his detailed illustrations of its microscopic structure. Contrary to the situation that obtained after the microscopic structure of the retina had been established, a function of vision (acuity) was used to determine the dimensions of the structures (retinal elements) that were thought to mediate it.

  20. Microscopic calculations of heavy-residue formation in quasielastic and deep-inelastic collisions below the Fermi energy.

    NASA Astrophysics Data System (ADS)

    Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.

    2007-10-01

    During the last several years we have undertaken a systematic study of heavy residues formed in quasi-elastic and deep- inelastic collisions near and below the Fermi energy [1,2]. Presently, we are exploring the possibility of extracting information on the dynamics by comparing our heavy residue data to calculations using microscopic models based on the quantum molecular dynamics approach (QMD). We have performed detailed calculations of QMD type using the recent version of the constrained molecular dynamics code CoMD of M. Papa [3]. CoMD is especially designed for reactions near the Fermi energy. It implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, thus restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our residue data will be presented and discussed in detail. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003); Nucl. Instrum. Methods B 204 166 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).

  1. Selective sweeps in growing microbial colonies

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill S.; Müller, Melanie J. I.; Karahan, Nilay; Murray, Andrew W.; Hallatschek, Oskar; Nelson, David R.

    2012-04-01

    Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction-diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction-diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays.

  2. Squamous cell carcinoma of the breast as a clinical diagnostic challenge

    PubMed Central

    Jakubowska, Katarzyna; Kańczuga-Koda, Luiza; Kisielewski, Wojciech; Koda, Mariusz; Famulski, Waldemar

    2018-01-01

    Squamous cell carcinoma (SqCC) of the breast should be differentiated between the primary skin keratinizing squamous carcinoma and squamous metaplastic cancer. In the current study, the cases of two patients who were diagnosed with SqCC originated from skin and the breast were discussed. A fine-needle aspiration biopsy confirmed the presence of atypical squamous cells. In both cases, the microscopic examination of the surgical specimen revealed a malignant neoplasm differentiated into SqCC characterized by keratinizing cancer cells with abundant eosiphilic cytoplasm with large, hyperchromatic vesicular nuclei. Immunohistochemical studies showed negative for progesterone and estrogen receptors and human epidermal growth factor receptor 2. Moreover, negative expression of cytokeratin 7 and 20 was confirmed. The diagnosis of the both tumors was established based on the detailed analysis of clinical, macroscopical and microscopical information. SqCC localized in the breast is a great diagnostic challenge in pathomorphology and more attention should be paid for analysis of such lesions in daily practice. PMID:29556390

  3. Light-activated photocurrent degradation and self-healing in perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. But, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. We show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely preventedmore » by operating the devices at 0 °C. Here, we investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.« less

  4. Light-activated photocurrent degradation and self-healing in perovskite solar cells

    DOE PAGES

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.; ...

    2016-05-16

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. But, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. We show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely preventedmore » by operating the devices at 0 °C. Here, we investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.« less

  5. Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae

    2011-03-01

    Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.

    The in-situ growth of CuO nanowires was studied by Energy Dispersive X-ray Diffraction (EDXRD) to observe the mechanism of growth. The study was carried out for comparison at two temperatures—at 500 °C, the optimum temperature of the nanowires growth, and at 300 °C just below the temperature range of the growth. The in situ observation revealed the successive oxidation of Cu foil to Cu{sub 2}O layer and finally to CuO layer. Further analysis showed the presence of a compressive stress in CuO layer due to interface at CuO and Cu{sub 2}O layers. The compressive stress was found to increase withmore » the growth of the nanowires at 500 °C while it relaxed with the growth of CuO layer at 300 °C. The present results do not support the existing model of stress relaxation induced growth of nanowires. Based on the detailed Transmission Electron Microscope, Scanning Electron Microscope, and EDXRD results, a microstructure based growth model has been suggested.« less

  7. A mechanical microcompressor for high resolution imaging of motile specimens

    PubMed Central

    Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris

    2015-01-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. PMID:26192819

  8. A mechanical microcompressor for high resolution imaging of motile specimens.

    PubMed

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Imaging Chromosome Separation in Mouse Oocytes by Responsive 3D Confocal Timelapse Microscopy.

    PubMed

    Lane, Simon I R; Crouch, Stephen; Jones, Keith T

    2017-01-01

    Accurate chromosome segregation is necessary so that genetic material is equally shared among daughter cells. However, maturing mammalian oocytes are particularly prone to chromosome segregation errors, making them a valuable tool for identifying the causes of mis-segregation. Factors such as aging, cohesion loss, DNA damage, and the roles of a plethora of kinetochore and cell cycle-related proteins are involved. To study chromosome segregation in oocytes in a live setting is an imaging challenge that requires advanced techniques. Here we describe a method for examining chromosomes in live oocytes in detail as they undergo maturation. Our method is based on tracking the "center of brightness" of fluorescently labeled chromosomes. Here we describe how to set up our software and run experiments on a Leica TCS SP8 confocal microscope, but the method would be transferable to other microscopes with computer-aided microscopy.

  10. Spatiotemporal polarization modulation microscopy with a microretarder array

    NASA Astrophysics Data System (ADS)

    Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.

    2018-02-01

    A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.

  11. Quantitative imaging of heterogeneous dynamics in drying and aging paints

    PubMed Central

    van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-01-01

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail. PMID:27682840

  12. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Yubin; Li, Qiuying, E-mail: liqy@ecust.edu.cn; Shanghai Key Laboratory Polymeric Materials

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzedmore » by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.« less

  13. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    PubMed

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  14. Scanning electron microscopic observations of fibrous structure of cemento-dentinal junction in healthy teeth.

    PubMed

    Pratebha, B; Jaikumar, N D; Sudhakar, R

    2014-01-01

    The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.

  15. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    PubMed

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  16. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    NASA Astrophysics Data System (ADS)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  17. A method for the assessment of specific energy distribution in a model tumor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noska, M.A.

    1996-12-31

    Due to the short range of alpha particles in tissue, the calculation of dose from internally deposited alpha emitters requires a detailed analysis of the microscopic distribution of the radionuclide in order to determine the spatial distribution of energy emission events and, from this, the spatial distribution of dose. In the present study, the authors used quantitative autoradiography (QAR) to assess the microdistribution of a radiolabeled monoclonal antibody (MAb) fragment in human glioma xenografts in mice.

  18. Nano-interconnection for microelectronics and polymers with benzo-triazole

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young

    2006-01-01

    Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.

  19. Hybrid Al/steel-joints manufactured by ultrasound enhanced friction stir welding (USE-FSW): Process comparison, nondestructive testing and microscopic analysis

    NASA Astrophysics Data System (ADS)

    Thomä, M.; Wagner, G.; Straß, B.; Wolter, B.; Benfer, S.; Fürbeth, W.

    2017-03-01

    The process of friction stir welding (FSW) is an innovative joining technique, which proved its potential in joining dissimilar metals that are poorly fusion weldable. This ability opens a wide range for applications in industrial fields, where weight reduction by partial substitution of conventional materials through lightweight materials is a current central aim. As a consequence of this, the realization of aluminum / steel-joints is of great interest. For this material compound, several friction stir welds were carried out by different researchers for varying Al/steel-joints, whereas the definition of optimal process parameters as well as the increase of mechanical properties was in the focus of the studies. To achieve further improved properties for this dissimilar joint a newly developed hybrid process named “ultrasound enhanced friction stir welding (USE-FSW)” was applied. In this paper the resulting properties of Al/steel-joints using FSW and USE-FSW will be presented and compared. Furthermore, first results by using the nondestructive testing method “computer laminography” to analyze the developed joining area will be shown supplemented by detailed light-microscopic investigations, scanning electron microscopic analysis, and EDX.

  20. A Monte Carlo model of hot electron trapping and detrapping in SiO2

    NASA Astrophysics Data System (ADS)

    Kamocsai, R. L.; Porod, W.

    1991-02-01

    High-field stressing and oxide degradation of SiO2 are studied using a microscopic model of electron heating and charge trapping and detrapping. Hot electrons lead to a charge buildup in the oxide according to the dynamic trapping-detrapping model by Nissan-Cohen and co-workers [Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985)]. Detrapping events are modeled as trap-to-band impact ionization processes initiated by high energy conduction electrons. The detailed electronic distribution function obtained from Monte Carlo transport simulations is utilized for the determination of the detrapping rates. We apply our microscopic model to the calculation of the flat-band voltage shift in silicon dioxide as a function of the electric field, and we show that our model is able to reproduce the experimental results. We also compare these results to the predictions of the empirical trapping-detrapping model which assumes a heuristic detrapping cross section. Our microscopic theory accounts for the nonlocal nature of impact ionization which leads to a dark space close to the injecting cathode, which is unaccounted for in the empirical model.

  1. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.

    PubMed

    Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin

    2018-06-25

    Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  2. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  3. Enhancing the performance of the light field microscope using wavefront coding.

    PubMed

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  4. Investigations into the burning-out of organic substances in the ceramic body

    NASA Technical Reports Server (NTRS)

    Locher, C.; Pfaff, E.; Schulz, P.; Zografou, C.

    1983-01-01

    Pressed compacts were made of spray dried alumina containing water soluble polyvinyl alcohol or cellulose derivative binder. The burning out of organic binder on gradual heating was investigated by visual and microscopic observations of the cross section and by thermogravimetry. Burning out proceeds inward from the peripheries, gradually reducing the size of the black core, which first consists of a dark boundary layer and later turns uniformly black with a sharp boundary. A detailed mechanism of the burning out process between and within the spray dried granules is observed under the microscope. Oxygen atmosphere accelerates the burning out process.

  5. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  6. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    PubMed

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  7. Examining the contents of isolated Xenopus germinal vesicles.

    PubMed

    Gall, Joseph G; Wu, Zheng'an

    2010-05-01

    One can manually isolate the giant oocyte nucleus or germinal vesicle (GV) of Xenopus from a living oocyte with nothing more complicated than jewelers' forceps and a dissecting microscope. Similarly, one can remove the nuclear envelope by hand and allow the lampbrush chromosomes and other nuclear organelles to spread on a microscope slide. After centrifugation, the nuclear contents adhere tightly to the slide, where they can be subjected to immunostaining or fluorescent in situ hybridization for visualization by conventional or confocal microscopy. Preparations of isolated GV contents reveal details of nuclear structure that are almost impossible to attain by more conventional techniques.

  8. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  9. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  10. Pre-microscope tunnelling — Inspiration or constraint?

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.

    1987-03-01

    Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.

  11. Application of spectroscopy and super-resolution microscopy: Excited state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Ujjal

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10 -9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such asmore » lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.« less

  12. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  13. Preparation and Use of an Easily Constructed, Inexpensive Chamber for Viewing Courtship Behaviors of Fruit Flies, Drosophila sp.

    ERIC Educational Resources Information Center

    Christensen, Timothy J.; Labov, Jay B.

    1997-01-01

    Details the construction of a viewing chamber for fruit flies that connects to a dissecting microscope and features a design that enables students to easily move fruit flies in and out of the chamber. (DDR)

  14. Phase transitions in cooperative coinfections: Simulation results for networks and lattices

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran

    2016-04-01

    We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d -dimensional lattices with d ≥4 , and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.

  15. Chemical analyses of fossil bone.

    PubMed

    Zheng, Wenxia; Schweitzer, Mary Higby

    2012-01-01

    The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.

  16. Environmental research program. 1995 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore themore » nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.« less

  17. Transverse excitations in liquid metals

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.

    2013-02-01

    The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.

  18. A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.

    PubMed

    Heyward, P M

    2010-12-01

    Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. © 2010 The Author Journal of Microscopy © 2010 The Royal Microscopical Society.

  19. Apparent and microscopic dynamic contact angles in confined flows

    NASA Astrophysics Data System (ADS)

    Omori, Takeshi; Kajishima, Takeo

    2017-11-01

    An abundance of empirical correlations between a dynamic contact angle and a capillary number representing a translational velocity of a contact line have been provided for the last decades. The experimentally obtained dynamic contact angles are inevitably apparent contact angles but often undistinguished from microscopic contact angles formed right on the wall. As Bonn et al. ["Wetting and spreading," Rev. Mod. Phys. 81, 739-805 (2009)] pointed out, however, most of the experimental studies simply report values of angles recorded at some length scale which is quantitatively unknown. It is therefore hard to evaluate or judge the physical validity and the generality of the empirical correlations. The present study is an attempt to clear this clutter regarding the dynamic contact angle by measuring both the apparent and the microscopic dynamic contact angles from the identical data sets in a well-controlled manner, by means of numerical simulation. The numerical method was constructed so that it reproduced the fine details of the flow with a moving contact line predicted by molecular dynamics simulations [T. Qian, X. Wang, and P. Sheng, "Molecular hydrodynamics of the moving contact line in two-phase immiscible flows," Commun. Comput. Phys. 1, 1-52 (2006)]. We show that the microscopic contact angle as a function of the capillary number has the same form as Blake's molecular-kinetic model [T. Blake and J. Haynes, "Kinetics of liquid/liquid displacement," J. Colloid Interface Sci. 30, 421-423 (1969)], regardless of the way the flow is driven, the channel width, the mechanical properties of the receding fluid, and the value of the equilibrium contact angle under the conditions where the Reynolds and capillary numbers are small. We have also found that the apparent contact angle obtained by the arc-fitting of the interface behaves surprisingly universally as claimed in experimental studies in the literature [e.g., X. Li et al., "An experimental study on dynamic pore wettability," Chem. Eng. Sci. 104, 988-997 (2013)], although the angle deviates significantly from the microscopic contact angle. It leads to a practically important point that it suffices to measure arc-fitted contact angles to make formulae to predict flow rates in capillary tubes.

  20. Laser scatter in clinical applications

    NASA Astrophysics Data System (ADS)

    Luther, Ed; Geddie, William

    2008-02-01

    Brightfield Laser Scanning Imaging (BLSI) is available on Laser Scanning Cytometers (LSCs) from CompuCyte Corporation. Briefly, digitation of photodetector outputs is coordinated with the combined motions of a small diameter (typically 2 to 10 microns) laser beam scanning a specimen in the Y direction (directed by a galvanometer-driven scanning mirror) and the microscope stage motion in the X direction. The output measurements are assembled into a two-dimensional array to provide a "non-real" digital image, where each pixel value reports the amount of laser-scattered light that is obtained when the laser beam is centered on that location. Depending on the detector positions, these images are analogous to Differential Interference Contrast or Phase Contrast microscopy. We report the incorporation of the new laser scattering capabilities into the workflow of a high-volume clinical cytology laboratory at University Health Network, Toronto, Canada. The laboratory has been employing LSC technology since 2003 for immunophenotypic fluorescence analysis of approximately 1200 cytological specimens per year, using the Clatch methodology. The new BLSI component allows visualization of cellular morphology at higher resolution levels than is possible with standard brightfield microscopic evaluation of unstained cells. BLSI is incorporated into the triage phase, where evaluation of unstained samples is combined with fluorescence evaluation to obtain specimen background levels. Technical details of the imaging methodology will be presented, as well as illustrative examples from current studies and comparisons to detailed, but obscure, historical studies of cytology specimens based on phase contrast microscopy.

  1. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future.

    PubMed

    Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S

    2016-07-01

    Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.

  3. First-principles study of the infrared spectra of the ice Ih (0001) surface

    DOE PAGES

    Pham, T. Anh; Huang, P.; Schwegler, E.; ...

    2012-08-22

    Here, we present a study of the infrared (IR) spectra of the (0001) deuterated ice surface based on first-principles molecular dynamics simulations. The computed spectra show a good agreement with available experimental IR measurements. We identified the bonding configurations associated with specific features in the spectra, allowing us to provide a detailed interpretation of IR signals. We computed the spectra of several proton ordered and disordered models of the (0001) surface of ice, and we found that IR spectra do not appear to be a sensitive probe of the microscopic arrangement of protons at ice surfaces.

  4. Observation of martensitic transformation in Ni50Mn41Cu4Sn5 Heusler alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.

    2017-05-01

    Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.

  5. Relaxation Dynamics in the Merging of N Independent Condensates

    NASA Astrophysics Data System (ADS)

    Aidelsburger, M.; Ville, J. L.; Saint-Jalm, R.; Nascimbène, S.; Dalibard, J.; Beugnon, J.

    2017-11-01

    Controlled quantum systems such as ultracold atoms can provide powerful platforms to study nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical description is generally challenging. In this Letter, we present a detailed study of the rich out-of-equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the microscopic mechanism that underlies the smoothening of the phase profile.

  6. Fast scanning mode and its realization in a scanning acoustic microscope

    NASA Astrophysics Data System (ADS)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  7. First Sample Delivery to Mars Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm on NASA's Phoenix Mars Lander has just delivered the first sample of dug-up soil to the spacecraft's microscope station in this image taken by the Surface Stereo Imager during the mission's Sol 17 (June 12), or 17th Martian day after landing.

    The scoop is positioned above the box containing key parts of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument suite. It has sprinkled a small amount of soil into a notch in the MECA box where the microscope's sample wheel is exposed. The wheel turns to present sample particles on various substrates to the Optical Microscope for viewing.

    The scoop is about 8.5 centimeters (3.3 inches) wide. The top of the MECA box is 20 centimeters (7.9 inches) wide. This image has been lightened to make details more visible.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-01-24

    In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.

  9. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces

    NASA Astrophysics Data System (ADS)

    Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; Minnich, Austin J.

    2017-05-01

    Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. However, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electron microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. Our work provides a useful perspective on the microscopic processes governing interfacial heat conduction.

  10. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanwei; Xie Huimin; Fang Daining

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less

  11. Systematic analyses of vibration noise of a vibration isolation system for high-resolution scanning tunneling microscopes.

    PubMed

    Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro

    2011-08-01

    We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.

  12. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  13. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces

    DOE PAGES

    Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; ...

    2017-05-17

    Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. But, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electronmore » microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. This work provides a useful perspective on the microscopic processes governing interfacial heat conduction.« less

  14. Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.

    PubMed

    Neupane, Bhanu; Chen, Fang; Sun, Wei; Chiu, Daniel T; Wang, Gufeng

    2013-04-01

    In stimulated emission depletion (STED)-based or up-conversion depletion-based super-resolution optical microscopy, the donut-shaped depletion beam profile is of critical importance to its resolution. In this study, we investigate the transformation of the donut-shaped depletion beam focused by a high numerical aperture (NA) microscope objective, and model STED point spread function (PSF) as a function of donut beam profile. We show experimentally that the intensity profile of the dark kernel of the donut can be approximated as a parabolic function, whose slope is determined by the donut beam size before the objective back aperture, or the effective NA. Based on this, we derive the mathematical expression for continuous wave (CW) STED PSF as a function of focal plane donut and excitation beam profiles, as well as dye properties. We find that the effective NA and the residual intensity at the center are critical factors for STED imaging quality and the resolution. The effective NA is critical for STED resolution in that it not only determines the donut shape but also the area the depletion laser power is dispersed. An improperly expanded depletion beam will have negligible improvement in resolution. The polarization of the depletion beam also plays an important role as it affects the residual intensity in the center of the donut. Finally, we construct a CW STED microscope operating at 488 nm excitation and 592 nm depletion with a resolution of 70 nm. Our study provides detailed insight to the property of donut beam, and parameters that are important for the optimal performance of STED microscopes. This paper will provide a useful guide for the construction and future development of STED microscopes.

  15. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    PubMed

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Kweon, Seongsoo; Samarth, Nitin; de Lozanne, Alex

    2009-05-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga0.94Mn0.06As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 μm wide and fairly stable with temperature. Magnetic clusters are observed above TC, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  17. Looking at tardigrades in a new light: using epifluorescence to interpret structure.

    PubMed

    Perry, E S; Miller, W R; Lindsay, S

    2015-02-01

    The use of epifluorescence microscopy coupled with ultraviolet (UV) autofluorescence is suggested as a means to view and interpret tardigrade structures. Endogenous fluorochromes are a known component of tardigrade cuticle, claws and bucco-pharyngeal apparatus. By imaging the autofluorescence from tardigrades, it is possible to document these structures in detail, including the subdivisions and boundaries of echiniscid (heterotardigrade) plates and the nature and spatial relationships of the texture (pores, granules, papillae and tubercles) on the various plates. This allows the determination of taxonomic features not easily seen with other microscopic techniques. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  18. Computer Simulation of the Forces Acting on the Polystyrene Probe Submerged into the Succinonitrile Near Phase Transition

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.

  19. Miniaturized transportable evaporator for molecule deposition inside cryogenic scanning probe microscopes.

    PubMed

    Lämmle, K; Schwarz, A; Wiesendanger, R

    2010-05-01

    Here, we present a very small evaporator unit suitable to deposit molecules onto a sample in a cryogenic environment. It can be transported in an ultrahigh vacuum system and loaded into Omicron-type cantilever stages. Thus, molecule deposition inside a low temperature force microscope is possible. The design features an insulating base plate with two embedded electrical contacts and a crucible with low power consumption, which is thermally well isolated from the surrounding. The current is supplied via a removable power clip. Details of the manufacturing process as well as the used material are described. Finally, the performance of the whole setup is demonstrated.

  20. Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.

    PubMed

    Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D

    1999-06-15

    An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). Copyright 1999 Academic Press.

  1. Complexity of Human Circulation Design: Tips for Students

    ERIC Educational Resources Information Center

    Kurbel, Sven; Gros, Mario; Maric, Svjetlana

    2009-01-01

    Medical students are faced with a challenge to comprehend the enormous complexity of the circulatory systems. There is a gap between courses of anatomy, with detailed description of all normally present macroscopic vessels, and histology, which is focused on microscopic tissue architecture. Both courses leave arterioles, capillaries, and venules…

  2. Four new morel (Morchella) species in the Elata Subclade (sect. Distantes) from Turkey

    USDA-ARS?s Scientific Manuscript database

    Four Turkish Morchella species identified in published multilocus molecular phylogenetic analyses are described here as new, using detailed macro- and microscopic data: M. mediterraneensis (Mel-27), M. fekeensis (Mel-28), M. magnispora (Mel-29), and M. conifericola (Mel-32). A distribution map of m...

  3. Biology Diagrams: Tools To Think With.

    ERIC Educational Resources Information Center

    Kindfield, Ann C. H.

    Subcellular processes like meiosis are frequently problematic for learners because they are complex and, except for the extent that they can be observed under a light microscope, occur outside of our direct experience. More detailed characterization of what underlies various degrees of student understanding of a process is required to more fully…

  4. Large-scale imaging of cortical network activity with calcium indicators.

    PubMed

    Ikegaya, Yuji; Le Bon-Jego, Morgane; Yuste, Rafael

    2005-06-01

    Bulk loading of calcium indicators has provided a unique opportunity to reconstruct the activity of cortical networks with single-cell resolution. Here we describe the detailed methods of bulk loading of AM dyes we developed and have been improving for imaging with a spinning disk confocal microscope.

  5. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  6. Superresolution Microscopy of the Nuclear Envelope and Associated Proteins.

    PubMed

    Xie, Wei; Horn, Henning F; Wright, Graham D

    2016-01-01

    Superresolution microscopy is undoubtedly one of the most exciting technologies since the invention of the optical microscope. Capable of nanometer-scale resolution to surpass the diffraction limit and coupled with the versatile labeling techniques available, it is revolutionizing the study of cell biology. Our understanding of the nucleus, the genetic and architectural center of the cell, has gained great advancements through the application of various superresolution microscopy techniques. This chapter describes detailed procedures of multichannel superresolution imaging of the mammalian nucleus, using structured illumination microscopy and single-molecule localization microscopy.

  7. Enhancing the performance of the light field microscope using wavefront coding

    PubMed Central

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-01-01

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056

  8. Integrating Microscopic Analysis into Existing Quality Assurance Processes

    NASA Astrophysics Data System (ADS)

    Frühberger, Peter; Stephan, Thomas; Beyerer, Jürgen

    When technical goods, like mainboards and other electronic components, are produced, quality assurance (QA) is very important. To achieve this goal, different optical microscopes can be used to analyze a variety of specimen to gain comprehensive information by combining the acquired sensor data. In many industrial processes, cameras are used to examine these technical goods. Those cameras can analyze complete boards at once and offer a high level of accuracy when used for completeness checks. When small defects, e.g. soldered points, need to be examined in detail, those wide area cameras are limited. Microscopes with large magnification need to be used to analyze those critical areas. But microscopes alone cannot fulfill this task within a limited time schedule, because microscopic analysis of complete motherboards of a certain size is time demanding. Microscopes are limited concerning their depth of field and depth of focus, which is why additional components like XY moving tables need to be used to examine the complete surface. Yet today's industrial production quality standards require a 100 % control of the soldered components within a given time schedule. This level of quality, while keeping inspection time low, can only be achieved when combining multiple inspection devices in an optimized manner. This paper presents results and methods of combining industrial cameras with microscopy instrumenting a classificatory based approach intending to keep already deployed QA processes in place but extending them with the purpose of increasing the quality level of the produced technical goods while maintaining high throughput.

