Sample records for detailed microstructural analysis

  1. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2011-01-01

    Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.

  2. The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach

    NASA Astrophysics Data System (ADS)

    Croxall, S. A.; Hardy, M. C.; Stone, H. J.; Midgley, P. A.

    Nickel-base superalloys are aerospace materials that exhibit exceptional mechanical properties and corrosion resistance at very high temperatures. RR1000 is used in discs in gas turbine engines, where temperatures reach in excess of 650°C with high mechanical stresses. Study of the microstructure at the micron and sub-micron level has conventionally been undertaken using scanning electron microscope images, often meaning the underlying 3D microstructure can be inferred only with additional knowledge. Using a dual-beam workstation, we are able to interrogate directly the 3D microstructure using a serial sectioning approach. The 3D data set, typically (10µm)3 in volume, reveals microstructural detail with lateral resolution of circa 8nm and a depth resolution dictated by the slice thickness, typically 50nm. Morphological and volumetric analysis of the 3D reconstruction of RR1000 superalloy reveals microstructural details hitherto unseen.

  3. Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.

  4. Finite Element Analysis of Eutectic Structures

    DTIC Science & Technology

    2014-03-12

    Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties . The material system...Sootsman et al ., Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites, Chem. Mater. 22 (2010) 869. 7. J...Professor) CASE WESTERN RESERVE UNIVERSTY Thermoelectric Properties of WSi2-SixGe1-x Composites Thermoelectric properties of the W/Si/Ge alloy

  5. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arul Kumar, M.; Wroński, M.; McCabe, Rodney James

    In this study, a detailed statistical analysis is performed using Electron Back Scatter Diffraction (EBSD) to establish the effect of microstructure on twin nucleation and growth in deformed commercial purity hexagonal close packed (HCP) titanium. Rolled titanium samples are compressed along rolling, transverse and normal directions to establish statistical correlations for {10–12}, {11–21}, and {11–22} twins. A recently developed automated EBSD-twinning analysis software is employed for the statistical analysis. Finally, the analysis provides the following key findings: (I) grain size and strain dependence is different for twin nucleation and growth; (II) twinning statistics can be generalized for the HCP metalsmore » magnesium, zirconium and titanium; and (III) complex microstructure, where grain shape and size distribution is heterogeneous, requires multi-point statistical correlations.« less

  6. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study

    DOE PAGES

    Arul Kumar, M.; Wroński, M.; McCabe, Rodney James; ...

    2018-02-01

    In this study, a detailed statistical analysis is performed using Electron Back Scatter Diffraction (EBSD) to establish the effect of microstructure on twin nucleation and growth in deformed commercial purity hexagonal close packed (HCP) titanium. Rolled titanium samples are compressed along rolling, transverse and normal directions to establish statistical correlations for {10–12}, {11–21}, and {11–22} twins. A recently developed automated EBSD-twinning analysis software is employed for the statistical analysis. Finally, the analysis provides the following key findings: (I) grain size and strain dependence is different for twin nucleation and growth; (II) twinning statistics can be generalized for the HCP metalsmore » magnesium, zirconium and titanium; and (III) complex microstructure, where grain shape and size distribution is heterogeneous, requires multi-point statistical correlations.« less

  7. Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.

    2016-11-01

    In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.

  8. High-Resolution Characterization of UMo Alloy Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less

  9. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  10. Analysis of New Composite Architectures

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1996-01-01

    Efficient and accurate specialty finite elements methods to analyze textile composites were developed and are described. Textile composites present unique challenges to the analyst because of the large, complex 'microstructure'. The geometry of the microstructure is difficult to model and it introduces unusual free surface effects. The size of the microstructure complicates the use of traditional homogenization methods. The methods developed constitute considerable progress in addressing the modeling difficulties. The details of the methods and attended results obtained therefrom, are described in the various chapters included in Part 1 of the report. Specific conclusions and computer codes generated are included in Part 2 of the report.

  11. A comparative study of a (0-3) connectivity type composite and core-shell structure of CoFe2O4 - BaTiO3 based on microstructure and magnetic property

    NASA Astrophysics Data System (ADS)

    Das, Avisek; Gorige, Venkataiah

    2018-04-01

    In this work CoFe2O4 (CFO)-BaTiO3 (BTO) composite and core-shell CFO-BTO have been prepared to investigate the effect of microstructure on the magnetic properties. Detailed microstructure analysis has been carried out using X-ray diffraction, field emission scanning electron microscope and transmission electron microscope. Although uniform distribution of CFO is found in BTO matrix for the composite sample, magnetization and coercivity values are more enhanced in core-shell CFO-BTO.

  12. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per

    2015-10-01

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.

  13. Magnetic domain pattern in hierarchically twinned epitaxial Ni-Mn-Ga films.

    PubMed

    Diestel, Anett; Neu, Volker; Backen, Anja; Schultz, Ludwig; Fähler, Sebastian

    2013-07-03

    Magnetic shape memory alloys exhibit a hierarchically twinned microstructure, which has been examined thoroughly in epitaxial Ni-Mn-Ga films. Here we analyze the consequences of this 'twin within twins' microstructure on the magnetic domain pattern. Atomic and magnetic force microscopy are used to probe the correlation between the martensitic microstructure and magnetic domains. We examine the consequences of different twin boundary orientations with respect to the substrate normal as well as variant boundaries between differently aligned twinned laminates. A detailed micromagnetic analysis is given which describes the influence of the finite film thickness on the formation of magnetic band domains in these multiferroic materials.

  14. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  15. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  16. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    PubMed

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  17. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    milling. Detailed systematic impedance analysis , electronic conductivity measurement and high-resolution electron microscopy studies have shown that...carbon particles determined by TEM analysis . Results of the studies so far have shown that Sn and Si-based nanocomposites appear to be quite promising... Analysis of the As-milled Powders 117 2. Electrochemical Characteristics of Si/SiC Nanocomposites 120 3. Microstructural/Morphological Analysis of

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, S.; Devaraj, A.; Kovarik, L.

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  19. General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems

    PubMed Central

    Haghighi, Maryam; Rezaei, Karamatollah

    2012-01-01

    Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details. PMID:22645484

  20. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  1. Assessment of NASA Dual Microstructure Heat Treatment Method Utilizing Ladis SuperCooler(trademark) Cooling Technology

    NASA Technical Reports Server (NTRS)

    Lemsky, Joe; Gayda, John (Technical Monitor)

    2005-01-01

    The intent of this investigation was to demonstrate the NASA DMHT method with a tailored Ladish SuperCool(Trademark) cooling method on a Rolls-Royce AE2100, stage 3 disk shape. One disk each of two alloys, LSHR and ME3, were successfully converted as shown by macrostructure. DMHT heating time selection and cooling rate was aided by finite element modeling analysis. Residual stresses were also predicted and reported. Detailed microstructural analysis was performed by NASA and included in this report. Mechanical property characterization, also planned by NASA, is incomplete at this time and not part of this report.

  2. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  3. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuanqiang, Zhou; Xiangxiang, Gong; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure andmore » function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.« less

  4. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less

  5. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less

  6. NRL Fact Book

    DTIC Science & Technology

    1985-04-01

    characteristics of targets Tank 9.1 m (30 ft) in diameter by 6.7 m (22 ft) deep , automated with computer con- trol and analysis for detailed studies of acoustic...structures; and conducts experiments in the deep ocean, in acoustically shallow water, and in the Arctic. The Division carries out theoretical and...Laser Materials-Application Center Failure Analysis and Fractography Staff Research Activity Areas Environmental Effects Microstructural characterization

  7. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    NASA Astrophysics Data System (ADS)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  8. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  9. Effects of microstructural variation on Charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Song, Jaemin; Kim, Min-Chul; Choi, Kwon-Jae; Lee, Bong-Sang

    2016-03-01

    The effects of microstructural changes in heavy-section Mn-Mo-Ni low alloy steel on Charpy impact properties were investigated using a 210 mm thick reactor pressure vessel. Specimens were sampled from 5 different positions at intervals of 1/4 thickness from the inner surface to the outer surface. A detailed microstructural analysis of impact-fractured specimens showed that coarse carbides along the lath boundaries acted as fracture initiation sites, and cleavage cracks deviated at prior-austenite grain boundaries and bainite lath boundaries. Upper shelf energy was higher and energy transition temperature was lower at the surface positon, where fine bainitic microstructure with homogeneously distributed fine carbides were present. Toward the center, coarse upper bainite and precipitation of coarse inter-lath carbides were observed, which deteriorated impact properties. At the 1/4T position, the Charpy impact properties were worse than those at other positions owing to the combination of elongated-coarse inter-lath carbides and large effective grain size.

  10. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  11. Use of EBSD Data in Numerical Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, R; Wiland, H

    2000-01-14

    Experimentation, theory and modeling have all played vital roles in defining what is known about microstructural evolution and the effects of microstructure on material properties. Recently, technology has become an enabling factor, allowing significant advances to be made on several fronts. Experimental evidence of crystallographic slip and the basic theory of crystal plasticity were established in the early 20th Century, and the theory and models evolved incrementally over the next 60 years. (Asaro provides a comprehensive review of the mechanisms and basic plasticity models.) During this time modeling was primarily concerned with the average response of polycrystalline aggregates. While somemore » detailed finite element modeling (FEM) with crystal plasticity constitutive relations was done in the early 1980s, such simulations over taxed the capabilities of the available computer hardware. Advances in computer capability led to a flurry of activity in finite element modeling in the next 10 years, increasing understanding of microstructure evolution and pushing the limits of theories and material characterization. Automated Electron Back Scatter Diffraction (EBSD) has produced a similar revolution in material characterization. The data collected is extensive and many questions about the evolution of microstructure and its role in determining mechanic properties can now be addressed. It is also now possible to obtain sufficient information about lattice orientations on a fine enough scale to allow detailed quantitative comparisons of experiments and newly emerging large scale numerical simulations. The insight gained from the coupling of EBSD and FEM studies will provide impetus for further development of microstructure models and theories of microstructure evolution. Early studies connecting EBSD data to finite element models used manual measurements to define initial orientations for the simulation. In one study, manual measurements of the deformed structure were also obtained for comparison with the model predictions. More recent work has taken advantage of automated data collection on deformed specimens as a means of collecting detailed and spatially correlated data for model validation. Although it will not be discussed in detail here, another area in which EBSD data is having a great impact is on recrystallization modeling. EBSD techniques can be used to collect data for quantitative microstructural analysis. This data can be used to infer growth kinetics of specific orientations, and this information can be synthesized into more accurate grain growth or recrystallization models. Another role which EBSD techniques may play is in determining initial structures for recrystallization models. A realistic starting structure is vital for evaluating the models, and attempts at predicting realistic structures with finite element simulations are not yet successful. As methodologies and equipment resolution continue to improve, it is possible that measured structures will serve as input for recrystallization models. Simulations have already been run using information obtained manually from a TEM.« less

  12. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  13. Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses

    NASA Astrophysics Data System (ADS)

    Billur, Eren; Wang, Chao; Bloor, Colin; Holecek, Martin; Porzner, Harald; Altan, Taylan

    2013-12-01

    Hot stamped components have been widely used in the automotive industry in the last decade where ultra high strength is required. These parts, however, may not provide sufficient toughness to absorb crash energy. Therefore, these components are "tailored" by controlling the microstructure at various locations. Simulation of tailored hot stamped components requires more detailed analysis of microstructural changes. Furthermore, since the part is not uniformly quenched, severe distortion can be observed. CPF, together with ESI have developed a number of techniques to predict the final properties of a tailored part. This paper discusses the recent improvements in modeling distortion and die design with cooling channels.

  14. Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization

    NASA Astrophysics Data System (ADS)

    Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.

    2017-04-01

    This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.

  15. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    PubMed Central

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.

    2013-01-01

    Abstract. The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth. PMID:23412434

  16. Histological, chemical, and morphological reexamination of the ``heart'' of a small Late Cretaceous Thescelosaurus

    NASA Astrophysics Data System (ADS)

    Cleland, Timothy P.; Stoskopf, Michael K.; Schweitzer, Mary H.

    2011-03-01

    A three-dimensional, iron-cemented structure found in the anterior thoracic cavity of articulated Thescelosaurus skeletal remains was hypothesized to be the fossilized remains of the animal's four-chambered heart. This was important because the finding could be interpreted to support a hypothesis that non-avian dinosaurs were endothermic. Mammals and birds, the only extant organisms with four-chambered hearts and single aortae, are endotherms. The hypothesis that this Thescelosaurus has a preserved heart was controversial, and therefore, we reexamined it using higher-resolution computed tomography, paleohistological examination, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy. This suite of analyses allows for detailed morphological and chemical examination beyond what was provided in the original work. Neither the more detailed examination of the gross morphology and orientation of the thoracic "heart" nor the microstructural studies supported the hypothesis that the structure was a heart. The more advanced computed tomography showed the same three areas of low density as the earlier studies with no evidence of additional low-density areas as might be expected from examinations of an ex situ ostrich heart. Microstructural examination of a fragment taken from the "heart" was consistent with cemented sand grains, and no chemical signal consistent with a biological origin was detected. However, small patches of cell-like microstructures were preserved in the sandstone matrix of the thoracic structure. A possible biological origin for these microstructures is the focus of ongoing investigation.

  17. Assessment of MARMOT Grain Growth Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, B.; Zhang, Y.; Schwen, D.

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO 2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO 2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grainmore » growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.« less

  18. Correlative microscopy of detergent granules.

    PubMed

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries). © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  19. Microstructure heterogeneity after the ECAP process and its influence on recrystallization in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, S., E-mail: wronski@fis.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr

    The main purpose of the present work is to describe the qualitative and quantitative behaviours of aluminium during high strain plastic deformation and the effect of deformation on the subsequent recrystallization process. An Electron Backscatter Diffraction analysis of aluminium after the Equal channel angular pressing (ECAP) and recrystallization process is presented. In order to do this, several topological maps are measured for samples processed by 4 and 8 passes and recrystallized. The processing was conducted with route C. For all samples, distributions of grain size, misorientation, image quality factor (IQ) and texture were preceded and then analysed in some detail.more » - Highlights: ► Describe the microstructure fragmentation in aluminum. ► High strain plastic deformation and effect of deformation on recrystallization. ► The microstructure fragmentation and its influence on recrystallization. ► Image quality factor and misorientation characteristics are examined using EBSD.« less

  20. Predicting the constitutive behavior of semi-solids via a direct finite element simulation: application to AA5182

    NASA Astrophysics Data System (ADS)

    Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.

    2009-07-01

    The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.

  1. Three-dimensional multiscale analysis of degradation of nano- and micro-structure in direct methanol fuel cell electrodes after methanol starvation

    NASA Astrophysics Data System (ADS)

    Netzeband, Christian; Arlt, Tobias; Wippermann, Klaus; Lehnert, Werner; Manke, Ingo

    2016-09-01

    This study investigates the ageing effects on the microstructure of the anode catalyst layer of direct methanol fuel cells (DMFC) after complete methanol starvation. To this end the samples of two methanol-depleted membrane electrode assemblies (MEA) have been compared with a pristine reference sample. A three-dimensional characterization of the anode catalyst layer (ACL) structure on a nanometer scale has been conducted by focused ion beam (FIB)/scanning electron microscope (SEM) tomography. The FIB/SEM tomography allows for a detailed analysis of statistic parameters of micro-structured materials, such as porosity, tortuosity and pore size distributions. Furthermore, the SEM images displayed a high material contrast between the heavy catalyst metals (Pt/Ru) and the relatively light carbon support, which made it possible to map the catalyst distribution in the acquired FIB/SEM tomographies. Additional synchrotron X-ray tomographies have been conducted in order to obtain an overview of the structural changes of all the components of a section of the MEAs after methanol depletion.

  2. Improving microstructural quantification in FIB/SEM nanotomography.

    PubMed

    Taillon, Joshua A; Pellegrinelli, Christopher; Huang, Yi-Lin; Wachsman, Eric D; Salamanca-Riba, Lourdes G

    2018-01-01

    FIB/SEM nanotomography (FIB-nt) is a powerful technique for the determination and quantification of the three-dimensional microstructure in subsurface features. Often times, the microstructure of a sample is the ultimate determiner of the overall performance of a system, and a detailed understanding of its properties is crucial in advancing the materials engineering of a resulting device. While the FIB-nt technique has developed significantly in the 15 years since its introduction, advanced nanotomographic analysis is still far from routine, and a number of challenges remain in data acquisition and post-processing. In this work, we present a number of techniques to improve the quality of the acquired data, together with easy-to-implement methods to obtain "advanced" microstructural quantifications. The techniques are applied to a solid oxide fuel cell cathode of interest to the electrochemistry community, but the methodologies are easily adaptable to a wide range of material systems. Finally, results from an analyzed sample are presented as a practical example of how these techniques can be implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Hasegawa, Y.; Tsuda, H.; Mori, S.; Halbig, M. C.; Asthana, R.; Singh, M.

    2017-01-01

    SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength.

  4. Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2000-01-01

    The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.

  5. Microstructure Characterization Of Lead-Free Solders Depending On Alloy Composition

    NASA Astrophysics Data System (ADS)

    Panchenko, Iuliana; Mueller, Maik; Wolter, Klaus-Juergen

    2010-11-01

    Fatigue and crack nucleation in solder joints is basically associated with changes in the microstructure. Therefore the microstructure evolution of SnAgCu solder joints during solidification and subsequent application is an important subject for reliability investigations and physics of failure analysis. The scope of this study is a systematic overview of the as-cast microstructures in small sized lead-free SnAgCu solder spheres after solidification. A total of 32 alloy compositions have been investigated with varying Ag content from 0 to 5 wt.% and varying Cu content from 0 to 1.2 wt.%. The solder spheres had a diameter of approx. 270 μm and were all manufactured under the similar conditions. Subsequent cross-sectioning was carried out in order to analyze the microstructure by optical and electron microscopy as well as Electron Backscatter Diffraction and Energy Dispersive X-ray Spectroscopy. The results allow a comprehensive overview of the dependence of the as-cast microstructure on the solder composition. It is shown that strong changes in microstructure can be caused by small changes in solder composition. In addition, a solidification phenomenon known as cyclic twinning has been found in the samples. Three different microstructures related to that phenomenon will be presented and detailed characterizations of these structures are given in this study. These microstructures differ in their appearance by solidification morphology, phase distribution as well as grain structure and can be described as follows: 1. large dentritic areas of different grain orientations which are characterized by approx. 60° twin boundaries; 2. areas of small β-Sn cells with approx. 60° twin relation and larger intermetallic precipitates; 3. large grains consisting of a β-Sn matrix with very fine intermetallic precipitates and high angle grain boundaries between adjacent grains.

  6. Structure of anodized Al-Zr sputter deposited coatings and effect on optical appearance

    NASA Astrophysics Data System (ADS)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara; Rechendorff, Kristian; Dirscherl, Kai; Ambat, Rajan

    2014-10-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al-Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550 °C for 4 h in order to evolve Al-Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acid at 18 °C with an intention to study the effect of anodizing on the Al-Zr based precipitates in the coating. Detailed microstructural characterization of the coating and anodized layer was carried out using high resolution scanning and transmission electron microscopy, grazing incidence X-ray diffraction analysis, glow discharge optical emission spectroscopy, and optical appearance using spectrophotometry. The evolution of microstructure in the anodized layer as a function of anodizing parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on recycled aluminium alloys due to intermetallics.

  7. A finite element framework for multiscale/multiphysics analysis of structures with complex microstructures

    NASA Astrophysics Data System (ADS)

    Varghese, Julian

    This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.

  8. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  9. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  10. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals

    NASA Astrophysics Data System (ADS)

    Battaile, Corbett; Owen, Steven; Moore, Nathan

    2017-06-01

    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  11. Microstructure and Thermal History of Metal Particles in CH Chondrites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Jones, R. H.; Kotula, P. G.; Michael, J. R.

    2005-03-01

    This paper provides detailed microstructural and microchemical information at the nm to µm scale (SEM, EPMA, TEM, EBSD) for a select suite of metal particles in four CH chondrites, ALH 85085, PAT 91546, Acfer 214, NWA 739.

  12. Modeling filtration and fouling with a microstructured membrane filter

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Sanaei, Pejman

    2017-11-01

    Membrane filters find widespread use in diverse applications such as A/C systems and water purification. While the details of the filtration process may vary significantly, the broad challenge of efficient filtration is the same: to achieve finely-controlled separation at low power consumption. The obvious resolution to the challenge would appear simple: use the largest pore size consistent with the separation requirement. However, the membrane characteristics (and hence the filter performance) are far from constant over its lifetime: the particles removed from the feed are deposited within and on the membrane filter, fouling it and degrading the performance over time. The processes by which this occurs are complex, and depend on several factors, including: the internal structure of the membrane and the type of particles in the feed. We present a model for fouling of a simple microstructured membrane, and investigate how the details of the microstructure affect the filtration efficiency. Our idealized membrane consists of bifurcating pores, arranged in a layered structure, so that the number (and size) of pores changes in the depth of the membrane. In particular, we address how the details of the membrane microstructure affect the filter lifetime, and the total throughput. NSF DMS 1615719.

  13. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  14. Detailed analysis of Honeywell In-Space Accelerometer data - STS-32. [crystal microstructure response to different types of residual acceleration

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.; Schoess, Jeff

    1993-01-01

    The Honeywell In-Space Accelerometer (HISA) system collected data in the mid-deck area of the Shuttle Columbia during the flight of STS-32, January 1990. The resulting data were to be used to investigate the response of crystal microstructure to different types of residual acceleration. The HISA is designed to detect and record transient and oscillatory accelerations. The sampling and electronics package stored averaged accelerations over two sampling periods; two sampling rates were available: 1 Hz and 50 Hz. Analysis of the HISA data followed the CMMR Acceleration Data Processing Guide, considering in-house computer modelling of a float-zone indium crystal growth experiment. Characteristic examples of HISA data showing the response to the primary reaction control system, Orbiter Maneuvering System operations, and crew treadmill activity are presented. Various orbiter structural modes are excited by these and other activities.

  15. Lodestone: Nature's own permanent magnet

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  16. Study of the production of some superconducting and magnetic materials by solidification in the drop tube and drop tower

    NASA Technical Reports Server (NTRS)

    Wu, M. K.

    1987-01-01

    A systematic study on the relationship between the microstructure and physical properties of several superconducting materials prepared by solidification in low gravity was conducted. Further study of the materials, such as the applications of hydrostatic pressure which is known to be an effective mean to vary the electronic structure of materials, in conjunction with the detailed microstructure analysis of the samples was also performed to better understand the low gravity effects on the enhancement of the electronic properties. Results of the studies on the directionally solidified AlInSn alloys processed in the KC-135 aircraft and immiscible GaBi alloy prepared during free fall in the Marshall Space Flight Center Drop Tower are presented.

  17. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  18. Magnetic and microstructural characterisation of FeNi: Insight into the formation and impact history of the IAB parent body

    NASA Astrophysics Data System (ADS)

    Nichols, C. I. O.; Krakow, R.; Herrero-Albillos, J.; Kronast, F.; Northwood-Smith, G.; Harrison, R. J.