  9. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    NASA Astrophysics Data System (ADS)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  10. Low-voltage electron microscopy of polymer and organic molecular thin films.

    PubMed

    Drummy, Lawrence F; Yang, Junyan; Martin, David C

    2004-06-01

    We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. Copyright 2004 Elsevier B.V.

  11. Anatomical and histological characteristics of the intestine of the topmouth culter (Culter alburnus).

    PubMed

    Cao, X J; Wang, W M; Song, F

    2011-08-01

    With 3 figures and 1 table Topmouth culter (Culter alburnus), a freshwater carnivorous fish of the Cyprinidae, is one of the most popular fish species in aquatic market in China. The anatomy and histology features of fish intestine are very useful for understanding digestive physiology, diagnosing some intestinal diseases and formulating suitable feeds. Thus, here we first characterize topmouth culter intestine via light microscope, transmission electron microscope and scan electron microscope. The 'Z' shaped intestine can be divided into three parts (e.g. the anterior intestine, middle intestine and posterior intestine), with an intestinal coefficient of 0.68. The anterior intestine possessed the longest mucosa folds and thickest muscularis among the three intestinal parts, and microvilli were very well-developed whilst many mitochondria, endoplasmic reticulums and lysosomes were found in which. This indicated the anterior intestine was a main region for digestion and absorption of food in the topmouth culter. While the vacuoles observed in the posterior intestine may be closely related to the intracellular digestion. Neutral and acid mucus were strongly present throughout the intestine. This detailed descriptive paper will be very helpful for studies of topmouth culter related to its digestive physiology, intestinal disease control and feed nutrient. © 2011 Blackwell Verlag GmbH.

  12. Nanobubbles, cavitation, shock waves and traumatic brain injury.

    PubMed

    Adhikari, Upendra; Goliaei, Ardeshir; Berkowitz, Max L

    2016-12-07

    Collapse of bubbles, microscopic or nanoscopic, due to their interaction with the impinging pressure wave produces a jet of particles moving in the direction of the wave. If there is a surface nearby, the high-speed jet particles hit it, and as a result damage to the surface is produced. This cavitation effect is well known and intensely studied in case of microscopic sized bubbles. It can be quite damaging to materials, including biological tissues, but it can also be beneficial when controlled, like in case of sonoporation of biological membranes for the purpose of drug delivery. Here we consider recent simulation work performed to study collapse of nanobubbles exposed to shock waves, in order to understand the detailed mechanism of the cavitation induced damage to soft materials, such as biological membranes. We also discuss the connection of the cavitation effect with the traumatic brain injury caused by blasts. Specifically, we consider possible damage to model membranes containing lipid bilayers, bilayers with embedded ion channel proteins like the ones found in neural cells and also protein assemblies found in the tight junction of the blood brain barrier.

  13. A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms

    NASA Astrophysics Data System (ADS)

    Kühn, Jonas; Niraula, Bimochan; Liewer, Kurt; Kent Wallace, J.; Serabyn, Eugene; Graff, Emilio; Lindensmith, Christian; Nadeau, Jay L.

    2014-12-01

    Digital holographic microscopy is an ideal tool for investigation of microbial motility. However, most designs do not exhibit sufficient spatial resolution for imaging bacteria. In this study we present an off-axis Mach-Zehnder design of a holographic microscope with spatial resolution of better than 800 nm and the ability to resolve bacterial samples at varying densities over a 380 μm × 380 μm × 600 μm three-dimensional field of view. Larger organisms, such as protozoa, can be resolved in detail, including cilia and flagella. The instrument design and performance are presented, including images and tracks of bacterial and protozoal mixed samples and pure cultures of six selected species. Organisms as small as 1 μm (bacterial spores) and as large as 60 μm (Paramecium bursaria) may be resolved and tracked without changes in the instrument configuration. Finally, we present a dilution series investigating the maximum cell density that can be imaged, a type of analysis that has not been presented in previous holographic microscopy studies.

  14. Jellyfish: Special Tools for Biological Research on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Spangenberg, Dorothy B.

    1991-01-01

    The most intriguing nature of the jellyfish polyps is their ability to metamorphose, giving rise to tiny immature medusae called ephyrae which have a different form or shape from the polyps. The Aurelia Metamorphosis Test System was used to determine the subtle effects of hydrocarbons found in oil spills and the effects of X-irradiation on developing ephyrae. Currently, this test system is used to determine the effects of the gravity-less environment of outer space on the development and behavior of ephyrae. For this purpose, the effects of clinostat rotation on development of the ephyrae and their gravity receptor are being studied. The behavior of the ephyrae during 0 gravity achieved for short intervals of 30 seconds in parabolic flight is examined. The developing ephyrae and the mature ephyrae are exposed to gravity-less environment of outer space via a six or seven day shuttle experiment. If gravity receptors do form in outer space, they will be studied in detail using various types of microscopes, including the electron microscope, to determin whether they developed normally in space as compared with control on Earth.

  15. Metallurgical investigation of wire breakage of tyre bead grade.

    PubMed

    Palit, Piyas; Das, Souvik; Mathur, Jitendra

    2015-10-01

    Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6-0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase).

  16. Extrapolation to Nonequilibrium from Coarse-Grained Response Theory

    NASA Astrophysics Data System (ADS)

    Basu, Urna; Helden, Laurent; Krüger, Matthias

    2018-05-01

    Nonlinear response theory, in contrast to linear cases, involves (dynamical) details, and this makes application to many-body systems challenging. From the microscopic starting point we obtain an exact response theory for a small number of coarse-grained degrees of freedom. With it, an extrapolation scheme uses near-equilibrium measurements to predict far-from-equilibrium properties (here, second order responses). Because it does not involve system details, this approach can be applied to many-body systems. It is illustrated in a four-state model and in the near critical Ising model.

  17. Craniocervical junction in dogs revisited--new ligaments and confirmed presence of enthesis fibrocartilage.

    PubMed

    Kupczynska, M; Wieladek, A; Janczyk, P

    2012-06-01

    The study was performed to investigate and to describe features of gross and microscopic morphology of craniocervical junction (CCJ) in dogs. Seventy mature dogs (38 females, 32 males) of different body weight, representing small, medium and large breeds of dolicho-, mesati-, and brachycephalic morphotype were dissected. Morphological details were localised using an operating microscope with integrated video channel. Occurrence and distribution of fibrocartilage in the ligaments from 10 dogs was analysed histologically. Three new pairs of ligaments were described and named: dorsal ligaments of atlas, cranial internal collateral ligaments of atlas, and caudal internal collateral ligaments of atlas. Several new findings in the course of the known ligaments were found relating to breed and body weight. For the first time enthesis fibrocartilage was identified in ligaments of CCJ in dogs. Sesamoidal fibrocartilage was identified in the transversal ligament of atlas in large dogs. The findings are discussed for clinical importance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats

    NASA Astrophysics Data System (ADS)

    Stalter, S.; Yelash, L.; Emamy, N.; Statt, A.; Hanke, M.; Lukáčová-Medvid'ová, M.; Virnau, P.

    2018-03-01

    Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.

  19. Building Practical Apertureless Scanning Near-Field Microscopy

    NASA Astrophysics Data System (ADS)

    Gungordu, M. Zeki

    The fundamental objective of this study is to establish a functional, practical apertureless type scanning near-field optical microscope, and to figure out the working mechanism behind it. Whereas a far-field microscope can measure the propagating field's components, this gives us little information about the features of the sample. The resolution is limited to about half of the wavelength of the illuminating light. On the other hand, the a-SNOM system enables achieving non-propagating components of the field, which provides more details about the sample's features. It is really difficult to measure because the amplitude of this field decays exponentially when the tip is moved away from the sample. The sharpness of the tip is the only limitation for resolution of the a-SNOM system. Consequently, the sharp tips are achieved by using electrochemical etching, and these tips are used to detect near-field signal. Separating the weak a-SNOM system signals from the undesired background signal, the higher demodulation background suppression is utilized by lock-in detection.

  20. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  1. Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The figure presents selected views of a compact microscope imaging system (CMIS) that includes a miniature video microscope, a Cartesian robot (a computer- controlled three-dimensional translation stage), and machine-vision and control subsystems. The CMIS was built from commercial off-the-shelf instrumentation, computer hardware and software, and custom machine-vision software. The machine-vision and control subsystems include adaptive neural networks that afford a measure of artificial intelligence. The CMIS can perform several automated tasks with accuracy and repeatability . tasks that, heretofore, have required the full attention of human technicians using relatively bulky conventional microscopes. In addition, the automation and control capabilities of the system inherently include a capability for remote control. Unlike human technicians, the CMIS is not at risk of becoming fatigued or distracted: theoretically, it can perform continuously at the level of the best human technicians. In its capabilities for remote control and for relieving human technicians of tedious routine tasks, the CMIS is expected to be especially useful in biomedical research, materials science, inspection of parts on industrial production lines, and space science. The CMIS can automatically focus on and scan a microscope sample, find areas of interest, record the resulting images, and analyze images from multiple samples simultaneously. Automatic focusing is an iterative process: The translation stage is used to move the microscope along its optical axis in a succession of coarse, medium, and fine steps. A fast Fourier transform (FFT) of the image is computed at each step, and the FFT is analyzed for its spatial-frequency content. The microscope position that results in the greatest dispersal of FFT content toward high spatial frequencies (indicating that the image shows the greatest amount of detail) is deemed to be the focal position.

  2. Development of SEM/STEM-WDX for highly sensitive detection of light elements

    NASA Astrophysics Data System (ADS)

    Anan, Y.; Koguchi, M.; Kimura, T.; Sekiguchi, T.

    2018-02-01

    In this study, to detect the light element lithium (Li) and to detect low dosed Boron (B) in the local area at nm order, we developed an analytical electron microscope equipped with an improved serial (S)-type WDX (wavelength dispersive X-ray spectroscopy) system. In detail, to detect Li, we developed a high-conductivity multi-capillary X-ray (MCX) lens, and a diffractor with a lattice spacing (d) of 15 nm, and with a spacing variation (δ d) of 0.8 nm. Moreover, to detect low dosed light element B, we designed a high-conductivity MCX lens based on the soft X-ray reflectivity in the capillary and calculation. We developed a large-solid-angle MCX lens whose conductivity of the characteristic X-rays of B became 20 times higher than that of an MCX lens with a 30-mm focal length. Our developed analytical electron microscope was applied to a LiAl specimen and a low B-doped Si substrate specimen, and the performance of this analytical electron microscope was evaluated. As a results, this analytical electron microscope could detect the characteristic X-rays of Li with a minimum mass fraction (MMF) of 8.4 atomic % (at. %). The energy resolution was 1 eV at 55 eV. From the results of measuring the line profile of B for the unpatterned B-implantation area on a B-doped Si substrate specimen, the measured line profile data were in good agreement with secondary ion mass spectrometry data up to a depth of 100 nm with a B concentration of 0.05 at. %.

  3. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  4. Identification of four Aconitum species used as "Caowu" in herbal markets by 3D reconstruction and microstructural comparison.

    PubMed

    Liu, Chan-Chan; Cheng, Ming-En; Peng, Huasheng; Duan, Hai-Yan; Huang, Luqi

    2015-05-01

    Authentication is the first priority when evaluating the quality of Chinese herbal medicines, particularly highly toxic medicines. The most commonly used authentication methods are morphological identification and microscopic identification. Unfortunately, these methods could not effectively evaluate some herbs with complex interior structures, such as root of Aconitum species with a circular conical shape and an interior structure with successive changes. Defining the part that should be selected as the standard plays an essential role in accurate microscopic identification. In this study, we first present a visual 3D model of Aconitum carmichaeli Debx. constructed obtained from microscopic analysis of serial sections. Based on this model, we concluded that the point of largest root diameter should be used as the standard for comparison and identification. The interior structure at this point is reproducible and its shape and appearance can easily be used to distinguish among species. We also report details of the interior structures of parts not shown in the 3D model, such as stone cells and cortical thickness. To demonstrate the usefulness of the results from the 3D model, we have distinguished the microscopic structures, at their largest segments, of the other three Aconitum species used for local habitat species of Caowu. This work provides the basis for resolution of some debate regarding the microstructural differences among these species. Thus, we conclude that the 3D model composed of serial sections has enabled the selection of a standard cross-section that will enable the accurate identification of Aconitum species in Chinese medicine. © 2015 Wiley Periodicals, Inc.

  5. Microscopic analysis of "iron spot" on blue-and-white porcelain from Jingdezhen imperial kiln in early Ming dynasty (14th-15th century).

    PubMed

    Wang, Wenxuan; Zhu, Jian; Jiang, Jianxin; Xu, Changqing; Wu, Shurong; Guan, Li; Zhang, Zhaoxia; Wu, Menglei; Du, Jingnan

    2016-11-01

    "Sumali," as an imported cobalt ore from overseas, was a sort of precious and valuable pigment used for imperial kilns only, which produces characteristic "iron spot" to blue-and-white porcelain in early Ming Dynasty (A.D. 14th-15th century). Although there were some old studies on it, the morphology and formation of iron spot has not been fully investigated and understood. Therefore, five selected samples with typical spot from Jingdezhen imperial kiln in Ming Yongle periods (A.D. 1403-1424) were analyzed by various microscopic analysis including 3D digital microscope, SEM-EDS and EPMA. According to SEM images, samples can be divided into three groups: un-reflected "iron spot" without crystals, un-reflected "iron spot" with crystals and reflected "iron spot" with crystals. Furthermore, 3D micro-images revealed that "iron spots" separate out dendritic or snow-shaped crystals of iron only on and parallel to the surface of glaze for which "iron spot" show strong metallic luster. Combining with microscopic observation and microanalysis on crystallization and non-crystallization areas, it indicates that firing oxygen concentration is the ultimate causation of forming reflective iron spot which has a shallower distribution below the surface and limits crystals growing down. More details about characters of "iron spot" used "Sumali" were found and provided new clues to coloration, formation mechanism and porcelain producing technology of imperial kiln from 14th to 15th centuries of China. © 2016 Wiley Periodicals, Inc.

  6. Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta

    2013-04-01

    In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followedmore » a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.« less

  7. Chrysophyte cysts as potential environmental indicators.

    USGS Publications Warehouse

    Adam, D.P.; Mahood, A.D.

    1981-01-01

    Many chrysophyte algae produce morphologically distinctive, siliceous, microscopic cysts during a resting stage of their life cycles; these cysts are often preserved in sediments. Scanning electron microscopy and Nomarski optics permit much more detailed observation of these cysts than was heretofore possible. Many cyst types are found only in specific habitats, such as montane lakes, wet meadows, ephemeral ponds, and Sphagnum bogs. In the samples studied, cysts seem to be most common in fluctuating fresh-water habitats of low to moderate pH and some winter freezing. Chrysophyte cysts have the potential to be a useful tool for modern environmental assessments and paleoecological studies of Cenozoic fresh-water lacustrine deposits. -from Authors

  8. Genome sequencing of a single tardigrade Hypsibius dujardini individual

    PubMed Central

    Arakawa, Kazuharu; Yoshida, Yuki; Tomita, Masaru

    2016-01-01

    Tardigrades are ubiquitous microscopic animals that play an important role in the study of metazoan phylogeny. Most terrestrial tardigrades can withstand extreme environments by entering an ametabolic desiccated state termed anhydrobiosis. Due to their small size and the non-axenic nature of laboratory cultures, molecular studies of tardigrades are prone to contamination. To minimize the possibility of microbial contaminations and to obtain high-quality genomic information, we have developed an ultra-low input library sequencing protocol to enable the genome sequencing of a single tardigrade Hypsibius dujardini individual. Here, we describe the details of our sequencing data and the ultra-low input library preparation methodologies. PMID:27529330

  9. Genome sequencing of a single tardigrade Hypsibius dujardini individual.

    PubMed

    Arakawa, Kazuharu; Yoshida, Yuki; Tomita, Masaru

    2016-08-16

    Tardigrades are ubiquitous microscopic animals that play an important role in the study of metazoan phylogeny. Most terrestrial tardigrades can withstand extreme environments by entering an ametabolic desiccated state termed anhydrobiosis. Due to their small size and the non-axenic nature of laboratory cultures, molecular studies of tardigrades are prone to contamination. To minimize the possibility of microbial contaminations and to obtain high-quality genomic information, we have developed an ultra-low input library sequencing protocol to enable the genome sequencing of a single tardigrade Hypsibius dujardini individual. Here, we describe the details of our sequencing data and the ultra-low input library preparation methodologies.

  10. Scanning-tunneling microscope imaging of single-electron solitons in a material with incommensurate charge-density waves.

    PubMed

    Brazovskii, Serguei; Brun, Christophe; Wang, Zhao-Zhong; Monceau, Pierre

    2012-03-02

    We report on scanning-tunneling microscopy experiments in a charge-density wave (CDW) system allowing visually capturing and studying in detail the individual solitons corresponding to the self-trapping of just one electron. This "Amplitude Soliton" is marked by vanishing of the CDW amplitude and by the π shift of its phase. It might be the realization of the spinon--the long-sought particle (along with the holon) in the study of science of strongly correlated electronic systems. As a distinct feature we also observe one-dimensional Friedel oscillations superimposed on the CDW which develop independently of solitons.

  11. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    USDA-ARS?s Scientific Manuscript database

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, V.V.; Conley, R.; Anderson, E.H.

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electronmore » microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less

  13. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  14. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image

    PubMed Central

    Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background. Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated “slide scanners” which can provide a “whole slide digital image.” These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods. In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results. The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion. With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost. PMID:27747147

  15. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    PubMed

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  16. Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Jancarek, Alexandr; Nevrkla, Michal; Duda, Martin Jakub; Pina, Ladislav

    2017-05-01

    The development and demonstration of a soft X-ray (SXR) microscope, based on a Z-pinching capillary discharge source has been realized. The Z-pinching plasma acts as a source of SXR radiation. A ceramic capacitor bank is pulsed charged up to 80 kV, and discharged through a pre- ionized nitrogen filled ceramic capillary. The discharge current has an amplitude of 25 kA. Working within the water-window spectral region (λ = 2.88 nm), corresponding to the 1s2-1s2p quantum transition of helium-like nitrogen (N5+), the microscope has a potential in exploiting the natural contrast existing between the K-absorption edges of carbon and oxygen as the main constituents of biological materials, and hence imaging them with high spatial resolution. The SXR microscope uses the grazing incidence ellipsoidal condenser mirror for the illumination, and the Fresnel zone plate optics for the imaging of samples onto a BI-CCD camera. The half- pitch spatial resolution of 100 nm [1] was achieved, as demonstrated by the knife-edge test. In order to enhance the photon-flux at the sample plane, a new scheme for focusing the radiation, from multiple capillary sources has been investigated. Details about the source, and the construction of the microscope are presented and discussed.

  17. The Advantage of Playing Home in NBA: Microscopic, Team-Specific and Evolving Features.

    PubMed

    Ribeiro, Haroldo V; Mukherjee, Satyam; Zeng, Xiao Han T

    2016-01-01

    The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called "home advantage phenomenon" date back to the 70's and ever since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the "microscopic" dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased ≈0.16 points per minute (on average the seasons 2004-05 to 2013-14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only ≈0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon. This study thus adds evidence of the home advantage phenomenon and contributes to a deeper understanding of this effect over the course of games.

  18. Modular low-light microscope for imaging cellular bioluminescence and radioluminescence

    PubMed Central

    Kim, Tae Jin; Türkcan, Silvan; Pratx, Guillem

    2017-01-01

    Low-light microscopy methods are receiving increased attention as new applications have emerged. One such application is to allow longitudinal imaging of light-sensitive cells with no phototoxicity and no photobleaching of fluorescent biomarkers. Another application is for imaging signals that are inherently dim and undetectable using standard microscopy, such as bioluminescence, chemiluminescence, or radioluminescence. In this protocol, we provide instructions on how to build a modular low-light microscope (1-4 d) by coupling two microscope objective lenses, back-to-back from each other, using standard optomechanical components. We also provide directions on how to image dim signals such as radioluminescence (1-1.5 h), bioluminescence (∼30 min) and low-excitation fluorescence (∼15 min). In particular, radioluminescence microscopy is explained in detail as it is a newly developed technique, which enables the study of small molecule transport (eg. radiolabeled drugs, metabolic precursors, and nuclear medicine contrast agents) by single cells without perturbing endogenous biochemical processes. In this imaging technique, a scintillator crystal (eg. CdWO4) is placed in close proximity to the radiolabeled cells, where it converts the radioactive decays into optical flashes detectable using a sensitive camera. Using the image reconstruction toolkit provided in this protocol, the flashes can be reconstructed to yield high-resolution image of the radiotracer distribution. With appropriate timing, the three aforementioned imaging modalities may be performed altogether on a population of live cells, allowing the user to perform parallel functional studies of cell heterogeneity at the single-cell level. PMID:28426025

  19. Initial formation of calcite crystals in the thin prismatic layer with the periostracum of Pinctada fucata.

    PubMed

    Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro

    2013-02-01

    Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Experimental Systems to Study Yeast Pexophagy.

    PubMed

    Yamashita, Shun-Ichi; Oku, Masahide; Sakai, Yasuyoshi; Fujiki, Yukio

    2017-01-01

    Peroxisome abundance is tightly regulated according to the physiological contexts, through regulations of both proliferation and degradation of the organelles. Here, we describe detailed methods to analyze processes for autophagic degradation of peroxisomes, termed pexophagy, in yeast organisms. The assay systems include a method for biochemical detection of pexophagy completion, and one for microscopic visualization of specialized membrane structures acting in pexophagy. As a model yeast organism utilized in studies of pexophagy, the methylotrophic yeast Komagataella phaffii (Pichia pastoris) is referred to in this chapter and related information on the studies with baker's yeast (Saccharomyces cerevisiae) is also included. The described techniques facilitate elucidation of molecular machineries for pexophagy and understanding of peroxisome-selective autophagic pathways.

  1. Electron microscopy of hydrocarbon production in parthenium argentatum (guayule)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thomas E.

    1977-11-01

    The electron microscope was used to study the biological processes involved in hydrocarbon production. The little desert shrub Guayule (Parthenium argentatum) was selected for study. This shrub can produce hydrocarbons (rubber) in concentrations up to 1/4 of its dry weight. It grows on semi-arid land and has been extensively studied. The potential of Guayule is described in detail. Results of an investigation into the morphology of Guayule at the electron microscope level are given. Experiments, which would allow the biosynthesis of hydrocarbon in Guayule to be followed, were designed. In order to do this, knowledge of the biochemistry of rubbermore » formation was used to select a tracer, mevalonic acid. Mevalonic acid is the precursor of all the terpenoids, a large class of hydrocarbons which includes rubber. It was found that when high enough concentrations of mevalonic acid are administered to seedling Guayule plants, build-ups of metabolized products are found within the chloroplasts of the seedlings. Also, tritium labeled mevalonic acid was used as a precursor, and its metabolic progress was followed by using the technique of electron microscope autoradiography. The results of these experiments also implicated chloroplasts of the Guayule plant in hydrocarbon production. The final task was the development of a system to produce three-dimensional stereo reconstructions of organelles suspected of involvement in hydrocarbon biosynthesis in Guayule. The techniques are designed to reconstruct an object from serial sections of that object. The techniques use stereo imaging both to abstract information for computer processing, and also in the computer produced reconstruction.« less

  2. SU-C-303-03: Dosimetric Model of the Beagle Needed for Pre-Clinical Testing of Radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, M; Sands, M; Bolch, W

    2015-06-15

    Purpose: Large animal models, most popularly beagles, have been crucial surrogates to humans in determining radiation safety levels of radiopharmaceuticals. This study aims to develop a detailed beagle phantom to accurately approximate organ absorbed doses for therapy nuclear medicine preclinical studies. Methods: A 3D NURBS model was created subordinate to a whole body CT of an adult beagle. Bones were harvested and CT imaged to offer macroscopic skeletal detail. Samples of trabecular spongiosa were cored and imaged to offer microscopic skeletal detail for bone trabeculae and marrow volume fractions. Results: Organ masses in the model are typical of an adultmore » beagle. Trends in volume fractions for skeletal dosimetry are fundamentally similar to those found in existing models of other canine species. Conclusion: This work warrants its use in further investigations of radiation transport calculation for electron and photon dosimetry. This model accurately represents the anatomy of a beagle, and can be directly translated into a useable geometry for a voxel-based Monte Carlo radiation transport program such as MCNP6. Work supported by a grant from the Hyundai Hope on Wheels Foundation for Pediatric Cancer Research.« less

  3. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals

    NASA Astrophysics Data System (ADS)

    Battaile, Corbett; Owen, Steven; Moore, Nathan

    2017-06-01

    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  4. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  5. Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation.

    PubMed

    Clark, David J; Sheets, Cherilyn G; Paquette, Jacinthe M

    2003-01-01

    The diagnoses of cracked teeth and incomplete coronal fracture have historically been symptom based. The dental operating microscope at 16x magnification can fundamentally change a clinician's ability to diagnose such conditions. Clinicians have been observing cracks under extreme magnification for nearly a decade. Patterns have become clear that can lead to appropriate treatment prior to symptoms or to devastation to tooth structure. Conversely, many cracks are not structural and can lead to misdiagnosis and overtreatment. Methodic microscopic examination, an understanding of crack progression, and an appreciation of the types of cracks will guide a doctor to make appropriate decisions. Teeth can have structural cracks in various stages. To date, diagnosis and treatment are very often at end stage of crack development. This article gives new guidelines for recognition, visualization, classification, and treatment of cracked teeth based on the routine use of 16x magnification. The significance of enamel cracks as they relate to dentinal cracks is detailed.

  6. Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon

    DOE PAGES

    Mamontov, Eugene; Yue, Yanfeng; Bahadur, Jitendra; ...

    2016-10-20

    Even when not functionalized intentionally, most carbon materials are not hydrophobic and readily adsorb water molecules from atmospheric water vapor. We have equilibrated an ultramicroporous carbon at several levels of relative humidity, thereby attaining various hydration levels. The water molecules were adsorbed on the pore walls (but did not fill completely the pore volume) and thus could be better described as hydration, or surface, rather than confined, water. We used quasielastic neutron scattering to perform a detailed investigation of the dependence of microscopic dynamics of these adsorbed water species on the hydration level and temperature. The behavior of hydration watermore » in ultramicroporous carbon clearly demonstrates the same universal traits that characterize surface (hydration) water in other materials that are surface-hydrated. In addition, unless special treatment is intentionally applied to ultramicroporous carbon, the species filling its pores in various applications, ranging from hydrogen molecules to electrolytes, likely find themselves in contact with non-freezing water molecules characterized by rich microscopic dynamics.« less

  7. Two-photon imaging in living brain slices.

    PubMed

    Mainen, Z F; Maletic-Savatic, M; Shi, S H; Hayashi, Y; Malinow, R; Svoboda, K

    1999-06-01

    Two-photon excitation laser scanning microscopy (TPLSM) has become the tool of choice for high-resolution fluorescence imaging in intact neural tissues. Compared with other optical techniques, TPLSM allows high-resolution imaging and efficient detection of fluorescence signal with minimal photobleaching and phototoxicity. The advantages of TPLSM are especially pronounced in highly scattering environments such as the brain slice. Here we describe our approaches to imaging various aspects of synaptic function in living brain slices. To combine several imaging modes together with patch-clamp electrophysiological recordings we found it advantageous to custom-build an upright microscope. Our design goals were primarily experimental convenience and efficient collection of fluorescence. We describe our TPLSM imaging system and its performance in detail. We present dynamic measurements of neuronal morphology of neurons expressing green fluorescent protein (GFP) and GFP fusion proteins as well as functional imaging of calcium dynamics in individual dendritic spines. Although our microscope is a custom instrument, its key advantages can be easily implemented as a modification of commercial laser scanning microscopes. Copyright 1999 Academic Press.

  8. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission configuration. It will detail the actual in-flight performances of the accelerometers and of the attitude and position control, in order to evaluate the gradiometer error budget according to the satellite pointing mode configuration.

  9. Utility of fluorescence microscopy in embryonic/fetal topographical analysis.

    PubMed

    Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M

    1995-06-01

    For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.

  10. Mineralogical characterization of rendering mortars from decorative details of a baroque building in Kozuchow (SW Poland)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.

    Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less

  11. Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations

    PubMed Central

    Sirry, Mazin S.; Davies, Neil H.; Kadner, Karen; Dubuis, Laura; Saleh, Muhammad G.; Meintjes, Ernesta M.; Spottiswoode, Bruce S.; Zilla, Peter; Franz, Thomas

    2013-01-01

    Biomaterial injection based therapies have showed cautious success in restoration of cardiac function and prevention of adverse remodelling into heart failure after myocardial infarction (MI). However, the underlying mechanisms are not well understood. Computational studies utilised simplified representations of the therapeutic myocardial injectates. Wistar rats underwent experimental infarction followed by immediate injection of polyethylene glycol hydrogel in the infarct region. Hearts were explanted, cryo-sectioned and the region with the injectate histologically analysed. Histological micrographs were used to reconstruct the dispersed hydrogel injectate. Cardiac magnetic resonance imaging (CMRI) data from a healthy rat were used to obtain an end-diastolic biventricular geometry which was subsequently adjusted and combined with the injectate model. The computational geometry of the injectate exhibited microscopic structural details found the in situ. The combination of injectate and cardiac geometry provides realistic geometries for multiscale computational studies of intra-myocardial injectate therapies for the rat model that has been widely used for MI research. PMID:23682845

  12. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

    NASA Astrophysics Data System (ADS)

    Stach, Thomas

    2013-12-01

    Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".

  13. {gamma}-vibrational states in superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yang; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000; Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  14. The fine structure of the sperm of the round goby (Neogobius melanostomus)

    USGS Publications Warehouse

    Allen, Jeffrey D.; Walker, Glenn K.; Nichols, Susan J.; Sorenson, Dorothy

    2004-01-01

    The fine structural details of the spermatozoon of the round goby are presented for the first time in this study. Scanning and transmission electron microscopic examination of testis reveals an anacrosomal spermatozoon with a slightly elongate head and uniformly compacted chromatin. The midpiece contains a single, spherical mitochondrion. Two perpendicularly oriented centrioles lie in a deep, eccentric nuclear fossa with no regularly observed connection to the nucleus. The flagellum develops bilateral fins soon after emerging from the fossa; each extends approximately 1 A?m from the axoneme and persists nearly the length of the flagellum.

  15. Shear Induced Structural Relaxation in a Supercooled Colloidal Liquid

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Semwogerere, Denis; Weeks, Eric R.

    2009-11-01

    Amorphous materials include many common products we use everyday, such as window glass, moisturizer, shaving cream and peanut butter. These materials have liquid-like disordered structure, but keep their shapes like a solid. The rheology of dense amorphous materials under large shear strain is not fully understood, partly due to the difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to simulate amorphous materials, and study the shear- induced structural relaxation with fast confocal microscopy. We quantify the plastic rearrangements of the particles using standard analysis techniques based on the motion of the particles.

  16. Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy

    PubMed Central

    1979-01-01

    Blood platelets from 10 normal human subjects have been examined with a sensitive differential interference contrast (DIC) microscope. The entire transformation process during adhesion to glass is clearly visible and has been recorded cinematographically, including the disk to sphere change of shape, the formation of sessile protuberances, the extension and retraction of pseudopodia, and the spreading, ruffling, and occasional regression of the hyalomere. The exocytosis of intact dense bodies can be observed either by DIC microscopy, or by epifluorescence microscopy in platelets stained with mepacrine. Details of fluorescent flashes indicate that the dense bodies usually release their contents extracellularly, may do so intracytoplasmically under the influence of strong, short wavelength light on some preparations of mepacrine-stained platelets. The release of one or more dense bodies leaves a crater of variable size on the upper surface of the granulomere. Such craters represent the surface component of the open canalicular system and their formation and disappearance can be directly observed. Because these techniques permit quantitation of several parameters of motility which are not readily observable by other techniques, it is suggested that high extinction DIC microscope examination may become a rapid and useful method of studying congenital and acquired platelet disorders. Many features of platelet transformation have been confirmed and extended by scanning electron micrographs. These can in turn be interpreted by reference to time- lapse films of living platelets. PMID:511936

  17. The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach

    NASA Astrophysics Data System (ADS)

    Croxall, S. A.; Hardy, M. C.; Stone, H. J.; Midgley, P. A.

    Nickel-base superalloys are aerospace materials that exhibit exceptional mechanical properties and corrosion resistance at very high temperatures. RR1000 is used in discs in gas turbine engines, where temperatures reach in excess of 650°C with high mechanical stresses. Study of the microstructure at the micron and sub-micron level has conventionally been undertaken using scanning electron microscope images, often meaning the underlying 3D microstructure can be inferred only with additional knowledge. Using a dual-beam workstation, we are able to interrogate directly the 3D microstructure using a serial sectioning approach. The 3D data set, typically (10µm)3 in volume, reveals microstructural detail with lateral resolution of circa 8nm and a depth resolution dictated by the slice thickness, typically 50nm. Morphological and volumetric analysis of the 3D reconstruction of RR1000 superalloy reveals microstructural details hitherto unseen.

  18. How does microanalysis of mother-infant communication inform maternal sensitivity and infant attachment?

    PubMed

    Beebe, Beatrice; Steele, Miriam

    2013-01-01

    Microanalysis research on 4-month infant-mother face-to-face communication operates like a "social microscope" and identifies aspects of maternal sensitivity and the origins of attachment with a more detailed lens. We hope to enhance a dialogue between these two paradigms, microanalysis of mother-infant communication and maternal sensitivity and emerging working models of attachment. The prediction of infant attachment from microanalytic approaches and their contribution to concepts of maternal sensitivity are described. We summarize aspects of one microanalytic study by Beebe and colleagues published in 2010 that documents new communication patterns between mothers and infants at 4 months that predict future disorganized (vs. secure) attachment. The microanalysis approach opens up a new window on the details of the micro-processes of face-to-face communication. It provides a new, rich set of behaviors with which to extend our understanding of the origins of infant attachment and of maternal sensitivity.

  19. Dissipative effects in multi-component systems

    NASA Astrophysics Data System (ADS)

    El, Andrej; Bouras, Ioannis; Xu, Zhe; Greiner, Carsten

    2013-05-01

    Using a smooth initial condition of Glauber type in the kinetic transport algorithm BAMPS we investigate differences in behavior of a multi-component system and its one-component equivalent with the same η/s value. Flow harmonic coefficients v2 and v4 are shown to have very low sensitivity to the details of microscopic interactions in the system.

  20. Magnetic field reconnection. [energy conversion in space plasma

    NASA Technical Reports Server (NTRS)

    Sonnerup, U. O.

    1979-01-01

    A reasonably detailed description is obtained of the current status of our understanding of magnetic field reconnection. The picture that emerges is of a process, simple in concept but extremely complicated and multifaceted in detail. Nonlinear MHD processes in the external flow region, governed by distant boundary conditions, are coupled to nonlinear microscopic plasma processes in the diffusion region, in a manner not clearly understood. It appears that reconnection may operate in entirely different ways for different plasma parameters and different external boundary conditions. Steady reconnection may be allowed in some cases, forbidden in others, with intermediate situations involving impulsive or pulsative events.

  1. Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.

    2018-04-01

    Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

  2. Reducing false negatives in clinical practice: the role of neural network technology.

    PubMed

    Mango, L J

    1996-10-01

    The fact that some cervical smears result in false-negative findings is an unavoidable and unpredictable consequence of the conventional (manual microscopic) method of screening. Errors in the detection and interpretation of abnormality are cited as leading causes of false-negative cytology findings; these are random errors that are not known to correlate with any patient risk factor, which makes the false-negative findings a "silent" threat that is difficult to prevent. Described by many as a labor-intensive procedure, the microscopic evaluation of a cervical smear involves a detailed search among hundreds of thousands of cells on each smear for a possible few that may indicate abnormality. Investigations into causes of false-negative findings preceding the discovery of high-grade lesions found that many smears had very few diagnostic cells that were often very small in size. These small cells were initially overlooked or misinterpreted and repeatedly missed on rescreening. PAPNET testing is designed to supplement conventional screening by detecting abnormal cells that initially may have been missed by microscopic examination. This interactive system uses neural networks, a type of artificial intelligence well suited for pattern recognition, to automate the arduous search for abnormality. The instrument focuses the review of suspicious cells by a trained cytologist. Clinical studies indicate that PAPNET testing is sensitive to abnormality typically missed by conventional screening and that its use as a supplemental test improves the accuracy of screening.

  3. Onset of jamming for gas-fluidized grains

    NASA Astrophysics Data System (ADS)

    Abate, Adam

    2006-03-01

    Upon approach to jamming, whether for molecular liquids or colloidal particles or grains of sand, the microscopic dynamics can develop dramatic long-ranged correlations while the microscopic structure remains relatively unchanged. Experimentally, it has been difficult to study such phenomena in full detail due to the range of temporal and spatial scales involved. Here we introduce a new model system that is both easier to image and to manipulate at the microscale: a bidisperse system of steel beads rolling stochastically due to a nearly-levitating upflow of air. At fixed air flow, we demonstrate that this system exhibits all the hallmarks of a jamming transition as spheres are added and the area fraction increases toward close-packing. In terms of structure, the pair correlation function and the Voronoi cell shape distribution functions exhibit peak splitting. In terms of dynamics, the mean-squared displacement develops a plateau separating the short-time ballistic from the long-time diffusive motions; in this plateau the displacement distribution is non-Gaussian, due to spatial heterogeneities. While this phenomenology is familiar, one feature observed previously only in simulation is the presence of string-like swirls of rearranging grains. We highlight these by movies of an appropriately time-averaged velocity field. We hope to connect such dynamics both to a microscopic measure of effective temperature and to the macroscopic viscosity of the system.

  4. Continuous stacking computational approach based automated microscope slide scanner

    NASA Astrophysics Data System (ADS)

    Murali, Swetha; Adhikari, Jayesh Vasudeva; Jagannadh, Veerendra Kalyan; Gorthi, Sai Siva

    2018-02-01

    Cost-effective and automated acquisition of whole slide images is a bottleneck for wide-scale deployment of digital pathology. In this article, a computation augmented approach for the development of an automated microscope slide scanner is presented. The realization of a prototype device built using inexpensive off-the-shelf optical components and motors is detailed. The applicability of the developed prototype to clinical diagnostic testing is demonstrated by generating good quality digital images of malaria-infected blood smears. Further, the acquired slide images have been processed to identify and count the number of malaria-infected red blood cells and thereby perform quantitative parasitemia level estimation. The presented prototype would enable cost-effective deployment of slide-based cyto-diagnostic testing in endemic areas.

  5. Derivation of Markov processes that violate detailed balance

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2018-03-01

    Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.

  6. A novel grid-based mesoscopic model for evacuation dynamics

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Lee, Eric Wai Ming; Ma, Yi

    2018-05-01

    This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.

  7. Microdytes huangyongensis sp. n. and new records of Allopachria Zimmermann, 1924 from Zhejiang Province, China (Coleoptera: Dytiscidae).

    PubMed

    Bian, Dongju; Zhang, Yue; Ji, Lanzhu

    2015-11-12

    An excursion to Zhejiang, China was made in August 2014, and two species of Microdytes J. Balfour-Browne, 1946 (M. uenoi Satô, 1972 and M. huangyongensis sp. n.) and two species of Allopachria Zimmermann, 1924 (A. miaowangi Wewalka, 2010, and A. schoenmanni Wewalka, 2000) were collected. Only one species of Microdytes (M. uenoi Satô, 1972) was recorded from Zhejiang before. The genus Allopachria is reported from Zhejiang for the first time. The genus Microdytes occurs throughout southern and south-eastern Asia. Since the revision of Microdytes by Wewalka (1997), sixteen new species and one new synonymy have been reported (Wewalka 1998; Wewalka & Wang 1998; Wewalka et al. 2007; Bian & Ji 2009; Miller & Wewalka 2010; Wewalka 2011). Including the new species the genus Microdytes comprises 46 species. Specimens were examined with a Leica M205c stereomicroscope. Further details were studied under an Olympus BX51 compound microscope. The photograph of the holotype (Fig 1) was made with a KEYENCE VHX-2000 C digital microscope. All specimens studied were deposited in the Institute of Applied Ecology, Shenyang, Chinese Academy of Sciences (IAECAS).

  8. New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials

    PubMed Central

    den Engelsen, Daniel; Fern, George R.; Harris, Paul G.; Ireland, Terry G.; Silver, Jack

    2017-01-01

    Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images. PMID:28772671

  9. Electron microscopic and ion scattering studies of heteroepitaxial tin-doped indium oxide films

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Shigesato, Yuzo; Takaki, Satoru; Hayashi, Yasuo; Sasaki, Mikio; Haynes, Tony E.

    1994-08-01

    The microstructure of heteroepitaxial tin-doped indium oxide (ITO) films were studied in detail. The surface morphology of the heteroepitaxial ITO film consisted of square-shaped, in-plane oriented subgrains (˜300 Å) in contrast to that of the polycrystalline film (characteristic grain-subgrain structure). The subgrain boundaries were predominantly formed along the {110} planes in the ITO film and dislocations were observed primarily along the subgrain boundaries. Ion channeling measurements showed the dislocation density of this film to be approximately 3×1010/cm2, and the angular distribution of the ion channeling yield showed that the subgrains are aligned to within better than 0.3° (standard deviation).

  10. Microscopic study of low-lying spectra of Λ hypernuclei based on a beyond-mean-field approach with a covariant energy density functional

    NASA Astrophysics Data System (ADS)

    Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.

    2015-06-01

    We present a detailed formalism of the microscopic particle-rotor model for hypernuclear low-lying states based on a covariant density functional theory. In this method, the hypernuclear states are constructed by coupling a hyperon to low-lying states of the core nucleus, which are described by the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this method to study in detail the low-lying spectrum of C13Λ and Ne21Λ hypernuclei. We also briefly discuss the structure of Sm155Λ as an example of heavy deformed hypernuclei. It is shown that the low-lying excitation spectra with positive-parity states of the hypernuclei, which are dominated by Λ hyperon in the s orbital coupled to the core states, are similar to that for the corresponding core states, while the electric quadrupole transition strength, B (E 2 ) , from the 21+ state to the ground state is reduced according to the mass number of the hypernuclei. Our study indicates that the energy splitting between the first 1 /2- and 3 /2- hypernuclear states is generally small for all the hypernuclei which we study. However, their configurations depend much on the properties of a core nucleus, in particular on the sign of deformation parameter. That is, the first 1 /2- and 3 /2- states in Λ13C are dominated by a single configuration with Λ particle in the p -wave orbits and thus provide good candidates for a study of the Λ spin-orbit splitting. On the other hand, those states in the other hypernuclei exhibit a large configuration mixing and thus their energy difference cannot be interpreted as the spin-orbit splitting for the p orbits.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    V Yashchuk; R Conley; E Anderson

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanningmore » (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less

  12. Microvascular anatomy of the cerebellar parafloccular perforating space.

    PubMed

    Sosa, Pablo; Dujovny, Manuel; Onyekachi, Ibe; Sockwell, Noressia; Cremaschi, Fabián; Savastano, Luis E

    2016-02-01

    The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle-namely, the paraflocculus or parafloccular perforating space-has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to elucidate their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maximum of 26 vessels per parafloccular perforating space. The average outer diameter of the cisternal portion of the perforating arteries was 0.11 ± 0.042 mm (mean ± SD) and the average length was 2.84 ± 1.2 mm. Detailed schematics and the surgical anatomy of the perforating vessels at the CPC and their clinical relevance are reported. The parafloccular space is a key entry point for many perforating vessels toward the middle cerebellar peduncle and lateral brainstem, and it must be respected and protected during surgical approaches to the cerebellopontine angle.

  13. In situ creation of reactive polymer nanoparticles and resulting polymer layers formed at the interfaces of liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin

    2017-02-01

    We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.

  14. Line-edge quality optimization of electron beam resist for high-throughput character projection exposure utilizing atomic force microscope analysis

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro

    2017-04-01

    High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.

  15. Histomorphology of the penis bone (Baculum) in the gray long-eared bat Plecotus austriacus (Chiroptera, Vespertilionidae).

    PubMed

    Herdina, Anna Nele; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D; Plenk, Hanns

    2010-07-01

    For the first time, the histomorphology of the penis bone of a bat (Plecotus austriacus) was examined in detail. From Plecotus austriacus, 14 whole penes and 11 isolated bacula were studied and compared to bacula of Plecotus auritus and Plecotus macrobullaris. The baculum was located on specimen microradiographs and in micro-CT images in the tip of the penis. Using serial semithin sections and surface-stained, undecalcified ground sections, the types of bone and other tissues constituting the baculum were examined by light microscopy. 3D reconstructions were generated from the serial semithin sections and from micro-CT images. The shaft and the proximal branches of the Y-shaped baculum form a tubular bone around a medullary cavity. Since the small diameter of this channel and the main lamellar bone around it resemble a Haversian canal, the baculum is equivalent to a single-osteon bone. Several oblique nutrient canals enter this medullary cavity in the shaft and branches. All ends of the baculum consist predominantly of woven bone. The collagen fiber bundles of the tunica albuginea of both corpora cavernosa insert via fibrocartilage into the woven bone of the branches. Thus, the microscopic structures support the hypothesis that the baculum functions as a stiffening element in the erect penis. In this study, several microscopic imaging techniques were evaluated for displaying the microscopic structures of the baculum. Specimen microradiography, but especially micro-CT proved to be suitable nondestructive methods for accurate and reproducible demonstration and comparison of the three-dimensional structures of the baculum in different bat species.

  16. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema

    Lagrange, Thomas; Reed, Bryan

    2018-01-26

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  17. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagrange, Thomas; Reed, Bryan

    2014-04-03

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shapemore » real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.« less

  18. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  19. Garage Demos: Using Physical Models to Illustrate Dynamic Aspects of Microscopic Biological Processes

    PubMed Central

    Aguilar-Roca, Nancy

    2009-01-01

    Colorful PowerPoint presentations with detailed drawings, micrographs, and short animations have become the standard format for illustrating the fundamental features of cell biology in large introductory classes. In this essay, we describe a low-tech tool that can be included in a standard lecture to help students visualize, understand, and remember the dynamic aspects of microscopic cell biological processes. This approach involves use of common objects, including pipe insulation and a garden hose, to illustrate basic processes such as protein folding and cloning, hence the appellation “garage demos.” The demonstrations are short, minimizing displacement of course content, easy to make, and provide an avenue for increasing student–faculty interaction in a large lecture hall. Student feedback over the past 4 years has been overwhelmingly positive. In an anonymous postclass survey in 2007, 90% of the respondents rated garage demos as having been very or somewhat helpful for understanding course concepts. Direct measurements of learning gains on specific concepts illustrated by garage demos are the focus of an ongoing study. PMID:19487500

  20. Microscopic and continuum descriptions of Janus motor fluid flow fields

    PubMed Central

    Reigh, Shang Yik; Schofield, Jeremy; Kapral, Raymond

    2016-01-01

    Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698037

  1. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hafez, H. S.; Shenouda, S. S.; Fadel, M.

    2018-03-01

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO2 nanoparticles with an average particle size (10-40 nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100 mW.cm- 2. The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R = 15.6-23.8 mA.W- 1 and η = 0.13-0.25) at AM = 1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology.

  2. UHV LT-STM system with Sample and Tip Exchange

    NASA Astrophysics Data System (ADS)

    Dreyer, Michael; Lee, Jonghee; Wang, Hui; Sullivan, Dan; Barker, Barry

    2006-03-01

    We developed and built a low temperature scanning tunneling microscope system with ultra high vacuum sample and tip preparation capabilities. The STM is mounted inside an UHV can which is submerged in a He bath cryostat. The cryostat is equipped with two superconducting magnets allowing a maximum in plane field of 2 T and a maximum out of plane field of 9 T. The two fields can be combined to a 1 T vector field. The vacuum can is connected to an UHV system at room temperature consisting of two chambers: One dedicated to transferring samples and tips to the STM, and the other chamber used for tip/sample preparation. It is equipped with two electron beam evaporators, an argon ion sputter gun as well as sample heaters. The whole system is supported by an optical table to decouple the STM from building vibrations. The system was successfully used to study standing electron waves on gold (111) as well as vortices on NbSe2. Details of the microscope, sample and tip handling system, as well as the UHV system will be presented.

  3. Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study.

    PubMed

    Noroozi, Javad; Paluch, Andrew S

    2017-02-23

    Molecular dynamics simulations were employed to both estimate the solubility of nonelectrolyte solids, such as acetanilide, acetaminophen, phenacetin, methylparaben, and lidocaine, in supercritical carbon dioxide and understand the underlying molecular-level driving forces. The solubility calculations involve the estimation of the solute's limiting activity coefficient, which may be computed using conventional staged free-energy calculations. For the case of lidocaine, wherein the infinite dilution approximation is not appropriate, we demonstrate how the activity coefficient at finite concentrations may be estimated without additional effort using the dilute solution approximation and how this may be used to further understand the solvation process. Combining with experimental pure-solid properties, namely, the normal melting point and enthalpy of fusion, solubilities were estimated. The results are in good quantitative agreement with available experimental data, suggesting that molecular simulations may be a powerful tool for understanding supercritical processes and the design of carbon dioxide-philic molecular systems. Structural analyses were performed to shed light on the microscopic details of the solvation of different functional groups by carbon dioxide and the observed solubility trends.