    2017-12-01

    The IABs represent one of only two groups of iron meteorites that did not form by fractional crystallization of liquid Fe-Ni in the core of a differentiated planetesimal. Instead, they are believed to originate from a partially differentiated body that was severely disrupted by one or more impacts during its early history. Paleomagnetic signals from two IABs, Toluca and Odessa, were investigated using X-ray magnetic circular dichroism (XMCD) and X-ray photoemission electron microscopy (X-PEEM) to image the magnetisation of the cloudy zone. The IABs do not appear to have experienced a magnetic field, consistent with the lack of a metallic core on the parent body. We also present a detailed microstructural and magnetic study of the observed FeNi microstructures, characterising their properties using XMCD and X-PEEM. The crystallographic architecture of the microstructures was analysed using electron backscatter diffraction (EBSD). Odessa and Toluca both exhibit a complex series of microstructures, requiring an unusual evolution during slow cooling. A conventional Widmanstätten sequence of kamacite, tetrataenite rim and cloudy zone developed via slow cooling to temperatures below 400 ºC. Subsequent modification of the microstructures resulted in the formation of pearlitic plessite and spheroidized plessite. Compositional and crystallographic analysis suggests that pearlitic and spheroidized plessite formed by impact modification of the cloudy zone and martensite, respectively. This study highlights the importance of characterising microstructures in order to corroborate paleomagnetic observations, as well as improving our understanding of the processes effecting planetary formation and evolution.

  19. A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.

    PubMed

    Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I

    2017-06-15

    Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.

  20. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model

    PubMed Central

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-01-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  1. Effect of High Si Content on U3Si2 Fuel Microstructure

    NASA Astrophysics Data System (ADS)

    Rosales, Jhonathan; van Rooyen, Isabella J.; Meher, Subhashish; Hoggan, Rita; Parga, Clemente; Harp, Jason

    2018-02-01

    The development of U3Si2 as an accident-tolerant nuclear fuel has gained research interest because of its promising high uranium density and improved thermal properties. In the present study, three samples of U3Si2 fuel with varying silicon content have been fabricated by a conventional powder metallurgical route. Microstructural characterization via scanning and transmission electron microscopy reveals the presence of other stoichiometry of uranium silicide such as USi and UO2 in both samples. The detailed phase analysis by x-ray diffraction shows the presence of secondary phases, such as USi, U3Si, and UO2. The samples with higher concentrations of silicon content of 7.5 wt.% display additional elemental Si. These samples also possess an increased amount of the USi phase as compared to that in the conventional sample with 7.3 wt.% silicon. The optimization of U3Si2 fuel performance through the understanding of the role of Si content on its microstructure has been discussed.

  2. A Krill's Eye View: Sea Ice Microstructure and Microchemistry

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.; Lieb-Lappen, R.

    2015-12-01

    Sea ice plays important roles in the marine ecosystem and our environment, and a detailed understanding of all aspects of its microstructure is especially important in this time of changing climate. For many months of the year, the ice forms a permeable barrier between Polar oceans and the atmosphere, and as it freezes and melts, its microstructure evolves and changes in ways that affect other parts of that system. Sea ice also provides a microhabitat that is an important part of the marine ecosystem, but much remains to be learned about it on this scale. In material terms, sea ice is multiphase and very close to its melting point, and these properties make its microstructure particularly complex and dynamic, as well as challenging and interesting to study. We use a combination of analytical methods to achieve a very detailed understanding of sea ice microstructure - specifically the morphology and distribution of ice crystals and brine channels. Overall porosity affects freeboard, emissivity, and optical and mechanical properties, but pore connectivity is critical to gas and fluid transport, salt flux to polar oceans, the transfer of halogens to the boundary layer troposphere, and the transport of nutrients and pollutants to microorganisms. When sea ice forms, salts are expelled from newly formed ice crystals and concentrated on grain boundaries and in brine pockets and channels. We use synchrotron-based X-ray fluorescence spectroscopy (SXRF) and scanning electron microscope-based energy dispersive spectroscopy (EDS) to map the location in two dimensions of several important salt components in sea ice: SXRF for bromine, chlorine, potassium, calcium and iron, EDS for these as well as some lighter elements such as sodium, magnesium, and silicon. We use X-ray microcomputed tomography (microCT) to produce three-dimensional models of brine channels and to study changes in brine network topology due to warming and cooling. Both microCT and optical thin sections provide necessary structural reference points in the analysis of microchemical data from SXRF and EDS.

  3. Effect of polymer properties and adherend surfaces on adhesion

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1976-01-01

    High temperature polymer surface characteristics associated with joint strength were evaluated. Selected samples represented composite adherends, aluminum filler and fiber glass carrier cloth. Detailed analysis of fractured joint surfaces revealed unique characteristics typical of the specific adhesive formulations and test conditions. A fracture mechanism model was developed for correlating macroscopic shear strength and microstructure of fracture surfaces. Applications were made to unpublished data on polyimides and fluoropolymers.

  4. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    NASA Astrophysics Data System (ADS)

    Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

    2017-08-01

    During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

  5. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-05-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  6. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-04-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  7. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious //ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.« less

  8. Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy

    NASA Astrophysics Data System (ADS)

    Regev, Michael; Rashkovsky, Tal; Cabibbo, Marcello; Spigarelli, Stefano

    2018-01-01

    The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.

  9. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  10. Magnetization dynamics in dilute Pd1-xFex thin films and patterned microstructures considered for superconducting electronics

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Bolginov, V. V.; Abramov, N. N.; Stolyarov, V. S.; Ben Hamida, A.; Chichkov, V. I.; Roditchev, D.; Ryazanov, V. V.

    2016-10-01

    Motivated by recent burst of applications of ferromagnetic layers in superconducting digital and quantum elements, we study the magnetism of thin films and patterned microstructures of Pd0.99Fe0.01. In this diluted ferromagnetic system, a high-sensitivity ferromagnetic resonance (FMR) experiment reveals spectroscopic signatures of re-magnetization and enables the estimation of the saturation magnetization, the anisotropy field, and the Gilbert damping constant. The detailed analysis of FMR spectra links the observed unexpectedly high reduced anisotropy field (0.06-0.14) with the internal anisotropy, points towards a cluster nature of the ferromagnetism, and allows estimating characteristic time scale for magnetization dynamics in Pd-Fe based cryogenic memory elements to ( 3 - 5 ) × 10 - 9 s.

  11. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  12. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  13. Microstructural and mineral analysis on the fault gouge in the coseismic shear zone of the 2008 M w 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-mao; Zhang, Bing-liang; Xu, Xi-wei; Lin, Chuan-yong; Han, Zhu-jun

    2015-07-01

    The 2008 M w 7.9 Wenchuan earthquake formed two coseismic surface rupture zones with the trend of N35°E, known as the Beichuan-Yingxiu rupture and the Pengguan rupture. The Beichuan-Yingxiu rupture is the principle one with abundant fault gouge development along its length. In the exploratory trench at the Saba village along the Beichuan-Yingxiu rupture, the new fault gouge zone is only ~3 mm wide, which suggests that fault slip was constrained in a very narrow zone. In this study, we thus carried out detailed microstructural and mineral component analysis on the oriented fault gouge samples from the Saba exploratory trench to understand their features and geological implication. The results show that different microstructures of localized brittle deformation can be observed in the fault gouges, including Y-shear, R1-shear, R2-shear, P-shear as well as tension fracture, bookshelf glided structure and so on. These microstructures are commonly recognized as the product of seismic fault slipping. Furthermore, within the area between two parallel Y-shears of the fault gouge, a few of microstructures of distributed ductile deformations were developed, such as P-foliation, elongation and asymmetrical trailing structure of detrital particles. The microstructure features of fault gouges implicate the thrust movement of the fault during the Wenchuan earthquake. In addition, the fault gouge has less quartz and feldspar and more clay than the surrounding rocks, which indicates that some quartz and feldspar in the surrounding rocks were transformed into clay, whereas the fault gouge has more illite and less illite/montmorillonite mixed layers than the surrounding rocks, which shows that the illite/montmorillonite mixed layer was partly converted into illite due to temperature increasing induced by coseismic fault slipping friction (also being affected partly by the chemical action of solutions). Such microstructures features and mineral component changes recorded the information of fault slip and provide criterions for discussing the genesis of fault gouge and recognition of the direction of fault movement.

  14. Reconstructing impairment of secretory ameloblast function in porcine teeth by analysis of morphological alterations in dental enamel

    PubMed Central

    Witzel, Carsten; Kierdorf, Uwe; Dobney, Keith; Ervynck, Anton; Vanpoucke, Sofie; Kierdorf, Horst

    2006-01-01

    We studied the relationship between the macroscopic appearance of hypoplastic defects in the dental enamel of wild boar and domestic pigs, and microstructural enamel changes, at both the light and the scanning electron microscopic levels. Deviations from normal enamel microstructure were used to reconstruct the functional and related morphological changes of the secretory ameloblasts caused by the action of stress factors during amelogenesis. The deduced reaction pattern of the secretory ameloblasts can be grouped in a sequence of increasingly severe impairments of cell function. The reactions ranged from a slight enhancement of the periodicity of enamel matrix secretion, over a temporary reduction in the amount of secreted enamel matrix, with reduction of the distal portion of the Tomes' process, to either a temporary or a definite cessation of matrix formation. The results demonstrate that analysis of structural changes in dental enamel allows a detailed reconstruction of the reaction of secretory ameloblasts to stress events, enabling an assessment of duration and intensity of these events. Analysing the deviations from normal enamel microstructure provides a deeper insight into the cellular changes underlying the formation of hypoplastic enamel defects than can be achieved by mere inspection of tooth surface characteristics alone. PMID:16822273

  15. 3D Microstructures for Materials and Damage Models

    DOE PAGES

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    2017-02-01

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  16. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  17. Modelling of stamping of DP steel automotive part accounting for the effect of hard components in the microstructure

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Mateusz; Bzowski, Krzysztof; Mirek, Michal; Rauch, Lukasz; Pietrzyk, Maciej

    2013-05-01

    The paper presents simulations of the manufacturing of the automotive part, which has high influence on improvement of passengers safety. Two approaches to the Finite Element (FE) modelling of stamping of a part that provides extra stiffening of construction subassemblies in the back of a car were considered. The first is conventional simulation, which assumes that the material is a continuum with flow stress model and anisotropy coefficients determined from the tensile tests. In the second approach two-phase microstructure of the DP steel is accounted for in simulations. The FE2 method, which belongs to upscaling techniques, is used. Representative Volume Element (RVE), which is the basis of the upscaling approach and reflects the real microstructure, was obtained by the image analysis of the micrograph of the DP steel. However, since FE2 simulations with the real picture of the microstructure in the micro scale, are extremely time consuming, the idea of the Statistically Similar Representative Volume Element (SSRVE) was applied. SSRVE obtained for the DP steel, used for production of automotive part, is presented in the paper in the form of 3D inclusion. The macro scale model of the simulated part is described in details, as well as the results obtained for macro and micro-macro simulations.

  18. Investigation of Effects of Material Architecture on the Elastic Response of a Woven Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.

    2012-01-01

    To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.

  19. Strain rate effects on fracture behavior of Austempered Ductile Irons

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  20. On the microstructure analysis of FSW joints of aluminium components made via direct metal laser sintering

    NASA Astrophysics Data System (ADS)

    Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio

    2017-10-01

    Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.

  1. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.

    2000-01-01

    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cun; Aoun, Bachir; Cui, Lishan

    Microstructure evolution of a cold-drawn NiTi shape memory alloy wire was investigated by means of in-situ synchrotron high-energy X-ray diffraction during continuous heating. The cold-drawn wire contained amorphous regions and nano-crystalline domains in its microstructure. Pair distribution function analysis revealed that the amorphous regions underwent structural relaxation via atomic rearrangement when heated above 100 °C. The nano-crystalline domains were found to exhibit a strong cold work induced lattice strain anisotropy having a preferential <111> fiber orientation along the wire axial direction. The lattice strain anisotropy systematically decreased upon heating above 200 °C, implying a structural recovery. A broad conical texturemore » was formed in the wire specimen after crystallization similar in detail to the initial <111> texture axial orientation of the nano-crystalline domains produced by the severe cold wire drawing deformation.« less

  3. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Fei; Yu, Zhenglei; Yang, Fengling

    Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via highmore » resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.« less

  4. Impact of pore space topology on permeability, cut-off frequencies and validity of wave propagation theories

    NASA Astrophysics Data System (ADS)

    Sarout, Joël.

    2012-04-01

    For the first time, a comprehensive and quantitative analysis of the domains of validity of popular wave propagation theories for porous/cracked media is provided. The case of a simple, yet versatile rock microstructure is detailed. The microstructural parameters controlling the applicability of the scattering theories, the effective medium theories, the quasi-static (Gassmann limit) and dynamic (inertial) poroelasticity are analysed in terms of pores/cracks characteristic size, geometry and connectivity. To this end, a new permeability model is devised combining the hydraulic radius and percolation concepts. The predictions of this model are compared to published micromechanical models of permeability for the limiting cases of capillary tubes and penny-shaped cracks. It is also compared to published experimental data on natural rocks in these limiting cases. It explicitly accounts for pore space topology around the percolation threshold and far above it. Thanks to this permeability model, the scattering, squirt-flow and Biot cut-off frequencies are quantitatively compared. This comparison leads to an explicit mapping of the domains of validity of these wave propagation theories as a function of the rock's actual microstructure. How this mapping impacts seismic, geophysical and ultrasonic wave velocity data interpretation is discussed. The methodology demonstrated here and the outcomes of this analysis are meant to constitute a quantitative guide for the selection of the most suitable modelling strategy to be employed for prediction and/or interpretation of rocks elastic properties in laboratory-or field-scale applications when information regarding the rock's microstructure is available.

  5. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals.

    PubMed

    Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A; Arnold, Steven M; Pineda, Evan J

    2016-05-04

    A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e. , each individual grain. Two-three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities.

  6. Analysis of surface integrity in machining of AISI 304 stainless steel under various cooling and cutting conditions

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Döbbeler, B.; Lung, S.; Seelbach, T.; Jawahir, I. S.

    2018-05-01

    Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers from low yield strength that limits its technological applications. In this paper, liquid nitrogen (LN2) as cryogenic coolant, as well as minimum quantity lubrication (MQL), was applied and investigated. As a reference, conventional flood cooling was examined. Besides the cooling conditions, the feed rate was varied in four steps. A large rounded cutting edge radius and finishing cutting parameters were chosen to increase the mechanical load on the machined surface. The surface integrity was evaluated at both, the microstructural and the topographical levels. After turning experiments, a detailed analysis of the microstructure was carried out including the imaging of the surface layer and hardness measurements at varying depths within the machined layer. Along with microstructural investigations, different topological aspects, e.g., the surface roughness, were analyzed. It was shown that the resulting microstructure strongly depends on the cooling condition. This study also shows that it was possible to increase the micro hardness in the top surface layer significantly.

  7. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals

    PubMed Central

    Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A.; Arnold, Steven M.; Pineda, Evan J.

    2016-01-01

    A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e., each individual grain. Two–three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities. PMID:28773458

  8. Microstructure of β-Sitosterol:γ-Oryzanol Edible Organogels.

    PubMed

    Matheson, Andrew B; Koutsos, Vasileios; Dalkas, Georgios; Euston, Stephen; Clegg, Paul

    2017-05-09

    Rheology and atomic force microscopy (AFM) were employed to examine the microstructure of β-sitosterol:γ-oryzanol organogels in sunflower oil. Using time-resolved rheology, we followed gel formation, paying specific attention to the fibril aggregation process, which had not been studied in detail previously for this system. Using AFM, we observed gel structures directly and obtained detailed information on the gel structure, far exceeding previous studies. Our analysis suggests that though gels are formed by the self-assembly and aggregation of one-dimensional fibrils, the manner in which these fibrils aggregate into ribbons results in complex structures of higher dimensionality. We emphasize that it is a surprise to find ribbons and not twisted strands. Comparing AFM images of 10% w/w and 20% w/w gelator systems, we observed differences in the degree of branching which are consistent with the rheology. We also observed the individual self-assembled fibrils which make up these gels with much greater clarity than in previous microscopy studies, and the fibril diameters of ∼9.8 nm we measured agree excellently with those obtained from existing small-angle neutron scattering data. These results provide new insight into the structure and formation kinetics of this important organogel system.

  9. Microstructures and properties of rapidly solidified alloys

    NASA Technical Reports Server (NTRS)

    Shechtman, D.; Horowitz, E.

    1984-01-01

    The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.

  10. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution

    NASA Technical Reports Server (NTRS)

    Sircar, S.; Chattopadhyay, K.; Mazumder, J.

    1992-01-01

    The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.

  11. Brainstem Involvement as a Cause of Central Sleep Apnea: Pattern of Microstructural Cerebral Damage in Patients with Cerebral Microangiopathy

    PubMed Central

    Duning, Thomas; Deppe, Michael; Brand, Eva; Stypmann, Jörg; Becht, Charlotte; Heidbreder, Anna; Young, Peter

    2013-01-01

    Background The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. Patients and Methods Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis. Results In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. Conclusion Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than conventional structural MRI and other advanced MR analyses tools in demonstrating these abnormalities. PMID:23637744

  12. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  13. Importing, Working With, and Sharing Microstructural Data in the StraboSpot Digital Data System, Including an Example Dataset from the Pilbara Craton, Western Australia.

    NASA Astrophysics Data System (ADS)

    Roberts, N.; Cunningham, H.; Snell, A.; Newman, J.; Tikoff, B.; Chatzaras, V.; Walker, J. D.; Williams, R. T.

    2017-12-01

    There is currently no repository where a geologist can survey microstructural datasets that have been collected from a specific field area or deformation experiment. New development of the StraboSpot digital data system provides a such a repository as well as visualization and analysis tools. StraboSpot is a graph database that allows field geologists to share primary data and develop new types of scientific questions. The database can be accessed through: 1) a field-based mobile application that runs on iOS and Android mobile devices; and 2) a desktop system. We are expanding StraboSpot to include the handling of a variety of microstructural data types. Presented here is the detailed vocabulary and logic used for the input of microstructural data, and how this system operates with the anticipated workflow of users. Microstructural data include observations and interpretations from photomicrographs, scanning electron microscope images, electron backscatter diffraction, and transmission electron microscopy data. The workflow for importing microstructural data into StraboSpot is organized into the following tabs: Images, Mineralogy & Composition; Sedimentary; Igneous; Metamorphic; Fault Rocks; Grain size & configuration; Crystallographic Preferred Orientation; Reactions; Geochronology; Relationships; and Interpretations. Both the sample and the thin sections are also spots. For the sample spot, the user can specify whether a sample is experimental or natural; natural samples are inherently linked to their field context. For the thin section (sub-sample) spot, the user can select between different options for sample preparation, geometry, and methods. A universal framework for thin section orientation is given, which allows users to overlay different microscope images of the same area and keeps georeferenced orientation. We provide an example dataset of field and microstructural data from the Mt Edgar dome, a granitic complex in the Paleoarchean East Pilbara craton, Australia. StraboSpot provides a single place for georeferenced geologic data at every spatial scale, in which data are interconnected. Incorporating microstructural data into an open-access platform will give field and experimental geologists a library of microstructural data across a range of tectonic and experimental contexts.

  14. Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Rekha, Suganthini; Bupesh Raja, V. K.

    2017-05-01

    The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.

  15. Influence of Grain Size on Mechanical Responses in Beta Ti-12Mo Alloy Demonstrating Concurrent Twinning-Induced Plasticity/Transformation-induced Plasticity Effects

    NASA Astrophysics Data System (ADS)

    Zhang, D. C.; Xue, Q.; Lei, J. F.; Ma, Y. J.; Yang, R.; Wang, C.

    2018-06-01

    Metastable β Ti-12Mo wt pct alloys with controllable grain sizes are successfully produced, and the effect of grain size on mechanical responses has been thoroughly investigated. It is found that target alloys possess concurrent twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) features. Mechanisms governing mechanical properties through well-manipulated tensile experiments, detailed microstructure analysis, as well as strong correlations between triggering stress and twinning/phase transformation are offered.

  16. Optimization of residual stresses in MMC's through the variation of interfacial layer architectures and processing parameters

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.

    1996-01-01

    The objective of this work was the development of efficient, user-friendly computer codes for optimizing fabrication-induced residual stresses in metal matrix composites through the use of homogeneous and heterogeneous interfacial layer architectures and processing parameter variation. To satisfy this objective, three major computer codes have been developed and delivered to the NASA-Lewis Research Center, namely MCCM, OPTCOMP, and OPTCOMP2. MCCM is a general research-oriented code for investigating the effects of microstructural details, such as layered morphology of SCS-6 SiC fibers and multiple homogeneous interfacial layers, on the inelastic response of unidirectional metal matrix composites under axisymmetric thermomechanical loading. OPTCOMP and OPTCOMP2 combine the major analysis module resident in MCCM with a commercially-available optimization algorithm and are driven by user-friendly interfaces which facilitate input data construction and program execution. OPTCOMP enables the user to identify those dimensions, geometric arrangements and thermoelastoplastic properties of homogeneous interfacial layers that minimize thermal residual stresses for the specified set of constraints. OPTCOMP2 provides additional flexibility in the residual stress optimization through variation of the processing parameters (time, temperature, external pressure and axial load) as well as the microstructure of the interfacial region which is treated as a heterogeneous two-phase composite. Overviews of the capabilities of these codes are provided together with a summary of results that addresses the effects of various microstructural details of the fiber, interfacial layers and matrix region on the optimization of fabrication-induced residual stresses in metal matrix composites.

  17. Impact of microstructure on the thermoelectric properties of the ternary compound Ce{sub 3}Cu{sub 3}Sb{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witas, Piotr, E-mail: pwitas@us.edu.pl

    We present detailed structural and thermoelectric studies of the ternary compound Ce{sub 3}Cu{sub 3}Sb{sub 4}. This material is of interest due to previously reported considerable thermopower above room temperature (∼ 100 μV/K) and low thermal conductivity (2 W/(m K)). Here, we present detailed studies concerning microstructural and thermoelectric data, their variation across the samples and possible explanations for the observed behaviour. We have used X-ray diffraction, scanning electron microscopy (SEM), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) for microstructural analysis. The thermoelectric properties were examined using a physical property measurement system (PPMS). We analyse the impact of the sample qualitymore » on the thermoelectric properties. The most unstable parameter is the material resistivity which varies between 1.5 and 15 mΩ cm at room temperature. The properties variability is mainly due to structural defects caused by stresses during material preparation and also due to formation of foreign phases CeCuSb{sub 2} and CeSb. The figure of merit ZT is also strongly dependent on the quality of the sample. The largest value ZT ≈ 0.15 at 400 K is determined for the almost stoichiometric sample with small amounts of a impurity phases. - Highlights: •The Ce{sub 3}Cu{sub 3}Sb{sub 4} has considerable thermoelectric properties and potential for further chemical and/or structural modification. •The control over foreign phases formation is challenging. •The defects arising during arc melting process highly deteriorate ZT of material.« less

  18. Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures

    DTIC Science & Technology

    2010-01-01

    angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective

  19. Negative emotion impacts memory for verbal discourse in pediatric bipolar disorder.

    PubMed

    Jacobs, Rachel H; Pavuluri, Mani N; Schenkel, Lindsay S; Palmer, Anne; Shah, Khushbu; Vemuri, Deepthi; Whited, Stefanie; Little, Deborah M

    2011-05-01

    Cognitive and emotional deficits have been documented in youth with pediatric bipolar disorder (PBD); however, to date, a systematic evaluation of comprehension and memory for verbally presented information has not been conducted. The effect of emotion on comprehension and memory for verbally presented material also has not been examined. We examined whether youth with PBD have difficulty recalling the big picture (macrostructure) as well as the story details (microstructure). A total of 35 youth with PBD and 25 healthy controls completed an Affective Story Task. A psychological processing model allowed for the examination of both the macrostructure and microstructure of language comprehension. Youth with PBD were capable of comprehending the gist of the stories and were not impaired by emotion when comprehending and remembering macrostructure. However, negative emotional material was found to proactively interfere with the encoding and recall of microstructure. Level of depression appeared to impact recall of microstructure, but not macrostructure. Negatively valenced material may impair subsequent comprehension and memory for details among youth with PBD. This deficit could impact the daily functioning of these youth, as the perception of negative affect may derail aspects of successful comprehension and learning. © 2011 John Wiley and Sons A/S.

  20. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less

  1. Preparation and Reactivity of Gasless Nanostructured Energetic Materials

    PubMed Central

    Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.

    2015-01-01

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065

  2. Cleavage fracture in high strength low alloy weld metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructuralmore » analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.« less

  3. An e.s.c.a. study of atomic oxygen interactions with phosphazene-coated polyimide films

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.; Finney, Lorie

    1991-01-01

    Metallic as well as most nonmetallic materials experience oxidation and mass loss via surface erosion in low earth orbit as shown in previous Space Shuttle flights. This study is an evaluation of select polyphosphazene polymers and their resistance to atomic oxygen attack. Electron spectroscopy for chemical analysis examinations of the surfaces of polyphosphazene coatings were monitored for microstructural changes induced during exposures to atomic oxygen. Sample exposures in oxygen plasmas and O(3P) beam were compared as to their effect on surface compositional changes in the polyphosphazene coating. High resolution line scans revealed rearrangements in the polymer backbone and scissioning reactions involving fluorocarbon units of long chain fluoroalkoxy pendant groups. Atom percents and peak areas of all species provided a detailed profile of the microstructural changes induced in phosphazene polymers as a result of exposures to atomic oxygen.

  4. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing

    PubMed Central

    Tao, Yubo; Wang, Honglei; Li, Zelong; Li, Peng; Shi, Sheldon Q.

    2017-01-01

    This paper presents the development of wood flour (WF)-filled polylactic acid (PLA) composite filaments for a fused deposition modeling (FDM) process with the aim of application to 3D printing. The composite filament consists of wood flour (5 wt %) in a PLA matrix. The detailed formulation and characterization of the composite filament were investigated experimentally, including tensile properties, microstructure, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The feedstock filaments of this composite were produced and used successfully in an assembled FDM 3D printer. The research concludes that compared with pure PLA filament, adding WF changed the microstructure of material fracture surface, the initial deformation resistance of the composite was enhanced, the starting thermal degradation temperature of the composite decreased slightly, and there were no effects on the melting temperature. The WF/PLA composite filament is suitable to be printed by the FDM process. PMID:28772694

  5. Two-Level Weld-Material Homogenization for Efficient Computational Analysis of Welded Structure Blast-Survivability

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-06-01

    The introduction of newer joining technologies like the so-called friction-stir welding (FSW) into automotive engineering entails the knowledge of the joint-material microstructure and properties. Since, the development of vehicles (including military vehicles capable of surviving blast and ballistic impacts) nowadays involves extensive use of the computational engineering analyses (CEA), robust high-fidelity material models are needed for the FSW joints. A two-level material-homogenization procedure is proposed and utilized in this study to help manage computational cost and computer storage requirements for such CEAs. The method utilizes experimental (microstructure, microhardness, tensile testing, and x-ray diffraction) data to construct: (a) the material model for each weld zone and (b) the material model for the entire weld. The procedure is validated by comparing its predictions with the predictions of more detailed but more costly computational analyses.

  6. Toward the understanding of hydration phenomena in aqueous electrolytes from the interplay of theory, molecular simulation, and experiment

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas

    2015-05-22

    We confront the microstructural analysis of aqueous electrolytes and present a detailed account of the fundamentals underlying the neutron scattering with isotopic substitution (NDIS) approach for the experimental determination of ion coordination numbers in systems involving both halides anions and oxyanions. We place particular emphasis on the frequently overlooked ion-pairing phenomenon, identify its microstructural signature in the neutron-weighted distribution functions, and suggest novel techniques to deal with either the estimation of the ion-pairing magnitude or the correction of its effects on the experimentally measured coordination numbers. We illustrate the underlying ideas by applying these new developments to the interpretation ofmore » four NDIS test-cases via molecular simulation, as convenient dry runs for the actual scattering experiments, for representative aqueous electrolyte solutions at ambient conditions involving metal halides and nitrates.« less

  7. Creep-Fatigue Failure Diagnosis

    PubMed Central

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  8. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

    PubMed Central

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-01-01

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework. PMID:28772504

  9. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.

    PubMed

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-02-08

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  11. A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations

    DOE PAGES

    Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera

    2017-09-04

    Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less

  12. A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera

    Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less

  13. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  14. On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing

    DOE PAGES

    Sridharan, Niyanth S.; Noakes, Mark W.; Nycz, Andrzej; ...

    2017-12-06

    Low alloy carbon manganese (C-Mn) steel builds were fabricated using a wire based additive manufacturing system developed at Oak Ridge National Laboratory. Specimens were fabricated in the X,Y and Z direction and detailed mechanical testing was performed. The mechanical testing results showed a significant scatter in tensile ductility and significant variation in Charpy toughness. Further detailed microstructure characterization showed significant microstructural heterogeneity in builds fabricated in each direction. The scatter in mechanical properties was then rationalized based on the microstructural observations and the underlying changes in the local heat transfer conditions. Lastly, the results indicate that when fabricating parts usingmore » C-Mn low alloy steel welds the process parameters and tool path should be chosen such that the cooling rate from 800 °C to 500 °C is greater than 30 s to avoid formation of martensite austenite (MA) phases, which leads to toughness reductions.« less

  15. On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth S.; Noakes, Mark W.; Nycz, Andrzej

    Low alloy carbon manganese (C-Mn) steel builds were fabricated using a wire based additive manufacturing system developed at Oak Ridge National Laboratory. Specimens were fabricated in the X,Y and Z direction and detailed mechanical testing was performed. The mechanical testing results showed a significant scatter in tensile ductility and significant variation in Charpy toughness. Further detailed microstructure characterization showed significant microstructural heterogeneity in builds fabricated in each direction. The scatter in mechanical properties was then rationalized based on the microstructural observations and the underlying changes in the local heat transfer conditions. Lastly, the results indicate that when fabricating parts usingmore » C-Mn low alloy steel welds the process parameters and tool path should be chosen such that the cooling rate from 800 °C to 500 °C is greater than 30 s to avoid formation of martensite austenite (MA) phases, which leads to toughness reductions.« less

  16. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  17. Microstructural Characteristics of Deformed Quartz Under Non-Steady-State Conditions

    NASA Astrophysics Data System (ADS)

    Soleymani, Hamid; Kidder, Steven B.; Hirth, Greg

    2017-12-01

    Analysis of rock deformation experiments can be used to better inform studies of the stress history of geologic fault zones. While it is thought that many geological processes are slow enough to reach steady-state, however, the impact of non-steady-state conditions can be significant. For instance it is thought that most rocks experience a gradual increase in stress as they approach the brittle-ductile transition during exhumation, however experiments simulating a gradual stress increase during dislocation creep were not previously carried out. Similarly, while numerical models of earthquakes on major plate boundary fault zones indicate temporarily elevated differential stress and strain-rates below the fault edge in the ductile crust/upper-mantle, few experimental studies have explored the effects of such episodic stress and strain-rates on microstructural evolution. We carried out general-shear and axial compression Griggs rig experiments on Black Hills quartzite (grain size ≈ 100 µm) and synthesized quartz aggregates (grain size ≈ 20 µm) both annealed at 900 °C and confining pressure of 1GPa. The first series of experiments was designed to simulate the stress history of rapidly exhumed rocks. Stress was increased during the experiments by gradually decreasing the temperature from 900 °C to 800 °C at various constant displacement rates. The second series of experiments explores the microstructural and rheological characteristics of quartz deformed to strains of γ ≈ 4 via alternating fast strain rate ( ≈ 1 × 10-3 sec-1 ) and relaxation intervals. Preliminarily mechanical data suggest that our techniques successfully simulate exhumation stress paths and episodic stress pulses. Detailed microstructural analysis of the experimental samples and comparisons to natural samples will be presented to explore the degree to which non-steady-state behavior may be recorded in exhumed rocks.

  18. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia)

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.

    2008-07-01

    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.

  19. Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasalloti, H., E-mail: hamed.tasalloti.kashani@stu

    The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite inmore » the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.« less

  20. Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials.

    PubMed

    Falchetto, Augusto Cannone; Moon, Ki Hoon; Wistuba, Michael P

    2014-09-02

    The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP) and modeling of rheological data obtained with the Bending Beam Rheometer (BBR). Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL) of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder.

  1. Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials

    PubMed Central

    Cannone Falchetto, Augusto; Moon, Ki Hoon; Wistuba, Michael P.

    2014-01-01

    The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP) and modeling of rheological data obtained with the Bending Beam Rheometer (BBR). Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL) of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder. PMID:28788190

  2. Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method

    NASA Technical Reports Server (NTRS)

    Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.

    2014-01-01

    A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.

  3. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; He, Ming; Wang, Dan; Zhang, Si-Lan

    2017-09-15

    The overall objective of this research project is to investigate the feasibility of incorporating oil-based drilling cuttings pyrolysis residues (ODPR) and fly ash serve as replacements for fine aggregates and cementitious materials in concrete. Mechanical and physical properties, detailed environmental performances, and microstructure analysis were carried out. Meanwhile, the early hydration process and hydrated products of ODPR concrete were analyzed with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that ODPR could not be categorize into hazardous wastes. ODPR had specific pozzolanic characteristic and the use of ODPR had certain influence on slump and compressive strength of concrete. The best workability and optimal compressive strength were achieved with the help of 35% ODPR. Environmental performance tests came to conclusion that ODPR as recycled aggregates and admixture for the preparation of concrete, from the technique perspective, were the substance of mere environmental contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  5. Advanced electron microscopy methods for the analysis of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Birajdar, B.; Peranio, N.; Eibl, O.

    2008-02-01

    Advanced electron microscopy methods used for the analysis of superconducting MgB2 wires and tapes are described. The wires and tapes were prepared by the powder in tube method using different processing technologies and thoroughly characterised for their superconducting properties within the HIPERMAG project. Microstructure analysis on μm to nm length scales is necessary to understand the superconducting properties of MgB2. For the MgB2 phase analysis on μm scale an analytical SEM, and for the analysis on nm scale a energy-filtered STEM is used. Both the microscopes were equipped with EDX detector and field emission gun. Electron microscopy and spectroscopy of MgB2 is challenging because of the boron analysis, carbon and oxygen contamination, and the presence of large number of secondary phases. Advanced electron microscopy involves, combined SEM, EPMA and TEM analysis with artefact free sample preparation, elemental mapping and chemical quantification of point spectra. Details of the acquisition conditions and achieved accuracy are presented. Ex-situ wires show oxygen-free MgB2 colonies (a colony is a dense arrangement of several MgB2 grains) embedded in a porous and oxygen-rich matrix, introducing structural granularity. In comparison, in-situ wires are generally more dense, but show inhibited MgB2 phase formation with significantly higher fraction of B-rich secondary phases. SiC additives in the in-situ wires forms Mg2Si secondary phases. The advanced electron microscopy has been used to extract the microstructure parameters like colony size, B-rich secondary phase fraction, O mole fraction and MgB2 grain size, and establish a microstructure-critical current density model [1]. In summary, conventional secondary electron imaging in SEM and diffraction contrast imaging in the TEM are by far not sufficient and advanced electron microscopy methods are essential for the analysis of superconducting MgB2 wires and tapes.

  6. Directional pair distribution function for diffraction line profile analysis of atomistic models

    PubMed Central

    Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo

    2013-01-01

    The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818

  7. The Effect of Microstructure On Transport Properties of Porous Electrodes

    NASA Astrophysics Data System (ADS)

    Peterson, Serena W.

    The goal of this work is to further understand the relationships between porous electrode microstructure and mass transport properties. This understanding allows us to predict and improve cell performance from fundamental principles. The investigated battery systems are the widely used rechargeable Li-ion battery and the non-rechargeable alkaline battery. This work includes three main contributions in the battery field listed below. Direct Measurement of Effective Electronic Transport in Porous Li-ion Electrodes. An accurate assessment of the electronic conductivity of electrodes is necessary for understanding and optimizing battery performance. The bulk electronic conductivity of porous LiCoO2-based cathodes was measured as a function of porosity, pressure, carbon fraction, and the presence of an electrolyte. The measurements were performed by delamination of thin-film electrodes from their aluminum current collectors and by use of a four-line probe. Imaging and Correlating Microstructure To Conductivity. Transport properties of porous electrodes are strongly related to microstructure. An experimental 3D microstructure is needed not only for computation of direct transport properties, but also for a detailed electrode microstructure characterization. This work utilized X-ray tomography and focused ion beam (FIB)/scanning electron microscopy (SEM) to obtain the 3D structures of alkaline battery cathodes. FIB/SEM has the advantage of detecting carbon additives; thus, it was the main tomography tool employed. Additionally, protocols and techniques for acquiring, processing and segmenting series of FIB/SEM images were developed as part of this work. FIB/SEM images were also used to correlate electrodes' microstructure to their respective conductivities for both Li-ion and alkaline batteries. Electrode Microstructure Metrics and the 3D Stochastic Grid Model. A detailed characterization of microstructure was conducted in this work, including characterization of the volume fraction, nearest neighbor probability, domain size distribution, shape factor, and Fourier transform coefficient. These metrics are compared between 2D FIB/SEM, 3D FIB/SEM and X-ray structures. Among those metrics, the first three metrics are used as a basis for SG model parameterization. The 3D stochastic grid (SG) model is based on Monte Carlo techniques, in which a small set of fundamental inter-domain parameters are used to generate structures. This allows us to predict electrode microstructure and its effects on both electronic and ionic properties.

  8. Correlations Among Microstructure, Morphology, Chemistry, and Isotopic Systematics of Hibonite in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Han, J.; Liu, M.-C..; Keller, L. P.; Davis, A. M.

    2017-01-01

    Introduction: Hibonite is a primary refractory phase occurring in many CAIs, typically with spinel and perovskite. Our microstructural studies of CAIs from carbonaceous chondrites reveal a range of stacking defect densities and correlated non-stoichiometry in hibonite. We also conducted a series of annealing experiments, demonstrating that the Mg-Al substitution stabilized the formation of defect-structured hibonite. Here, we continue a detailed TEM analysis of hibonite-bearing inclusions from CM chondrites that have been well-characterized isotopically. We examine possible correlations of microstructure, morphology, mineralogy, and chemical and isotopic systematics of CM hibonites in order to better understand the formation history of hibonite in the early solar nebula. Methods: Fifteen hibonite-bearing inclusions from the Paris CM chondrite were analyzed using a JEOL 7600F SEM and a JEOL 8530F electron microprobe. In addition to three hibonite-bearing inclusions from the Murchison CM chondrite previously reported, we selected three inclusions from Paris, Pmt1-6, 1-9, and 1-10, representing a range of 26Al/27Al ratios and minor element concentrations for a detailed TEM study. We extracted TEM sections from hibonite grains using a FEI Quanta 3D field emission gun SEM/FIB. The sections were then examined using a JEOL 2500SE field-emission scanning TEM equipped with a Thermo-Noran thin window EDX spectrometer. Results and Discussion: A total of six hibonite-bearing inclusions, including two platy hibonite crystals (PLACs) and four spinel-hibonite inclusions (SHIBs), were studied. There are notable differences in chemical and isotopic compositions between the inclusions (Table 1), indicative of their different formation environment or timing. Our TEM observations show perfectly-ordered, stoichiometric hibonite crystals without stacking defects in two PLACs, 2-7-1 and 2-8-2, and in three SHIBs, Pmt1-6, 1-9, and 1-10. In contrast, SHIB 1-9-5 hibonite grains contain a low density of stacking defects linked to an increase in MgO contents, indicating complex, disordered intergrowths of stoichiometric and MgO-enriched hibonites. From the data collected to date, we find no clear correlation between the microstructures of hibonite and its morphological and mineralogical types that reflect distinct chemical and isotopic systematics [6-8,10]. Interestingly, the presence of no or few stacking defects in hibonite from the PLACs and SHIBs are in contrast to our experimental studies that produced very high densities of stacking defects in hibonite [3-5]. Unlike our experi-ments, electron microprobe data from the PLACs and SHIBs hibonite grains show a strong correlation between (Ti4++Si4+) and Mg2+ cations, suggesting that coupled substitutions of (Ti4++Mg2+) and (Si4++Mg2+) for 2Al3+ inhibit the formation of defect-structured hibonite. However, our experimental studies suggest that kinetics (e.g., cooling rate) or other thermal effects also exert a strong control on the microstructures and chemical compositions of hibonite. In Pmt1-6, elongated perovskite grains present at the hibonite grain boundaries display (121) twinning, indicative of a fast cooling (>50degC/min) after high-temperature events. Therefore, the nebular microstructural characteristics of hibonite, at least in this inclusion, would not have destroyed by subsequent high-temperature annealing. Conclusions: Our TEM observations thus far show no clear correlation in microstructures, morphological and mineralogical characteristics, and chemical and isotopic systematics of hibonites from CM chondrites. The observed variation in stacking defect densities in the hibonites may be controlled by thermal processes in the early solar nebula. A detailed TEM analysis of additional CM hibonite samples is underway to evaluate this hypothesis.

  9. The numerical simulation and experiment on extrusion roller embossing of light diffusion plate with micro-structure

    NASA Astrophysics Data System (ADS)

    Zang, Gongzheng; Fu, Zhihong; Zhang, Lei; Wan, Yue

    2018-01-01

    Extrusion roller embossing process has demonstrated the ability to produce polymer film with micro-structure. However the influence of various parameters on the forming quality has not been understood clearly. In this paper, a light diffusion plate with semi cylindrical micro-structure array as the research object, the influence of the main processing parameters such as roller speed, pressuring distance and polymer film temperature to the rolling quality was investigated in detail by simulation and experimental methods. The results show that the thickness of the light diffusion plate and the micro-structure fitting diameter increases with the increasing of the roll speed and the polymer film temperature, and decreases with the increasing of the pressing distance. Besides, the simulation results conformed well to the experimental results.

  10. Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces.

    DTIC Science & Technology

    1992-12-31

    Bimaterials Interfaces includes three sections: Mechanics of Interfaces, Coating Design for Composite Systems, and Mechanics of Brittle Matrix... Composites . For more details see Executive Summary. 14. SUBJECT TERM 15. NUMBER OF PAGES Effect, Microstructure, Strength, Fracture Energy, Bimatenal...The Role of Interfaces in Fiber-Reinforced Brittle A.G. Evans Matrix Composites F.W. Zok J.B. Davis Article 2. Effects of Fiber Roughness on Interface

  11. Precipitation of Al3(Sc,Zr) Particles in a Direct Chill Cast Al-Zn-Mg-Cu-Sc-Zr Alloy During Conventional Solution Heat Treatment and its Effect on Tensile Properties

    DTIC Science & Technology

    2007-12-01

    recrystallization during hot working and introduce additional strengthening through the formation of fine coherent Al3(Sc,Zr) particles from a super...microstructure was described in detail elsewhere [8]. TEM analysis of the as-cast alloy revealed large eutectic -forming particles, which were enriched...however suggest that this additional strengthening (~10-30 MPa) can be due to incomplete dissolution of the eutectic phases, which were present in the

  12. Mapping White Matter Microstructure in the One Month Human Brain.

    PubMed

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  13. Nucleate boiling performance on nano/microstructures with different wetting surfaces

    PubMed Central

    2012-01-01

    A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173

  14. Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI

    PubMed Central

    Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe

    2016-01-01

    Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056

  15. Tracing the Origin of Non-ferrous Oxides in Lamination Defects on Hot-Rolled Coils: Mold Slag Entrainment vs Submerged Entry Nozzle Reaction Products

    NASA Astrophysics Data System (ADS)

    Sengo, Sabri; Romano Triguero, Patricia; Zinngrebe, Enno; Mensonides, Fokko

    2017-06-01

    In this work, lamination defects (slivers) on hot-rolled coils of Ca-treated steel were investigated for microstructure and composition using optical and scanning electron microscopy combined with microanalysis (SEM/EDS). The goal was to identify possible origins for the observed defects which contain a complex assemblage of phases, such as different types of calcium aluminates (CA, CA2, CA6), melilite (C2AS), spinel (MA), and a newly identified phase, CNA2. Mold slag similar to that employed during the cast was absent. Analysis of the bulk composition of some of the defects indicated these to be too rich in alumina to be derived from mold slag through steel-slag redox exchange. In contrast, microstructural observation of the inner side of the submerged entry nozzles (SEN) used during casting showed deposits with compositions comparable to those of the defect material. Based on an estimation of the chemical evolution of mold slag interacting with steel, it is found that the defects are not likely to be entrained mold slag but remobilized SEN deposits, as supported by several microstructural and trace phase criteria. However, it should be noted that extensive reduction of mold slag by steel can lead to compositions rich in sodic-calcic aluminates (CNA2). Therefore, differentiation between specific locations of the defect materials within a casting system requires detailed analysis from the potential sources of origin as well as from the materials found in the defects.

  16. Microstructural Characterization of Thermomechanical and Heat-Affected Zones of an Inertia Friction Welded Astroloy

    NASA Astrophysics Data System (ADS)

    Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.

    2014-08-01

    The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  17. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking Part II: Microstructure characterization

    NASA Astrophysics Data System (ADS)

    Unfried-Silgado, Jimy; Ramirez, Antonio J.

    2014-03-01

    In part II of this work is evaluated the as-welded microstructure of Ni-Cr-Fe alloys, which were selected and modeled in part I. Detailed characterization of primary and secondary precipitates, subgrain and grain structures, partitioning, and grain boundary morphology were developed. Microstructural characterization was carried out using optical microscopy, SEM, TEM, EBSD, and XEDS techniques. These results were analyzed and compared to modeling results displaying a good agreement. The Hf additions produced the highest waviness of grain boundaries, which were related to distribution of Hf-rich carbonitrides. Experimental evidences about Mo distribution into crystal lattice have provided information about its possible role in ductility-dip cracking (DDC). Characterization results of studied alloys were analyzed and linked to their DDC resistance data aiming to establish relationships between as-welded microstructure and hot deformation performance. Wavy grain boundaries, primary carbides distribution, and strengthened crystal lattice are metallurgical characteristics related to high DDC resistance.

  18. Effect of Microstructural Parameters on the Relative Densities of Metal Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Kerr, Jacob A.

    2010-01-01

    A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.

  19. Roles of microstructures on deformation response of 316 stainless steel made by 3D printing

    NASA Astrophysics Data System (ADS)

    Pham, Minh-Son; Hooper, Paul

    2017-10-01

    One of the main challenges in additive manufacturing (AM) of metals is to manufacture high quality materials and ensure the performance of AM materials in service duties. This challenge can only be solved when the relationships between build process parameters, microstructure and deformation behaviour are understood. This present study is part of holistic efforts at Imperial College to reveal such relationships. In this study, we present our study of porosity condition, grain morphology, texture and metastable phases in AM stainless steel 316. To provide samples for mechanical and microstructural study, cylindrical samples of stainless steel 316 were printed by powder-bed laser melting with a bi-directional hatch pattern. Scanning electron microscopy and electron backscattered diffraction were used to investigate fine microstructures (such as grain morphology, texture and crystal phases) after 3D printing and deformation. Subsequently, a detailed 3D structure of columnar grains in as-printed 316 steel is constructed thanks to microscopic observation. Most of grains in as-built samples have a spherical bowl morphology, and being stacked on others to form the columnar structure. Examinations on microstructures show that the small sub-grains in as-printed samples is likely responsible for high yield strength at room temperature (significantly higher than that of conventional steel). In addition, residual stresses after rapid cooling probably promote the deformation-induced twinning that assists the plasticity during deformation, leading to a good ductility of the AM steel (almost as same as that of conventional 316 steel). Currently, a more detailed study is being undertaken to confirm this hypothesis.