  4. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    PubMed

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  5. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    PubMed

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    PubMed

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  7. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  8. Three-Dimensional Geometric Modeling of Membrane-bound Organelles in Ventricular Myocytes: Bridging the Gap between Microscopic Imaging and Mathematical Simulation

    PubMed Central

    Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko

    2009-01-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449

  9. Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: bridging the gap between microscopic imaging and mathematical simulation.

    PubMed

    Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko

    2008-12-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.

  10. Spatially confined photoinactivation of bacteria: towards novel tools for detailed mechanistic studies

    NASA Astrophysics Data System (ADS)

    Thomsen, Hanna; James, Jeemol; Farewell, Anne; Ericson, Marica B.

    2018-02-01

    Antimicrobial resistance is a serious global threat fueling an accelerated field of research aimed at developing novel antimicrobial therapies. A particular challenge is the treatment of microbial biofilms formed upon bacterial growth and often associated with chronic infections. Biofilms comprise bacteria that have adhered to a surface and formed 3D microcolonies, and demonstrate significantly increased antimicrobial resistance compared to the planktonic counterpart. A challenge in developing novel strategies for fighting these chronic infections is a lack of mechanistic understanding of what primarily contributes to enhanced drug resistance. Tools for noninvasive study of live biofilms are necessary to begin to understand these mechanisms on both a single cell and 3D level. Herein, a method by which multiphoton microscopy is implemented to study a biofilm model of Staphylococcus epidermidis to noninvasively visualize and measure penetration of compounds in 3D biofilm structure and two photon excitation was exploited for spatially confined photoinactivation and microscopy optimized for evaluation of microbiological viability at a microscopic level. Future studies are aimed at future development of the proposed techniques for detailed studies of, e.g., quorum sensing and mechanisms contributing to antimicrobial resistance.

  11. Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusche, C., E-mail: c.tusche@fz-juelich.de; Peter Grünberg Institut; Goslawski, P.

    2016-06-27

    In the quest for detailed spectroscopic insight into the electronic structure at solid surfaces in a large momentum range, we have developed an advanced experimental approach. It combines the 3D detection scheme of a time-of-flight momentum microscope with an optimized filling pattern of the BESSY II storage ring. Here, comprehensive data sets covering the full surface Brillouin zone have been used to study faint substrate-film hybridization effects in the electronic structure of graphene on Ir(111), revealed by a pronounced linear dichroism in angular distribution. The method paves the way to 3D electronic bandmapping with unprecedented data recording efficiency.

  12. Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru

    2015-09-01

    We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.

  13. Geometric tuning of self-propulsion for Janus catalytic particles

    NASA Astrophysics Data System (ADS)

    Michelin, Sébastien; Lauga, Eric

    2017-02-01

    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations.

  14. Geometric tuning of self-propulsion for Janus catalytic particles

    PubMed Central

    Michelin, Sébastien; Lauga, Eric

    2017-01-01

    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations. PMID:28205563

  15. Geometric tuning of self-propulsion for Janus catalytic particles.

    PubMed

    Michelin, Sébastien; Lauga, Eric

    2017-02-13

    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations.

  16. The remarkable vision of Robert Hooke (1635-1703): first observer of the microbial world.

    PubMed

    Gest, Howard

    2005-01-01

    Robert Hooke played important roles in the early development of the Royal Society of London. As Curator of Experiments of the Society, he became a pioneering microscopist, prolific inventor, astronomer, geologist, architect, and an effective surveyor of the City of London following the Great Fire of 1666. Hooke's Micrographia (1665) revealed the microscopic structures of numerous biological and inorganic objects and became an important source of information for later studies. Aside from the body of detailed observations reported and depicted in Micrographia, the Preface is in itself an extraordinary document that exhibits Hooke's fertile mind, philosophical insights, and rare ability to look into the future.

  17. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  18. Scanning electron microscope analysis of gunshot defects to bone: an underutilized source of information on ballistic trauma.

    PubMed

    Rickman, John M; Smith, Martin J

    2014-11-01

    Recent years have seen increasing involvement by forensic anthropologists in the interpretation of skeletal trauma. With regard to ballistic injuries, there is now a large literature detailing gross features of such trauma; however, less attention has been given to microscopic characteristics. This article presents analysis of experimentally induced gunshot trauma in animal bone (Bos taurus scapulae) using full metal jacket (FMJ), soft point (SP), and captive bolt projectiles. The results were examined using scanning electron microscopy (SEM). Additional analysis was conducted on a purported parietal gunshot lesion in a human cranial specimen. A range of features was observed in these samples suggesting that fibrolamellar bone response to projectile impact is analogous to that observed in synthetic composite laminates. The results indicate that direction of bullet travel can be discerned microscopically even when it is ambiguous on gross examination. It was also possible to distinguish SP from FMJ lesions. SEM analysis is therefore recommended as a previously underexploited tool in the analysis of ballistic trauma. © 2014 American Academy of Forensic Sciences.

  19. An Affordable Microsurgical Training System for a Beginning Neurosurgeon: How to Realize the Self-Training Laboratory.

    PubMed

    Chung, Sang-Bong; Ryu, Jiwook; Chung, Yeongu; Lee, Sung Ho; Choi, Seok Keun

    2017-09-01

    To provide detailed information about how to realize a self-training laboratory with cost-effective microsurgical instruments, especially pertinent for the novice trainee. Our training model is designed to allow the practice of the microsurgery skills in an efficient and cost-effective manner. A used stereoscopic microscope is prepared for microsurgical training. A sufficient working distance for microsurgical practice is obtained by attaching an auxiliary objective lens. The minimum instrument list includes 2 jeweler's forceps, iris scissors, and alligator clips. The iris scissors and alligator clip provide good alternatives to micro-scissors and microvascular clamp. The short time needed to set up the microscope and suture the gauze with micro-forceps makes the training model suitable for daily practice. It takes about 15 minutes to suture 10 neighboring fibers of the gauze with 10-0 nylon; thus, training can be completed more quickly. We have developed an inexpensive and efficient micro-anastomosis training system using a stereoscopic microscope and minimal micro-instruments. Especially useful for novice trainees, this system provides high accessibility for microsurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. SEM-microphotogrammetry, a new take on an old method for generating high-resolution 3D models from SEM images.

    PubMed

    Ball, A D; Job, P A; Walker, A E L

    2017-08-01

    The method we present here uses a scanning electron microscope programmed via macros to automatically capture dozens of images at suitable angles to generate accurate, detailed three-dimensional (3D) surface models with micron-scale resolution. We demonstrate that it is possible to use these Scanning Electron Microscope (SEM) images in conjunction with commercially available software originally developed for photogrammetry reconstructions from Digital Single Lens Reflex (DSLR) cameras and to reconstruct 3D models of the specimen. These 3D models can then be exported as polygon meshes and eventually 3D printed. This technique offers the potential to obtain data suitable to reconstruct very tiny features (e.g. diatoms, butterfly scales and mineral fabrics) at nanometre resolution. Ultimately, we foresee this as being a useful tool for better understanding spatial relationships at very high resolution. However, our motivation is also to use it to produce 3D models to be used in public outreach events and exhibitions, especially for the blind or partially sighted. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  2. The role of impurities on the process of growing potassium hydrogen phthalate crystals from solution; A quantitative approach

    NASA Astrophysics Data System (ADS)

    Hottenhuis, M. H. J.; Lucasius, C. B.

    1988-09-01

    Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.

  3. Development of Models for High Precision Simulation of the Space Mission Microscope

    NASA Astrophysics Data System (ADS)

    Bremer, Stefanie; List, Meike; Selig, Hanns; Lämmerzahl, Claus

    MICROSCOPE is a French space mission for testing the Weak Equivalence Principle (WEP). The mission goal is the determination of the Eötvös parameter with an accuracy of 10-15. This will be achieved by means of two high-precision capacitive differential accelerometers, that are built by the French institute ONERA. At the German institute ZARM drop tower tests are carried out to verify the payload performance. Additionally, the mission data evaluation is prepared in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the WEP violation signal. Currently, the High Performance Satellite Dynamics Simulator (HPS), a cooperation project of ZARM and the DLR Institute of Space Systems, is adapted to the MICROSCOPE mission for the simulation of test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, too. Furthermore detailed modeling of the on-board capacitive sensors is done.

  4. Black holes as quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2018-03-01

    We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.

  5. Crafting the microworld: how Robert Hooke constructed knowledge about small things

    PubMed Central

    Lawson, Ian

    2016-01-01

    This paper investigates the way in which Robert Hooke constructed his microscopical observations. His Micrographia is justifiably famous for its detailed engravings, which communicated Hooke's observations of tiny nature to his readers, but less attention has been paid to how he went about making the observations themselves. In this paper I explore the relationship between the materiality of his instrument and the epistemic images he produced. Behind the pictures lies an array of hidden materials, and the craft knowledge it took to manipulate them. By investigating the often counter-theoretical and conflicting practices of his ingenious microscope use, I demonstrate the way in which Hooke crafted the microworld for his readers, giving insight into how early modern microscopy was understood by its practitioners and audience. PMID:27017680

  6. CRAFTING THE MICROWORLD: HOW ROBERT HOOKE CONSTRUCTED KNOWLEDGE ABOUT SMALL THINGS.

    PubMed

    Lawson, Ian

    2016-03-20

    This paper investigates the way in which Robert Hooke constructed his microscopical observations. His Micrographia is justifiably famous for its detailed engravings, which communicated Hooke's observations of tiny nature to his readers, but less attention has been paid to how he went about making the observations themselves. In this paper I explore the relationship between the materiality of his instrument and the epistemic images he produced. Behind the pictures lies an array of hidden materials, and the craft knowledge it took to manipulate them. By investigating the often counter-theoretical and conflicting practices of his ingenious microscope use, I demonstrate the way in which Hooke crafted the microworld for his readers, giving insight into how early modern microscopy was understood by its practitioners and audience.

  7. Computer Simulation of the Forces Acting on a Submerged Polystyrene Probe as it Approaches the Succinonitrile Melt-Solid Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)

    2001-01-01

    A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.

  8. Laser based imaging of time depending microscopic scenes with strong light emission

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  9. [With the microscope as weapon. A comment to criminal novels by Patricia D. Cornwell].

    PubMed

    Akslen, L A

    1997-03-20

    Patricia D. Cornwell has had a remarkable success with her books about Dr. Kay Scarpetta, a forensic pathologist and lawyer in Richmond, Virginia, on the east coast of USA. Cornwell's authorship is characterised by a combination of forensic details and thrilling stories about serial killers and other maniacs. Her books have reached the top of the bestseller lists for years.

  10. Raman imaging of lignin and cellulose distribution in black spruce wood (Picea mariana) cell walls

    Treesearch

    Umesh P. Agarwal

    2005-01-01

    A detailed understanding of wood cell wall structure and organization is important from both fundamental and practical point of views. A state-of- the-art 633-nm laser based confocal Raman microscope was used in situ to investigate the cell wall organization of black spruce wood. Chemical information on lignin and cellulose from morphologically distinct cell wall...

  11. All about Plant Pollination: Fruit, Flowers & Seeds. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Flowers are not only pretty, they are also one of the key elements in the process of plant pollination and reproduction that goes from flowers to fruits to seeds! In All About Plant Pollination: Fruit, Flowers & Seeds, young scientists learn about the different parts of a flower through the use of microscopic photography and detailed diagrams.…

  12. Shape-preserving transformations of organic matter and compositions thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaehr, Bryan J.; Meyer, Kristin; Townson, Jason L.

    The present invention relates to methods of transforming organic matter into organic-inorganic composites, inorganic replicas, or conductive replicas. Organic matter, such as biological cells and tissue and organs, can be converted into such composites and replicas using the methods described herein. In particular, such methods transform organic matter (into inorganic, organic-inorganic, or conductive constructs), while simultaneously preserving microscopic and/or macroscopic structural detail.

  13. Examination of enterotoxigenic Escherichia coli H10407 (colonization factor antigen I+) by scanning electron microscopy with conductive staining.

    PubMed Central

    Sherburne, R; Armstrong, G D

    1989-01-01

    We have used the scanning electron microscope to examine enterotoxigenic Escherichia coli H10407, which expresses colonization factor antigen I pili. The use of low accelerating voltages and conductive staining procedures allowed us to obtain images of colonization factor antigen I pili and other structural details which were obscured by conventional gold-coating techniques. Images PMID:2570062

  14. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-05-01

    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  15. A systematic assessment of goblet cell sampling of the bulbar conjunctiva by impression cytology.

    PubMed

    Doughty, Michael J

    2015-07-01

    The purpose of this study was to assess the apparent goblet cell density (GCD) from conjunctival impression cytology (CIC) samples in relation to the number of conjunctival cells collected onto the filters. CIC specimens were collected from the superior-temporal bulbar conjunctiva of 16 pigmented rabbits onto Biopore (Millicell-CM) membranes, fixed with buffered glutaraldehyde and stained with Giemsa. Different numbers of microscope fields of view in each of the specimens were imaged by light microscopy using a 20× magnification objective lens (200× final magnification), and the goblet cells marked and counted. The GCD values/sq. mm were calculated. The same conjunctival region of 3 other rabbits was also prepared for transmission electron microscopy (TEM) by fixation, in situ, with the same buffered glutaraldehyde. Mean values for GCD estimates were found to vary from 399 to 1576 cells/sq. mm, depending on the image sampling and analysis strategy chosen, with the lowest inter-sample variance of around 10% being found if a maximum goblet cell count was taken on substantially multilayered regions of the CIC specimens. Counts of the number of goblet cells per 1000 visible conjunctival epithelial cells yielded a value of close to 90 (range 36-151), with modest inter-sample variability of around 30%. A three or ten 200× microscope field and random sampling strategy yielded mean GCD values between 542 and 670 cells/sq. mm, but with very high intra- and inter-sample variance of at least 60% and sometimes higher than 100%. TEM confirmed the multilayered organization of the conjunctiva and the deeper lying goblet cells. The general use of a goblet cell count as an objective marker for conjunctival normality or health is likely to be highly variable unless a more specific strategy is adopted. Beyond providing details of exactly the counting strategy used, it would be very useful to provide full details of the actual microscope field size used as well as information on the intra-sample variability in goblet cell counts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Applications and challenges of digital pathology and whole slide imaging.

    PubMed

    Higgins, C

    2015-07-01

    Virtual microscopy is a method for digitizing images of tissue on glass slides and using a computer to view, navigate, change magnification, focus and mark areas of interest. Virtual microscope systems (also called digital pathology or whole slide imaging systems) offer several advantages for biological scientists who use slides as part of their general, pharmaceutical, biotechnology or clinical research. The systems usually are based on one of two methodologies: area scanning or line scanning. Virtual microscope systems enable automatic sample detection, virtual-Z acquisition and creation of focal maps. Virtual slides are layered with multiple resolutions at each location, including the highest resolution needed to allow more detailed review of specific regions of interest. Scans may be acquired at 2, 10, 20, 40, 60 and 100 × or a combination of magnifications to highlight important detail. Digital microscopy starts when a slide collection is put into an automated or manual scanning system. The original slides are archived, then a server allows users to review multilayer digital images of the captured slides either by a closed network or by the internet. One challenge for adopting the technology is the lack of a universally accepted file format for virtual slides. Additional challenges include maintaining focus in an uneven sample, detecting specimens accurately, maximizing color fidelity with optimal brightness and contrast, optimizing resolution and keeping the images artifact-free. There are several manufacturers in the field and each has not only its own approach to these issues, but also its own image analysis software, which provides many options for users to enhance the speed, quality and accuracy of their process through virtual microscopy. Virtual microscope systems are widely used and are trusted to provide high quality solutions for teleconsultation, education, quality control, archiving, veterinary medicine, research and other fields.

  17. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  18. Simulation study of overtaking in pedestrian flow using floor field cellular automaton model

    NASA Astrophysics Data System (ADS)

    Fu, Zhijian; Xia, Liang; Yang, Hongtai; Liu, Xiaobo; Ma, Jian; Luo, Lin; Yang, Lizhong; Chen, Junmin

    Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.

  19. Large image microscope array for the compilation of multimodality whole organ image databases.

    PubMed

    Namati, Eman; De Ryk, Jessica; Thiesse, Jacqueline; Towfic, Zaid; Hoffman, Eric; Mclennan, Geoffrey

    2007-11-01

    Three-dimensional, structural and functional digital image databases have many applications in education, research, and clinical medicine. However, to date, apart from cryosectioning, there have been no reliable means to obtain whole-organ, spatially conserving histology. Our aim was to generate a system capable of acquiring high-resolution images, featuring microscopic detail that could still be spatially correlated to the whole organ. To fulfill these objectives required the construction of a system physically capable of creating very fine whole-organ sections and collecting high-magnification and resolution digital images. We therefore designed a large image microscope array (LIMA) to serially section and image entire unembedded organs while maintaining the structural integrity of the tissue. The LIMA consists of several integrated components: a novel large-blade vibrating microtome, a 1.3 megapixel peltier cooled charge-coupled device camera, a high-magnification microscope, and a three axis gantry above the microtome. A custom control program was developed to automate the entire sectioning and automated raster-scan imaging sequence. The system is capable of sectioning unembedded soft tissue down to a thickness of 40 microm at specimen dimensions of 200 x 300 mm to a total depth of 350 mm. The LIMA system has been tested on fixed lung from sheep and mice, resulting in large high-quality image data sets, with minimal distinguishable disturbance in the delicate alveolar structures. Copyright 2007 Wiley-Liss, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H

    Verification of the reliability of metrology data from high quality x-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)} and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010)]. Here we describe the details ofmore » development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-ray microscopes. Corresponding work with x-ray microscopes is in progress.« less

  1. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide

    NASA Astrophysics Data System (ADS)

    Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano

    2016-04-01

    Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI) available: Representative structures for the most populated conformational structures of Aβ16-22 on bulk and on the metal surface. Normalized distribution of the variable s defined as the sum of internal dihedral angles of the peptide in solution and at the gold/water interface. See DOI: 10.1039/C6NR01539E

  2. Microgravity

    NASA Image and Video Library

    1998-01-05

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This diagram shows the optical layout. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  3. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  4. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  5. Characterization of Deposits on Glass Substrate as a Tool in Failure Analysis: The Orbiter Vehicle Columbia Case Study

    NASA Technical Reports Server (NTRS)

    Olivas, J. D.; Melroy, P.; McDanels, S.; Wallace, T.; Zapata, M. C.

    2006-01-01

    In connection with the accident investigation of the space shuttle Columbia, an analysis methodology utilizing well established microscopic and spectroscopic techniques was implemented for evaluating the environment to which the exterior fused silica glass was exposed. Through the implementation of optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and electron diffraction, details emerged regarding the manner in which a charred metallic deposited layer formed on top of the exposed glass. Due to nature of the substrate and the materials deposited, the methodology proved to allow for a more detailed analysis of the vehicle breakup. By contrast, similar analytical methodologies on metallic substrates have proven to be challenging due to strong potential for error resulting from substrate contamination. This information proved to be valuable to not only those involved in investigating the break up of Columbia, but also provides a potential guide for investigating future high altitude and high energy accidents.

  6. Molecular dynamics study on the microscopic details of the evaporation of water.

    PubMed

    Mason, Phillip E

    2011-06-16

    Molecular dynamics simulations were conducted on a drop of water (containing 4890 TIP3P waters) at 350 K. About 70 evaporation events were found and characterized in enough detail to determine significant patterns relating to the mechanism of evaporation. It was found that in almost all evaporation events that a single, high-energy state immediately preceded the evaporation event. In ∼50% of the cases, this high-energy state involved a short oxygen-oxygen distance, suggesting a van der Waals collision, whereas in the remaining cases, a short hydrogen-hydrogen distance was found, suggesting an electrostatic "collision". Of the high-energy states that led to evaporation, about half occurred when the coordination number of water was 1, and about half, when the coordination number was 2. It was found that the 1-coordinated waters (∼1% of the surface waters) and 2-coordinated waters (6% of the surface waters) were responsible for almost all the evaporation events. © 2011 American Chemical Society

  7. Microgravity

    NASA Image and Video Library

    1998-01-05

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This view shows interferograms produced in ground tests. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  8. Microgravity

    NASA Image and Video Library

    1998-01-05

    The Interferometer Protein Crstal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russin Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by splitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visualizes crystals and conditions around them as they grow inside the cell. This view shows the complete apparatus. The principal investigator was Dr. Alexander McPherson of the University of California, Irvin. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center

  9. Microgravity

    NASA Image and Video Library

    1998-01-05

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This diagram shows the growth cells. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  10. Microgravity

    NASA Image and Video Library

    1998-01-05

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This view shows a large growth cell. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  11. Sub-millimeter scale magnetostratigraphy and environmental magnetism of ferromanganese crusts using a scanning SQUID microscope

    NASA Astrophysics Data System (ADS)

    Oda, H.; Noguchi, A.; Yamamoto, Y.; Usui, A.; Ito, T.; Kawai, J.; Takahashi, H.

    2017-12-01

    Ferromanganese crusts are chemical sedimentary rock composed mainly of iron-manganese oxide. Because the ferromanganese crusts grow very slowly on the sea floor at rates of 3-10 mm/Ma, long-term deep-sea environmental changes can be reconstructed from the ferromanganese crusts. Thus, it is important to provide reliable age model for the crusts. For the past decades 10Be/9Be dating method has been used extensively to give age models for crusts younger than 15 Ma. Alternatively, sub-millimeter scale magnetostratigraphic study on a ferromanganese crust sample using a scanning SQUID (superconducting quantum interference device) microscope (Kawai et al., 2016; Oda et al., 2016) has been applied successfully (e.g. Oda et al., 2011; Noguchi et al. 2017). Also, environmental magnetic mapping was successful for the ferromanganese crust from the Takuyo Daigo Seamount (Noguchi et al., 2017). The ferromanganese crust used in this study was sampled from the Hanzawa Seamount, Ryukyu trench and the Shotoku Seamount. The vertical component of the magnetic field above thin section samples of the ferromanganese crust was measured using the scanning SQUID microscope on 100 μm grids. Magnetic mapping of the Hanzawa Seamount shows sub-millimeter scale magnetic stripes parallel to lamina. By correlating the boundaries of magnetic stripes with known geomagnetic reversals, we estimated that average growth rate of the Hanzawa Seamount is 2.67 +/- 0.04 mm/Ma , which is consistent with that deduced from the 10Be/9Be dating method (2.56 +/- 0.04 mm/Ma). The crust sample from the Shotoku Seamount used by Oda et al. (2011) shows prominent periodical lamination. Further details are going to be discussed together with the environmental magnetic mapping.

  12. A study on high NA and evanescent imaging with polarized illumination

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  13. Preliminary tests of a new reversible male contraceptive in bush dog, Speothos venaticus: open-ended vasectomy and microscopic reversal.

    PubMed

    DeMatteo, Karen; Silber, Sherman; Porton, Ingrid; Lenahan, Kathy; Junge, Randall; Asa, Cheryl

    2006-09-01

    Open-ended vasectomies were performed on four male bush dogs (Speothos venaticus), with three having microscopic reversal surgery (vasovasostomy) between 10 and 20 mo post-vasectomy. The key to ease of reversal is leaving the distal (testicular) end open to allow leakage, resulting in a pressure-relieving granuloma. The proximal (abdominal) end is cauterized, providing an effective seal. This technique prevents the buildup of pressure in the epididymis, therefore limiting damage to the male's reproductive capacity. Described here are detailed procedures for both surgeries. One of the three males that underwent vasovasostomy has successfully impregnated his female partner. This study demonstrates that these techniques can be successfully applied to animals. With the two remaining pairs, none of the four individuals were proven breeders prior to the study, so it is not possible to eliminate the possibility of previously existing infertility. This technique may have limited application for carnivores, because vasectomy does not prevent potential adverse effects to females from prolonged, cyclic exposure to endogenous progesterone. In other taxonomic groups (e.g., primates, ungulates, marsupials, and rodents) in which multimale groupings are common, this reversible male sterilization technique could provide managers with the ability to control which males reproduce without eliminating their future reproductive capacity or social interaction.