  20. Antisite defects in layered multiferroic CuCr0.9In0.1P2S6

    NASA Astrophysics Data System (ADS)

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V.; Borisevich, Albina Y.

    2015-11-01

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics.The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04779j

  1. Investigation of the laser engineered net shaping process for nanostructured cermets

    NASA Astrophysics Data System (ADS)

    Xiong, Yuhong

    Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder metallurgy technologies were compared. In addition, another cermet system, nanostructured titanium/tungsten carbide-nickel ((Ti,W)C-Ni) powder, prepared using high-energy ball milling process, was also deposited by the LENSRTM technology. Because of the near net shape feature of the LENSRTM process, special emphasis was also placed on its potential environmental and economic benefits by applying life cycle assessment (LCA) and technical cost modeling (TCM). Comparisons were conducted between the conventional powder metallurgy processes and the LENSRTM process.

  2. Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.

    PubMed

    Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel

    2017-12-01

    The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microstructure of as atomized and annealed U-Mo7 particles: A SEM/EBSD study of grain growth

    NASA Astrophysics Data System (ADS)

    Iltis, X.; Zacharie-Aubrun, I.; Ryu, H. J.; Park, J. M.; Leenaers, A.; Yacout, A. M.; Keiser, D. D.; Vanni, F.; Stepnik, B.; Blay, T.; Tarisien, N.; Tanguy, C.; Palancher, H.

    2017-11-01

    Significant progresses in the performances under in-pile irradiation of particular U-Mo based fuels have been observed over the last fifteen years. One of the remaining issues has still to be tackled for use as a LEU fuel in the high power research reactors: the U-Mo recrystallization and its associated swelling have to be controlled or delayed. One way to mitigate this problem would be to optimize the initial microstructure of U-Mo atomized particle, by homogenizing Mo concentration and increasing grain size. This paper mainly focuses on U-Mo grain growth. Based on samples prepared in the framework of KOMO-5 and EMPIrE tests, a methodological work based on the use of EBSD is presented. In particular, surface preparation procedures are proposed for powders and rods, this last one being most likely readily applicable for plate analysis. As-atomized microstructures are analyzed in detail and subsequently compared to those obtained on particles annealed at 1000 °C under various conditions. It is found that 1 h annealing under vacuum is a good compromise of temperature and time to meet the development goals, provided that few impurity precipitates are present within U-Mo particles, since these can impact grain growth.

  4. Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses.

    PubMed

    Reitz, Christian; Suchomski, Christian; Chakravadhanula, Venkata Sai Kiran; Djerdj, Igor; Jagličić, Zvonko; Brezesinski, Torsten

    2013-04-01

    Herein, we report the synthesis, microstructure, and magnetic properties of cadmium ferrite (CdFe2O4) thin films with both an ordered cubic network of 18 nm diameter pores and single-phase spinel grains averaging 13 nm in diameter. These mesoporous materials were produced through facile polymer templating of hydrated nitrate salt precursors. Both the morphology and the microstructure, including cation site occupancy and electronic bonding configuration, were analyzed in detail by electron microscopy, grazing incidence small-angle X-ray scattering, Raman and X-ray photoelectron spectroscopy, and N2-physisorption. The obtained data demonstrate that the network of pores is retained up to annealing temperatures as high as 650 °C--the onset of crystallization is at ϑ = (590 ± 10) °C. Furthermore, they show that the polymer-templated samples exhibit a "partially" inverted spinel structure with inversion parameter λ = 0.40 ± 0.02. This differs from microcrystalline CdFe2O4 which shows virtually no inversion. Magnetic susceptibility studies reveal ferrimagnetic spin coupling below 147 K and further point to the likelihood of glassy behavior at low temperature (T(f) ≈ 60 K). In addition, analysis of room temperature magnetization data indicates the presence of sub-10 nm diameter superparamagnetic clusters in an otherwise paramagnetic environment.

  5. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  6. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  7. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  8. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE PAGES

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...

    2018-04-10

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  9. Euromech 579 Arpino 3-8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly)inextensible fibers—a review of presentations and discussions

    NASA Astrophysics Data System (ADS)

    Laudato, Marco; Di Cosmo, Fabio

    2018-04-01

    In the present paper, a rational report on Euromech 579, Generalized and Microstructured Continua: New ideas in modeling and/or Applications to Structures with (nearly)inextensible fibers (Arpino 3-8 April 2017), is provided. The main aim of the colloquium was to provide a forum for experts in generalized and microstructured continua with inextensible fibers to exchange ideas and get informed about the latest research trends in the domain. The interested reader will find more details about the colloquium at the dedicated web page http://www.memocsevents.eu/euromech579.

  10. Fluorescence and multilayer structure of the scorpion cuticle

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Chiu, Pei-Ju; Lee, Cheng-Chung

    2015-09-01

    We collect the scorpions, Isometrus maculates, in different instars to analyze the photoluminescence (PL), micro-structure of cuticles and their correlation. The photoluminescence is excited by 405 nm solid laser in room temperature and detected by BWtek BRC 112E spectrometer. The result shows that the intensity of photoluminescence positively correlate to instars of scorpion. The images of micro-structures of cuticles captured by scanning electron microscope (SEM) present the multilayer structure in detail. The samples are prepared in small piece to ensure that the PL and SEM data are caught from the same area. The correlation between instars and intensity of photoluminescence is explained according to micro-structures via the thin-film optics theory.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp; School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Ogura, Atsushi

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure inmore » an amorphous thin film was not revealed owing to detection difficulties.« less

  12. RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B.D. Miller; D.D. Keiser Jr.

    2011-10-01

    The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of themore » U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.« less

  13. Thermal conductivity of hybrid short fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, M.L.; Taya, M.; Hatta, H.

    1993-01-01

    A combined analytical/experimental study has been undertaken to investigate the effective thermal conductivity of hybrid composite materials. The analysis utilizes the equivalent inclusion approach for steady state heat conduction (Hatta and Taya, 1986) through which the interaction between the various reinforcing phases at finite concentrations is approximated by the Mori-Tanaka (1973) mean field approach. The multiple reinforcing phases of the composite are modeled as ellipsoidal in shape and thus can simulate a wide range of microstructural geometries ranging from thin platelet to continuous fiber reinforcement. The case when one phase of the composite is penny-shaped microcracks is studied in detail.more » Multiphase composites consisting of a Kerimid matrix and Al2O3 short fibers and Si3N4 whiskers were fabricated and, after a careful study of their microstructure, their thermal conductivities were measured. Analytical predictions are shown to be in good agreement with experimental results obtained for the Al2O3/Si3N4/Kerimid short fiber composites. 26 refs.« less

  14. ELLIPSOMETRIC STUDY OF a-Si:H NUCLEATION, GROWTH, AND INTERFACES

    NASA Astrophysics Data System (ADS)

    Collins, R. W.

    Recent in situ and spectroscopic ellipsometry investigations of hydrogenated amorphous silicon (a-Si:H) nucleation behavior, microstructural evolution, and interface formation are reviewed. An outline of the commonly applied experimental techniques and data analysis is also presented. In situ ellipsometry reveals a nuclei formation and convergence sequence in the first 50Å of a-Si:H growth by rf plasma deposition from silane on c-Si and metal substrates. This sequence provides evidence of favorable growth chemistry that results in material with a low density of structural defects. The influence of deposition parameters and processes on the nucleation and subsequent microstructural evolution of a-Si:H is covered in detail. Among the other topics discussed include: nucleation of microcrystalline Si, evolution of surface roughness on a-Si:H, inert and reactive gas plasma modification of a-Si:H, and formation of a-Si:H heterostructures with SiO2, wide band gap alloys, and Bdoped a-Si:H.

  15. The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin

    2017-02-01

    Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.

  16. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer-maghemite nanoparticle hybrid nanocomposites.

    PubMed

    Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele

    2013-06-21

    We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.

  17. Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Shengsong, E-mail: geshengsong@126.com; Yang, Xiaokun; Shao, Qian

    A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infraredmore » reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.« less

  18. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of foods can be used to identify the important processing parameters that affect the quality of a product.

  19. Morphological diversity of microstructures occurring in selected recent bivalve shells and their ecological implications

    NASA Astrophysics Data System (ADS)

    Brom, Krzysztof Roman; Szopa, Krzysztof

    2016-12-01

    Environmental adaptation of molluscs during evolution has led to form biomineral exoskeleton - shell. The main compound of their shells is calcium carbonate, which is represented by calcite and/or aragonite. The mineral part, together with the biopolymer matrix, forms many types of microstructures, which are differ in texture. Different types of internal shell microstructures are characteristic for some bivalve groups. Studied bivalve species (freshwater species - duck mussel (Anodonta anatina Linnaeus, 1758) and marine species - common cockle (Cerastoderma edule Linnaeus, 1758), lyrate Asiatic hard clam (Meretrix lyrata Sowerby II, 1851) and blue mussel (Mytilus edulis Linnaeus, 1758)) from different locations and environmental conditions, show that the internal shell microstructure with the shell morphology and thickness have critical impact to the ability to survive in changing environment and also to the probability of surviving predator attack. Moreover, more detailed studies on molluscan structures might be responsible for create mechanically resistant nanomaterials.

  20. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.

  1. Evaluation of a single cell and candidate materials with high water content hydrogen in a generic solid oxide fuel cell stack test fixture, Part II: materials and interface characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2013-01-01

    A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, andmore » optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.« less

  2. Microstructure of the IMF turbulences at 2.5 AU

    NASA Technical Reports Server (NTRS)

    Mavromichalaki, H.; Vassilaki, A.; Marmatsouri, L.; Moussas, X.; Quenby, J. J.; Smith, E. J.

    1995-01-01

    A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.

  3. Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan

    2006-06-01

    In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.

  4. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.

  5. Microfabrication and Test of a Three-Dimensional Polymer Hydro-Focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feedback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.

  6. TEM characterization of the fine scale microstructure of a Roman ferrous nail

    NASA Astrophysics Data System (ADS)

    Douin, J.; Henry, O.; Dabosi, F.; Sciau, P.

    2010-07-01

    This paper describes the microstructure of a Roman ferrous nail through its observation by transmission electron microscopy. The morphologies of pearlitic colonies and ferritic grains are detailed and the relationship between pearlitic colonies and ferrite in Roman nails is explicitly demonstrated for the first time. Observations also confirm the presence of dislocations in ferritic grains and attest to the existence of very small carbide precipitates that have not been pointed out previously in standard archaeometric studies.

  7. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  8. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  9. Multiscale modeling of lithium ion batteries: thermal aspects

    PubMed Central

    Zausch, Jochen

    2015-01-01

    Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870

  10. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharzadeh, H.; Kim, H.S.; Simchi, A., E-mail: simchi@sharif.edu

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometricmore » alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.« less

  11. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-06-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  12. Coupled changes in brain white matter microstructure and fluid intelligence in later life.

    PubMed

    Ritchie, Stuart J; Bastin, Mark E; Tucker-Drob, Elliot M; Maniega, Susana Muñoz; Engelhardt, Laura E; Cox, Simon R; Royle, Natalie A; Gow, Alan J; Corley, Janie; Pattie, Alison; Taylor, Adele M; Valdés Hernández, Maria Del C; Starr, John M; Wardlaw, Joanna M; Deary, Ian J

    2015-06-03

    Understanding aging-related cognitive decline is of growing importance in aging societies, but relatively little is known about its neural substrates. Measures of white matter microstructure are known to correlate cross-sectionally with cognitive ability measures, but only a few small studies have tested for longitudinal relations among these variables. We tested whether there were coupled changes in brain white matter microstructure indexed by fractional anisotropy (FA) and three broad cognitive domains (fluid intelligence, processing speed, and memory) in a large cohort of human participants with longitudinal diffusion tensor MRI and detailed cognitive data taken at ages 73 years (n = 731) and 76 years (n = 488). Longitudinal changes in white matter microstructure were coupled with changes in fluid intelligence, but not with processing speed or memory. Individuals with higher baseline white matter FA showed less subsequent decline in processing speed. Our results provide evidence for a longitudinal link between changes in white matter microstructure and aging-related cognitive decline during the eighth decade of life. They are consistent with theoretical perspectives positing that a corticocortical "disconnection" partly explains cognitive aging. Copyright © 2015 Ritchie et al.

  13. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-03-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  14. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  15. Effects of Microstructure on CVN Impact Toughness in Thermomechanically Processed High Strength Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Zhou, Yanlei; Jia, Xiaoxiao; Wang, Zhaodong

    2017-02-01

    Investigation on the correlation between microstructure and CVN impact toughness is of practical importance for the microstructure design of high strength microalloyed steels. In this work, three steels with characteristic microstructures were produced by cooling path control, i.e., steel A with granular bainite (GB), steel B with polygonal ferrite (PF) and martensite-austenite (M-A) constituent, and steel C with the mixture of bainitic ferrite (BF), acicular ferrite (AF), and M-A constituent. Under the same alloy composition and controlled rolling, similar ductile-to-brittle transition temperatures were obtained for the three steels. Steel A achieved the highest upper shelf energy (USE), while large variation of impact absorbed energy has been observed in the ductile-to-brittle transition region. With apparently large-sized PF and M-A constituent, steel B shows the lowest USE and delamination phenomenon in the ductile-to-brittle transition region. Steel C exhibits an extended upper shelf region, intermediate USE, and the fastest decrease of impact absorbed energy in the ductile-to-brittle transition region. The detailed CVN impact behavior is studied and then linked to the microstructural features.

  16. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Edmondson, Philip

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scatteringmore » (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation networks acting as defect sinks, resulting in variations in the observed microstructures after irradiation. Dose trends were also observed, with increasing radiation dose promoting changes in the size and number density of the Cr-rich α' precipitates. Based on the microstructural analysis, performed tensile testing, and prior knowledge from FeCr literature it was hypothesized that the formation of the Cr-rich α' precipitates could lead to significant radiation-induced embrittlement in the alloys, and this could be composition dependent, a result which would mirror the trends observed for radiation-induced hardening. Due to the limited database on embrittlement in the FeCrAl alloy class after irradiation, a series of radiation experiments have been implemented. The overarching point of view within this report is the radiation tolerance of FeCrAl is complex, with many mechanisms and factors to be considered at once. Further development of the FeCrAl alloy class for enhanced accident tolerant applications requires detailed, single (or at least limited) variable experiments to fully comprehend and predict the performance of this alloy in LWRs. This report has been submitted as fulfillment of milestone M2FT-15OR0202321 titled, Summary report on the effect of composition on the irradiation embrittlement of Gen 1 ATF FeCrAl for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less

  17. Leakage of the fundamental mode in photonic crystal fiber tapers.

    PubMed

    Nguyen, Hong C; Kuhlmey, Boris T; Steel, Michael J; Smith, Cameron L; Mägi, Eric C; McPhedran, Ross C; Eggleton, Benjamin J

    2005-05-15

    We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes. These experimental results are discussed in the context of the so-called fundamental mode cutoff described by Kuhlmey et al. [Opt. Express 10, 1285 (2002)], which apply to PCFs with a finite microstructure.

  18. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.

    PubMed

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-04-27

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

  19. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    NASA Astrophysics Data System (ADS)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  20. Distinct contributions of the fornix and inferior longitudinal fasciculus to episodic and semantic autobiographical memory.

    PubMed

    Hodgetts, Carl J; Postans, Mark; Warne, Naomi; Varnava, Alice; Lawrence, Andrew D; Graham, Kim S

    2017-09-01

    Autobiographical memory (AM) is multifaceted, incorporating the vivid retrieval of contextual detail (episodic AM), together with semantic knowledge that infuses meaning and coherence into past events (semantic AM). While neuropsychological evidence highlights a role for the hippocampus and anterior temporal lobe (ATL) in episodic and semantic AM, respectively, it is unclear whether these constitute dissociable large-scale AM networks. We used high angular resolution diffusion-weighted imaging and constrained spherical deconvolution-based tractography to assess white matter microstructure in 27 healthy young adult participants who were asked to recall past experiences using word cues. Inter-individual variation in the microstructure of the fornix (the main hippocampal input/output pathway) related to the amount of episodic, but not semantic, detail in AMs - independent of memory age. Conversely, microstructure of the inferior longitudinal fasciculus, linking occipitotemporal regions with ATL, correlated with semantic, but not episodic, AMs. Further, these significant correlations remained when controlling for hippocampal and ATL grey matter volume, respectively. This striking correlational double dissociation supports the view that distinct, large-scale distributed brain circuits underpin context and concepts in AM. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Bales, Ben; Pollock, Tresa; Petzold, Linda

    2017-06-01

    Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.

  2. Materials and techniques for model construction

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.

  3. Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.

    2018-04-01

    Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

  4. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  5. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  6. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    PubMed

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  8. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.

    PubMed

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Shuguang, E-mail: hustcsg@sohu.com; Zeng Kai; Li Haibin

    Dispersed rhombohedral NiS rods with high aspect ratios and rhombic dodecahedron-like cubic NiS{sub 2} crystals were prepared by solvothermal routes using NiCl{sub 2}.6H{sub 2}O and Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as reagents and ethylenediamine as a solvent, and 3D blossoming flower-like rhombohedral NiS microstructures were synthesized using different sulfur sources of thiourea. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy dispersion spectrometry and selected area electronic diffraction. All the products were pure and had good single crystalline nature. The synthesis parameters were of great importance on the purity and morphology of themore » products. The possible growth mechanisms have been discussed based on the analyses of the effects of sulfur sources and solvent on the crystal structures and detailed configurations of the products. The present work is likely to help the phase-controlled synthesis of other metal chalcogenides. - Graphical abstract: Rhombohedral NiS dispersed rods and 3D flower-like microstructures are evolved from dispersed nucleus and aggregate of nucleus, respectively, and the cross-sections of such rods are in equilateral triangle-like shape. Highlights: > 3D blossoming flower-like r-NiS microstructures are obtained. > Equilateral triangle-like cross-sections of r-NiS rods are observed. > Approach based on XRD analysis to phase-controlled synthesis is presented.« less

  10. High cycle fatigue in the transmission electron microscope

    DOE PAGES

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  11. High cycle fatigue in the transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  12. Impact of solid second phases on deformation mechanisms of naturally deformed salt rocks (Kuh-e-Namak, Dashti, Iran) and rheological stratification of the Hormuz Salt Formation

    NASA Astrophysics Data System (ADS)

    Závada, P.; Desbois, G.; Urai, J. L.; Schulmann, K.; Rahmati, M.; Lexa, O.; Wollenberg, U.

    2015-05-01

    Viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' second phase bearing rock salt and 'strong' pure rock salt types are studied for deformation mechanisms using detailed quantitative microstructural study. While the solid inclusions rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although the flow in both, the recrystallized "dirty" and "clean" salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS), transgranular microcracking and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts observed in the field outcrops are explained by: 1) enhanced ductility of "dirty" salts due to increased diffusion rates along the solid inclusion-halite contacts than along halite-halite contacts, and 2) slow rates of intergranular diffusion due to dissolved iron and inhibited dislocation creep due to hematite inclusions for "clean" salt types Rheological contrasts inferred by microstructural analysis between both salt rock classes apply in general for the "dirty" salt forming Lower Hormuz and the "clean" salt forming the Upper Hormuz of the Hormuz Formation and imply strain rate gradients or decoupling along horizons of mobilized salt types of different composition and microstructure.

  13. A combined NDE/FEA approach to evaluate the structural response of a metal foam

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.

    2007-04-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.

  14. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  15. As-received microstructure of a SiC/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.

    1988-01-01

    A silicon carbide fiber reinforced titanium (Ti-15V-3Cr-3Sn-3Al) composite is metallographically examined. Several methods for examining composite materials are investigated and documented. Polishing techniques for this material are described. An interference layering method is developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and transmission electron microscope (TEM) analyses are performed on the fiber/matrix interface. A detailed description of the fiber distribution as well as the microstructure of the fiber and matrix are presented.

  16. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  17. Evolution of the viscosity of Earth's upper mantle: Grain-boundary sliding and the role of microstructure in olivine deformation

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.

    Many features of plate tectonics cannot be explained with standard rheological models of the upper mantle. In particular, the localization of deformation at plate boundaries requires the viscosity of the constituent rocks to evolve spatially and temporally. Such rheological complexity may arise from changing microstructural state variables (e.g., grain size and crystallographic-fabric strength), but the degree to which microstructure contributes to the evolution of viscosity is unclear given our current understanding of deformation mechanisms in mantle minerals. Dislocation-accommodated grain-boundary sliding (GBS) is a potentially critical mechanism for localizing deformation in olivine because it imparts a sensitivity of the viscosity to the state of the microstructure while simultaneously providing mechanisms for changing the microstructure. However, many details of GBS in olivine are currently unknown including 1) the magnitude of the sensitivity of strain rate to crystallographic fabric and grain size, 2) the strength of the crystallographic fabrics produced, and 3) the anisotropy in viscosity of polycrystalline aggregates. Detailed knowledge of these unknowns is necessary to assess the importance of microstructural evolution in the operation of plate tectonics. This dissertation investigates the details of GBS in olivine through four sets of laboratory-based experiments. In Chapter 2, triaxial compressive creep experiments on aggregates of San Carlos olivine are used to develop a flow law for olivine deforming by GBS. Extrapolations of strain rate to geological conditions using the derived flow law indicate that GBS is the dominant deformation mechanism throughout the uppermost mantle. Crystallographic fabrics observed in deformed samples are consistent with upper-mantle seismic anisotropy. In Chapter 3, torsion experiments on iron-rich olivine are used to determine the rheological behavior of olivine deforming by GBS at large strains. The sensitivity of the strain rate to grain size and stress is demonstrated to be consistent with low-strain experiments. Additionally, the sensitivity of strain rate to the development of a crystallographic fabric is determined. Constitutive relationships including microstructural evolution are developed that accurately predict the observed stress as a function of strain. The results of Chapter 3 confirm that significant weakening is associated with both grain-size reduction and crystallographic-fabric development. In Chapter 4, torsion experiments on iron-rich olivine are used to determine if microstructural evolution can lead to strain localization. Experiments were conducted with either constant-strain-rate or constant-stress boundary conditions. Localization is only observed in samples deformed at constant-stress, which suggests boundary conditions affect the critical size of strength perturbation necessary for localization to occur. Strain localization is correlated with fine-grained regions, and a feedback mechanism between grain-size reduction and strain rate is proposed. In Chapter 5, both torsion and tension experiments are used to assess the mechanical anisotropy of previously deformed samples. Based on the direction of the applied stress relative to the orientation of a pre-existing crystallographic fabric, the viscosity is demonstrated to vary by over an order of magnitude. This observation suggests deformation can localize in regions that were previously deformed and retained a strong crystallographic fabric. The results of this dissertation elucidate the interplay between microstructure and deformation of olivine in the GBS regime. Because the viscosity of olivine-rich rocks deforming by GBS is dependent on both grain size and crystallographic fabric, heterogeneities in these microstructural parameters can lead to spatial and temporal variations in viscosity, possibly explaining the large-scale patterns of deformation in the upper mantle. Future numerical simulations can test the importance of microstructure in geodynamic processes by incorporating the constitutive relationships outlined in this dissertation.

  18. EBSD Analysis of Relationship Between Microstructural Features and Toughness of a Medium-Carbon Quenching and Partitioning Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Li, Qiangguo; Huang, Xuefei; Huang, Weigang

    2017-12-01

    A multiphase microstructure of bainite, martensite and retained austenite in a 0.3C bainitic steel was obtained by a novel bainite isothermal transformation plus quenching and partitioning (B-QP) process. The correlations between microstructural features and toughness were investigated by electron backscatter diffraction (EBSD), and the results showed that the multiphase microstructure containing approximately 50% bainite exhibits higher strength (1617 MPa), greater elongation (18.6%) and greater impact toughness (103 J) than the full martensite. The EBSD analysis indicated that the multiphase microstructure with a smaller average local misorientation (1.22°) has a lower inner stress concentration possibility and that the first formed bainitic ferrite plates in the multiphase microstructure can refine subsequently generated packets and blocks. The corresponding packet and block average size decrease from 11.9 and 2.3 to 8.4 and 1.6 μm, respectively. A boundary misorientation analysis indicated that the multiphase microstructure has a higher percentage of high-angle boundaries (67.1%) than the full martensite (57.9%) because of the larger numbers and smaller sizes of packets and blocks. The packet boundary obstructs crack propagation more effectively than the block boundary.

  19. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.

  20. Simulation of thermomechanical fatigue in solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, H.E.; Porter, V.L.; Fye, R.M.

    1997-12-31

    Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic component systems and has been identified as one prominent degradation mechanism for surface mount solder joints in the stockpile. In order to precisely predict the TMF-related effects on the reliability of electronic components in weapons, a multi-level simulation methodology is being developed at Sandia National Laboratories. This methodology links simulation codes of continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural evolution (PARGRAIN) to treat the disparate length scales that exist between the macroscopic response of the component and the microstructural changes occurring in its constituent materials. JAS3D is used tomore » predict strain/temperature distributions in the component due to environmental variable fluctuations. GLAD identifies damage initiation and accumulation in detail based on the spatial information provided by JAS3D. PARGRAIN simulates the changes of material microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the component`s service environment varies.« less

  1. The influence of adsorbent microstructure upon adsorption equilibria: Investigations of a model system

    NASA Astrophysics Data System (ADS)

    Kaminsky, R. D.; Monson, P. A.

    1991-08-01

    We present a theoretical study of the influence of the microstructure of a porous adsorbent upon associated adsorption behavior. A model is developed which describes the interactions of adsorbed molecules with an adsorbent treated as a matrix of particles each of which is a continuum of interaction centers. The model leads to an analytic expression for the adsorbate-adsorbent particle potential which is an analog of the 9-3 potential model for adsorption on planar solid surfaces. To illustrate the utility of the approach, an application to methane adsorbed in a microporous silica gel is presented. Several adsorbent microstructures are investigated, including a variety of crystal lattices as well as structures derived from equilibrium configurations of hard spheres. Adsorption in these structures is studied through calculation of Henry's law constants and by using grand canonical Monte Carlo simulation to determine adsorption isotherms and the structure of adsorbed fluids. The results obtained are related to details of the adsorbent microstructure.

  2. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  3. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  4. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

    PubMed Central

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-01-01

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826

  5. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  6. Cooking Potatoes: Experimentation and Mathematical Modeling.

    ERIC Educational Resources Information Center

    Chen, Xiao Dong

    2002-01-01

    Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)

  7. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  8. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids.

  9. Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Wang, Ziyang; Zhang, Leiyang; Shi, Wenjing; Jing, Jiayi; Chen, Yi; Liu, Hongbo; Yan, Yan

    2018-03-01

    MgO doped NBT-BT ceramics were prepared by the conventional electroceramic processing. The effects of MgO on the phase, microstructures and electrical properties of NBT-BT ceramics were systematically investigated. When doping content is more than 1%, a second phase appeared, which has great effect on dielectric, ferroelectric, and piezoelectric properties, such as the T F-R peak weakened, moved to the higher temperature, and eventually disappeared. When the doping content is above 1.5%, the ceramic samples show a strong relaxation. The detailed analysis and discussion can be found within this study.

  10. A comparative study of the properties of five-layered Aurivillius oxides A2Bi4Ti5O18 (A = Ba, Pb, and Sr) synthesized by different wet chemical routes

    NASA Astrophysics Data System (ADS)

    Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish

    2018-07-01

    This paper reports the detailed study of the effect of different wet chemical synthesis routes (solution combustion, co-precipitation, and sol-gel route) on the microstructure, phase formation, dielectric, electrical, and ferroelectric properties of five-layered Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb, and Sr). Different synthesis parameters like the precursors used, synthesis temperature, and reaction time affects the morphology of the ceramics. Microstructure in turn influences the dielectric and ferroelectric properties. It was observed that the sol-gel-synthesized ceramics possess higher dielectric constant and remanent polarization, low dielectric loss due to lower conductivity in these samples as a result of higher density in these compounds as compared to those synthesized by other wet chemical synthesis routes such as solution combustion route and co-precipitation technique. The XRD data are used for phase analysis and surface morphology is studied using SEM images. Dielectric and electrical properties are investigated as a function of frequency and temperature.

  11. Simulation of residual stresses and their effects on thermal barrier coating systems using finite element method

    NASA Astrophysics Data System (ADS)

    Zhu, JianGuo; Chen, Wei; Xie, HuiMin

    2015-03-01

    Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.

  12. Growth and microstructural evolution of WS2 nanostructures with tunable field and light modulated electrical transport

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Balakrishnan, Viswanath

    2018-04-01

    We report CVD growth of WS2 nanostructures with the ability to control the evolution of 1D to 2D microstructural changes for light and field effect transistor applications. Detailed mechanistic growth sequences from WO3 nanorod to nanotube, monolayer and pyramidal structures of WS2 has been achieved using atmospheric pressure chemical vapor deposition (APCVD). Electron microscopy and Raman spectroscopy analysis showed the growth evolution of different nanostructures and their formation mechanism. Location specific growth of different WS2 nanostructures can be achieved by drop casting dispersed WO3 nanorods on required substrate. Layer dependent photoluminescence (PL) properties of WS2 indicate the effect of quantum confinement induced radiative recombination and enhanced PL intensity in monolayer WS2 provides suitability for nanoscale photodetector application. The fabricated device shows light as well as field modulated switching at ultra-low biased voltage in hybrid WS2 nanostructure that contains 1D (nanotube)-2D (flake) interface. The demonstrated aspects of CVD growth and hybrid device characteristics provide opportunities to tune electrical transport of WS2 nanostructures at low active power.

  13. Eutectic Experiment Development for Space Processing

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1972-01-01

    A ground base test plan and a specimen evaluation scheme have been developed for the aluminum-copper eutectic solidification experiment to be run in the M518 multipurpose electric furnace during the Skylab mission. Besides thermal and solidification studies a detailed description is given of the quantitative metallographic technique which is appropriate for characterizing eutectic structures. This method should prove a key tool for evaluating specimen microstructure which is the most sensitive indicator of changes produced during solidification. It has been recommended that single grain pre-frozen eutectic specimens be used to simplify microstructural evaluation and to eliminate any porosity in the as-cast eutectic specimens. High purity (99.999%) materials from one supplier should be employed for all experiments. Laboratory studies indicate that porosity occurs in the MRC as-cast eutectic ingots but that this porosity can be eliminated by directional freezing. Chemical analysis shows that the MRC ingots are slightly Al rich and contain about .03% impurity. Because of the impurity content the lower cooldown rate (1.2 C/min) should be used for eutectic freezing if MRC material is used in the M518 furnace.

  14. The Visible Cement Data Set

    PubMed Central

    Bentz, Dale P.; Mizell, Symoane; Satterfield, Steve; Devaney, Judith; George, William; Ketcham, Peter; Graham, James; Porterfield, James; Quenard, Daniel; Vallee, Franck; Sallee, Hebert; Boller, Elodie; Baruchel, Jose

    2002-01-01

    With advances in x-ray microtomography, it is now possible to obtain three-dimensional representations of a material’s microstructure with a voxel size of less than one micrometer. The Visible Cement Data Set represents a collection of 3-D data sets obtained using the European Synchrotron Radiation Facility in Grenoble, France in September 2000. Most of the images obtained are for hydrating portland cement pastes, with a few data sets representing hydrating Plaster of Paris and a common building brick. All of these data sets are being made available on the Visible Cement Data Set website at http://visiblecement.nist.gov. The website includes the raw 3-D datafiles, a description of the material imaged for each data set, example two-dimensional images and visualizations for each data set, and a collection of C language computer programs that will be of use in processing and analyzing the 3-D microstructural images. This paper provides the details of the experiments performed at the ESRF, the analysis procedures utilized in obtaining the data set files, and a few representative example images for each of the three materials investigated. PMID:27446723

  15. The Effects of Borides on the Mechanical Properties of TLPB Repaired Inconel 738 Superalloy

    NASA Astrophysics Data System (ADS)

    Wei, J.; Ye, Y.; Sun, Z.; Zou, G.; Bai, H.; Wu, A.; Liu, L.

    2017-10-01

    The transient liquid phase diffusion bonding (TLPB) method was used to repair an artificial crack in Inconel 738, which was notched by a femtosecond laser. Mixed ratios of BNi-1a:DF-4B were investigated at the bonding temperature of 1373 K (1100 °C) for 2 to 36 hours. The effect of borides on the mechanical properties of TLPB repaired joints was studied through analysis of the microstructure, fracture path, and morphology observations. The borides formation, morphology, distribution, and joints strength were studied in detail. The results showed that the diffusion of B can either increase or decrease the joint strength, depending on its distribution and morphology. The amount of large blocky Ni-B compounds in the precipitate zone were reduced with increasing holding time, which resulted in an increase in joint strength. Nevertheless, further increasing the holding time led to a decrease in joint strength because of the formation of continuous acicular borides in the diffusion-affected zone. The fracture modes of TLPB joints were also discussed on the basis of the microstructure and fractography.

  16. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process.

    PubMed

    Xuan, Yang; Nastac, Laurentiu

    2018-02-01

    Recent studies showed that the microstructure and mechanical properties of aluminum based nanocomposites can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because ultrasonic cavitation processing plays an important role not only in degassing and dispersion of the nanoparticles, but also in breaking up the dendritic grains and refining the as-cast microstructure. In the present study, A356 alloy and Al 2 O 3 nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles were added into the molten A356 alloy and dispersed via ultrasonic cavitation processing. Ultrasonic cavitation was applied over various temperature ranges during molten alloy cooling and solidification to investigate the grain structure formation and the nanoparticle dispersion behavior. Optical Microscopy and Scanning Electron Microscopy were used to investigate in detail the differences in the microstructure characteristics and the nanoparticle distribution. Experimental results indicated that the ultrasonic cavitation processing and Al 2 O 3 nanoparticles play an important role for microstructure refinement. In addition, it was shown in this study that the Al 2 O 3 nanoparticles modified the eutectic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelaturu, Phalgun; Jana, Saumyadeep; Mishra, Rajiv S.

    Here, failure by fatigue is a common problem associated with cast aluminum alloys due to defects like shrinkage porosities, non-metallic inclusions, etc. Friction stir processing (FSP) has recently emerged as an effective technique for local modification of microstructure. This study investigates the fatigue crack initiation and growth mechanisms in cast and FSPed A356 aluminum alloy. Two sets of parameters were used to friction stir the cast alloy resulting in the complete modification the cast microstructure to a wrought microstructure. Both the FSPed microstructures exhibited severe abnormal grain growth (AGG) after heat treatment leading to a multimodal grain size distribution –more » the grain sizes ranging from a few microns to a few millimeters. One of the FSP conditions displayed an excellent improvement in fatigue life by an order of magnitude, while the other condition displayed an unexpectedly large scatter in fatigue lives. Detailed study of the fractured fatigue specimens by electron back scattered diffraction (EBSD) revealed that both, fatigue crack initiation and propagation, were intimately tied to the grain size as well as the grain misorientations in the microstructure.« less

  18. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy

    DOE PAGES

    Nelaturu, Phalgun; Jana, Saumyadeep; Mishra, Rajiv S.; ...

    2018-01-11

    Here, failure by fatigue is a common problem associated with cast aluminum alloys due to defects like shrinkage porosities, non-metallic inclusions, etc. Friction stir processing (FSP) has recently emerged as an effective technique for local modification of microstructure. This study investigates the fatigue crack initiation and growth mechanisms in cast and FSPed A356 aluminum alloy. Two sets of parameters were used to friction stir the cast alloy resulting in the complete modification the cast microstructure to a wrought microstructure. Both the FSPed microstructures exhibited severe abnormal grain growth (AGG) after heat treatment leading to a multimodal grain size distribution –more » the grain sizes ranging from a few microns to a few millimeters. One of the FSP conditions displayed an excellent improvement in fatigue life by an order of magnitude, while the other condition displayed an unexpectedly large scatter in fatigue lives. Detailed study of the fractured fatigue specimens by electron back scattered diffraction (EBSD) revealed that both, fatigue crack initiation and propagation, were intimately tied to the grain size as well as the grain misorientations in the microstructure.« less

  19. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  20. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  1. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  2. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen

    2012-03-01

    The structural geology, timing of shearing, and tectonic implications of the ASRR shear zone, one of the most striking lineaments in Southeast Asia, have been the topics of extensive studies over the past few decades. The Xuelong Shan (XLS), Diancang Shan (DCS), Ailao Shan (ALS) and Day Nui Con Voi (DNCV) metamorphic massifs along the shear zone have preserved important information on its structural and tectonic evolution. Our field structural analysis, detailed microstructural and fabric analysis, as well as the quartz, sillimanite and garnet fabric studies of the sheared rocks from the massifs demonstrate the dominant roles of three deformation episodes during Cenozoic tectonic evolution in the shear zone. Among the contrasting structural and microstructural associations in the shear zone, D2 structures, which were formed at the brittle to ductile transition during large-scale left-lateral shearing in the second deformation episode, predominate over the structural styles of the other two deformation episodes. Discrete micro-shear zones with intensive grain size reduction compose the characteristic structural style of D2 deformation. In addition, several types of folds (early shearing folds, F21, and late-shearing folds, F22) were formed in the sheared rocks, including discrete to distributed mylonitic foliation, stretching lineation and shear fabrics (e.g., mica fish, domino structures, as well as sigma and delta fabrics). A sequence of microstructures from syn-kinematic magmatic flow, high-temperature solid-state deformation, to brittle-ductile shearing is well-preserved in the syn-kinematic leucocratic intrusions. Deformation structures from the first episode (D1) are characterized by F1 folds and distributed foliations (S1) in rocks due to pure shearing at high temperatures. They are preserved in weakly sheared (D2) rocks along the eastern margin of the ALS belt or in certain low-strain tectonic enclaves within the shear zone. Furthermore, semi-brittle deformation structures, such as hot striae and discrete retrogression zones, are attributed to normal-slip shearing in the third deformation episode (D3), which was probably locally active, along the eastern flank of the DCS range, for example. There are four quartz c-axis fabric patterns in the mylonitic rocks, including type A point maxima, type B Y point maxima with crossed girdles superimposition, type C quadrant maxima, as well as type D point and quadrant maxima combination. They are consistent with microscopic observations of microstructures of high-temperature pure shearing, low-temperature simple shearing and their superimposition. Integrated microstructural analysis and fabric thermometer studies provide information on both high temperature (up to 750 °C) and dominant low-temperature (300-600 °C) deformations of quartz grains in different rock types. Sillimanite and garnet fabrics, especially the latter, were primarily formed at the peak metamorphism during high-temperature pure shearing. The above structural, microstructural and fabric associations were generated in the tectonic framework of the Indian-Eurasian collision. The low-temperature microstructures and fabrics are attributed to left-lateral shearing along the ASRR shear zone from 27 to 21 Ma during the southeastward extrusion of the Indochina block, which postdated high-temperature deformation at the peak metamorphism during the collision.

  3. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross-sectional geometry.

    PubMed

    Houssaye, Alexandra; Taverne, Maxime; Cornette, Raphaël

    2018-05-01

    Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this should be even more fruitful for heterogeneous diaphyses. In addition, covariation analyses showed that there is a strong interest in removing the size effect to access the differences in the microstructure of the humerus and femur. This methodological study provides a reference for future quantitative analyses on long bone inner structure and should make it possible, through a detailed knowledge of each descriptive parameter, to better interpret results from the multivariate analyses associated with these studies. This will have direct implications for studies in vertebrate anatomy, but also in paleontology and anthropology. © 2018 Anatomical Society.

  5. Relationships between microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Wu, G. Q.; Huang, Z.

    2018-03-01

    Through a statistical, quantitative analysis on microstructure of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy, the relationships between microstructure and mechanical properties and heat treatment temperatures were investigated. The results show that in Widmanstätten structure, the size of β grain is greatly increased with increasing annealing temperature. Static toughness is related to grain boundary alpha phase discontinuity, the tensile strength is related to acicular alpha phase interface length and acicular alpha phase proportion. In duplex microstructure, the tensile strength is related to the equiaxed alpha proportion. Elongation, static toughness and crack forming work are related to the equiaxed alpha proportion and negatively related to secondary phase proportion. The microstructure can be described quantitatively and the mechanical properties can be predicted by analysis of microstructure.

  6. 3D analysis of macrosegregation in twin-roll cast AA3003 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šlapáková, Michaela, E-mail: slapakova@karlov.mff.

    Twin-roll cast aluminium alloys have a high potential for industrial applications. However, one of the drawbacks of such materials is an inhomogeneous structure generated by macrosegregation, which appears under certain conditions in the center of sheets during solidification. Segregations in AA3003 alloy form as manganese, iron and silicon rich channels spread in the rolling direction. Their spatial distribution was successfully detected by X-ray computed tomography. Scanning electron microscopy was used for a detailed observation of microstructure, morphology and chemical analysis of the segregation. - Highlights: •Macrosegregations in twin-roll cast sheets stretch along the rolling direction. •X-ray computed tomography is anmore » effective tool for visualization of the segregation. •The segregations copy the shape of grain boundaries.« less

  7. PSIDD (2): A Prototype Post-Scan Interactive Data Display System for Detailed Analysis of Ultrasonic Scans

    NASA Technical Reports Server (NTRS)

    Cao, Wei; Roth, Don J.

    1997-01-01

    This article presents the description of PSIDD(2), a post-scan interactive data display system for ultrasonic contact scan and single measurement analysis. PSIDD(2) was developed in conjunction with ASTM standards for ultrasonic velocity and attenuation coefficient contact measurements. This system has been upgraded from its original version PSIDD(1) and improvements are described in this article. PSIDD(2) implements a comparison mode where the display of time domain waveforms and ultrasonic properties versus frequency can be shown for up to five scan points on one plot. This allows the rapid contrasting of sample areas exhibiting different ultrasonic properties as initially indicated by the ultrasonic contact scan image. This improvement plus additional features to be described in the article greatly facilitate material microstructural appraisal.

  8. Residual Ductility and Microstructural Evolution in Continuous-Bending-under-Tension of AA-6022-T4

    PubMed Central

    Zecevic, Milovan; Roemer, Timothy J.; Knezevic, Marko; Korkolis, Yannis P.; Kinsey, Brad L.

    2016-01-01

    A ubiquitous experiment to characterize the formability of sheet metal is the simple tension test. Past research has shown that if the material is repeatedly bent and unbent during this test (i.e., Continuous-Bending-under-Tension, CBT), the percent elongation at failure can significantly increase. In this paper, this phenomenon is evaluated in detail for AA-6022-T4 sheets using a custom-built CBT device. In particular, the residual ductility of specimens that are subjected to CBT processing is investigated. This is achieved by subjecting a specimen to CBT processing and then creating subsize tensile test and microstructural samples from the specimens after varying numbers of CBT cycles. Interestingly, the engineering stress initially increases after CBT processing to a certain number of cycles, but then decreases with less elongation achieved for increasing numbers of CBT cycles. Additionally, a detailed microstructure and texture characterization are performed using standard scanning electron microscopy and electron backscattered diffraction imaging. The results show that the material under CBT preserves high integrity to large plastic strains due to a uniform distribution of damage formation and evolution in the material. The ability to delay ductile fracture during the CBT process to large plastic strains, results in formation of a strong <111> fiber texture throughout the material. PMID:28773257

  9. Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating.

    PubMed

    Huang, Xue-Feng; Chen, Zhe-Min; Shao, Li-Yang; Cen, Ke-Fa; Sheng, De-Ren; Chen, Jun; Zhou, Hao

    2008-02-01

    A refractive index sensor based on the thinned and microstructure fiber Bragg grating (ThMs-FBG) was proposed and realized as a chemical sensing. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated and the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length, and position. The sandwich-solution etching method was utilized to realize the microstructure of the ThMs-FBG, and the photographs of the microstructure were obtained. Experimental results demonstrated that the reflectance spectrum, phase shift down-peak wavelength, and reflected optical intensity of the ThMs-FBG all depended on the surrounding refractive index. However, only the down-peak wavelength of the ThMs-FBG changed with the surrounding temperature. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800 and 14 mum, respectively, and the position of the microstructure of the ThMs-FBG is in the middle of grating region, the refractive index sensitivity of the ThMs-FBG was 0.79 nm/refractive index unit with the wide range of 1.33-1.457 and a high resolution of 1.2 x 10(-3). The temperature sensitivity was 0.0103 nm/ degrees C, which was approximately equal to that of common FBG.

  10. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com; Simchi, A.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase.more » The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.« less

  11. One-step fabrication of BaMoO4 microstructures with controlled morphologies via a simple EDTA-mediated route

    NASA Astrophysics Data System (ADS)

    Yin, Yongkui; Li, Ying; Zhang, Haifeng; Ren, Fengyun; Zhang, Dawei; Feng, Wenxu; Shao, Lili; Li, Kaijun; Liu, Yang; Sun, Zhanpeng; Li, Miaojing; Song, Gaochen; Wang, Guan

    2013-03-01

    A facile strategy has been developed to synthesize BaMoO4 microcrystals with different morphologies, such as octopus-like, flower-like, and Chinese-cabbage-like, by using ethylenediaminetetraacetic acid as chelating and capping reagent at room temperature. X-ray diffraction, field emission scanning electron microscopy, and Fourier transformer infrared spectroscopy were introduced to characterize the composition, morphology, and chemical information of the as-obtained products. The effects of a series of experimental parameters, such as ethylenediaminetetraacetic acid quantity and the reagent concentrations, on the morphology and photoluminescence properties of the consequential BaMoO4 microcrystals were investigated in detail. The photoluminescence spectra of the obtained BaMoO4 microstructures exhibited different emission intensities. This method could be readily extended to synthesize BaWO4 microstructures with various morphologies.

  12. MRI tools for assessment of microstructure and nephron function of the kidney.

    PubMed

    Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S

    2016-12-01

    MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.

  13. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    NASA Astrophysics Data System (ADS)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  14. Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation and texture profile analysis (TPA).

    PubMed

    Lanza, Barbara; Amoruso, Filomena

    2018-02-02

    A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Observation of martensitic transformation in Ni50Mn41Cu4Sn5 Heusler alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.

    2017-05-01

    Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.

  16. Microstructural comparison of the kinematics of discrete and continuum dislocations models

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Po, Giacomo

    2015-12-01

    The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.