  14. Chronic alcoholism and bone remodeling processes: Caveats and considerations for the forensic anthropologist.

    PubMed

    Michael, Amy R; Bengtson, Jennifer D

    2016-02-01

    Clinical literature provides substantial information on the effects of chronic alcohol abuse on bone remodeling and related skeletal disease processes. This biomedical information is seldom considered in detail by forensic anthropologists, who often rely on normative macroscopic models of bone remodeling and traditional macroscopic age estimation methods in the creation of biological profiles. The case study presented here considers the ways that alcoholism disrupts normal bone remodeling processes, thus skewing estimations of age-at-death. Alcoholism affects bone macroscopically, resulting in a porous appearance and an older estimation of age, while simultaneously inhibiting osteoblastic activity and resulting in a younger microscopic appearance. Forensic anthropologists must also be cognizant of pathological remodeling stemming from alcoholism in cases where trauma analysis is critical to the reconstruction of events leading up to death, as fracture healing rates can be affected. Beyond the case study, we also consider how forensic anthropologists and practitioners can recognize and account for osteological signatures of alcoholism in medico-legal contexts. In order to best estimate age at death, a combined macroscopic and microscopic approach should be employed whenever possible alcohol and drug abuse is known or suspected. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Role of immunoflourescence in the diagnosis of glomerulonephritis.

    PubMed

    Nasir, Humaira; Chaudhry, Sarah; Raza, Wajiha; Moatasim, Ambreen; Mamoon, Nadira; Akhtar, Noreen

    2012-03-01

    To correlate the findings of immunoflorescence (IF) with morphology in renal biopsies of patients with glomerulonephritis (GN) of both primary and secondary nature. The cross-sectional analytical study was conducted at the Shifa International Hospital's Department of Pathology form March 2007 to August 2008, during which a total of 207 renal biopsies were done. Of them, the study included 92 cases which were diagnosed as primary or secondary glomerulonephritis under light microscope. Those cases were selected in which both light microscopy (LM) and immunoflorescence were done. Of the 92 patients, 79 (85.8%) were adults (> or = 19 years) and 13 (14%) were children (< 19 years). The mean age of adults was 36.44 +/- 11.55 (range 19-69 years) and that of the children was 10.54 +/- 3.85 years (range 4-18 years). immunoflorescence changed the morphologic diagnosis in 20 (21.73%) cases. The pattern of disease was: membranous glomerulonephritis in 24%, focal segmental glomerulosclerosis (FSGS) in 18.4%, mesangiocapillary glomerulonephritis in 2%, and minimal change disease (MCD) in 16% of the cases. Light microscopy alone can misdiagnose renal disease. This is especially important in cases of early stage membranous, IgA nephropathy (IgAN), Lupus nephritis and IgM nephropathy (IgMN), as these entities can only be diagnosed by correlating the microscopic, immunoflorescence findings and clinical details.

  16. Microscopic motion of particles flowing through a porous medium

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Koplik, Joel

    1999-01-01

    Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.

  17. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  18. Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibility

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2006-01-01

    It is shown that the kinetics of time-reversible chemical reactions having the same equilibrium constant but different initial conditions are closely related to one another by a directly measurable symmetry relation analogous to chemical detailed balance. In contrast to detailed balance, however, this relation does not require knowledge of the elementary steps that underlie the reaction, and remains valid in regimes where the concept of rate constants is ill defined, such as at very short times and in the presence of low activation barriers. Numerical simulations of a model of isomerization in solution are provided to illustrate the symmetry under such conditions, and potential applications in protein folding or unfolding are pointed out.

  19. Redescription of immature stages of central European fireflies, Part 1: Lampyris noctiluca (Linnaeus, 1758) larva, pupa and notes on its biology (Coleoptera: Lampyridae: Lampyrinae).

    PubMed

    Novák, Martin

    2017-03-28

    The mature larva of Lampyris noctiluca (Linnaeus, 1758) is redescribed and illustrated in detail, including scanning electron microscope images. Male and female pupae are briefly described, including notes on behaviour as well as light production of the immature stages. Observed structures, life cycle and behaviour of larvae and pupae are discussed.

  20. Hydrogen-impurity complexes in III V semiconductors

    NASA Astrophysics Data System (ADS)

    Ulrici, W.

    2004-12-01

    This review summarizes the presently available knowledge concerning hydrogen-impurity complexes in III-V compounds. The impurities form shallow acceptors on group III sites (Be, Zn, Cd) and on group V sites (C, Si, Ge) as well as shallow donors on group V sites (S, Se, Te) and on group III sites (Si, Sn). These complexes are mainly revealed by their hydrogen stretching modes. Therefore, nearly all information about their structure and dynamic properties is derived from vibrational spectroscopy. The complexes of shallow impurities with hydrogen have been most extensively investigated in GaAs, GaP and InP. This holds also for Mg-H in GaN. The complexes exhibit a different microscopic structure, which is discussed in detail. The isoelectronic impurity nitrogen, complexed with one hydrogen atom, is investigated in detail in GaAs and GaP. Those complexes can exist in different charge states. The experimental results such as vibrational frequencies, the microscopic structure and the activation energy for reorientation for many of these complexes are in very good agreement with results of ab initio calculations. Different types of oxygen-hydrogen complexes in GaAs and GaP are described, with one hydrogen atom or two hydrogen atoms bonded to oxygen. Three of these complexes in GaAs were found to be electrically active.

  1. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  2. Thermoelastic response of metal matrix composites with large-diameter fibers subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1993-01-01

    A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.

  3. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  4. Development of critical dimension measurement scanning electron microscope for ULSI (S-8000 series)

    NASA Astrophysics Data System (ADS)

    Ezumi, Makoto; Otaka, Tadashi; Mori, Hiroyoshi; Todokoro, Hideo; Ose, Yoichi

    1996-05-01

    The semiconductor industry is moving from half-micron to quarter-micron design rules. To support this evolution, Hitachi has developed a new critical dimension measurement scanning electron microscope (CD-SEM), the model S-8800 series, for quality control of quarter- micron process lines. The new CD-SEM provides detailed examination of process conditions with 5 nm resolution and 5 nm repeatability (3 sigma) at accelerating voltage 800 V using secondary electron imaging. In addition, a newly developed load-lock system has a capability of achieving a high sample throughput of 20 wafers/hour (5 point measurements per wafer) under continuous operation. To support user friendliness, the system incorporates a graphical user interface (GUI), an automated pattern recognition system which helps locating measurement points, both manual and semi-automated operation, and user-programmable operating parameters.

  5. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  6. Camera, Hand Lens, and Microscope Probe (CHAMP): An Instrument Proposed for the 2009 MSL Rover Mission

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Beegle, Luther W.; Boynton, John E.; Lee, Pascal; Shidemantle, Ritch; Fisher, Ted

    2004-01-01

    The Camera, Hand Lens, and Microscope Probe (CHAMP) will allow examination of martian surface features and materials (terrain, rocks, soils, samples) on spatial scales ranging from kilometers to micrometers, thus enabling both microscopy and context imaging with high operational flexibility. CHAMP is designed to allow the detailed and quantitative investigation of a wide range of geologic features and processes on Mars, leading to a better quantitative understanding of the evolution of the martian surface environment through time. In particular, CHAMP will provide key data that will help understand the local region explored by Mars Surface Laboratory (MSL) as a potential habitat for life. CHAMP will also support other anticipated MSL investigations, in particular by helping identify and select the highest priority targets for sample collection and analysis by the MSL's analytical suite.

  7. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  8. Trematodes Recovered in the Small Intestine of Stray Cats in the Republic of Korea

    PubMed Central

    Chai, Jong-Yil; Bahk, Young Yil

    2013-01-01

    In 2005, we reported the infection status of 438 stray cats with various species of intestinal helminths, including nematodes (4 species), trematodes (23 species), and cestodes (5 species) in the Republic of Korea. However, morphologic details of each helminth species have not been provided. In the present study, we intended to describe morphologic details of 13 trematode species which were either new fauna of cats (10 species) or new fauna of not only cats but also all animal hosts (3 species). The worms were fixed in 10% neutral buffered formalin under a cover slip pressure, stained with Semichon's acetocarmine, and then observed using a light microscope equipped with a micrometer. The 13 subjected species included members of the Heterophyidae (Stellantchasmus falcatus, Stictodora fuscata, Stictodora lari, Centrocestus armatus, Procerovum varium, and Cryptocotyle concava), Echinostomatidae (Echinostoma hortense, Echinostoma revolutum, Echinochasmus japonicus, and Stephanoprora sp.), Diplostomidae (Neodiplostomum seoulense), Plagiorchiidae (Plagiorchis muris), and Dicrocoeliidae (Eurytrema pancreaticum). By the present study, Cryptocotyle sp. and Neodiplostomum sp. recored in our previous study were identified as C. concava and N. seoulense, respectively. Three species, P. varium, C. concava, and Stephanoprora sp., are new trematode fauna in Korea. PMID:23467726

  9. The ultrastructural features of the premalignant oral lesions.

    PubMed

    Olinici, Doiniţa; Cotrutz, Carmen Elena; Mihali, Ciprian Valentin; Grecu, Vasile Bogdan; Botez, Emanuela Ana; Stoica, Laura; Onofrei, Pavel; Condurache, Oana; Dimitriu, Daniela Cristina

    2018-01-01

    Premalignant oral lesions are among the most important risk factors for the development of oral squamocellular carcinoma. Recent population studies indicate a significant rise in the prevalence of leukoplakia, erythroplakia/erythroleukoplakia, actinic cheilitis, submucous fibrosis and erosive lichen planus. Since standard histopathological examination has numerous limitations regarding the accurate appreciation of potential malignant transformation, the present study aims to aid these evaluations using the transmission electron microscopy (TEM) technique, which emphasizes ultrastructural changes pertaining to this pathology. Oral mucosa fragments collected from 43 patients that were clinically and histopathologically diagnosed with leukoplakia, erosive actinic cheilitis and erosive lichen planus have been processed through the classic technique for the examination using TEM and were examined using a Philips CM100 transmission electron microscope. The electron microscopy study has confirmed the histopathological diagnosis of the tissue samples examined using photonic microscopy and has furthermore revealed a series of ultrastructural details that on the one hand indicate the tendency for malignant transformation, and on the other reveal characteristic features of tumor development. All the details furnished by TEM complete the overall picture of morphological changes, specific to these lesions, indicating the importance of using these techniques in establishing both a correct diagnosis and prognosis.

  10. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.

    2008-01-01

    In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria that can be used in analysis. Results of simulations performed using LS-DYNA will be presented to illustrate the capabilities and limitations for simulating failure during quasi-static deformation and during ballistic impact of large unit cell size triaxial braid composites.

  11. The plant virus microscope image registration method based on mismatches removing.

    PubMed

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Microscopic characterization of Scoparia dulcis Linn.(Scrophulariaceae)

    PubMed Central

    Mishra, Manas Ranjan; Mishra, Ashutosh; Pradhan, Dusmanta Kumar; Behera, Rajani Kanta; Jha, Shivesh; Panda, Ashok Kumar; Choudhary, Punit Ram

    2012-01-01

    This manuscript covers a detailed pharmacognostic evaluation of Scoparia dulcis Linn. whole plant (Scrophulariaceae), including morphology, microscopy, physicochemical, and phytochemical screening. Microscopy of different plant part was done by performing transverse sections and longitudinal sections, which were identified by the different staining reagents and dyes. Physicochemical constants were done for whole plant; it includes ash value, extractive value and moisture content. Phytochemical screening was done for aqueous and methanolic extract in maceration and soxhletion, results revealed the presence of alkaloids, glycosides, carbohydrates, phenolic compound, flavonoids, saponins, proteins, and amino acids. These study includes parameters to establish the authenticity of S. dulcis and can possibly help to differentiate the drug from its other species. PMID:23929991

  13. Microscopic characterization of Scoparia dulcis Linn.(Scrophulariaceae).

    PubMed

    Mishra, Manas Ranjan; Mishra, Ashutosh; Pradhan, Dusmanta Kumar; Behera, Rajani Kanta; Jha, Shivesh; Panda, Ashok Kumar; Choudhary, Punit Ram

    2012-07-01

    This manuscript covers a detailed pharmacognostic evaluation of Scoparia dulcis Linn. whole plant (Scrophulariaceae), including morphology, microscopy, physicochemical, and phytochemical screening. Microscopy of different plant part was done by performing transverse sections and longitudinal sections, which were identified by the different staining reagents and dyes. Physicochemical constants were done for whole plant; it includes ash value, extractive value and moisture content. Phytochemical screening was done for aqueous and methanolic extract in maceration and soxhletion, results revealed the presence of alkaloids, glycosides, carbohydrates, phenolic compound, flavonoids, saponins, proteins, and amino acids. These study includes parameters to establish the authenticity of S. dulcis and can possibly help to differentiate the drug from its other species.

  14. Study on Damage Mechanism of Ductile Cast Iron Cooling Stave

    NASA Astrophysics Data System (ADS)

    Wang, Cui; Zhang, Jianliang; Zuo, Haibin; Dai, Bing

    The damage mechanism of ductile cast iron cooling stave applied to No.4 blast furnace of Guofeng steel was analyzed through damage investigation in details, the damage causes: high-temperature gas flow erosion, wear of burden, high-temperature ablation, carburizing damage, improper operation on blast furnace, etc. were given out both in macroscopic and microscopic views. It can be obtained from metallographic diagrams that the diameter of graphite nodules increases, the number per unit area reduces, and roundness declines, successively, from cold to hot surface, which are not conducive to stave longevity. In summary, the material for staves manufacture should be better in comprehensive mechanical properties to prolong the service life, thus making blast furnace long campaign.

  15. Rheotaxis of elongated platinum-gold nanoswimmers

    NASA Astrophysics Data System (ADS)

    Brosseau, Quentin; Wu, Yang; Ristroph, Leif; Zhang, Jun; Ward, Michael; Shelley, Michael

    2017-11-01

    Directed motion of self-propelled colloids has attracted much attention as a possible means to transport microscopic cargo to desired locations. However, active colloids, such as our gold-platinum (Au-Pt) bi-metallic motors ( 2 micrometers) that are powered by hydrogen peroxide (H2O2), are subjected to Brownian motion and move diffusively. These swimmers can be directed via interactions with structured substrates, e.g. within an array of asymmetric pillars. Our current study focuses on realizing the directed motion in an imposed open flow, of these active nanorods. This dynamic response, often referred to as ``rheotaxis'', is found in many marine organisms. The effect of flow geometry and flow characteristics will be discussed in more details.

  16. Structure and dynamics of biomembranes in room-temperature ionic liquid water solutions studied by neutron scattering and by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Ballone, Pietro

    2018-05-01

    Increasing attention is being devoted to the interaction of a new class of organic ionic liquids known as room-temperature ionic liquids (RTILs) with biomolecules, partly because of health and environment concerns, and, even more, for the prospect of exciting new applications in biomedicine, sensing and energy technologies. Here we focus on the interaction between RTILs and phospholipid bilayers that are well-accepted models for bio-membranes. We discuss how neutron scattering has been used to probe both the structure and the dynamics of these systems, and how its integration with molecular dynamics simulation has allowed the determination of the microscopic details of their interaction.

  17. The Michael-Adler report (1933): criminology under the microscope.

    PubMed

    Goff, Colin; Geis, Gilbert

    2008-01-01

    This paper details the responses made by social scientists as well as criminal justice practitioners during 1932 to a study focusing on the status of criminology by the Bureau of Social Hygiene. These responses ultimately led to the publication of the controversial Crime, Law and Social Science (1933), which gave much-needed direction to the development of criminology. Despite the importance of these responses to the creation of criminological thought, only one (by Edwin H. Sutherland) has previously been published. Examining the responses of all of the individual participants in the project gives a clearer picture of controversies and changes which ultimately occurred as the field of criminology gradually became institutionalized as an academic discipline.

  18. STM study on the surface structures and defects of SnSe

    NASA Astrophysics Data System (ADS)

    Kim, Jungdae; Duvjir, Ganbat; Ly, Trinh Thi; Min, Taewon; Kim, Taehoon; Kim, Sang Hwa; Duong, Anh-Tuan; Rhim, S. H.; Cho, Sunglae; Lee, Jaekwang

    Tin selenide (SnSe) is a IV-VI semiconductor with a band gap of 1.0 eV, and also one of layered chalcogenide materials (LCMs) where each layer is coupled by weak van der Waals interactions. SnSe has been widely studied due to its many potential applications that take advantage of its excellent thermoelectric, photovoltaic, and optoelectronic properties. However, experimental investigations into the microscopic structure of SnSe remain largely unexplored. The atomic and electronic structures of SnSe surfaces are studied by a home-built low temperature scanning tunneling microscope (STM). The cleaved surface of SnSe is comprised of covalently bonded Se and Sn atoms in zigzag patterns. However, rectangular periodicity was observed in the atomic images of SnSe surfaces for filled and empty state probing. Detailed atomic structures are analyzed by density functional theory (DFT) calculations, indicating that the bright extrusions of both filled and empty state images are mostly located at the positions of Sn atoms. We also report the origin of p-type behavior in SnSe by investigating three dominant intrinsic defects (Sn, Se, and Se-Sn-Se vacancies) using STM and DFT calculations. This work was supported by the National Research Foundation of Korea (NRF-2015R1D1A1A01057271, NRF-2009-0093818, and NRF-2014R1A4A1071686).

  19. Transmission Electron Microscope In Situ Straining Technique to Directly Observe Defects and Interfaces During Deformation in Magnesium

    DOE PAGES

    Morrow, Benjamin M.; Cerreta, E. K.; McCabe, R. J.; ...

    2015-05-14

    In-situ straining was used to study deformation behavior of hexagonal close-packed (hcp) metals.Twinning and dislocation motion, both essential to plasticity in hcp materials, were observed.Typically, these processes are characterized post-mortem by examining remnant microstructural features after straining has occurred. By imposing deformation during imaging, direct observation of active deformation mechanisms is possible. This work focuses on straining of structural metals in a transmission electron microscope (TEM), and a recently developed technique that utilizes familiar procedures and equipment to increase ease of experiments. In-situ straining in a TEM presents several advantages over conventional post-mortem characterization, most notably time-resolution of deformation andmore » streamlined identification of active deformation mechanisms. Drawbacks to the technique and applicability to other studies are also addressed. In-situ straining is used to study twin boundary motion in hcp magnesium. A {101¯2} twin was observed during tensile and compressive loading. Twin-dislocation interactions are directly observed. Notably, dislocations are observed to remain mobile, even after multiple interactions with twin boundaries, a result which suggests that Basinki’s dislocation transformation mechanism by twinning is not present in hcp metals. The coupling of in-situ straining with traditional post-mortem characterization yields more detailed information about material behavior during deformation than either technique alone.« less

  20. Current Approach to the Evaluation and Management of Microscopic Colitis.

    PubMed

    Cotter, Thomas G; Pardi, Darrell S

    2017-02-01

    Microscopic colitis is a common cause of chronic watery diarrhea, particularly in the elderly. The accompanying symptoms, which include abdominal pain and fatigue, can markedly impair patients' quality of life. Diagnosis is based upon characteristic histologic findings of the colonic mucosa. This review focuses on the current approach to evaluation and management of patients with microscopic colitis. Although the incidence of microscopic colitis has been increasing over time, recent epidemiological studies show stabilization at 21.0-24.7 cases per 100,000 person-years. Recent research has further expanded our knowledge of the underlying pathophysiology and emphasized the entity of drug-induced microscopic colitis and the association with celiac disease. Two recent randomized studies have confirmed the effectiveness of oral budesonide for both induction and maintenance treatment of microscopic colitis and is now endorsed by the American Gastroenterological Association as first-line treatment. The incidence of microscopic colitis has stabilized at just over 20 cases per 100,000 person-years. Celiac disease and drug-induced microscopic colitis should be considered in all patients diagnosed with microscopic colitis. There are a number of treatments available for patients with microscopic colitis; however, budesonide is the only option well studied in controlled trials and is effective for both induction and maintenance treatment.

  1. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results.

    PubMed

    Ehlers, Justis P; Goshe, Jeff; Dupps, William J; Kaiser, Peter K; Singh, Rishi P; Gans, Richard; Eisengart, Jonathan; Srivastava, Sunil K

    2015-10-01

    Optical coherence tomography (OCT) has transformed the clinical management of a myriad of ophthalmic conditions. Applying OCT to ophthalmic surgery may have implications for surgical decision making and patient outcomes. To assess the feasibility and effect on surgical decision making of a microscope-integrated intraoperative OCT (iOCT) system. Report highlighting the 1-year results (March 2014-February 2015) of the RESCAN 700 portion of the DISCOVER (Determination of Feasibility of Intraoperative Spectral Domain Microscope Combined/Integrated OCT Visualization During En Face Retinal and Ophthalmic Surgery) study, a single-site, multisurgeon, prospective consecutive case series regarding this investigational device. Participants included patients undergoing ophthalmic surgery. Data on clinical characteristics were collected, and iOCT was performed during surgical milestones, as directed by the operating surgeon. A surgeon questionnaire was issued to each surgeon and was completed after each case to evaluate the role of iOCT during surgery and its particular role in select surgical procedures. Percentage of cases with successful acquisition of iOCT (ie, feasibility). Percentage of cases in which iOCT altered surgical decision making (ie, utility). During year 1 of the DISCOVER study, a total of 227 eyes (91 anterior segment cases and 136 posterior segment cases) underwent imaging with the RESCAN 700 system. Successful imaging (eg, the ability to acquire an OCT image of the tissue of interest) was obtained for 224 of 227 eyes (99% [95% CI, 98%-100%]). During lamellar keratoplasty, the iOCT data provided information that altered the surgeon's decision making in 38% of the cases (eg, complete graft apposition when the surgeon believed there was interface fluid). In membrane peeling procedures, iOCT information was discordant with the surgeon's impression of membrane peel completeness in 19% of cases (eg, lack of residual membrane or presence of occult membrane), thus affecting additional surgical maneuvers. The DISCOVER study demonstrates the feasibility of real-time iOCT with a microscope-integrated iOCT system for ophthalmic surgery. The information gained from iOCT appears to allow surgeons to assess subtle details in a unique perspective from standard en face visualization, which can affect surgical decision making some of the time, although the effect of these changes in decision making on outcomes remains unknown. A prospective randomized masked trial is needed to confirm these results.

  2. Scanning electron microscope studies of sea urchin fertilization. I. Eggs with vitelline layers.

    PubMed

    Tegner, M J; Epel, D

    1976-07-01

    The surface coats of sea urchin eggs and the events of fertilization which take place on these surfaces were examined with the scanning electron microscope (SEM). Gametes of Stronglyocentrotus purpuratus and Lytechinus pictus were considered in detail; eggs of seven other echinoids were examined for comparative purposes. Jelly coats, preserved by varying the pH of fixation, were found to vary in morphology and solubility properties between species. The vitelline layers of the nine echinoids are characterized by arrays of projections which are impressions of cytoplasmic microvilli in the vitelline layer. After sperm bind to the egg surface via the acrosomal process, fine filaments, apparently an egg response to insemination, further connect some sperm heads and tails to the egg. The cortical reactions spread out as a wave from where the fertilizing sperm fused with the egg; separation of the vitelline layer proceeds as a smooth wave from S. purpuratus eggs and as a series of localized separations in L. pictus eggs. The fertilization membranes of S. purpuratus and Allocentrotus fragilis zygotes are expanded replicas of their respective vitelline layers, suggesting that fertilization membranes are formed by an unfolding of the vitelline layer.

  3. Contribution of a new generation field-emission scanning electron microscope in the understanding of a 2099 Al-Li alloy.

    PubMed

    Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald

    2012-12-01

    Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.

  4. An omics perspective to the molecular mechanisms of anticancer metallo-drugs in the computational microscope era.

    PubMed

    Spinello, Angelo; Magistrato, Alessandra

    2017-08-01

    Metallo-drugs have attracted enormous interest for cancer treatment. The achievements of this drug-type are summarized by the success story of cisplatin. That being said, there have been many drawbacks with its clinical use, which prompted decades worth of research efforts to move towards safer and more effective agents, either containing platinum or different metals. Areas covered: In this review, the authors provide an atomistic picture of the molecular mechanisms involving selected metallo-drugs from structural and molecular simulation studies. They also provide an omics perspective, pointing out many unsettled aspects of the most relevant families of metallo-drugs at an epigenetic level. Expert opinion: Molecular simulations are able to provide detailed information at atomistic and temporal (ps) resolutions that are rarely accessible to experiments. The increasing accuracy of computational methods and the growing performance of computational platforms, allow us to mirror wet lab experiments in silico. Consequently, the molecular mechanisms of drugs action/failure can be directly viewed on a computer screen, like a 'computational microscope', allowing us to harness this knowledge for the design of the next-generation of metallo-drugs.

  5. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells.