  17. Unraveling Structure-Property Relationships in Polymer Blends for Intelligent Materials Design

    NASA Astrophysics Data System (ADS)

    Irwin, Matthew Tyler

    Block polymers provide an accessible route to structured, composite materials by combining two or more components with disparate mechanical, chemical, and electrical properties into a single bulk material with nanoscale domains. However, the characteristic lengthscale of these systems is limited, and the choice of components is restricted to those that are able to undergo microstructural ordering at accessible temperatures. This thesis details routes to overcoming these limitations through the addition of a lithium salt, a blend of homopolymers, or both. Chapter 2 describes a study wherein complex sphere phases such as the Frank-Kasper sigma phase can be observed in otherwise disordered asymmetric block polymers through the addition of a lithium salt. Chapter 3 discusses the development and characterization of a ternary polymer blend of an AB diblock copolymer and A and B homopolymers doped with a lithium salt. Detailed characterization showed that doping blends that are otherwise disordered with lithium salt induced microstructural ordering and largely recovers the phase behavior of traditional ternary polymer blends. A systematic study of the ionic conductivity of the blends at a fixed salt concentration demonstrates that, at a given composition, disordered, yet highly structured blends consistently exhibit better conductivity than polycrystalline morphologies with long range order. Chapter 4 extends the methodology of Chapter 3 and details a systematic study of the effects of cross-linker concentration on the performance of polymer electrolyte membranes produced via polymerization-induced microphase separation that exhibit a highly structured, globally disordered microstructure. Finally, Chapter 5 details efforts to develop a water filtration membrane using a polyethylene template derived from a polymeric bicontinuous microemulsion. Throughout all of this work, the goal is to better understand structure-property relationships at the molecular level in order to ultimately inform design criteria for materials where simultaneous control over morphology and mechanical, chemical, or electrical properties is important.

  18. Deformation analysis of MEMS structures by modified digital moiré methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin

    2010-11-01

    Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.

  19. Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO:Al layers

    NASA Astrophysics Data System (ADS)

    Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.

    2009-10-01

    Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.

  20. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  1. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  2. Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.

    2018-03-01

    Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.

  3. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  4. The microstructures of SCS-6 and SCS-8 SiC reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, M.L.; Kinney, J.H.; Zywicz, E.

    The microstructures of SCS-6 and SCS-8 SiC fibers have been examined and analyzed using high resolution transmission electron microscopy (HRTEM), microdiffraction, parallel electron energy loss spectroscopy (PEELS), x-ray diffraction and x-ray spectroscopy. The results of the study confirm findings from earlier studies wherein the microstructure of the fibers have been described as consisting of {beta}-SiC grown upon a monofilament turbostratic carbon core. The present study, however, provides much more detail regarding this microstructure. For example, PEELS spectroscopy and x-ray microscopy indicate that the composition of the SiC varies smoothly from SiC plus free C near the carbon core to SiCmore » at the midradial boundary. The SiC stoichiometry is roughly preserved from the midradial boundary to the exterior interface. HRTEM, microdiffraction, and dark field images provide evidence that the excess carbon is amorphous free carbon which is most likely situated at the grain boundaries of the SiC. The x-ray microscopy results are also consistent with the presence of two phases near the core which consist of SiC and free carbon having density less than graphite (2.25 g/cc). This complex microstructure may explain the recent observations of nonplanar failure in composites fabricated with SCS fibers.« less

  5. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  6. The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe Steel

    NASA Astrophysics Data System (ADS)

    Cizek, P.; Wynne, B. P.; Davies, C. H. J.; Hodgson, P. D.

    2015-01-01

    The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed "acicular ferrite") produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

  7. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  8. Intergranular degradation assessment via random grain boundary network analysis

    DOEpatents

    Kumar, Mukul; Schwartz, Adam J.; King, Wayne E.

    2002-01-01

    A method is disclosed for determining the resistance of polycrystalline materials to intergranular degradation or failure (IGDF), by analyzing the random grain boundary network connectivity (RGBNC) microstructure. Analysis of the disruption of the RGBNC microstructure may be assess the effectiveness of materials processing in increasing IGDF resistance. Comparison of the RGBNC microstructures of materials exposed to extreme operating conditions to unexposed materials may be used to diagnose and predict possible onset of material failure due to

  9. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minárik, Peter; Král, Robert; Pešička, Josef

    2016-02-15

    The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{submore » 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.« less

  10. Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool

    NASA Astrophysics Data System (ADS)

    Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi

    2018-03-01

    A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.

  11. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  12. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  13. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part 1: The Protective Scale

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    Coarse-grained Fe-based oxide dispersion-strengthened (ODS) steels are a class of advanced materials for combined cycle gas turbine systems to deal with operating temperatures and pressures of around 1100°C and 15-30 bar in aggressive environments, which would increase biomass energy conversion efficiencies up to 45% and above. This two-part paper reports the possibility of the development of simultaneous corrosion barrier and optimized microstructure in a FeCrAl heat-resistant alloy for energy applications. The first part reports the mechanism of generating a dense, self-healing α-alumina layer by thermal oxidation, during a heat treatment that leads to a coarse-grained microstructure with a potential value for high-temperature creep resistance in a FeCrAl ODS ferritic alloy, which will be described in more detail in the second part.

  14. Quantitative Microstructure Characterization of a NMC Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usseglio Viretta, Francois L; Smith, Kandler A

    Performance of lithium-ion batteries (LIBs) is strongly influenced by the porous microstructure of their electrodes. In this work, 3D microstructures of calendared and un-calendared positive electrode LiNi1/3Mn1/3Co1/3O2 (NMC) have been investigated in order to extract relevant properties useful for battery modeling. Transport (volume fraction, connectivity, particle size and tortuosity) and electrochemical (specific surface area) properties have been calculated for the pore and the active material. Special attention has been paid to determine the size of the so-called representative volume element (RVE) required to be statistically representative of the heterogeneous medium. Several parameters have been calculated using a panel of differentmore » numerical methods in order to compare their results. Besides, the image level of detail has been evaluated (using original criteria based upon edge detection) to assess the overall data quality available for the study.« less

  15. Initial Assessment of X-Ray Computer Tomography image analysis for material defect microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua James; Windes, William Enoch

    2016-06-01

    The original development work leading to this report was focused on the non destructive three-dimensional (3-D) characterization of nuclear graphite as a means to better understand the nature of the inherent pore structure. The pore structure of graphite and its evolution under various environmental factors such as irradiation, mechanical stress, and oxidation plays an important role in their observed properties and characteristics. If we are to transition from an empirical understanding of graphite behavior to a truly predictive mechanistic understanding the pore structure must be well characterized and understood. As the pore structure within nuclear graphite is highly interconnected andmore » truly 3-D in nature, 3-D characterization techniques are critical. While 3-D characterization has been an excellent tool for graphite pore characterization, it is applicable to a broad number of materials systems over many length scales. Given the wide range of applications and the highly quantitative nature of the tool, it is quite surprising to discover how few materials researchers understand and how valuable of a tool 3-D image processing and analysis can be. Ultimately, this report is intended to encourage broader use of 3 D image processing and analysis in materials science and engineering applications, more specifically nuclear-related materials applications, by providing interested readers with enough familiarity to explore its vast potential in identifying microstructure changes. To encourage this broader use, the report is divided into two main sections. Section 2 provides an overview of some of the key principals and concepts needed to extract a wide variety of quantitative metrics from a 3-D representation of a material microstructure. The discussion includes a brief overview of segmentation methods, connective components, morphological operations, distance transforms, and skeletonization. Section 3 focuses on the application of concepts from Section 2 to relevant materials at Idaho National Laboratory. In this section, image analysis examples featuring nuclear graphite will be discussed in detail. Additionally, example analyses from Transient Reactor Test Facility low-enriched uranium conversion, Advanced Gas Reactor like compacts, and tristructural isotopic particles are shown to give a broader perspective of the applicability to relevant materials of interest.« less

  16. Evaluation of agave fiber delignification by means of microscopy techniques and image analysis.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Calderón-Domínguez, Georgina; Perea-Flores, María J; Mendoza-Pérez, Jorge A; Vega, Alberto; Ligero, Pablo; Palacios-González, Eduardo; Farrera-Rebollo, Reynold R

    2014-10-01

    Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.

  17. On the influence of recrystallization on snow fabric and microstructure: study of a snow profile in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Schneebeli, Martin; Montagnat, Maurine; Matzl, Margret

    2016-04-01

    Temperature gradient metamorphism affects the Antarctic snowpack up to 5 meters depth, which lead to a recrystallization of the ice grains by sublimation of ice and deposition of water vapor. By this way, it is well known that the snow microstructure evolves (geometrical changes). Also, a recent study shows an evolution of the snow fabric, based on a cold laboratory experiment. Both fabric and microstructure are required to better understand mechanical behavior and densification of snow, firn and ice, given polar climatology. The fabric of firn and ice has been extensively investigated, but the publications by Stephenson (1967, 1968) are to our knowledge the only ones describing the snow fabric in Antarctica. In this context, our work focuses on snow microstructure and fabric in the first meters depth of the Antarctic ice sheet, where temperature gradients driven recrystallization occurs. Accurate details of the snow microstructure are observed using micro-computed tomography. Snow fabrics were measured at various depths from thin sections of impregnated snow with an Automatic Ice Texture Analyzer (AITA). A definite relationship between microstructure and fabric is found and highlights the influence of metamorphism on both properties. Our results also show that the metamorphism enhances the differences between the snow layers properties. Our work stresses the significant and complex evolution of snow properties in the upper meters of the ice sheet and opens the question of how these layer properties will evolve at depth and may influence the densification.

  18. Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming

    2017-08-01

    High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.

  19. Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn2/3Ta1/3)O3 electronic material

    NASA Astrophysics Data System (ADS)

    Halder, S.; Bhuyan, S.; Das, S. N.; Sahoo, S.; Choudhary, R. N. P.; Das, P.; Parida, K.

    2017-12-01

    A lead-free dielectric material [Bi(Zn2/3Ta1/3)O3] has been prepared using a solid state reaction technique at high-temperature. The resistive, conducting and capacitive characteristics of the prepared electronic material have been studied in different experimental conditions. The determination of basic crystal parameters and reflection indices confirm the development of polycrystalline compound with orthorhombic crystal structure. The study of frequency-temperature dependence of ac conductivity illustrates the nature and conduction mechanism of the material. On the basis of observed impedance data and detailed dielectric analysis, the existence of non-Debye type relaxation has been affirmed. The electronic charge carriers of compound have short range order that has been validated from the complex modulus and impedance spectrum. The detailed studies of resistive, capacitive, microstructural characteristics of the prepared material provide some useful data for considering the material as an electronic component for fabrication of devices.

  20. A Data Analytics Approach to Discovering Unique Microstructural Configurations Susceptible to Fatigue

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Brockman, R. A.; Hoffman, R. M.; Sinha, V.; Pilchak, A. L.; Porter, W. J.; Buchanan, D. J.; Larsen, J. M.; John, R.

    2018-05-01

    Principal component analysis and fuzzy c-means clustering algorithms were applied to slip-induced strain and geometric metric data in an attempt to discover unique microstructural configurations and their frequencies of occurrence in statistically representative instantiations of a titanium alloy microstructure. Grain-averaged fatigue indicator parameters were calculated for the same instantiation. The fatigue indicator parameters strongly correlated with the spatial location of the microstructural configurations in the principal components space. The fuzzy c-means clustering method identified clusters of data that varied in terms of their average fatigue indicator parameters. Furthermore, the number of points in each cluster was inversely correlated to the average fatigue indicator parameter. This analysis demonstrates that data-driven methods have significant potential for providing unbiased determination of unique microstructural configurations and their frequencies of occurrence in a given volume from the point of view of strain localization and fatigue crack initiation.

  1. Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M.; Bennett, J.C.; Gharghouri, M.A.

    2008-06-15

    The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.

  2. Microstructure and Mechanical Property of SiCf/SiC and Cf/SiC Composites

    NASA Astrophysics Data System (ADS)

    Lee, S. P.; Cho, K. S.; Lee, H. U.; Lee, J. K.; Bae, D. S.; Byun, J. H.

    2011-10-01

    The mechanical properties of SiC based composites reinforced with different types of fabrics have been investigated, in conjunction with the detailed analyses of their microstructures. The thermal shock properties of SiCf/SiC composites were also examined. All composites showed a dense morphology in the matrix region. Carbon coated PW-SiCf/SiC composites had a good fracture energy, even if their strength was lower than that of PW-Cf/SiC composites. SiCf/SiC composites represented a great reduction of flexural strength at the thermal shock temperature difference of 300 °C.

  3. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    PubMed

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  4. Design and analysis of drum lathe for manufacturing large-scale optical microstructured surface and load characteristics of aerostatic spindle

    NASA Astrophysics Data System (ADS)

    Wu, Dongxu; Qiao, Zheng; Wang, Bo; Wang, Huiming; Li, Guo

    2014-08-01

    In this paper, a four-axis ultra-precision lathe for machining large-scale drum mould with microstructured surface is presented. Firstly, because of the large dimension and weight of drum workpiece, as well as high requirement of machining accuracy, the design guidelines and component parts of this drum lathe is introduced in detail, including control system, moving and driving components, position feedback system and so on. Additionally, the weight of drum workpiece would result in the structural deformation of this lathe, therefore, this paper analyses the effect of structural deformation on machining accuracy by means of ANSYS. The position change is approximately 16.9nm in the X-direction(sensitive direction) which could be negligible. Finally, in order to study the impact of bearing parameters on the load characteristics of aerostatic journal bearing, one of the famous computational fluid dynamics(CFD) software, FLUENT, is adopted, and a series of simulations are carried out. The result shows that the aerostatic spindle has superior performance of carrying capacity and stiffness, it is possible for this lathe to bear the weight of drum workpiece up to 1000kg since there are two aerostatic spindles in the headstock and tailstock.

  5. Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Keskin, Mustafa

    2010-06-01

    Al-Si-Ni-Nd alloys with a nominal composition of Al-12 wt.% Si-8 wt.% Ni-5 wt.% Nd alloy are prepared by a conventional casting (ingot) and melt spinning technique at different cooling rates ( ν). The effects of the rapid solidification rate on the microstructures and microhardness performances of the specimen alloys are investigated in detail. The results obtained by the XRD, SEM and DSC show that the ingot and melt spun alloys have a multiphase structure. When ν is 5 m/s, the alloy consists of four phases namely α-Al, intermetallic Al3Ni, Al11Nd3, and fcc Si. The melt-spun ribbons are completely composed of α-Al and eutectic Si phases, and primary silicon is not observed when ν increases to 20 m/s, 25 m/s, 30 m/s and 35 m/s. The XRD analysis indicated that the solubility of Si in the α-Al matrix increases greatly with the rapid solidification. The change in microhardness is discussed based on the microstructural observations. The microhardness values of the melt spun ribbons are about three times higher than those of ingot counterparts.

  6. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  7. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai

    2013-01-01

    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint. PMID:26523079

  8. Microstructure, crystallography and nucleation mechanism of NANOBAIN steel

    NASA Astrophysics Data System (ADS)

    Huang, Yao; Zhao, Ai-min; He, Jian-guo; Wang, Xiao-pei; Wang, Zhi-gang; Qi, Liang

    2013-12-01

    The microstructure of bainite ferrite in NANOBAIN steel transformed at different temperatures was investigated by scanning electron microscopy, transmission electron microscopy, electron back-scattered diffraction, and vickers hardness tester in detail. It is found that the average width of bainitic ferrite (BF) plates can be refined to be thinner with the reduction of temperature (473-573 K), and the bainitic ferrite plates can reach up to 20-74 nm at 473 K. Crystallographic analysis reveals that the bainitic ferrite laths are close to the Nishiyama-Wasserman orientation relationship with their parent austenite. Temperature shows a significant effect on the variant selection, and a decrease in temperature generally weakens the variant selection. Thermodynamic analyses indicates that the Lacher, Fowler and Guggenheim (LFG) model is more suitable than the Kaufman, Radcliffe and Cohen (KRC) model dealing with NANOBAIN steel at a low temperature range. The free energy change Δ G γ→BF is about -1500 J·mol-1 at 473 K, which indicates that nucleation in NANOBAIN steel is the shear mechanism. Finally, the formation of carbon poor regions is thermodynamically possible, and the existence of carbon poor regions can greatly increase the possibility of the shear mechanism.

  9. Identifying and quantifying the stromal fibrosis in muscularis propria of colorectal carcinoma by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Sijia; Yang, Yinghong; Jiang, Weizhong; Feng, Changyin; Chen, Zhifen; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2014-10-01

    The examination of stromal fibrosis within colorectal cancer is overlooked, not only because the routine pathological examinations seem to focus more on tumour staging and precise surgical margins, but also because of the lack of efficient diagnostic methods. Multiphoton microscopy (MPM) can be used to study the muscularis stroma of normal and colorectal carcinoma tissue at the molecular level. In this work, we attempt to show the feasibility of MPM for discerning the microstructure of the normal human rectal muscle layer and fibrosis colorectal carcinoma tissue practicably. Three types of muscularis propria stromal fibrosis beneath the colorectal cancer infiltration were first observed through the MPM imaging system by providing intercellular microstructural details in fresh, unstained tissue samples. Our approach also presents the capability of quantifying the extent of stromal fibrosis from both amount and orientation of collagen, which may further characterize the severity of fibrosis. By comparing with the pathology analysis, these results show that the MPM has potential advantages in becoming a histological tool for detecting the stromal fibrosis and collecting prognosis evidence, which may guide subsequent therapy procedures for patients into good prognosis.

  10. Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys

    DOE PAGES

    Aydogan, E.; Maloy, S. A.; Anderoglu, O.; ...

    2017-06-06

    In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (~0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of variousmore » size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 °C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. In conclusion, this study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys.« less

  11. Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, E.; Maloy, S. A.; Anderoglu, O.

    In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (~0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of variousmore » size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 °C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. In conclusion, this study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys.« less

  12. Core microstructure, morphology and chain arrangement of block copolymer self-assemblies as investigated by thermal field-flow fractionation.

    PubMed

    Muza, U L; Greyling, G; Pasch, H

    2018-08-10

    The self-assembly of block copolymers (BCPs), as a result of solvent selectivity for one block, has recently received significant attention due to novel applications of BCPs in pharmaceuticals, biomedicine, cosmetics, electronics and nanotechnology. The correlation of BCP microstructure and the structure of the resulting self-assemblies requires advanced analytical methods. However, traditional bulk characterization techniques are limited in the quest of providing detailed information regarding molar mass (M w ), hydrodynamic size (D h ), chemical composition, and morphology for these self-assemblies. In the present study, thermal field-flow fractionation (ThFFF) is utilised to investigate the impact of core microstructure on the resultant solution properties of vesicles prepared from polystyrene-polybutadiene block copolymers (PS-b-PBd) with 1.2- and 1.4-polybutadiene blocks, respectively. As compared to investigations on the impact of the corona microstructure, the impact of core microstructure on micellar properties has largely been neglected in previous work. In N,N-dimethylacetamide (DMAc) these BCPs form vesicles having PS shells and PBd cores. D h , M w , aggregation number, and critical micelle concentration of these micelles are shown to be sensitive to the core microstructure, therefore, demonstrating the potential of microstructural differences to be used for providing tuneable pathways to specific self-assemblies. It is shown that micelles prepared from BCPs of similar PS and PBd block sizes are successfully separated by ThFFF. It is further demonstrated in this study that PS-b-PBd vesicles and PS homopolymers of identical surface chemistry (PS) and comparable D h in DMAc, can be separated by ThFFF. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. PuMA: the Porous Microstructure Analysis software

    NASA Astrophysics Data System (ADS)

    Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.

    2018-01-01

    The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.

  14. Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures

    PubMed Central

    TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.

    2016-01-01

    Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804

  15. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  16. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  17. Crystallization Kinetics in Fluorochloroziroconate Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos J.

    Annealing fluorochlorozirconate (FCZ) glasses nucleates BaCl2 nanocrystals in the glass matrix, resulting in a nanocomposite glass-ceramic that has optical properties suitable for use as a medical X-ray imaging plate. Understanding the way in which the BaCl¬2 nanocrystal nucleation, growth and phase transformation processes proceed is critical to controlling the optical behavior. However, there is a very limited amount of information about the formation, morphology, and distribution of the nanocrystalline particles in FCZ glass-ceramics. In this thesis, the correlation between the microstructure and the crystallization kinetics of FCZ glass-ceramics, are studied in detail. In situ X-ray diffraction and transmission electron microscopy annealing experiments are used to analyze the crystal structure, size and distribution of BaCl 2 nanocrystals in FCZ glass-ceramics as a function of annealing rate and temperature. Microstructural analysis of the early stages on nucleation identified the formation of both BaCl2 and BaF2 nanocrystals. Annealing FCZ glass-ceramics above 280°C can cause the formation of additional glass matrix phase crystals, their microstructure and the annealing parameters required for their growth are identified. As the crystalline phases grow directly from the glass, small variations in processing of the glass can have a profound influence on the crystallization process. The information obtained from these experiments improves the understanding of the nucleation, growth and phase transformation process of the BaCl¬2 nanocrystals and additional crystalline phases that form in FCZ glass-ceramics, and may help expedite the implementation of FCZ glass-ceramics as next-generation X-ray detectors. Lastly, as these glass-ceramics may one day be commercialized, an investigation into their degradation in different environmental conditions was also performed. The effects of direct contact with water or prolonged exposure to humid environments on the microstructure and the optical properties for FCZ glasses and glass-ceramics was explored.

  18. Microstructures and properties of superconducting Y-ErBaCuO thin films obtained from disordered Y-ErBaF2Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.

    1991-01-01

    The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.

  19. Microstructure of cotton fibrous assemblies based on computed tomography

    NASA Astrophysics Data System (ADS)

    Jing, Hui; Yu, Weidong

    2017-12-01

    This paper describes for the first time the analysis of inner microstructure of cotton fibrous assemblies using computed tomography. Microstructure parameters such as packing density, fractal dimension as well as porosity including open porosity, closed porosity and total porosity are calculated based on 2D data from computed tomography. Values of packing density and fractal dimension are stable in random oriented fibrous assemblies, and there exists a satisfactory approximate linear relationship between them. Moreover, poles analysis indicates that porosity represents the tightness of fibrous assemblies and open poles are main existence.

  20. Microstructural evaluation of strained multilayer InAsSb/InSb infrared detectors by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadda, S.; Datye, A.; Dawson, L.R.

    InSb/InAsSb strained layer superlattices (SLS) were grown on (001) InSb substrates by molecular beam epitaxy at 425 [degree]C. The active device consisted of an InAs[sub 0.15]Sb[sub 0.85]/InSb superlattice region embedded within a [ital p]-[ital i]-[ital n] junction. The large lattice mismatch between the active device and the substrate required the growth of a buffer. InAs[sub 0.15]Sb[sub 0.85]/InSb SLS, where the average As content was gradually increased, was used as a buffer. The buffer structure was varied to probe its microstructural effect on the capping device. Three distinct approaches (A, B, and C) were used to grow the buffer. Approach Amore » was a four-step buffer where the average content of As in the superlattice was increased in four equal composition steps. This approach led to a crystal with an extensive network of threading dislocations and microcracks. Approach B was to change the average composition in five equal composition steps, thereby decreasing the misfit at the interfaces between composition steps. This led to a decrease in the threading dislocation density but microscopic cracks were still evident. The last approach (C) was to employ migration enhanced epitaxy (MEE) for the growth of the five-step buffer. Samples grown by employing MEE revealed no microcracks but they contained a high density of unusual wiggly'' dislocations at the buffer/device interface. Detailed microstructural analysis by transmission electron microscopy is presented.« less

  1. Decomposition of ferrite in commercial superduplex stainless steel weld metals; microstructural transformations above 700 °C

    NASA Astrophysics Data System (ADS)

    Gregori, A.; Nilsson, J.-O.

    2002-04-01

    The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.

  2. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    NASA Astrophysics Data System (ADS)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  3. Mesoscale Thermodynamically motivated Statistical Mechanics based Kinetic Model for Sintering monoliths

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.

  4. Microstructure Images Restoration of Metallic Materials Based upon KSVD and Smoothing Penalty Sparse Representation Approach.

    PubMed

    Li, Qing; Liang, Steven Y

    2018-04-20

    Microstructure images of metallic materials play a significant role in industrial applications. To address image degradation problem of metallic materials, a novel image restoration technique based on K-means singular value decomposition (KSVD) and smoothing penalty sparse representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may cause instability and obvious artifacts in the reconstructed images, especially reconstructed image with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm is designed to reconstruct the damaged image. The results of simulation and two practical cases demonstrate that the proposed method has superior performance compared with some state-of-the-art methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size parameters and grain boundaries of microstructure image are discussed before and after they are restored by proposed method.

  5. Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel

    NASA Astrophysics Data System (ADS)

    Huilgol, Prashant; Rajendra Udupa, K.; Udaya Bhat, K.

    2018-02-01

    Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.

  6. The effects of magnetic and mechanical microstructures on the twinning stress in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Faran, Eilon; Benichou, Itamar; Givli, Sefi; Shilo, Doron

    2015-12-01

    The ferromagnetic 10M Ni-Mn-Ga alloy exhibits complex magnetic and mechanical microstructures, which are expected to form barriers for motion of macro twin boundaries. Here, the contributions of both microstructures to the magnitude of the twinning stress property are investigated experimentally. A series of uniaxial loading-unloading curves are taken under different orientation angles of a constant magnetic field. The different 180 ° magnetic domains microstructures that are formed across the twin boundary in each case are visualised using a magneto optical film. Analysis of the different loading curves and the corresponding magnetic microstructures show that the latter does not contribute to the barriers for twin boundary motion. In accordance, the internal resisting stress for twin boundary motion under any magnetic field can be taken as the twinning stress measured in the absence of an external field. In addition, a statistical analysis of the fine features in the loading profiles reveals that the barrier for twinning is associated with a μ m sized characteristic length scale. This length scale corresponds to the typical thickness of micro-twinning laminates that constitute a mechanical microstructure. These findings indicate that the magnitude of the twinning stress in 10M Ni-Mn-Ga is determined by the characteristic fine twinned mechanical microstructure of this alloy.

  7. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  8. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  9. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    PubMed

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. © 2015 Anatomical Society.

  10. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  11. Interplay between bulk and edge-bound topological defects in a square micromagnet

    DOE PAGES

    Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.; ...

    2018-01-22

    A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less

  12. Interplay between bulk and edge-bound topological defects in a square micromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.

    A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less

  13. Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gayathri, N.; Mukherjee, Paramita

    2018-04-01

    The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.

  14. Proton irradiation studies on Al and Al5083 alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  15. Solidification microstructures in single-crystal stainless steel melt pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less

  16. Wing scale microstructures and nanostructures in butterflies--natural photonic crystals.

    PubMed

    Vértesy, Z; Bálint, Zs; Kertész, K; Vigneron, J P; Lousse, V; Biró, L P

    2006-10-01

    The aim of our study was to investigate the correlation between structural colour and scale morphology in butterflies. Detailed correlations between blue colour and structure were investigated in three lycaenid subfamilies, which represent a monophylum in the butterfly family Lycaenidae (Lepidoptera): the Coppers (Lycaeninae), the Hairstreaks (Theclinae) and the Blues (Polyommatinae). Complex investigations such as spectral measurements and characterization by means of light microscopy, scanning electron microscopy and transmission electron microscopy enabled us to demonstrate that: (i) a wide array of nanostructures generate blue colours; (ii) monophyletic groups use qualitatively similar structures; and (iii) the hue of the blue colour is characteristic for the microstructure and nanostructure of the body of the scales.

  17. Spinodal decomposition of the gamma-phase upon quenching in the Ti-Al-Nb ternary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Ebrahimi, Fereshteh

    2010-01-01

    The {gamma}-TiAl with L1{sub 0} crystal structure shows extensive solubility for Nb at elevated temperatures. Recently (Rios et al., Acta materialia 2009; 57:6243), we have demonstrated that the high-Nb {gamma}-TiAl phase becomes unstable upon rapid cooling into a nano-scale two-phase microstructure. In this paper, using detailed compositional and microstructural analyses, we have demonstrated that this phase goes through a spinodal decomposition that results in the compositionally distinct phases identified as a lower-Nb {gamma}-phase and the h-phase, which is rich in Nb and forms by the ordering of this element in the {gamma}-phase.

  18. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver.

    PubMed

    Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan

    2014-03-19

    The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.

  19. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    NASA Astrophysics Data System (ADS)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  20. A synchrotron-based local computed tomography combined with data-constrained modelling approach for quantitative analysis of anthracite coal microstructure

    PubMed Central

    Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng

    2014-01-01

    Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649

  1. SOFC Microstructures (PFIB-SEM and synthetic) from JPS 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Tim; Epting, William K; Mahbub, Rubayyat

    This is the microstructural data used in the publication "Mesoscale characterization of local property distributions in hetergeneous electrodes" by Tim Hsu, William K. Epting, Rubayyat Mahbub, et al., published in the Journal of Power Sources in 2018 (DOI 10.1016/j.jpowsour.2018.03.025). Included are a commercial cathode and anode active layer (Materials and Systems Research, Inc., Salt Lake City, UT) imaged by Xe plasma FIB-SEM (FEI, Hillsboro, OR), and four synthetic microstructures of varying particle size distribution widths generated by DREAM3D (BlueQuartz Software, Springboro, OH). For the MSRI electrodes, both the original greyscale and the segmented versions are provided. Each .zip file containsmore » a "stack" of .tif image files in the Z dimension, and an .info ascii text file containing useful information like voxel sizes and phase IDs. More details can be found in the pertinent publication at http://dx.doi.org/10.1016/j.jpowsour.2018.03.025.« less

  2. Seeking carotenoid pigments in amber-preserved fossil feathers.

    PubMed

    Thomas, Daniel B; Nascimbene, Paul C; Dove, Carla J; Grimaldi, David A; James, Helen F

    2014-06-09

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  3. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE PAGES

    Feng, Guang; Li, Song; Zhao, Wei; ...

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  4. Ti Alloys Processed By Selective Laser Melting And By Laser Cladding: Microstructures And Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mertens, Anne; Contrepois, Quentin; Dormal, Thierry; Lemaire, Olivier; Lecomte-Beckers, Jacqueline

    2012-07-01

    In this study, samples of alloy Ti-6Al-4V have been processed by Selective Laser Melting (SLM) and by Laser Cladding (LC), two layer-by-layer near-net-shape processes allowing for economic production of complex parts. The resulting microstructures have been characterised in details, so as to allow for a better understanding of the solidification process and of the subsequent phase transformations taking place upon cooling for both techniques. On the one hand, a new “MesoClad” laser with a maximum power of 300 W has been used successfully to produce thin wall samples by LC. On the other hand, the influence of processing parameters on the mechanical properties was investigated by means of uniaxial tensile testing performed on samples produced by SLM with different orientations with respect to the direction of mechanical solicitation. A strong anisotropy in mechanical behaviour was thus interpreted in relations with the microstructures and processing conditions.

  5. Seeking carotenoid pigments in amber-preserved fossil feathers

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  6. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    PubMed

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  7. The effect of heat treatments applied to superstructure porcelain on the mechanical properties and microstructure of lithium disilicate glass ceramics.

    PubMed

    Özdemir, Hatice; Özdoğan, Alper

    2018-01-30

    The aim of this study was to investigate that heat treatments with different numbers applied to superstructure porcelain whether effects microstructure and mechanical properties of lithium disilicate ceramic (LDC). Eighty disc-shaped specimens were fabricated from IPS e.max Press. Specimens were fired at heating values of porcelain in different numbers and divided four groups (n=5). Initial Vickers hardness were measured and X-ray diffraction (XRD) analysis was performed. Different surface treatment were applied and then Vickers hardness, surface roughness and environmental scanning electron microscopy (ESEM) analysis were performed. Data were analyzed with Varyans analysis and Tukey HSD test (α=0.05). Initial hardness among groups was no significant different (p>0.05), but hardness and surface roughness after surface treatments were significant different (p<0.05). Lithium disilicate (LD) peaks decrease depended on firing numbers. ESEM observations showed that firing number and surface treatments effect microstructure of LDC. Increasing firing numbers and surface treatments effect the microstructure of LDC.

  8. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  9. Electrolytic Polishing and Etching Techniques for Preparing Specimens of Bismuth and Antimony and Their Alloys: Materials and Structures.

    DTIC Science & Technology

    Electrolytic polishing was performed in a solution of methyl alcohol, sulphuric acid , hydrocloric acid and ethylene glycol. Etching was done...electrolytically in a 5 percent chromic acid solution. Use of these techniques has permitted detailed studies of the microstructures of bismuth-antimony single

  10. Biomorphic microstructures of ferromanganese stromatolites

    NASA Astrophysics Data System (ADS)

    Avdonin, V. V.; Yeryomin, N. I.; Zhegallo, E. A.; Sergeyeva, N. E.

    2016-11-01

    It was found as a result of detailed study of ferromanganese stromatolites that columnar formations, i.e., fossilized stratified bacterial tufts with rhythmically alternating layers of glycocalyx, accumulations of filamentous bacteria, and lens-shaped two-layered (alternation of homogeneous microlayers with porous ones containing filamentous bacteria trichomes) packages, serve as the basis for stromatolite buildup.

  11. Symmetry-Driven Atomic Rearrangement at a Brownmillerite-Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tricia L.; Jeen, Hyoungjeen; Gao, Xiang

    2015-12-15

    To those investigating new interfacial phenomena, symmetry mismatch is of immense interest. The interfacial and bulk microstructure of the brownmillerite–perovskite interface is probed using detailed transmission electron microscopy. Unique asymmetric displacements of the tetrahedra at the interface are observed, signifying a compensation mechanism for lattice and symmetry mismatch at the interface.

  12. Effect of heat treatment on the microstructure of a 2CrMoNiWV rotor steel

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    A wide range of experiments have been carried out on a 2CrMoNiWV low alloy steel to investigate the effect of various heat treatment conditions on microstructural change, alloy carbide transformation mechanism and mechanical properties.Two complete continuous cooling transformation (CCT) diagrams were constructed for this steel on the basis of experimental dilatometry thermal analysis, metallographic examination and current phase transformation theory. The significance of these two diagrams is in that they can be directly utilised in industrial practice as a reference during heat treatment for this material. Meanwhile it was confirmed that this 2CrMoNiWV steel can be transformed to a fully bainitic microstructure over a wide range of cooling rates and this feature proved this steel suitable for large diameter steam turbine rotor application.An innovative carbide extraction technique for the XRD identification of carbide phase has been developed. The detailed description of this new technique and its advantages are discussed in this thesis. The extensive work using TEM/EDX has set up essential "finger prints" for the quick examination of large amounts of individual carbide existing at various heat treated conditions. Simultaneous measurements and determinations were made on particle composition, morphological change, the type, amount and distribution of these carbide phases. Thus the sequence of carbide transformation for this 2CrMoNiWV steel during tempering has been established.The characteristic microstructures of various heat treated specimens were carefully examined and discussed. Theoretical thermodynamic equilibria predictions were calculated using MTDATA. A very good agreement was found between experimental results and theoretical predictions on those critical transformation temperatures and a good correlation of carbide evolution sequences was obtained. Based on experimental results and theoretical predictions, the role of tungsten in promoting creep resistance to the material is elucidated.The usefulness of equilibrium thermodynamic calculations using MTDATA in predicting the microstructural changes and carbide evolution has been demonstrated in this work, particularly the separate effect of composition on the stable carbide dispersion where a thermodynamic approach offers great benefits.A possibly optimised heat treatment route is suggested for the large diameter rotor forgings which involves austenitising at 980°C for 10 hours following by oil quenching and then tempering at 675°C for 20 hours following by air cooling.Some general conclusions are drawn from this study, especially with regard to the effect of heat treatment on the microstructure of this 2CrMoNiWV steel and suggestions for further work are made.

  13. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  15. Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena

    DOE PAGES

    Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; ...

    2014-12-09

    Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, includingmore » cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species ( Populus tremuloides, quaking aspen) and a softwood pine ( Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.« less

  16. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels

    PubMed Central

    Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard

    2016-01-01

    The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953

  17. The physicochemical quality and meat microstructure of post laying hen with addition of Biduri (Calotropis gigantea) latex extract

    NASA Astrophysics Data System (ADS)

    Nuhriawangsa, A. M. P.; Hertanto, B. S.; Kartikasari, L. R.; Swastike, W.; Cahyadi, M.; Rasid, S.

    2018-01-01

    The objective of this study was to evaluate the effect of extract level of Biduri latex on the meat quality of laying hens. The materials of this research were Biduri latex and thigh meat from hens strain Lohman. The latex was tapped from a young tissue stem and centrifuged for its supernatant. Meats were smeared with latex, punctured and incubated for 30 minutes. Concentrations of latex were 0, 3, 6 and 9% from the weight of meat (w/w). The variables were water, dissolved protein, crude fat content, tenderness and microstructure of meat. The statistical analysis method using ANOVA and if there was a mean difference, Duncan test was used. Descriptive analysis was used for microstructures of meat by comparing its hydrolysis conditions. The study showed that fat had significant difference (P <0.05), dissolved protein and tenderness had very significance (P <0.01). Descriptive analysis showed that there were different compositions of microstructures on meat structure. The fat content increased with addition of 3% latex. The value of dissolved protein increased but tenderness decreased by addition extract of 6% latex. The addition of Biduri latex extract showed that hydrolysis in the microstructure of meat. The addition of 6% latex was the best meat quality.

  18. Thermomechanical Testing and Microstructural Development of Class L Steel Wheel Alloy

    DOT National Transportation Integrated Search

    1994-03-01

    Macrostructure, microstructure, and quantitative metallographic analysis is conducted on Association of American Railroads Class L wheel steel specimens tested in a Gleeble 1500 under combined mechanical compression and resistance heating to temperat...

  19. Microstructure transformation of Cr-Al coating on carbon steel prepared by ball milling method as a function of tungsten doping

    NASA Astrophysics Data System (ADS)

    Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi

    2018-03-01

    In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.

  20. The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy.

    PubMed

    Ong, L; Dagastine, R R; Kentish, S E; Gras, S L

    2010-04-01

    Confocal laser scanning microscopy (CLSM) was successfully used to observe the effect of milk processing on the size and the morphology of the milk fat globule in raw milk, raw ultrafiltered milk, and standardized and pasteurized milk prepared for cheese manufacture (cheese-milk) and commercial pasteurized and homogenized milk. Fat globule size distributions for the milk preparations were analyzed using both image analysis and light scattering and both measurements produced similar data trends. Changes to the native milk fat globule membrane (MFGM) were tracked using a MFGM specific fluorescent stain that allowed MFGM proteins and adsorbed proteins to be differentiated on the fat globule surface. Sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed the identity of native MFGM proteins isolated from the surface of fat globules within raw, UF retentate, and cheese-milk preparations, whereas only casein was detected on the surface of fat globules in homogenized milk. The microstructure, porosity, and gel strength of the rennet induced gel made from raw milk and cheese-milk was also found to be comparable and significantly different to that made from homogenized milk. Our results highlight the potential use of CLSM as a tool to observe the structural details of the fat globule and associated membrane close to its native environment.

  1. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates

    PubMed Central

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-01-01

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces. PMID:24990289

  2. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates.

    PubMed

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-09-06

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces.

  3. Connectivity Measures in EEG Microstructural Sleep Elements.

    PubMed

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.

  4. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease. PMID:26924980

  5. On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke

    PubMed Central

    Boscolo Galazzo, Ilaria; Brusini, Lorenza; Obertino, Silvia; Zucchelli, Mauro; Granziera, Cristina; Menegaz, Gloria

    2018-01-01

    Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE microstructural descriptors derived from diffusion MRI (dMRI) in revealing white matter (WM) plasticity. In this work, we focused on the main open issues left: (1) the comparative analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA) and Mean Diffusivity (MD); and (2) the ability to detect plasticity processes in gray matter (GM). Although signal modeling in GM is still largely unexplored, we investigated their sensibility to stroke-induced microstructural modifications occurring in the contralateral hemisphere. A more complete picture could provide hints for investigating the interplay of GM and WM modulations. Ten stroke patients and ten age/gender-matched healthy controls were enrolled in the study and underwent diffusion spectrum imaging (DSI). Acquisitions at three and two time points (tp) were performed on patients and controls, respectively. For all subjects and acquisitions, FA and MD were computed along with 3D-SHORE-based indices [Generalized Fractional Anisotropy (GFA), Propagator Anisotropy (PA), Return To the Axis Probability (RTAP), Return To the Plane Probability (RTPP), and Mean Square Displacement (MSD)]. Tract-based analysis involving the cortical, subcortical and transcallosal motor networks and region-based analysis in GM were successively performed, focusing on the contralateral hemisphere to the stroke. Reproducibility of all the indices on both WM and GM was quantitatively proved on controls. For tract-based, longitudinal group analyses revealed the highest significant differences across the subcortical and transcallosal networks for all the indices. The optimal regression model for predicting the clinical motor outcome at tp3 included GFA, PA, RTPP, and MSD in the subcortical network in combination with the main clinical information at baseline. Region-based analysis in the contralateral GM highlighted the ability of anisotropy indices in discriminating between groups mainly at tp1, while diffusivity indices appeared to be altered at tp2. 3D-SHORE indices proved to be suitable in probing plasticity in both WM and GM, further confirming their viability as a novel family of biomarkers in ischemic stroke in WM and revealing their potential exploitability in GM. Their combination with tensor-derived indices can provide more detailed insights of the different tissue modulations related to stroke pathology. PMID:29515362

  6. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE PAGES

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...

    2017-02-20

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  7. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  8. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  9. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  10. Random Walk Simulation of the MRI Apparent Diffusion Coefficient in a Geometrical Model of the Acinar Tree

    PubMed Central

    Pérez-Sánchez, José M.; Rodríguez, Ignacio; Ruiz-Cabello, Jesús

    2009-01-01

    Abstract Apparent diffusion coefficient (ADC) measurement in the lung using gas magnetic resonance imaging is a promising technique with potential for reflecting changes in lung microstructure. Despite some recent impressive human applications, full interpretation of ADC measures remains an elusive goal, due to a lack of detailed knowledge about the structure dependency of ADC. In an attempt to fill this gap we have performed random walk simulations in a three-dimensional geometrical model of the lung acinus, the distal alveolated sections of the lung tree accounting for ∼90% of the total lung volume. Simulations were carried out adjusting model parameters after published morphological data for the rat peripheral airway system, which predict an ADC behavior as microstructure changes with lung inflation in partial agreement with measured ADCs at different airway pressures. The approach used to relate experimental ADCs to lung microstructural changes does not make any assumption about the cause of the changes, so it could be applied to other scenarios such as chronic obstructive pulmonary disease, lung development, etc. The work presented here predicts numerically for the first time ADC values measured in the lung from independent morphological measures of lung microstructure taken at different inflation stages during the breath cycle. PMID:19619480

  11. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    NASA Astrophysics Data System (ADS)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  12. Microstructure evolution of zinc oxide films derived from dip-coating sol-gel technique: formation of nanorods through orientation attachment.

    PubMed

    Huang, Nan; Sun, Chao; Zhu, Mingwei; Zhang, Bin; Gong, Jun; Jiang, Xin

    2011-07-01

    ZnO:Al thin films with Al incorporation of 0-20 at.% were deposited through the sol-gel technique. Such a film undergoes a significant microstructure development, from columnar to granular structures and then nanorod arrays with increasing Al content. The important role of Al incorporation level in the microstructure evolution was determined using scanning electron microscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. At low Al level, the transition from columnar to granular grains can be attributed to the coarsening barrier resulting from the introduction of Al into the matrix. However, oriented structures of ZnO nanorod arrays are formed at a high Al level. TEM investigation reveals that a nanorod with smooth morphology at the top and rough morphology at the bottom has a single-crystalline wurtzite structure, which is the aggregation of nanoparticles of a few nanometers in size formed through the orientation attachment mechanism followed by epitaxial growth on the aggregated particles. Finally, the physical properties of the ZnO films with different degrees of Al concentration are discussed. Such detailed microstructure studies may aid the understanding of the doping effect process on the growth of a film, which is essential to altering its physical or chemical properties.

  13. Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.

    PubMed

    Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2012-01-01

    Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.

  14. Microstructure Images Restoration of Metallic Materials Based upon KSVD and Smoothing Penalty Sparse Representation Approach

    PubMed Central

    Liang, Steven Y.

    2018-01-01

    Microstructure images of metallic materials play a significant role in industrial applications. To address image degradation problem of metallic materials, a novel image restoration technique based on K-means singular value decomposition (KSVD) and smoothing penalty sparse representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may cause instability and obvious artifacts in the reconstructed images, especially reconstructed image with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm is designed to reconstruct the damaged image. The results of simulation and two practical cases demonstrate that the proposed method has superior performance compared with some state-of-the-art methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size parameters and grain boundaries of microstructure image are discussed before and after they are restored by proposed method. PMID:29677163

  15. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  16. in vivo quantification of white matter microstructure for use in aging: A focus on two emerging techniques

    PubMed Central

    Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C

    2013-01-01

    Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382

  17. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  18. Synthesize and microstructure characterization of Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elwindari, Nastiti; Manaf, Azwar, E-mail: azwar@ui.ac.id

    2016-06-17

    The ferromagnetic heusler alloys are promising materials in many technical applications due to their multifunctional properties such as shape memory effect, magnetocaloric effect, giant magnetoresistance, etc. In this work, synthesize and characterization of polycrystalline Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} (NMCS) alloy are reported. Alloy preparation was conducted by melting the constitute elements under an innert Argon (Ar) atmosphere in a vacuum mini arc-melting furnace. Homogenization of the microstructure of the as-cast ingot was obtained after annealing process at 750°C for 48 hours. It is shown that the dendrites structure has changed to equaixed grains morphology after homogenization. Microstructure characteristics ofmore » material by x-ray diffraction revealed that the alloy has a L{sub 21}-type cubic crystal structure as the main phase at room temperature. In order to induce the shape anisotropy, a forging treatment was applied to show the shape orientation of material. Various enhancements of magnetic properties in a longitudinal direction were observed at various degree of anisotropy. The microstructure changes of as-cast NMCS and effects of homogenization treatments as studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) are discussed in details.« less

  19. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering processmore » has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.« less

  20. Direct numerical simulations in solid mechanics for quantifying the macroscale effects of microstructure and material model-form error

    DOE PAGES

    Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.; ...

    2016-03-16

    Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cellmore » represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Furthermore, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.« less

  1. Root-cause estimation of ultrasonic scattering signatures within a complex textured titanium

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Na, Jeong K.; Freed, Shaun

    2016-02-01

    The nondestructive evaluation of polycrystalline materials has been an active area of research for many decades, and continues to be an area of growth in recent years. Titanium alloys in particular have become a critical material system used in modern turbine engine applications, where an evaluation of the local microstructure properties of engine disk/blade components is desired for performance and remaining life assessments. Current NDE methods are often limited to estimating ensemble material properties or detecting localized voids, inclusions, or damage features within a material. Recent advances in computational NDE and material science characterization methods are providing new and unprecedented access to heterogeneous material properties, which permits microstructure-sensing interactions to be studied in detail. In the present research, Integrated Computational Materials Engineering (ICME) methods and tools are being leveraged to gain a comprehensive understanding of root-cause ultrasonic scattering processes occurring within a textured titanium aerospace material. A combination of destructive, nondestructive, and computational methods are combined within the ICME framework to collect, holistically integrate, and study complex ultrasound scattering using realistic 2-dimensional representations of the microstructure properties. Progress towards validating the computational sensing methods are discussed, along with insight into the key scattering processes occurring within the bulk microstructure, and how they manifest in pulse-echo immersion ultrasound measurements.