    PubMed

    Hafez, H S; Shenouda, S S; Fadel, M

    2018-03-05

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO 2 nanoparticles with an average particle size (10-40nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO 2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100mW.cm -2 . The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R=15.6-23.8mA.W -1 and η=0.13-0.25) at AM=1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation

    PubMed Central

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-01-01

    Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766

  7. Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination

    NASA Astrophysics Data System (ADS)

    Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.

    2017-11-01

    Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.

  8. Helium-ion microscopy, helium-ion irradiation and nanoindentation of Eurofer 97 and ODS Eurofer

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Hlawacek, G.; Heintze, C.

    2018-07-01

    Understanding of unsolved details of helium embrittlement requires experimental evidence for dedicated sets of materials and over a wide range of irradiation conditions. The study is focussed on the comparison of a reduced-activation ferritic-martensitic 9%Cr steel (Eurofer 97) with its oxide dispersion strengthened counterpart (ODS Eurofer) with respect to irradiation-induced hardening. Imaging and He-ion irradiation in the He-ion microscope at 30 °C in a wide range of appm He (from 0.9 × 102 to 1.8 × 106) and displacements per atom (dpa) (from 3 × 10-3 to 65) were combined with post-irradiation nanoindentation in order to detect blistering and irradiation-induced hardness changes. The applicability of this combination of techniques is demonstrated and pros and cons are discussed. We have found that the indentation hardness increases significantly after in-microscope irradiation to 3 dpa (0.9 × 105 appm He). The irradiation-induced hardness increase is higher and the onset of significant hardening tends to occur at lower fluence for Eurofer 97 than for ODS Eurofer, indicating that the presence of oxide nanoparticles is efficient to reduce the detrimental effect of He under the applied irradiation conditions.

  9. Microscopic, Transport and Thermodynamic properties of Ca10(Pt3As8)((Fe1-xTMx)2As2)5 (TM=Co, Ni) single crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Ni, Ni

    2015-03-01

    Here we report detailed microscopic, transport and thermodynamic measurements on two series of high quality single crystals Ca10(Pt3As8)((Fe1-xTMx)2As2)5 (TM=Co, Ni). With electron doping on Fe sites, the structural/magnetic phase transitions in the parent compound were suppressed at a rate of roughly -7K per 0.01Co doping and -9K per 0.01Ni doping. Superconductivity emerges in the region of 0 . 048 < x < 0 . 20 for Co doping with optimal Tc of 13.5K (x = 0 . 11) while it occurs in the region of 0 . 035 < x < 0 . 11 for Ni doping with optimal Tc of 9.6K (x = 0 . 064). No coexistence of AFM and SC is observed, which is different from the well-studied 122 Fe-pnictides but reminiscent the one of La1111. The comparison of the effect between Co- and Ni- doping on 10-3-8 shows that rigid band approximation is likely working for these two dopants in this superconducting family.

  10. Microscopic Colitis – A Missed Diagnosis in Diarrhea-Predominant Irritable Bowel Syndrome

    PubMed Central

    STOICESCU, Adriana; BECHEANU, Gabriel; DUMBRAVA, Mona; GHEORGHE, Cristian; DICULESCU, Mircea

    2012-01-01

    ABSTRACT Background: Clinical presentation in microscopic colitis (MC) is similar in many cases to that of diarrhea-predominent irritable bowel syndrome (IBS-D). The proper differential diagnosis requires total colonoscopy with multiple biopsies from normal-appearing mucosa and a detailed histopathological exam. Specific treatment may improve symptomatology. Aim: To evaluate the prevalence of MC in patients with an initial diagnosis of IBS-D, to analyse demographic and clinical features of MC patients and to assess the efficacy of specific treatment. Material and methods: Our retrospective study analyzed patients diagnosed with microscopic colitis in clinic during a three-year period. Diagnosis was established on histological exams of the samples obtained during colonoscopy in patients previously thought to have IBS-D. We evaluated clinical manifestations, time lapsed from their onset to definitive diagnosis, the association of MC with autoimmune diseases or with prior medication and the efficacy of treatment with budesonide or mesalazine. Results: From 247 patients considered to have IBS-D, 15 patients (6.07%) had actually MC (13 lymphocytic colitis and 2 collagenous colitis). MC was associated with nonsteroidal antiinflammatory drugs (3 patients), Lansoprazole (2 patients) and autoimmune diseases (6 patients). Watery, non-bloody diarrhea was present in all patients with MC. Other frequent complaints were nocturnal diarrhea (11 patients), abdominal pain (8 patients), abdominal bloating and flatulence (8 patients) and slight weight loss (6 patients). The diagnostic samples were obtained from the right colon in 6 cases and from rectosigmoid or transverse colon in 9 patients. Treatment was initial symptomatic in all patients, but there were 5 patients that required mesalazine and/or Budesonide, with favourable outcome. Conclusions: All the patients thought to have diarrhea-irritable bowel syndrome should be evaluated for microscopic colitis. Symptomatology is almost superimposable, but a few distinct features can be noticed. The proper and early diagnosis and the specific treatment may lead to significant clinical improvement in some difficult cases of the so-called "irritable bowel syndrome". PMID:23118812

  11. Microscopic colitis - a missed diagnosis in diarrhea-predominant irritable bowel syndrome.

    PubMed

    Stoicescu, Adriana; Becheanu, Gabriel; Dumbrava, Mona; Gheorghe, Cristian; Diculescu, Mircea

    2012-01-01

    Clinical presentation in microscopic colitis (MC) is similar in many cases to that of diarrhea-predominent irritable bowel syndrome (IBS-D). The proper differential diagnosis requires total colonoscopy with multiple biopsies from normal-appearing mucosa and a detailed histopathological exam. Specific treatment may improve symptomatology. To evaluate the prevalence of MC in patients with an initial diagnosis of IBS-D, to analyse demographic and clinical features of MC patients and to assess the efficacy of specific treatment. Our retrospective study analyzed patients diagnosed with microscopic colitis in clinic during a three-year period. Diagnosis was established on histological exams of the samples obtained during colonoscopy in patients previously thought to have IBS-D. We evaluated clinical manifestations, time lapsed from their onset to definitive diagnosis, the association of MC with autoimmune diseases or with prior medication and the efficacy of treatment with budesonide or mesalazine. From 247 patients considered to have IBS-D, 15 patients (6.07%) had actually MC (13 lymphocytic colitis and 2 collagenous colitis). MC was associated with nonsteroidal antiinflammatory drugs (3 patients), Lansoprazole (2 patients) and autoimmune diseases (6 patients). Watery, non-bloody diarrhea was present in all patients with MC. Other frequent complaints were nocturnal diarrhea (11 patients), abdominal pain (8 patients), abdominal bloating and flatulence (8 patients) and slight weight loss (6 patients). The diagnostic samples were obtained from the right colon in 6 cases and from rectosigmoid or transverse colon in 9 patients. Treatment was initial symptomatic in all patients, but there were 5 patients that required mesalazine and/or Budesonide, with favourable outcome. All the patients thought to have diarrhea-irritable bowel syndrome should be evaluated for microscopic colitis. Symptomatology is almost superimposable, but a few distinct features can be noticed. The proper and early diagnosis and the specific treatment may lead to significant clinical improvement in some difficult cases of the so-called "irritable bowel syndrome".

  12. A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension

    NASA Astrophysics Data System (ADS)

    Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli

    2016-06-01

    In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.

  13. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field

    NASA Astrophysics Data System (ADS)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J.; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W.; Wegner, Daniel; Khajetoorians, Alexander A.

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  14. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  15. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field.

    PubMed

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  16. A LEGO Mindstorms Brewster angle microscope

    NASA Astrophysics Data System (ADS)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  17. Stochastic Processes in Physics: Deterministic Origins and Control

    NASA Astrophysics Data System (ADS)

    Demers, Jeffery

    Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.

  18. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach

    NASA Astrophysics Data System (ADS)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A combination of first principle molecular dynamics (MD) simulations with a rate equation model (MD-RE approach) is presented to study the trapping and the scattering of rare gas atoms from metal surfaces. The temporal evolution of the atom fractions that are either adsorbed or scattered into the continuum is investigated in detail. We demonstrate that for this description one has to consider trapped, quasi-trapped and scattering states, and present an energetic definition of these states. The rate equations contain the transition probabilities between the states. We demonstrate how these rate equations can be derived from kinetic theory. Moreover, we present a rigorous way to determine the transition probabilities from a microscopic analysis of the particle trajectories generated by MD simulations. Once the system reaches quasi-equilibrium, the rates converge to stationary values, and the subsequent thermal adsorption/desorption dynamics is completely described by the rate equations without the need to perform further time-consuming MD simulations. As a proof of concept of our approach, MD simulations for argon atoms interacting with a platinum (111) surface are presented. A detailed deterministic trajectory analysis is performed, and the transition rates are constructed. The dependence of the rates on the incidence conditions and the lattice temperature is analyzed. Based on this example, we analyze the time scale of the gas-surface system to approach the quasi-stationary state. The MD-RE model has great relevance for the plasma-surface modeling as it makes an extension of accurate simulations to long, experimentally relevant time scales possible. Its application to the computation of atomic sticking probabilities is given in the second part (paper II).

  19. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    NASA Astrophysics Data System (ADS)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  20. Stochastic and Deterministic Approaches to Gas-grain Modeling of Interstellar Sources

    NASA Astrophysics Data System (ADS)

    Vasyunin, Anton; Herbst, Eric; Caselli, Paola

    During the last decade, our understanding of the chemistry on surfaces of interstellar grains has been significantly enchanced. Extensive laboratory studies have revealed complex structure and dynamics in interstellar ice analogues, thus making our knowledge much more detailed. In addition, the first qualitative investigations of new processes were made, such as non-thermal chemical desorption of species from dust grains into the gas. Not surprisingly, the rapid growth of knowledge about the physics and chemistry of interstellar ices led to the development of a new generation of astrochemical models. The models are typically characterized by more detailed treatments of the ice physics and chemistry than previously. The utilized numerical approaches vary greatly from microscopic models, in which every single molecule is traced, to ``mean field'' macroscopic models, which simulate the evolution of averaged characteristics of interstellar ices, such as overall bulk composition. While microscopic models based on a stochastic Monte Carlo approach are potentially able to simulate the evolution of interstellar ices with an account of most subtle effects found in a laboratory, their use is often impractical due to limited knowledge about star-forming regions and huge computational demands. On the other hand, deterministic macroscopic models that often utilize kinetic rate equations are computationally efficient but experience difficulties in incorporation of such potentially important effects as ice segregation or discreteness of surface chemical reactions. In my talk, I will review the state of the art in the development of gas-grain astrochemical models. I will discuss how to incorporate key features of ice chemistry and dynamics in the gas-grain astrochemical models, and how the incorporation of recent laboratory findings into gas-grain models helps to better match observations.

  1. A Comparative Study of Microscopic Images Captured by a Box Type Digital Camera Versus a Standard Microscopic Photography Camera Unit

    PubMed Central

    Desai, Nandini J.; Gupta, B. D.; Patel, Pratik Narendrabhai

    2014-01-01

    Introduction: Obtaining images of slides viewed by a microscope can be invaluable for both diagnosis and teaching.They can be transferred among technologically-advanced hospitals for further consultation and evaluation. But a standard microscopic photography camera unit (MPCU)(MIPS-Microscopic Image projection System) is costly and not available in resource poor settings. The aim of our endeavour was to find a comparable and cheaper alternative method for photomicrography. Materials and Methods: We used a NIKON Coolpix S6150 camera (box type digital camera) with Olympus CH20i microscope and a fluorescent microscope for the purpose of this study. Results: We got comparable results for capturing images of light microscopy, but the results were not as satisfactory for fluorescent microscopy. Conclusion: A box type digital camera is a comparable, less expensive and convenient alternative to microscopic photography camera unit. PMID:25478350

  2. Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material.

    PubMed

    Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N

    2017-09-13

    We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

  3. Single Nanopore Investigations with Ion Conductance Microscopy

    PubMed Central

    Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.

    2011-01-01

    A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184

  4. Integration of a Spectral Domain Optical Coherence Tomography System into a Surgical Microscope for Intraoperative Imaging

    PubMed Central

    Ehlers, Justis P.; Tao, Yuankai K.; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A.

    2011-01-01

    Purpose. To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. Methods. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board–approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. Results. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). Conclusions. High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon. PMID:21282565

  5. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging.

    PubMed

    Ehlers, Justis P; Tao, Yuankai K; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A; Toth, Cynthia A

    2011-05-16

    To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board-approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon.

  6. A novel intravital multi-harmonic generation microscope for early diagnosis of oral cancer

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Lin, Chih-Feng; Shih, Ting-Fang; Sun, Chi-Kuang

    2013-03-01

    Oral cancer is one of the most frequently diagnosed human cancers and leading causes of cancer death all over the world, but the prognosis and overall survival rate are still poor because of delay in diagnosis and lack of early intervention. The failure of early diagnosis is due to insufficiency of proper diagnostic and screening tools and most patients are reluctant to undergo biopsy. Optical virtual biopsy techniques, for imaging cells and tissues at microscopic details capable of differentiating benign from malignant lesions non-invasively, are thus highly desirable. A novel multi-harmonic generation microscope, excited by a 1260 nm Cr:forsterite laser, with second and third harmonic signals demonstrating collagen fiber distribution and cell morphology in a sub-micron resolution, was developed for clinical use. To achieve invivo observation inside the human oral cavity, a small objective probe with a suction capability was carefully designed for patients' comfort and stability. By remotely changing its focus point, the same objective can image the mucosa surface with a low magnification, illuminated by side light-emitting diodes, with a charge-coupled device (CCD) for site location selection before the harmonic generation biopsy was applied. Furthermore, the slow galvanometer mirror and the fast resonant mirror provide a 30 fps frame rate for high-speed real-time observation and the z-motor of this system is triggered at the same rate to provide fast 3D scanning, again ensuring patients' comfort. Focusing on the special cytological and morphological changes of the oral epithelial cells, our preliminary result disclosed excellent consistency with traditional histopathology studies.

  7. Fracture analysis of tube boiler for physical explosion accident.

    PubMed

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Forgotten research from 19th century: science should not follow fashion.

    PubMed

    Galler, Stefan

    2015-02-01

    The fine structure of cross-striated muscle and its changes during contraction were known already in considerable detail in the 19th century. This knowledge was the result of studying birefringence properties of muscle fibres under the polarization microscope, a method mainly established by Brücke (Denk Kais Akad Wiss Math Naturwiss Cl 15:69-84, 1858) in Vienna, Austria. The knowledge was seemingly forgotten in the first half of the 20th century before it was rediscovered in 1954. This rediscovery was essential for the formulation of the sliding filament theory which represents the commonly accepted concept of muscle contraction (A.F. Huxley and Niedergerke, Nature 173:971-973, 1954; H.E. Huxley and Hanson, Nature 173:973-976, 1954). The loss of knowledge was the result of prevailing views within the scientific community which could be attributed to "fashion": it was thought that the changes of cross-striations, which were observed under the microscope, were inconsequential for contraction since other types of movements like cell crawling and smooth muscle contraction were not associated with similar changes of the fine structure. The basis for this assumption was the view that all types of movements associated with life must be caused by the same mechanisms. Furthermore, it was assumed that the light microscopy was of little use, because the individual molecules that carry out life functions cannot be seen under the light microscope. This unfortunate episode of science history teaches us that the progress of science can severely be retarded by fashion.

  9. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  10. Cauliflower ear dissection.

    PubMed

    Fujiwara, Masao; Suzuki, Ayano; Nagata, Takeshi; Fukamizu, Hidekazu

    2011-11-01

    Cauliflower ear (CE) is caused by repeated direct trauma to the external ear. Surgical correction of an established CE is one of the most challenging problems in ear reconstruction. However, no reports have clarified the dissection of an established CE in detail. In this report, the dissection of a CE is described based on macroscopic, microscopic and imaging features. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Evaluation of Resuscitation Fluids on Endothelial Glycocalyx, Venular Blood Flow, and Coagulation Function After Hemorrhagic Shock in Rats

    DTIC Science & Technology

    2013-10-01

    thrombin inhibition, leading to coagulopathy. Using intravital microscopy, we have obtained direct in vivo data showing glycocalyx thickness reduction...collected in 3.2% citrate for coagulation assays (ROTEM, TEM Innovations GmbH, Munich, Germany). Intravital Microscopy The system described in detail...microscopic fields containing venules were randomly selected. The first dye (TR-Dx70) was injected 5 min before baseline. Image sequences of

  12. Raman imaging to investigate ultrastructure and composition of plant cell walls : distribution of lignin and cellulose in black spruce wood (Picea mariana)

    Treesearch

    Umesh P. Agarwal

    2006-01-01

    A detailed understanding of the structural organization of the cell wall of vascular plants is important from both the perspectives of plant biology and chemistry and of commercial utilization. A state-of-the-art 633-nm laser-based confocal Raman microscope was used to determine the distribution of cell wall components in the cross section of black spruce wood in situ...

  13. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  14. Microscale hydrodynamics near moving contact lines

    NASA Technical Reports Server (NTRS)

    Garoff, Stephen; Chen, Q.; Rame, Enrique; Willson, K. R.

    1994-01-01

    The hydrodynamics governing the fluid motions on a microscopic scale near moving contact lines are different from those governing motion far from the contact line. We explore these unique hydrodynamics by detailed measurement of the shape of a fluid meniscus very close to a moving contact line. The validity of present models of the hydrodynamics near moving contact lines as well as the dynamic wetting characteristics of a family of polymer liquids are discussed.

  15. Resolution improvement by nonconfocal theta microscopy.

    PubMed

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  16. Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

    NASA Technical Reports Server (NTRS)

    Cook, S. R.; Hoffbauer, M. A.

    1996-01-01

    The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.

  17. Chrysophyte cysts as potential environmental indicators

    USGS Publications Warehouse

    Adam, David P.; Mahood, Albert D.

    1981-01-01

    Many Chrysophyte algae produce morphologically distinctive, siliceous, microscopic cysts during a resting stage of their life cycles; these cysts are often preserved in sediments. Scanning electron microscopy and Nomarski optics permit much more detailed observation of these cysts than was heretofore possible. We have used an ecologic and biogeographic approach to study the distribution of cyst forms in sediments and have established that many cyst types are found only in specific habitats, such as montane lakes, wet meadows, ephemeral ponds, and Sphagnum bogs. In the samples we have studied, cysts seem to be most common in fluctuating fresh-water habitats of low to moderate pH and some winter freezing. Numerous taxonomic problems have yet to be resolved. We believe that chrysophyte cysts have the potential to become a useful tool for both modern environmental assessments and paleoecological studies of Cenozoic fresh-water lacustrine deposits.

  18. Comparison of surgical outcomes after anterior cervical discectomy and fusion: does the intra-operative use of a microscope improve surgical outcomes.

    PubMed

    Adogwa, Owoicho; Elsamadicy, Aladine; Reiser, Elizabeth; Ziegler, Cole; Freischlag, Kyle; Cheng, Joseph; Bagley, Carlos A

    2016-03-01

    The primary aim of this study was to assess and compare the complications profile as well as long-term clinical outcomes between patients undergoing an Anterior Cervical Discectomy and Fusion (ACDF) procedure with and without the use of an intra-operative microscope. One hundred and forty adult patients (non-microscope cohort: 81; microscope cohort: 59) undergoing ACDF at a major academic medical center were included in this study. Enrollment criteria included available demographic, surgical and clinical outcome data. All patients had prospectively collected patient-reported outcomes measures and a minimum 2-year follow-up. Patients completed the neck disability index (NDI), short-form 12 (SF-12) and visual analog pain scale (VAS) before surgery, then at 3, 6, 12, and 24 months after surgery. Clinical outcomes and complication rates were compared between both patient cohorts. Baseline characteristics were similar between both cohorts. The mean ± standard deviation duration of surgery was longer in the microscope cohort (microscope: 169±34 minutes vs. non-microscope: 98±42 minutes, P<0.001). There was no significant difference between cohorts in the incidence of nerve root injury (P=0.99) or incidental durotomy (P=0.32). At 3 months post-operatively, both cohorts demonstrated similar improvement in VAS-neck pain (P=0.69), NDI (P=0.86), SF-12 PCS (P=0.84) and SF-12 MCS (P=0.75). At 2-year post-operatively, both the microscope and non-microscope cohorts demonstrated similar improvement from base line in NDI (microscope: 13.52±25.77 vs. non-microscope: 19.51±27.47, P<0.18), SF-12 PCS (microscope: 4.15±26.39 vs. non-microscope: 11.98±22.96, P<0.07), SF-12 MCS (microscope: 9.47±32.38 vs. non-microscope: 16.19±30.44, P<0.21). Interestingly at 2 years, the change in VAS neck pain score was significantly different between cohorts (microscope: 2.22±4.00 vs. non-microscope: 3.69±3.61, P<0.02). Our study demonstrates that the intra-operative use of a microscope does not improve overall surgery-related outcomes, nor does it lead to superior long-term outcomes in pain and functional disability, 2 years after index surgery.

  19. Comparison of surgical outcomes after anterior cervical discectomy and fusion: does the intra-operative use of a microscope improve surgical outcomes

    PubMed Central

    Elsamadicy, Aladine; Reiser, Elizabeth; Ziegler, Cole; Freischlag, Kyle; Cheng, Joseph; Bagley, Carlos A.

    2016-01-01

    Background The primary aim of this study was to assess and compare the complications profile as well as long-term clinical outcomes between patients undergoing an Anterior Cervical Discectomy and Fusion (ACDF) procedure with and without the use of an intra-operative microscope. Methods One hundred and forty adult patients (non-microscope cohort: 81; microscope cohort: 59) undergoing ACDF at a major academic medical center were included in this study. Enrollment criteria included available demographic, surgical and clinical outcome data. All patients had prospectively collected patient-reported outcomes measures and a minimum 2-year follow-up. Patients completed the neck disability index (NDI), short-form 12 (SF-12) and visual analog pain scale (VAS) before surgery, then at 3, 6, 12, and 24 months after surgery. Clinical outcomes and complication rates were compared between both patient cohorts. Results Baseline characteristics were similar between both cohorts. The mean ± standard deviation duration of surgery was longer in the microscope cohort (microscope: 169±34 minutes vs. non-microscope: 98±42 minutes, P<0.001). There was no significant difference between cohorts in the incidence of nerve root injury (P=0.99) or incidental durotomy (P=0.32). At 3 months post-operatively, both cohorts demonstrated similar improvement in VAS-neck pain (P=0.69), NDI (P=0.86), SF-12 PCS (P=0.84) and SF-12 MCS (P=0.75). At 2-year post-operatively, both the microscope and non-microscope cohorts demonstrated similar improvement from base line in NDI (microscope: 13.52±25.77 vs. non-microscope: 19.51±27.47, P<0.18), SF-12 PCS (microscope: 4.15±26.39 vs. non-microscope: 11.98±22.96, P<0.07), SF-12 MCS (microscope: 9.47±32.38 vs. non-microscope: 16.19±30.44, P<0.21). Interestingly at 2 years, the change in VAS neck pain score was significantly different between cohorts (microscope: 2.22±4.00 vs. non-microscope: 3.69±3.61, P<0.02). Conclusions Our study demonstrates that the intra-operative use of a microscope does not improve overall surgery-related outcomes, nor does it lead to superior long-term outcomes in pain and functional disability, 2 years after index surgery. PMID:27683692

  20. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    PubMed

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Investigation of the relations between neat resin and advanced composite mechanical properties. Volume 1: Results

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. S.; Adams, D. F.; Walrath, D. E.

    1984-01-01

    A detailed evaluation of one untoughened epoxy baseline resin and three toughened epoxy resin systems was performed. The Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914 resin systems were supplied in the uncured state by NASA-Langley and cast into thin flat specimens and round dogbone specimens. Tensile and torsional shear measurements were performed at three temperatures and two moisture conditions. Coefficients of thermal expansion and moisture expansion were also measured. Extensive scanning electron microscopic examination of fracture surfaces was performed, to permit the correlation of observed failure modes with the environmental conditions under which the various specimens were tested. A micromechanics analysis was used to predict the unidirectional composite response under the various test conditions, using the neat resin experimental results as the required input data. Mechanical and physical test results, the scanning electron microscope observations, and the analytical predictions were then correlated.

  2. Digital holographic microscope for measuring three-dimensional particle distributions and motions.

    PubMed

    Sheng, Jian; Malkiel, Edwin; Katz, Joseph

    2006-06-01

    Better understanding of particle-particle and particle-fluid interactions requires accurate 3D measurements of particle distributions and motions. We introduce the application of in-line digital holographic microscopy as a viable tool for measuring distributions of dense micrometer (3.2 microm) and submicrometer (0.75 microm) particles in a liquid solution with large depths of 1-10 mm. By recording a magnified hologram, we obtain a depth of field of approximately 1000 times the object diameter and a reduced depth of focus of approximately 10 particle diameters, both representing substantial improvements compared to a conventional microscope and in-line holography. Quantitative information on depth of field, depth of focus, and axial resolution is provided. We demonstrate that digital holographic microscopy can resolve the locations of several thousand particles and can measure their motions and trajectories using cinematographic holography. A sample trajectory and detailed morphological information of a free-swimming copepod nauplius are presented.

  3. Light Microscopy Module: International Space Station Premier Automated Microscope

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  4. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  5. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    PubMed

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  6. The long range voice coil atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, H.; Randall, C.; Bridges, D.

    2012-02-15

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coilsmore » in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.« less

  7. Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning

    NASA Astrophysics Data System (ADS)

    Jany, B. R.; Janas, A.; Krok, F.

    2017-11-01

    The quantitative composition of metal alloy nanowires on InSb(001) semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning (ML) method using non negative matrix factorization (NMF) from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional TEM EDX measurements of the nanostructures. This shows that SEM EDX measurements together with machine learning blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination.

  8. Preparation and characterization of CdS/Si coaxial nanowires

    NASA Astrophysics Data System (ADS)

    Fu, X. L.; Li, L. H.; Tang, W. H.

    2006-04-01

    CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm -1, 2LO at 601 cm -1, A 1-TO at 212 cm -1, E 1-TO at 234 cm -1, and E 2 at 252 cm -1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.

  9. Critical current density measurement of striated multifilament-coated conductors using a scanning Hall probe microscope

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat

    2016-08-01

    In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.

  10. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.

  11. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  12. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages.

    PubMed

    Dai, Wei; Fu, Caroline; Khant, Htet A; Ludtke, Steven J; Schmid, Michael F; Chiu, Wah

    2014-11-01

    Advances in electron cryotomography have provided new opportunities to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase-contrast optics produces images with markedly increased contrast compared with images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods for obtaining 3D structures of cyanophage assembly intermediates in the host by subtomogram alignment, classification and averaging. Acquiring three or four tomographic tilt series takes ∼12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. The time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume.

  13. Optical method for high magnification imaging and video recording of live cells at sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Romo, Jaime E., Jr.

    Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.

  14. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  15. The Advantage of Playing Home in NBA: Microscopic, Team-Specific and Evolving Features

    PubMed Central

    Ribeiro, Haroldo V.; Mukherjee, Satyam; Zeng, Xiao Han T.

    2016-01-01

    The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called “home advantage phenomenon” date back to the 70’s and ever since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the “microscopic” dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased ≈0.16 points per minute (on average the seasons 2004–05 to 2013–14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only ≈0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon. This study thus adds evidence of the home advantage phenomenon and contributes to a deeper understanding of this effect over the course of games. PMID:27015636

  16. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.

  17. Inactivation of individual Bacillus subtilis spores in dependence on their distance to single cosmic heavy ions.

    PubMed

    Facius, R; Reitz, G; Schafer, M

    1994-10-01

    For radiobiological experiments in space, designed to investigate biological effects of the heavy ions of the cosmic radiation field, a mandatory requirement is the possibility to spatially correlate the observed biological response of individual test organisms to the passage of single heavy ions. Among several undertakings towards this goal, the BIOSTACK experiments in the Apollo missions achieved the highest precision and therefore the most detailed information on this question. Spores of Bacillus subtilis as a highly radiation resistant and microscopically small test organism yielded these quantitative results. This paper will focus on experimental and procedural details, which must be included for an interpretation and a discussion of these findings in comparison to control experiments with accelerated heavy ions.

  18. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.

    2015-06-24

    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less

  19. Optical digital microscopy for cyto- and hematological studies in vitro

    NASA Astrophysics Data System (ADS)

    Ganilova, Yu. A.; Dolmashkin, A. A.; Doubrovski, V. A.; Yanina, I. Yu.; Tuchin, V. V.

    2013-08-01

    The dependence of the spatial resolution and field of view of an optical microscope equipped with a CCD camera on the objective magnification has been experimentally investigated. Measurement of these characteristics has shown that a spatial resolution of 20-25 px/μm at a field of view of about 110 μm is quite realistic; this resolution is acceptable for a detailed study of the processes occurring in cell. It is proposed to expand the dynamic range of digital camera by measuring and approximating its light characteristics with subsequent plotting of the corresponding calibration curve. The biological objects of study were human adipose tissue cells, as well as erythrocytes and their immune complexes in human blood; both objects have been investigated in vitro. Application of optical digital microscopy for solving specific problems of cytology and hematology can be useful in both biomedical studies in experiments with objects of nonbiological origin.

  20. Spectral and Geological Characterization of Beach Components in Northern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Caraballo Álvarez, I. O.; Torres-Perez, J. L.; Barreto, M.

    2015-12-01

    Understanding how changes in beach components may reflect beach processes is essential since variations along beach profiles can shed light on river and ocean processes influencing beach sedimentation and beachrock formation. It is likely these influences are related to beach proximity within the Río Grande de Manatí river mouth. Therefore, this study focuses on characterizing beach components at two sites in Manatí, Puerto Rico. Playa Machuca and Playa Tombolo, which are separated by eolianites, differ greatly in sediment size, mineralogy, and beachrock morphology. Several approaches were taken to geologically and spectrally characterize main beach components at each site. These approaches included field and microscopic laboratory identification, granulometry, and a comparison between remote sensing reflectance (Rrs) obtained with a field spectroradiometer and pre-existing spectral library signatures. Preliminary results indicate a positive correlation between each method. This study may help explore the possibility of using only Rrs to characterize beach and shallow submarine components for detailed image analysis and management of coastal features.This study focuses on characterizing beach components at two sites in Manatí, Puerto Rico. Playa Machuca and Playa Tombolo, two beaches that are separated by eolianites, differ greatly in sediment size and mineralogy, as well as in beachrock morphology. Understanding how changes in beach components may reflect beach processes is essential, since it is likely that differences are mostly related to each beaches' proximity to the Río Grande de Manatí river mouth. Hence, changes in components along beach profiles can shed light on the river's and the ocean's influence on beach sedimentation and beachrock formation. Several approaches were taken to properly geologically and spectrally characterize the main beach components at each site. These approaches included field and microscopic laboratory identification, granulometry, and a comparison between remote sensing reflectance (Rrs) obtained with a field spectroradiometer and the ENVI spectral library. Preliminary results show a positive correlation between each method. This study may help explore the possibility of using only Rrs to characterize beach and shallow submarine components for detailed image analysis and management of coastal features.

  1. Microscope use in clinical veterinary practice and potential implications for veterinary school curricula.

    PubMed

    Stewart, Sherry M; Dowers, Kristy L; Cerda, Jacey R; Schoenfeld-Tacher, Regina M; Kogan, Lori R

    2014-01-01

    Microscopy (skill of using a microscope) and the concepts of cytology (study of cells) and histology (study of tissues) are most often taught in professional veterinary medicine programs through the traditional method of glass slides and light microscopes. Several limiting factors in veterinary training programs are encouraging educators to explore innovative options for teaching microscopy skills and the concepts of cytology and histology. An anonymous online survey was administered through the Colorado Veterinary Medical Association to Colorado veterinarians working in private practice. It was designed to assess their current usage of microscopes for cytological and histological evaluation of specimens and their perceptions of microscope use in their veterinary education. The first part of the survey was answered by 183 veterinarians, with 104 indicating they had an onsite diagnostic lab. Analysis pertaining to the use of the microscope in practice and in veterinary programs was conducted on this subset. Most respondents felt the amount of time spent in the curriculum using a microscope was just right for basic microscope use and using the microscope for viewing and learning about normal and abnormal histological sections and clinical cytology. Participants felt more emphasis could be placed on clinical and diagnostic cytology. Study results suggest that practicing veterinarians frequently use microscopes for a wide variety of cytological diagnostics. However, only two respondents indicated they prepared samples for histological evaluation. Veterinary schools should consider these results against the backdrop of pressure to implement innovative teaching techniques to meet the changing needs of the profession.

  2. Combining kriging, multispectral and multimodal microscopy to resolve malaria-infected erythrocyte contents.

    PubMed

    Dabo-Niang, S; Zoueu, J T

    2012-09-01

    In this communication, we demonstrate how kriging, combine with multispectral and multimodal microscopy can enhance the resolution of malaria-infected images and provide more details on their composition, for analysis and diagnosis. The results of this interpolation applied to the two principal components of multispectral and multimodal images illustrate that the examination of the content of Plasmodium falciparum infected human erythrocyte is improved. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  3. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    PubMed

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  4. "Parking-garage" structures in nuclear astrophysics and cellular biophysics

    NASA Astrophysics Data System (ADS)

    Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Huber, Greg; Schneider, A. S.

    2016-11-01

    A striking shape was recently observed for the endoplasmic reticulum, a cellular organelle consisting of stacked sheets connected by helical ramps [Terasaki et al., Cell 154, 285 (2013), 10.1016/j.cell.2013.06.031]. This shape is interesting both for its biological function, to synthesize proteins using an increased surface area for ribosome factories, and its geometric properties that may be insensitive to details of the microscopic interactions. In the present work, we find very similar shapes in our molecular dynamics simulations of the nuclear pasta phases of dense nuclear matter that are expected deep in the crust of neutron stars. There are dramatic differences between nuclear pasta and terrestrial cell biology. Nuclear pasta is 14 orders of magnitude denser than the aqueous environs of the cell nucleus and involves strong interactions between protons and neutrons, while cellular-scale biology is dominated by the entropy of water and complex assemblies of biomolecules. Nonetheless, the very similar geometry suggests both systems may have similar coarse-grained dynamics and that the shapes are indeed determined by geometrical considerations, independent of microscopic details. Many of our simulations self-assemble into flat sheets connected by helical ramps. These ramps may impact the thermal and electrical conductivities, viscosity, shear modulus, and breaking strain of neutron star crust. The interaction we use, with Coulomb frustration, may provide a simple model system that reproduces many biologically important shapes.

  5. Numerical simulation of dendrite growth in nickel-based superalloy and validated by in-situ observation using high temperature confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Xu, Qingyan; Liu, Baicheng

    2017-12-01

    Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.

  6. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease.

    PubMed

    Chen, Xi; Viehland, Christian; Carrasco-Zevallos, Oscar M; Keller, Brenton; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2017-05-01

    Intraoperative optical coherence tomography (OCT) has gained traction as an important adjunct for clinical decision making during vitreoretinal surgery, and OCT angiography (OCTA) has provided novel insights in clinical evaluation of retinal diseases. To date, these two technologies have not been applied in combination to evaluate retinal vascular disease in the operating suite. To conduct microscope-integrated, swept-source OCTA (MIOCTA) in children with retinal vascular disease. In this case report analysis, OCT imaging in pediatric patients, MIOCTA images were obtained during examination under anesthesia from a young boy with a history of idiopathic vitreous hemorrhage and a female infant with familial exudative vitreoretinopathy. Side-by-side comparison of research MIOCT angiograms and clinically indicated fluorescein angiograms. In 2 young children with retinal vascular disease, the MIOCTA images showed more detailed vascular patterns than were visible on the fluorescein angiograms although within a more posterior field of view. The MIOCTA system allowed visualization of small pathological retinal vessels in the retinal periphery that were obscured in the fluorescein angiograms by fluorescein staining from underlying, preexisting laser scars. This is the first report to date of the use of MIOCTA in the operating room for young children with retinal vascular disease. Further optimization of this system may allow noninvasive detailed evaluation of retinal vasculature during surgical procedures and in patients who could not cooperate with in-office examinations.

  7. 'What colour is my cancer?' The experience of teenagers and young adults who are shown their cancer samples through a microscope.

    PubMed

    Morgan, Sue

    2009-07-01

    One of the well-known needs of teenagers and young adults with cancer (TYAs) is their quest for knowledge about their illness and its treatment. As well as this they desire to be treated as partners and as an integral part of the team who care for them. This small exploratory study aims to address these issues in the development of a unique project where the young people were given unprecedented access to their own cancer samples and to the professional experts who analyse those samples. This small cohort of 31 TYAs, aged 13-24 years, were invited to look at their samples under a microscope and discuss it with the experts; of these 4 declined. A number of questionnaires, containing both open and closed questions, were given before, immediately post and one month after the viewing session. The results were analysed using SPSS13 and content analysis. The study was able to establish that viewing cancer samples had no measurable effect on the TYAs gaining of new knowledge, sense of control or choices that they made. However, it did show how the young people felt in light of actually 'seeing' their own cancer, and how this seemed to improve the overall perception of their disease. This is a new body of knowledge that requires further, more detailed, rigorous work.

  8. Paul Langerhans: a prilgrim "traveling" from functional histology to marine biology.

    PubMed

    Raica, Marius; Cimpean, Anca Maria

    2017-06-01

    The nineteenth century was the time of a real revolution in science and medicine. A lot of seminal discoveries in medicine and biology were done in this time, and many of them were coincident with the introduction of the compound microscope by Hermann van Deijl and the standard histological technique by Paul Ehrlich. The main tissue types and individual cells were characterized and originally classified more than hundred years ago, although less attention was paid to their basic functions. This was mainly due to the modality of tissue specimen processing that allowed particularly detailed descriptive studies. Even so, we can notice some attempts to correlate the structure with the function. The German scientist Paul Langerhans, well-known for the discovery of Langerhans islets of the pancreas and Langerhans cells from the epidermis, tried to change the conventional fate of morphological studies introducing in his works functional hypothesis based on traditional microscopic observations even from the beginning of his scientific career. Paul Langerhans was a complex personality of the second half of the nineteenth century, not only in medicine, but also in other fields of biology. In the present review, presented is the life and research activity of Paul Langerhans, not only because of the importance of his discoveries, but also for perspectives that were opened by these findings in unexpected fields of medicine and biology.

  9. The collagenic architecture of human dura mater.

    PubMed

    Protasoni, Marina; Sangiorgi, Simone; Cividini, Andrea; Culuvaris, Gloria Tiffany; Tomei, Giustino; Dell'Orbo, Carlo; Raspanti, Mario; Balbi, Sergio; Reguzzoni, Marcella

    2011-06-01

    Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer. Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope. The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers. The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion.

  10. Modulation of the magnetic domain size induced by an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, F.; Kakizakai, H.; Yamada, K.

    2016-07-11

    The electric field (EF) effect on the magnetic domain structure of a Pt/Co system was studied, where an EF was applied to the top surface of the Co layer. The width of the maze domain was significantly modified by the application of the EF at a temperature slightly below the Curie temperature. After a detailed analysis, a change in the microscopic exchange stiffness induced by the EF application was suggested to dominate the modulation of the domain width observed in the experiment. The accumulation of electrons at the surface of the Co layer resulted in an increase in the microscopicmore » exchange stiffness and the Curie temperature. The result was consistent with the recent theoretical prediction.« less

  11. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  12. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes.

    PubMed

    Antonenkov, Vasily D; Ohlmeier, Steffen; Sormunen, Raija T; Hiltunen, J Kalervo

    2007-05-25

    Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.

  13. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE PAGES

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...

    2017-11-15

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  14. Geology of the surficial aquifer system, Dade County, Florida; lithologic logs

    USGS Publications Warehouse

    Causaras, C.R.

    1986-01-01

    The geologic framework of the surficial aquifer system in Dade County, Florida, was investigated as part of a longterm study by the USGS in cooperation with the South Florida Water Management District, to describe the geology, hydrologic characteristics, and groundwater quality of the surficial aquifer system. Thirty-three test wells were drilled completely through the surficial aquifer system and into the underlying, relatively impermeable units of the Tamiami and Hawthorn Formations. Detailed lithologic logs were made from microscopic examination of rock cuttings and cores obtained from these wells. The logs were used to prepare geologic sections that show the lithologic variations, thickness of the lithologic units, and different geologic formations that comprise the aquifers system. (Author 's abstract)

  15. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  16. Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers

    NASA Astrophysics Data System (ADS)

    Djoković, V.; Božanic, D. K.; Vodnik, V. V.; Krsmanović, R. M.; Trandafilovic, L. V.; Dimitrijević-Branković, S.

    2011-10-01

    We present the results on the structure and the optical properties of noble metal (Ag, Au) and oxide (ZnO) nanoparticles synthesized by various methods in different polysaccharide matrices such as chitosan, glycogen, alginate and starch. The structure of the obtained nanoparticles was studied in detail with microscopic techniques (TEM, SEM), while the XPS spectroscopy was used to investigate the effects at the nanoparticle-biomolecule interfaces. The antimicrobial activity of the nanocomposite films with Ag nanoparticles was tested against the Staphylococcus aureus, Escherichia coli and Candida albicans pathogens. In addition, we will present the results on the structure and optical properties of the tryptophan amino acid functionalized silver nanoparticles dispersed in water soluble polymer matrices.

  17. Inelastic Collisions of N2, H2, and H2+He Mixtures in Supersonic Jets by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernández, J. M.; Fonfría, J. P.; Ramos, A.; Tejeda, G.; Montero, S.; Thibault, F.

    2008-12-01

    We present a detailed study of inelastic collisions at low temperature in several supersonic jets of N2, H2, and H2+He mixtures using different nozzles and stagnation conditions. Absolute number density and rotational population data of unprecedented accuracy are measured along the jet axis by Raman spectroscopy with high spatial resolution (<5 μm) and high-sensitivity (<1 photon/sec). The experimental data are interpreted by means of a master equation describing the time evolution of the rotational populations in terms of the state-to-state rate coefficients derived from high-level quantum calculations. This combination of experimental and calculated data leads to a detailed understanding of the underlying physics, consistent with the assumed isentropic behaviour. The breakdown of rotational-translational thermal equilibrium, and its space-time evolution along the jet axis are accounted for by the microscopic (state-to-state rate coefficients) and macroscopic (flow velocity, number density, temperatures) physical quantities. A highly consistent picture, free from any additional parameters, bridges this way the microsopic and macroscopic approaches to fluid dynamics along the jet axis.

  18. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  19. Re-evaluation of endogenous development of Eimeria bareillyi Gill, Chhabra and Lall, 1963 in water buffalo (Bubalus bubalis).

    PubMed

    Dubey, J P

    2018-04-25

    Water buffalo (Bubalus bubalis) is important for the economy of Asia, South America and parts of Europe. Coccidiosis is an important cause of neonatal mortality in livestock, including buffalo. Of more than 12 species of Eimeria in buffalo, Eimeria bareillyi is the most pathogenic. There are uncertainties concerning its asexual and sexual development. During a previously reported outbreak of fatal enteritis associated with E. bareillyi in buffaloes in the Netherlands, sections of small intestine were re-evaluated histologically and by transmission electron microscopy (TEM) to seek details of endogenous development. Profuse asexual multiplication occurred in the jejunum and ileum. Light microscopic examination revealed that parasites divided in two (probably endodyogeny) or more organisms. There were two or more generations of morphologically different merozoites; some of these observations were confirmed by TEM. Details of gametogonic development, including oocyst wall formation are provided. Schizogonic and gametogonic development described in the present study can serve as a guide for differential diagnosis of Eimeria species in histological sections of intestines of buffaloes.

  20. Z-scan studies of the nonlinear optical properties of gold nanoparticles prepared by electron beam deposition.

    PubMed

    Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R

    2015-11-20

    This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48  nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.

  1. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    PubMed

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  2. Neovascularization of the corpus luteum of rats during the estrus cycle.

    PubMed

    Tsukada, K; Matsushima, T; Yamanaka, N

    1996-06-01

    In order to elucidate the chronological morphological changes of the corpus luteum (CL) of rats, as a physiological angiogenesis model, the CL of rat ovaries was studied light microscopically using periodic acid methenamine silver staining (PAM) and immunostaining for type IV collagen, laminin, thrombomodulin (TM), factor VIII related antigen (factor VIII) and alpha-smooth muscle actin (alpha-SMA). The CL was also studied electron microscopically. Female Wistar-Imamichi rats were used, which have a regular 4-day estrous cycle. The histological changes of the CL were observed in 6-hour intervals from 4 h before the ovulation to 28 h post-ovulation during the estrous cycle. Once the basement membrane (BM) of the follicle disintegrated following ovulation, developing capillaries entered into the CL and formed a vascular lumen with a surrounding BM, which showed positive for PAM staining, type IV collagen and laminin. The developing capillaries in the CL showed a weakly positive reaction for TM and factor VIII, but were negative for alpha-SMA. However, the appearance of immature pericytes around the well-developed capillary was obvious with electron microscopy. The study reported here provides detailed descriptions of angiogenesis during luteinization. It is concluded that the angiogenesis of the CL begins at the time of destruction of the BM of the ovarian follicle, and that the capillary BM appears when the capillary forms its lumen. Moreover, it was demonstrated that the capillary does not develop into an arteriole during luteinization.

  3. Bubble performance of a novel dissolved air flotation(DAF) unit.

    PubMed

    Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  4. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  5. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    PubMed

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  6. How to track protists in three dimensions

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Leptos, Kyriacos C.; Goldstein, Raymond E.

    2009-01-01

    We present an apparatus optimized for tracking swimming micro-organisms in the size range of 10-1000 μm, in three dimensions (3Ds), far from surfaces, and with negligible background convective fluid motion. Charge coupled device cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrow band dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.

  7. [A study on the concentration quenching of Tm3+ upconversion luminescence].

    PubMed

    Chen, B; Wang, H; Huang, S

    2001-06-01

    In this work, we have a designation and preparation of MFT glasses for upconversion, the glasses consisted of TeO2 and fluoride: PbF2, AlF3, BaF2, NaF and the impurity Tm2O3. In this glass system the oxide improve forming ability, the fluorides improve the microscopic environment around RE ions in glasses. In this glass host the content of Tm2O3 achieves to 4% mol and crystallization no occurred. A detail study on the concentration quenching of upconversion luminescence for 1G4-->3H6 and 1D2-->3H4 transitions was completed. The experimental results directed that the quenching concentration was 0.6 mol.% and higher 3 times than in other glasses materials. The cross relaxation and mechanism of concentration quenching were discussed.

  8. Safety Assessment and Botanical Standardization of an Edible Species from South America.

    PubMed

    Traesel, Giseli Karenina; Machado, Camila Dias; Tirloni, Cleide Adriane Signor; Menetrier, Jacqueline Vergutz; Dos Reis Lívero, Francislaine Aparecida; Lourenço, Emerson Luiz Botelho; Oesterreich, Silvia Aparecida; Budel, Jane Manfron; Junior, Arquimedes Gasparotto

    2017-05-01

    Tropaeolum majus L. (Tropaeolaceae), commonly known as nasturtium, is an important edible plant native to the Andean States and widely disseminated throughout South America. Despite the use of this species is quite widespread, there are no minimum quality control standards or data on its genotoxicity. So, the aim of this study was to present a detailed anatomical and histochemical study for Tropaeolum majus and provide genotoxicity parameters of a preparation routinely used in South American countries. First, three different Tropaeolum majus aqueous extracts (TMAEs) at concentrations of 1.5%, 7%, and 15% were prepared according to the popular use. Then, genetic toxicity of TMAE was evaluated on bacterial reverse mutation, genomic lesions, and micronucleus formation in male rats. Furthermore, a detailed anatomical and histochemical study of the leaves and stems of Tropaeolum majus were performed. No revertant colonies were found in any bacterial cultures examined. In the comet assay, TMAE showed no significant DNA damage in all tested doses. Micronucleus assay showed no significant increases in the frequency of inducing micronuclei in any dose examined. Light and electron microscope images of cross-section of leaves and stems from Tropaeolum majus revealed useful diagnostic features. The presented data showed significant safety parameters for the use of TMAE and provided important data for the quality control of this plant species.

  9. Note on fault-slip motion inferred from a study of micro-cataclastic particles from an underground shear rupture

    NASA Astrophysics Data System (ADS)

    Ortlepp, W. D.

    1992-09-01

    Mining of a highly-stressed remnant in a deep South African gold mine was accompanied by considerable seismic activity and some significant rockbursts. The larger seismic events were registered some 60 km away at a WSSN station and several shear ruptures corresponding to these events were encountered during mining operations. A careful study based on detailed exploration of two of these ruptures proved them to be the source of two of the larger rockbursts. Certain striking features revealed by a scanning electron microscopic study of some of the fresh cataclastic ‘rock-flour’ forming part of the comminuted filling of these ruptures provide strong evidence of violent ’shock rebound’ phenomena in the faulting process. This interpretation could provide useful insight into earthquake source mechanisms and also has practical significance in the understanding of mine rockbursts.

  10. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations

    NASA Astrophysics Data System (ADS)

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  11. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations.

    PubMed

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  12. Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Dubois, Jonathan; Lee, Donghwa; Lordi, Vince

    2014-03-01

    Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Balancing the shortcomings of microscope and endoscope: endoscope-assisted technique in microsurgical removal of recurrent epidermoid cysts in the posterior fossa.

    PubMed

    Ebner, F H; Roser, F; Thaher, F; Schittenhelm, J; Tatagiba, M

    2010-10-01

    We report about endoscope-assisted surgery of epidermoid cysts in the posterior fossa focusing on the application of neuro-endoscopy and the clinical outcome in cases of recurrent epidermoid cysts. 25 consecutively operated patients with an epidermoid cyst in the posterior fossa were retrospectively analysed. Surgeries were performed both with an operating microscope (OPMI Pentero or NC 4, Zeiss Company, Oberkochen, Germany) and endoscopic equipment (4 mm rigid endoscopes with 30° and 70° optics; Karl Storz Company, Tuttlingen, Germany) under continuous intraoperative monitoring. Surgical reports and DVD-recordings were evaluated for identification of adhesion areas and surgical details. 7 (28%) of the 25 patients were recurrences of previously operated epidermoid cysts. Mean time to recurrence was 17 years (8-22 years). In 5 cases the endoscope was used as an adjunctive tool for inspection/endoscope-assisted removal of remnants. The effective time of use of the endoscope was limited to the end stage of the procedure, but was very effective. In a modern operative setting and with the necessary surgical experience recurrent epidermoid cysts may be removed with excellent clinical results. The combined use of microscope and endoscope offers relevant advantages in demanding anatomic situations. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  15. Pathology of Chronic Chagas Cardiomyopathy in the United States:  A Detailed Review of 13 Cardiectomy Cases.

    PubMed

    Kransdorf, Evan P; Fishbein, Mike C; Czer, Lawrence S C; Patel, Jignesh K; Velleca, Angela; Tazelaar, Henry D; Roy, R Raina; Steidley, D Eric; Kobashigawa, Jon A; Luthringer, Daniel J

    2016-08-01

    The pathologic features of chronic Chagas cardiomyopathy may not be widely appreciated in the United States. We sought to describe the gross, microscopic, immunohistochemical, and molecular pathology features useful to diagnose chronic Chagas cardiomyopathy. The features from a case series of cardiectomy specimens of patients undergoing heart transplantation (12 patients) or mechanical circulatory support device implantation (one patient) for chronic Chagas cardiomyopathy at three institutions in the United States are reported and analyzed. Gross findings included enlarged and dilated ventricles (100% of cases), mural thrombi (54%), epicardial plaques (42%), and left ventricular aneurysm (36%). Microscopic evaluation revealed myocarditis (100% of cases) characterized by mononuclear cell infiltration, fibrosis (100%), nonnecrotizing granulomas (62%), and giant cells (38%). Two specimens (15%) showed rare intracellular amastigotes. Immunohistochemical assays for Trypanosoma cruzi organisms were negative in all cardiectomy specimens, whereas tissue polymerase chain reaction was positive in six (54%) of 11 cases. The gross and microscopic features of chronic Chagas cardiomyopathy in the United States appear similar to those reported in endemic countries. Importantly, tissue polymerase chain reaction may be useful to confirm the diagnosis. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. X-ray mosaic nanotomography of large microorganisms.

    PubMed

    Mokso, R; Quaroni, L; Marone, F; Irvine, S; Vila-Comamala, J; Blanke, A; Stampanoni, M

    2012-02-01

    Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Surgical management of first branchial cleft anomaly presenting as infected retroauricular mass using a microscopic dissection technique.

    PubMed

    Chan, Kai-Chieh; Chao, Wei-Chieh; Wu, Che-Ming

    2012-01-01

    This is a detailed description of the clinical and anatomical presentation of the first branchial cleft anomaly presenting as retroauricular infected mass. Our experience with a microscopic dissection with control of the sinus lumen from within the cyst is also described. Between 2001 and 2008, patients with the final histologic diagnosis of first branchial cleft anomaly in the retroauricular area were managed with a microscopic dissection technique with control of the sinus lumen from within the cyst. Classifications were done in accordance with Work, Olsen, and Chilla. Outcomes measured intervention as a function of disease recurrence and complications including facial nerve function was used. Eight patients with a mean age of 14.2 years were enrolled, and this included 4 females and 4 males. Four type 1 and 4 type 2 lesions as per the Work's and Chilla's classification were found, and there were 5 sinuses, 2 fistulae, and 1 cyst according to Olsen's classification. All patients presented to the department with acute infection at the time of diagnosis. Five of the 8 patients had previous surgical treatment, 2 of those had up to 3 previous operations. None of the patients were complicated by disease recurrence or had surgical related complications (facial nerve paresis or paralysis, infection, canal stenosis) requiring reoperation with more than 1 year of follow-up. First branchial cleft anomaly presenting as retroauricular infected mass can be effectively treated by adopting a microscopic dissection technique with control of the sinus lumen from within the cyst. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics.

    PubMed

    Mudanyali, Onur; Erlinger, Anthony; Seo, Sungkyu; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2009-12-14

    Conventional optical microscopes image cells by use of objective lenses that work together with other lenses and optical components. While quite effective, this classical approach has certain limitations for miniaturization of the imaging platform to make it compatible with the advanced state of the art in microfluidics. In this report, we introduce experimental details of a lensless on-chip imaging concept termed LUCAS (Lensless Ultra-wide field-of-view Cell monitoring Array platform based on Shadow imaging) that does not require any microscope objectives or other bulky optical components to image a heterogeneous cell solution over an ultra-wide field of view that can span as large as approximately 18 cm(2). Moreover, unlike conventional microscopes, LUCAS can image a heterogeneous cell solution of interest over a depth-of-field of approximately 5 mm without the need for refocusing which corresponds to up to approximately 9 mL sample volume. This imaging platform records the shadows (i.e., lensless digital holograms) of each cell of interest within its field of view, and automated digital processing of these cell shadows can determine the type, the count and the relative positions of cells within the solution. Because it does not require any bulky optical components or mechanical scanning stages it offers a significantly miniaturized platform that at the same time reduces the cost, which is quite important for especially point of care diagnostic tools. Furthermore, the imaging throughput of this platform is orders of magnitude better than conventional optical microscopes, which could be exceedingly valuable for high-throughput cell-biology experiments.

  19. Advanced atomic force microscopy: Development and application

    NASA Astrophysics Data System (ADS)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  20. Lensless On-chip Imaging of Cells Provides a New Tool for High-throughput Cell-Biology and Medical Diagnostics

    PubMed Central

    Mudanyali, Onur; Erlinger, Anthony; Seo, Sungkyu; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2009-01-01

    Conventional optical microscopes image cells by use of objective lenses that work together with other lenses and optical components. While quite effective, this classical approach has certain limitations for miniaturization of the imaging platform to make it compatible with the advanced state of the art in microfluidics. In this report, we introduce experimental details of a lensless on-chip imaging concept termed LUCAS (Lensless Ultra-wide field-of-view Cell monitoring Array platform based on Shadow imaging) that does not require any microscope objectives or other bulky optical components to image a heterogeneous cell solution over an ultra-wide field of view that can span as large as ~18 cm2. Moreover, unlike conventional microscopes, LUCAS can image a heterogeneous cell solution of interest over a depth-of-field of ~5 mm without the need for refocusing which corresponds to up to ~9 mL sample volume. This imaging platform records the shadows (i.e., lensless digital holograms) of each cell of interest within its field of view, and automated digital processing of these cell shadows can determine the type, the count and the relative positions of cells within the solution. Because it does not require any bulky optical components or mechanical scanning stages it offers a significantly miniaturized platform that at the same time reduces the cost, which is quite important for especially point of care diagnostic tools. Furthermore, the imaging throughput of this platform is orders of magnitude better than conventional optical microscopes, which could be exceedingly valuable for high-throughput cell-biology experiments. PMID:20010542

  1. Differential polarization laser scanning microscopy: biological applications

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Besson, F.; Pomozi, I.; Garab, G.

    2005-09-01

    With the aid of a differential polarization (DP) apparatus, developed in our laboratory and attached to our laser scanning confocal microscope, we can measure the magnitude and spatial distribution of 8 different DP quantities: linear and circular dichroism (LD&CD), linear and circular anisotropy of the emission (R and CPL, confocal), fluorescence detected dichroisms (FDLD&FDCD, confocal), linear birefringence (LB), and the degree of polarization of fluorescence emission (P, confocal). The attachment uses high frequency modulation and subsequent demodulation, via lock-in amplifier, of the detected intensity values, and records and displays pixel-by-pixel the measured DP quantity. These microscopic DP data carry important physical information on the molecular architecture of anisotropically organized samples. Microscopic DP measurements are thought to be of particular importance in biology. In most biological samples anisotropy is difficult to determine with conventional, macroscopic DP measurements and microscopic variations are of special significance. In this paper, we describe the method of LB imaging. Using magnetically oriented isolated chloroplasts trapped in polyacrylamide gel, we demonstrate that LB can be determined with high sensitivity and good spatial resolution. Granal thylakoid membranes in edge-aligned orientation exhibited strong LB, with large variations in its sign and magnitude. In face-aligned position LB was considerably weaker, and tended to vanish when averaged for the whole image. The strong local variations are attributed to the inherent heterogeneity of the membranes, i.e. to their internal differentiation into multilamellar, stacked membranes (grana), and single thylakoids (stroma membranes). Further details and applications of our DP-LSM will be published elsewhere.

  2. Pharmacognostic studies of the leaves and stem of Careya arborea Roxb.

    PubMed Central

    Gupta, Prakash Chandra; Sharma, Nisha; Rao, Ch V

    2012-01-01

    Objective To study detailed pharmacognostic profile of leaves and stem of Careya arborea (C. arborea) Roxb. (Lecthyidaceae), an important medicinal plant in the Indian system of medicine. Methods Leaf and stem samples of C. arborea were studied by macroscopical, microscopical, physicochemical, phytochemical, fluorescence analysis of powder of the plant and other methods for standardization recommended by WHO. Results Macroscopically, the leaves are simple, broadly obovate in shape, acuminate apex with crenate, dentate margin, petioles (0.1–1.8 cm) long. Microscopically, the leaf showed the presence of median large size vascular bundle covered with fibrous bundle sheath, arrangement of xylem in cup shape and presence of cortical vascular bundle, patches of sclerenchyma, phloem fibers in groups and brown pigment containing cells in stem are some of the diagnostic features noted from anatomical study. Powder microscopy of leaf revealed the presence of parenchyma cells, xylem with pitted vessels and epidermis with anisocytic stomata. The investigations also included leaf surface data; quantitative leaf microscopy and fluorescence analysis. Physiochemical parameters such as loss on drying, swelling index, extractive values and ash values were also determined and results showed that total ash of the stem bark was about two times higher than leaf and water soluble extractive value of leaf and stem bark was two times higher than alcohol soluble extractive value. Preliminary phytochemical screening showed the presence of triterpenoids, saponins, tannins and flavonoids. Conclusions The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material in future investigations and applications. PMID:23569939

  3. Detailed physico-chemical characterization of microplastics from North Atlantic Gyre

    NASA Astrophysics Data System (ADS)

    ter Halle, A.; Ladirat, L.; Gendre, X.; Goudouneche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E.

    2016-02-01

    More than 260 million tonnes of plastic are used each year. Based on population density and economic status of costal countries the mass of land based plastic waste entering the ocean was recently estimated between 4.8 to 12.7 million metric tons per year1. Most striking is the estimation for 2025 that this amount will increase by an order of magnitude if waste management infrastructures are not improved. Plastic debris is abundant and widespread in the marine habitat. Marine plastic pollution has been recently recognized as a global environmental threat2. There is still a need for detailed research in terms of estimating the global scale of plastic inputs, their fate in the environment as well as the biological responses to plastic exposure in a variety of marine organisms. In this context, the present study aimed at giving a detailed physico-chemical characterization of the microplastics collected at the surface of the North Atlantic accumulation zone. A detailed description of the plastics is given in terms of size, width, density and weight together with a microscopic and infrared spectroscopy characterization. In this study, also we introduce a new fragmentation mechanism of the microplastics based on the physico-chemical data collected. This approach will be helpful for oceanographic modelling. The results will be also very useful to better understand the biological response to the plastic in terms of transfer of chemical in case of ingestion or to better understand the formation and development of the plastisphere. 1 Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Lavender Law, K., Plastic waste inputs from land into the ocean 2 Moore, C. J., Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 2008, 108, (2), 131-139.

  4. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamarian, Iman, E-mail: imanghamarian@yahoo.com; Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203; Samimi, Peyman

    The presence and interaction of nanotwins, geometrically necessary dislocations, and grain boundaries play a key role in the mechanical properties of nanostructured crystalline materials. Therefore, it is vital to determine the orientation, width and distance of nanotwins, the angle and axis of grain boundary misorientations as well as the type and the distributions of dislocations in an automatic and statistically meaningful fashion in a relatively large area. In this paper, such details are provided using a transmission electron microscope-based orientation microscopy technique called ASTAR™/precession electron diffraction. The remarkable spatial resolution of this technique (~ 2 nm) enables highly detailed characterizationmore » of nanotwins, grain boundaries and the configuration of dislocations. This orientation microscopy technique provides the raw data required for the determination of these parameters. The procedures to post-process the ASTAR™/PED datasets in order to obtain the important (and currently largely hidden) details of nanotwins as well as quantifications of dislocation density distributions are described in this study. - Highlights: • EBSD cannot characterize defects such as dislocations, grain boundaries and nanotwins in severely deformed metals. • TEM based orientation microscopy technique called ASTAR™/PED was used to resolve the problem. • Locations and orientations of nanotwins, dislocation density distribution and grain boundary characters can be resolved. • This work provides the bases for further studies on the interactions between dislocations, grain boundaries and nanotwins. • The computation part is explained sufficiently which helps the readers to post process their own data.« less

  6. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  7. Erratum to: Psammoma bodies in two types of human ovarian tumours: a mineralogical study

    NASA Astrophysics Data System (ADS)

    Meng, Fanlu; Wang, Changqiu; Li, Yan; Lu, Anhuai; Mei, Fang; Liu, Jianying; Du, Jingyun; Zhang, Yan

    2015-06-01

    Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.

  8. Psammoma bodies in two types of human ovarian tumours: a mineralogical study

    NASA Astrophysics Data System (ADS)

    Fanlu, Meng; Changqiu, Wang; Yan, Li; Anhuai, Lu; Fang, Mei; Jianying, Liu; Jingyun, Du; Yan, Zhang

    2015-06-01

    Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4 2-)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.

  9. Blind restoration method of three-dimensional microscope image based on RL algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li

    2013-08-01

    Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.

  10. Sci-Thur AM: YIS – 06: A Monte Carlo study of macro- and microscopic dose descriptors and the microdosimetric spread using detailed cellular models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, Patricia; Thomson, Rowan

    2016-08-15

    Purpose: To develop Monte Carlo models of cell clusters to investigate the relationships between macro- and microscopic dose descriptors, quantify the microdosimetric spread in energy deposition for subcellular targets, and determine how these results depend on the computational model. Methods: Microscopic tissue structure is modelled as clusters of 13 to 150 cells, with cell (nuclear) radii between 5 and 10 microns (2 and 9 microns). Energy imparted per unit mass (specific energy or dose) is scored in the nucleus (D{sub nuc}) and cytoplasm (D{sub cyt}) for incident photon energies from 20 to 370 keV. Dose-to-water (D{sub w,m}) and dose-to-medium (D{submore » m,m}) are compared to D{sub nuc} and D{sub cyt}. Single cells and single nuclear cavities are also simulated. Results: D{sub nuc} and D{sub cyt} are sensitive to the surrounding environment with deviations of up to 13% for a single nucleus/cell compared with a multicellular cluster. These dose descriptors vary with cell and nucleus size by up to 10%. D{sub nuc} and D{sub cyt} differ from D{sub w,m} and D{sub m,m} by up to 32%. The microdosimetric spread is sensitive to whether cells are arranged randomly or in a hexagonal lattice, and whether subcellular compartment sizes are sampled from a normal distribution or are constant throughout the cluster. Conclusions: D{sub nuc} and D{sub cyt} are sensitive to cell morphology, elemental composition and the presence of surrounding cells. The microdosimetric spread was investigated using realistic elemental compositions for the nucleus and cytoplasm, and depends strongly on subcellular compartment size, source energy and dose.« less

  11. Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes

    NASA Astrophysics Data System (ADS)

    Chu, Hao-Tsu; Hwang, Shyh-Lung; Shen, Pouyan; Yui, Tzen-Fu

    2012-12-01

    Pseudotachylyte veins and cataclasites were studied in the mylonitized granitic gneiss of the Tananao Metamorphic Complex at Hoping, Eastern Taiwan. The aphanitic pseudotachylyte veins vary in thickness, ranging from millimeters to about 1 cm. Field and optical microscopic observations show that such pseudotachylyte veins cut across cataclasites, which, in turn, transect the mylonitized granitic gneiss. Scanning electron microscopic images also show that both the pseudotachylyte veins and the cataclasites have been metasomatized by a K-rich fluid, resulting in the replacement of Na-plagioclase by K-feldspar (veins). Analytical electron microscopic observations reveal further details of physical and chemical changes (mainly fragmentation, dislocations, cleaving-healing with inclusions and relic voids, and retention of high-temperature albite) of quartz and feldspar in crushed grains. Pseudotachylytes occur as dark veins having a higher content of chlorite-biotite, clinozoisite-epidote and titanite fragments than cataclasites. These veins, coupled with hematite/jarosite-Fe-rich amorphous shell/carbonaceous material, indicate that crushing, healing/sintering, and inhomogeneous melt/fluid infiltration involving incipient and intermediate/high temperature melt patches, before and/or contemporaneous with the metasomatic K-rich fluid, prevailed in a coupled or sequential manner in the faulting event to form nonequilibrium phase assemblage. The chlorite-biotite, carbonaceous material and other nanoscale minerals could be vulnerable in future earthquakes under the influence of water. The timing of the formation of these pseudotachylyte veins should be later than the area's age of mylonitization of granitic gneiss of approximately 4.1-3.0 Ma (Wang et al., 1998). The formation of pseudotachylytes registers the fossil earthquakes during early stages in the exhumation history of the uplifting Taiwan Mountain belt since the Plio-Pleistocene Arc-Continent collision.

  12. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device.

    PubMed

    Schlimpert, Susan; Flärdh, Klas; Buttner, Mark

    2016-02-28

    Live-cell imaging of biological processes at the single cell level has been instrumental to our current understanding of the subcellular organization of bacterial cells. However, the application of time-lapse microscopy to study the cell biological processes underpinning development in the sporulating filamentous bacteria Streptomyces has been hampered by technical difficulties. Here we present a protocol to overcome these limitations by growing the new model species, Streptomyces venezuelae, in a commercially available microfluidic device which is connected to an inverted fluorescence widefield microscope. Unlike the classical model species, Streptomyces coelicolor, S. venezuelae sporulates in liquid, allowing the application of microfluidic growth chambers to cultivate and microscopically monitor the cellular development and differentiation of S. venezuelae over long time periods. In addition to monitoring morphological changes, the spatio-temporal distribution of fluorescently labeled target proteins can also be visualized by time-lapse microscopy. Moreover, the microfluidic platform offers the experimental flexibility to exchange the culture medium, which is used in the detailed protocol to stimulate sporulation of S. venezuelae in the microfluidic chamber. Images of the entire S. venezuelae life cycle are acquired at specific intervals and processed in the open-source software Fiji to produce movies of the recorded time-series.

  13. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  14. Monitoring the dynamic photocatalytic activity of single CdS nanoparticles by lighting up H2 nanobubbles with fluorescent dyes† †Electronic supplementary information (ESI) available: Experimental details, Fig. S1–S13 and description of Movie S1. See DOI: 10.1039/c7sc04684g

    PubMed Central

    Su, Hua; Fang, Yimin; Chen, Fangyuan

    2018-01-01

    The capability of semiconductor nanomaterials to convert solar energy to chemical energy has led to many promising applications, for instance, photocatalyzed H2 generation. Studying this important photocatalytic reaction at the single nanocatalyst level provides a great opportunity to understand the microscopic reaction kinetics and mechanism by overcoming the chemical and structural heterogeneity among individuals. Here we report a fluorescence (FL) labeling strategy to visualize individual H2 nanobubbles that are generated at single CdS nanoparticles during photocatalysis. In operando imaging of nanobubble growth kinetics allows for determination of the photocatalytic activity of single nanocatalysts, which was found to randomly alternate among high activity, low activity and inactive states. In addition to H2 nanobubbles, the present labeling strategy is also suitable for other types of gas nanobubbles. Since nanomaterial-catalyzed gas generation is widely involved in many important photochemical (water splitting), electrochemical (electrolysis) and chemical (nanomotors) reactions, the present work is promising for the general applicability of single nanoparticle catalysis in broad basic and industrial fields by lighting up nanobubbles under commercial and conventional FL microscopes. PMID:29719679

  15. Near-field transport imaging applied to photovoltaic materials

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun -Sheng; Moseley, John; ...

    2017-05-26

    We developed and applied a new analytical technique - near-field transport imaging (NF-TI or simply TI) - to photovoltaic materials. Charge-carrier transport is an important factor in solar cell performance, and TI is an innovative approach that integrates a scanning electron microscope with a near-field scanning optical microscope, providing the possibility to study luminescence associated with recombination and transport with high spatial resolution. In this paper, we describe in detail the technical barriers we had to overcome to develop the technique for routine application and the data-fitting procedure used to calculate minority-carrier diffusion length values. The diffusion length measured bymore » TI agrees well with the results calculated by time-resolved photoluminescence on well-controlled gallium arsenide (GaAs) thin-film samples. We report for the first time on measurements on thin-film cadmium telluride using this technique, including the determination of effective carrier diffusion length, as well as the first near-field imaging of the effect of a single localized defect on carrier transport and recombination in a GaAs heterostructure. Furthermore, by changing the scanning setup, we were able to demonstrate near-field cathodoluminescence (CL), and correlated the results with standard CL measurements. In conclusion, the TI technique shows great potential for mapping transport properties in solar cell materials with high spatial resolution.« less

  16. Molecular theory of smectic ordering in liquid crystals with nanoscale segregation of different molecular fragments

    NASA Astrophysics Data System (ADS)

    Gorkunov, M. V.; Osipov, M. A.; Kapernaum, N.; Nonnenmacher, D.; Giesselmann, F.

    2011-11-01

    A molecular statistical theory of the smectic A phase is developed taking into account specific interactions between different molecular fragments which enables one to describe different microscopic scenario of the transition into the smectic phase. The effects of nanoscale segregation are described using molecular models with different combinations of attractive and repulsive sites. These models have been used to calculate numerically coefficients in the mean filed potential as functions of molecular model parameters and the period of the smectic structure. The same coefficients are calculated also for a conventional smectic with standard Gay-Berne interaction potential which does not promote the segregation. The free energy is minimized numerically to calculate the order parameters of the smectic A phases and to study the nature of the smectic transition in both systems. It has been found that in conventional materials the smectic order can be stabilized only when the orientational order is sufficiently high, In contrast, in materials with nanosegregation the smectic order develops mainly in the form of the orientational-translational wave while the nematic order parameter remains relatively small. Microscopic mechanisms of smectic ordering in both systems are discussed in detail, and the results for smectic order parameters are compared with experimental data for materials of various molecular structure.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  18. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  19. Measuring the Effect of Chemicals on the Growth and Reproduction of Caenorhabditis elegans.

    PubMed

    Lee, So Young; Kang, Kyungsu

    2017-10-05

    Toxicological evaluation is crucial for understanding the effects of chemicals on living organisms in basic and applied biological science fields. A non-mammalian soil round worm, Caenorhabditis elegans, is a valuable model organism for toxicology studies due to its convenience and lack of animal ethics issues compared with mammalian animal systems. In this protocol, a detailed procedure of toxicological evaluation of chemicals in C. elegans is described. A clinical anticancer drug, etoposide, which targets human topoisomerase II and inhibits DNA replication of human cancer cells, was selected as a model testing chemical. Age-synchronized C. elegans eggs were exposed to either dimethyl sulfoxide (DMSO) or etoposide, and then the growth of C. elegans was monitored every day for 4 days by the stereo microscope observation. The total number of eggs laid from C. elegans treated with DMSO or etoposide was also counted by using the stereo microscope. Etoposide treatment significantly affected the growth and reproduction of C. elegans. By comparison of the total number of eggs laid from worms with different treatment periods of chemicals, it can be decided that the reproductive toxicity of chemicals on C. elegans reproduction is reversible or irreversible. These protocols may be helpful for both the development of various drugs and risk assessment of environmental toxicants.

  20. Simulation of Ectopic Pacemakers in the Heart: Multiple Ectopic Beats Generated by Reentry inside Fibrotic Regions

    PubMed Central

    Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio

    2015-01-01

    The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127

Top