  2. On the homogenization of the acoustic wave propagation in perforated ducts of finite length for an inviscid and a viscous model.

    PubMed

    Semin, Adrien; Schmidt, Kersten

    2018-02-01

    The direct numerical simulation of the acoustic wave propagation in multiperforated absorbers with hundreds or thousands of tiny openings would result in a huge number of basis functions to resolve the microstructure. One is, however, primarily interested in effective and so homogenized transmission and absorption properties and how they are influenced by microstructure and its endpoints. For this, we introduce the surface homogenization that asymptotically decomposes the solution in a macroscopic part, a boundary layer corrector close to the interface and a near-field part close to its ends. The effective transmission and absorption properties are expressed by transmission conditions for the macroscopic solution on an infinitely thin interface and corner conditions at its endpoints to ensure the correct singular behaviour, which are intrinsic to the microstructure. We study and give details on the computation of the effective parameters for an inviscid and a viscous model and show their dependence on geometrical properties of the microstructure for the example of Helmholtz equation. Numerical experiments indicate that with the obtained macroscopic solution representation one can achieve an high accuracy for low and high porosities as well as for viscous boundary conditions while using only a small number of basis functions.

  3. LA-ICP-MS-derived U-concentrations and microstructural domains within biogenic aragonite of Arctica islandica shell.

    PubMed

    Helama, Samuli; Heikkilä, Pasi; Rinne, Katja; Nielsen, Jan Kresten; Nielsen, Jesper Kresten

    2015-05-01

    Understanding of the uranium uptake processes (both in vivo and post-mortem) into the skeletal structures of marine calcifiers is a subject of multi-disciplinary interest. U-concentration changes within the molluscan shell may serve as a paleoceanographic proxy of the pH history. A proxy of this type is needed to track the effects of fossil fuel emissions to ocean acidification. Moreover, attaining reliable U-series dates using shell materials would be a geochronological breakthrough. Picturing the high-resolution changes of U-concentrations in shell profiles is now possible by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Here, we analyzed in situ U-concentration variations in sub-fossilized shells of ocean quahog (Arctica islandica), a commonly studied bivalve species in Quaternary geoscience, using LA-ICP-MS. Microstructural details of the shell profiles were achieved by the scanning electron microscopy (SEM). Comparison of the shell aragonite microstructure with the changes in U-concentration revealed that uranium of possibly secondary origin is concentrated into the porous granular layers of the shell. Our results reinforce the hypothesis that U-concentration variations can be linked with microstructural differences within the shell. A combination of LA-ICP-MS and SEM analyses is recommended as an interesting approach for understanding the U-concentration variations in similar materials.

  4. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack openings were very small, as determined by absorption and phase contrast, and suggested multiple fracture modes for propagation along {111} planes at room temperature, which was verified by finite element analysis. With increasing temperature, cracks became Mode I (perpendicular to the loading axis) in character and more sensitive to the microstructure. Advancing plastic zones ahead of crack tips altered the crystallographic quality, from which diffraction contrast anticipated initiation and propagation. These studies demonstrate the extreme sensitivity of x-ray radiography for detailed studies of superalloys and crack growth processes.

  5. Viscous damping and spring force calculation of regularly perforated MEMS microstructures in the Stokes' approximation

    PubMed Central

    Homentcovschi, Dorel; Murray, Bruce T.; Miles, Ronald N.

    2013-01-01

    There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data. PMID:24058267

  6. Viscous damping and spring force calculation of regularly perforated MEMS microstructures in the Stokes' approximation.

    PubMed

    Homentcovschi, Dorel; Murray, Bruce T; Miles, Ronald N

    2013-10-15

    There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data.

  7. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.

    PubMed

    Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor

    2014-10-17

    The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Test and Analysis of Composite Hat Stringer Pull-off Test Specimens

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.

    1996-01-01

    Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.

  9. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugce; Rollett, Anthony D.

    2018-02-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  10. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  11. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  12. Reconstructing the microstructure of polyimide-silicalite mixed-matrix membranes and their particle connectivity using FIB-SEM tomography.

    PubMed

    Diblíková, P; Veselý, M; Sysel, P; Čapek, P

    2018-03-01

    Properties of a composite material made of a continuous matrix and particles often depend on microscopic details, such as contacts between particles. Focusing on processing raw focused-ion beam scanning electron microscope (FIB-SEM) tomography data, we reconstructed three mixed-matrix membrane samples made of 6FDA-ODA polyimide and silicalite-1 particles. In the first step of image processing, backscattered electron (BSE) and secondary electron (SE) signals were mixed in a ratio that was expected to obtain a segmented 3D image with a realistic volume fraction of silicalite-1. Second, after spatial alignment of the stacked FIB-SEM data, the 3D image was smoothed using adaptive median and anisotropic nonlinear diffusion filters. Third, the image was segmented using the power watershed method coupled with a seeding algorithm based on geodesic reconstruction from the markers. If the resulting volume fraction did not match the target value quantified by chemical analysis of the sample, the BSE and SE signals were mixed in another ratio and the procedure was repeated until the target volume fraction was achieved. Otherwise, the segmented 3D image (replica) was accepted and its microstructure was thoroughly characterized with special attention paid to connectivity of the silicalite phase. In terms of the phase connectivity, Monte Carlo simulations based on the pure-phase permeability values enabled us to calculate the effective permeability tensor, the main diagonal elements of which were compared with the experimental permeability. In line with the hypothesis proposed in our recent paper (Čapek, P. et al. (2014) Comput. Mater. Sci. 89, 142-156), the results confirmed that the existence of particle clusters was a key microstructural feature determining effective permeability. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ping; Howard, Bret H.

    Thermal pretreatment of biomass by torrefaction and low temperature pyrolysis has the potential for generating high quality and more suitable fuels. To utilize a model to describe the complex and dynamic changes taking place during these two treatments for process design, optimization and scale-up, detailed data is needed on the property evolution during treatment of well-defined individual biomass particles. The objectives of this study are to investigate the influence of thermal pretreatment temperatures on wood biomass biochemical compositions, physical properties and microstructure. Wild cherry wood was selected as a model biomass and prepared for this study. The well-defined wood particlemore » samples were consecutively heated at 220, 260, 300, 350, 450 and 550 °C for 0.5 h under nitrogen. Untreated and treated samples were characterized for biochemical composition changes (cellulose, hemicellulose, and lignin) by thermogravimetric analyzer (TGA), physical properties (color, dimensions, weight, density and grindablity), chemical property (proximate analysis and heating value) and microstructural changes by scanning electron microscopy (SEM). Hemicellulose was mostly decomposed in the samples treated at 260 and 300 °C and resulted in the cell walls weakening resulting in improved grindability. The dimensions of the wood were reduced in all directions and shrinkage increased with increased treatment temperature and weight loss. With increased treatment temperature, losses of weight and volume increased and bulk density decreased. The low temperature pyrolyzed wood samples improved solid fuel property with high fuel ratio, which are close to lignite/bituminous coal. Morphology of the wood remained intact through the treatment range but the cell walls were thinner. Lastly, these results will improve the understanding of the property changes of the biomass during pretreatment and will help to develop models for process simulation and potential application of the treated biomass.« less

  14. Synchrotron x-ray microtomography of the interior microstructure of chocolate

    NASA Astrophysics Data System (ADS)

    Lügger, Svenja K.; Wilde, Fabian; Dülger, Nihan; Reinke, Lennart M.; Kozhar, Sergii; Beckmann, Felix; Greving, Imke; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2016-10-01

    The structure of chocolate, a multicomponent food product, was analyzed using microtomography. Chocolate consists of a semi-solid cocoa butter matrix and a dense network of suspended particles. A detailed analysis of the microstructure is needed to understand mass transport phenomena. Transport of lipids from e.g. a filling or liquid cocoa butter is responsible for major problems in the confectionery industry such as formation of chocolate bloom, which is the formation of visible white spots or a grayish haze on the chocolate surface and leads to consumer rejections and thus large sales losses for the confectionery industry. In this study it was possible to visualize the inner structure of chocolate and clearly distinguish the particles from the continuous phase by taking advantage of the high density contrast of synchrotron radiation. Consequently, particle arrangement and cracks within the sample were made visible. The cracks are several micrometers thick and propagate throughout the entire sample. Images of pure cocoa butter, chocolate without any particles, did not show any cracks and thus confirmed that cracks are a result of embedded particles. They arise during the manufacturing process. Thus, the solidification process, a critical manufacturing step, was simulated with finite element methods in order to understand crack formation during this step. The simulation showed that cracks arise because of significant contraction of cocoa butter, the matrix phase, without any major change of volume of the suspended particles. Tempering of the chocolate mass prior to solidification is another critical step for a good product quality. We found that samples which solidified in an uncontrolled manner are less homogeneous than tempered samples. In summary, our study visualized for the first time the inner microstructure of tempered and untempered cocoa butter as well as chocolate without sample destruction and revealed cracks, which might act as transport pathways.

  15. Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure

    DOE PAGES

    Wang, Ping; Howard, Bret H.

    2017-12-23

    Thermal pretreatment of biomass by torrefaction and low temperature pyrolysis has the potential for generating high quality and more suitable fuels. To utilize a model to describe the complex and dynamic changes taking place during these two treatments for process design, optimization and scale-up, detailed data is needed on the property evolution during treatment of well-defined individual biomass particles. The objectives of this study are to investigate the influence of thermal pretreatment temperatures on wood biomass biochemical compositions, physical properties and microstructure. Wild cherry wood was selected as a model biomass and prepared for this study. The well-defined wood particlemore » samples were consecutively heated at 220, 260, 300, 350, 450 and 550 °C for 0.5 h under nitrogen. Untreated and treated samples were characterized for biochemical composition changes (cellulose, hemicellulose, and lignin) by thermogravimetric analyzer (TGA), physical properties (color, dimensions, weight, density and grindablity), chemical property (proximate analysis and heating value) and microstructural changes by scanning electron microscopy (SEM). Hemicellulose was mostly decomposed in the samples treated at 260 and 300 °C and resulted in the cell walls weakening resulting in improved grindability. The dimensions of the wood were reduced in all directions and shrinkage increased with increased treatment temperature and weight loss. With increased treatment temperature, losses of weight and volume increased and bulk density decreased. The low temperature pyrolyzed wood samples improved solid fuel property with high fuel ratio, which are close to lignite/bituminous coal. Morphology of the wood remained intact through the treatment range but the cell walls were thinner. Lastly, these results will improve the understanding of the property changes of the biomass during pretreatment and will help to develop models for process simulation and potential application of the treated biomass.« less

  16. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-12-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  17. Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases

    NASA Astrophysics Data System (ADS)

    Serrano, Leonell; Marco, Yann; Le Saux, Vincent; Robert, Gilles; Charrier, Pierre

    2017-09-01

    Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.

  18. TOPICAL REVIEW: Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Bright, Victor M.

    2006-05-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.

  19. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  20. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  1. Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2018-01-01

    2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.

  2. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  3. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    NASA Astrophysics Data System (ADS)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  4. Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.

    2014-07-01

    The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.

  5. SCC Initiation Behavior of Alloy 182 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Zhai, Ziqing; Bruemmer, Stephen M.

    SCC initiation behavior of 15% cold forged specimens cut from four different alloy 182 weldments was investigated in 360°C simulated PWR primary water under constant load at the yield stress using direct current potential drop to perform in-situ monitoring of SCC initiation time. Within each weldment, one or more specimens underwent SCC initiation within 24 hours of reaching full load while some specimens had much longer initiation times, in a few cases exceeding 2500 hours. Detailed examinations were conducted on these specimens with a focus on different microstructural features such as preexisting defects, grain orientation and second phases, highlighting anmore » important role of microstructure in crack initiation of alloy 182.« less

  6. A damage analysis for brittle materials using stochastic micro-structural information

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue

    2016-03-01

    In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.

  7. Antisite Defects in Layered Multiferroic CuCr 0.9In 0.1P 2S 6

    DOE PAGES

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; ...

    2015-10-06

    The CuCr 1-xIn xP 2S 6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. We carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In 3+(Cu +) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, asmore » well as the potential applications in 2-D electronics.« less

  8. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  9. Study on the key role of hierarchical microstructure for strength and plasticity in a lath martensitic steel

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Long, Shao-lei; Liang, Yi-long

    2018-03-01

    In this paper, the effect of substructure of lath martensite on the mechanical properties was discussed in detail. Results indicated that prior austenite grain, packet and block increase with the increasing of quenching temperature. A good linear relationship exists between the packet, block and prior austenite, which reveal that the size of packet, block depends on prior austenite grain. However, lath is increased with not determined by prior austenite grain. Based on the EBSD analysis, the large ratio of the low angle orientation boundaries determines the better plasticity is obtained in coarse grain. Therefore, the refining of martensite lath or the increase of the low angle orientation plays an important role on improving the plasticity in lath martensite steel.

  10. Antisite defects in layered multiferroic CuCr(0.9)In(0.1)P2S6.

    PubMed

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V; Borisevich, Albina Y

    2015-11-28

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In(3+)(Cu(+)) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics.

  11. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  12. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  13. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  14. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  15. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  16. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data.

    PubMed

    Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe

    2017-04-01

    Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

  17. Shape Descriptors for the Quantification of Microstructures

    DTIC Science & Technology

    2016-01-05

    SUBJECT TERMS image analysis , microstructure 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT 18.  NUMBER        OF Standard Form...image entropy becomes nearly linearly dependent on temperature. The image analysis approach is capable of characterizing the range of strain domain...recognition and image analysis . The main hurdle to be overcome is the vanishing of these odd order moments for shapes which are symmetric about the

  18. Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik

    2005-01-01

    Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.

  19. Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet Molding Compound

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Sutter, James K.; Benson, Dianne

    1998-01-01

    Although polyimide based composites have been used for many years in a wide variety of elevated temperature applications, very little work has been done to examine the durability and damage behavior under more prototypical thermomechanical fatigue (TMF) loadings. Synergistic effects resulting from simultaneous temperature and load cycling can potentially lead to enhanced, if not unique, damage modes and contribute to a number of nonlinear deformation responses. The goal of this research was to examine the effects of a TMF loading spectrum, representative of a gas turbine engine compressor application, on a polyimide sheet molding compound (SMC). High performance SMCs present alternatives to prepreg forms with great potential for low cost component production through less labor intensive, more easily automated manufacturing. To examine the issues involved with TMF, a detailed experimental investigation was conducted to characterize the durability of a T650-35/PMR-15 SMC subjected to TMF mission cycle loadings. Fatigue damage progression was tracked through macroscopic deformation and elastic stiffness. Additional properties, such as the glass transition temperature (T(sub g) and dynamic mechanical properties were examined. The fiber distribution orientation was also characterized through a detailed quantitative image analysis. Damage tolerance was quantified on the basis of residual static tensile properties after a prescribed number of TMF missions. Detailed microstructural examinations were conducted using optical and scanning electron microscopy to characterize the local damage. The imposed baseline TMF missions had only a modest impact on inducing fatigue damage with no statistically significant degradation occurring in the measured macroscopic properties. Microstructural damage was, however, observed subsequent to 100 h of TMF cycling which consisted primarily of fiber debonding and transverse cracking local to predominantly transverse fiber bundles. The TMF loadings did introduce creep related effects (strain accumulation) which led to rupture in some of the more aggressive stress scenarios examined. In some cases this creep behavior occurred at temperatures in excess of 150 C below commonly cited values for T(sub g). Thermomechanical exploratory creep tests revealed that the SMC was subject to time dependent deformation at stress/temperature thresholds of 150 MPa/230 C and 170 MPa/180 C.

  20. Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures

    PubMed Central

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John

    2012-01-01

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. PMID:22806089

  1. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.

    PubMed

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John

    2012-07-02

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization (3).

  2. Asymptotic analysis of hierarchical martensitic microstructure

    NASA Astrophysics Data System (ADS)

    Cesana, Pierluigi; Porta, Marcel; Lookman, Turab

    2014-12-01

    We consider a hierarchical nested microstructure, which also contains a point of singularity (disclination) at the origin, observed in lead orthovanadate. We show how to exactly compute the energy cost and associated displacement field within linearized elasticity by enforcing geometric compatibility of strains across interfaces of the three-phase mixture of distortions (variants) in the microstructure. We prove that the mechanical deformation is purely elastic and discuss the behavior of the system close to the origin.

  3. Effect of shot peening on the microstructure of laser hardened 17-4PH

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Jiang, Chuanhai; Gan, Xiaoyan; Chen, Yanhua

    2010-12-01

    In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.

  4. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    PubMed

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Multi-scale characterization by FIB-SEM/TEM/3DAP.

    PubMed

    Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K

    2014-11-01

    In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for ultra-fine grain Nd-Fe-B permanent magnet will be shown [1]. In order to improve the magnetic properties, especially to increase the coercivity (resistance against magnetization reversal) of the magnet, decreasing the grain size and isolating each grain by non-ferromagnetic grain boundary phase are quite important since the nucleation of magnetic reversal from grain boundary phase can be suppressed and pinning force of magnetic domain wall at the grain boundary phase can be strengthened. Therefore, micro and nano structure and chemistry analysis can shed a light do grain boundary engineering.Figure 1(a,b) shows SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet and the reconstructed 3D tomography of Nd-rich phases obtained by FIB/SEM serial sectioning. This data can provide us information about the distribution of Nd-rich phase and its volume fraction. Moreover, the HRTEM image from the grain boundary phase, the 3DAP maps and the concentration depth profiles are shown in Fig. 1(c,d,e). This magnet shows high coercivity (1517kA/m), and by comparing these results with the microstructures of low coercivity specimen, importance of grain boundary formation was confirmed and it gives us hint to improve the coercivity further. We will show the detail and results from other materials.jmicro;63/suppl_1/i6/DFU046F1F1DFU046F1Fig. 1.(a) SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet. (b) 3D FIB/SEM tomography of Nd-rich phases. (c) HRTEM image from the grain boundary phase. (d) 3DAP maps of Nd, Cu and Al. (e) Concentration depth profiles for Fe, Nd+Pr, B, Co, Cu and Al, determined from the selected box in (d)[1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Statistical models and NMR analysis of polymer microstructure

    USDA-ARS?s Scientific Manuscript database

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  7. Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.

    2009-04-01

    An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.

  8. Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films

    NASA Astrophysics Data System (ADS)

    Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi

    2018-05-01

    Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.

  9. Deposition Mechanism and Microstructure of Laser-Assisted Cold-Sprayed (LACS) Al-12 wt.%Si Coatings: Effects of Laser Power

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.

    2013-06-01

    Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.

  10. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  11. Linking initial microstructure and local response during quasistatic granular compaction

    DOE PAGES

    Hurley, R. C.; Lind, J.; Pagan, D. C.; ...

    2017-07-24

    In this study, we performed experiments combining three-dimensional x-ray diffraction and x-ray computed tomography to explore the relationship between microstructure and local force and strain during quasistatic granular compaction. We found that initial void space around a grain and contact coordination number before compaction can be used to predict regions vulnerable to above-average local force and strain at later stages of compaction. We also found correlations between void space around a grain and coordination number, and between grain stress and maximum interparticle force, at all stages of compaction. Finally, we observed grains that fracture to have an above-average initial localmore » void space and a below-average initial coordination number. In conclusion, our findings provide (1) a detailed description of microstructure evolution during quasistatic granular compaction, (2) an approach for identifying regions vulnerable to large values of strain and interparticle force, and (3) methods for identifying regions of a material with large interparticle forces and coordination numbers from measurements of grain stress and local porosity.« less

  12. TAOI B- Computational Microstructural Optimization Design Tool for High Temperature Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Rajiv; Charit, Indrajit

    2015-02-28

    The objectives of this research were two-fold: (a) develop a methodology for microstructural optimization of alloys - genetic algorithm approach for alloy microstructural optimization using theoretical models based on fundamental micro-mechanisms, and (b) develop a new computationally designed Ni-Cr alloy for coal-fired power plant applications. The broader outcome of these objectives is expected to be creation of an integrated approach for ‘structural materials by microstructural design’. Three alloy systems were considered for computational optimization and validation, (i) Ni-20Cr (wt.%) base alloy using only solid solution strengthening, (ii) nano-Y2O3 containing Ni-20Cr-1.2Y2O3 (wt.%) alloy for dispersion strengthening and (iii) a sub-micron Al2O3more » for composite strengthening, Ni-20Cr-1.2Y2O3-5.0Al2O3 (wt.%). The specimens were synthesized by mechanical alloying and consolidated using spark plasma sintering. Detailed microstructural characterization was done along with initial mechanical properties to validate the computational prediction. A key target property is to have creep rate of 1x10-9 s-1 at 100 MPa and 800oC. The initial results were quite promising and require additional quantification of strengthening contributions from dislocation-particle attractive interaction and load transfer. The observed creep rate was in order of 10-9 s-1 for longer time creep test of Ni-20Cr -1.2Y2O3-5Al2O3, lending support to the overall approach pursued in this project.« less

  13. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light

    PubMed Central

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John

    2016-01-01

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation. PMID:27443505

  14. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light.

    PubMed

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A; Gostev, Fedor E; Shelaev, Ivan V; Kiwi, John

    2016-07-22

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.

  15. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light

    NASA Astrophysics Data System (ADS)

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John

    2016-07-01

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.

  16. Multi-Scale Modeling, Surrogate-Based Analysis, and Optimization of Lithium-Ion Batteries for Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Du, Wenbo

    A common attribute of electric-powered aerospace vehicles and systems such as unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their performance is usually limited by the energy density of their batteries. Although lithium-ion batteries offer distinct advantages such as high voltage and low weight over other battery technologies, they are a relatively new development, and thus significant gaps in the understanding of the physical phenomena that govern battery performance remain. As a result of this limited understanding, batteries must often undergo a cumbersome design process involving many manual iterations based on rules of thumb and ad-hoc design principles. A systematic study of the relationship between operational, geometric, morphological, and material-dependent properties and performance metrics such as energy and power density is non-trivial due to the multiphysics, multiphase, and multiscale nature of the battery system. To address these challenges, two numerical frameworks are established in this dissertation: a process for analyzing and optimizing several key design variables using surrogate modeling tools and gradient-based optimizers, and a multi-scale model that incorporates more detailed microstructural information into the computationally efficient but limited macro-homogeneous model. In the surrogate modeling process, multi-dimensional maps for the cell energy density with respect to design variables such as the particle size, ion diffusivity, and electron conductivity of the porous cathode material are created. A combined surrogate- and gradient-based approach is employed to identify optimal values for cathode thickness and porosity under various operating conditions, and quantify the uncertainty in the surrogate model. The performance of multiple cathode materials is also compared by defining dimensionless transport parameters. The multi-scale model makes use of detailed 3-D FEM simulations conducted at the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the effective transport coefficients and interfacial reaction current density within the porous microstructure. Microscopic simulation results are shown to match well with experimental measurements, while differing significantly from homogenization approximations used in the macroscopic model. Global sensitivity analysis and surrogate modeling tools are applied to couple the two length scales and complete the multi-scale model.

  17. Scaling ice microstructures from the laboratory to nature: cryo-EBSD on large samples.

    NASA Astrophysics Data System (ADS)

    Prior, David; Craw, Lisa; Kim, Daeyeong; Peyroux, Damian; Qi, Chao; Seidemann, Meike; Tooley, Lauren; Vaughan, Matthew; Wongpan, Pat

    2017-04-01

    Electron backscatter diffraction (EBSD) has extended significantly our ability to conduct detailed quantitative microstructural investigations of rocks, metals and ceramics. EBSD on ice was first developed in 2004. Techniques have improved significantly in the last decade and EBSD is now becoming more common in the microstructural analysis of ice. This is particularly true for laboratory-deformed ice where, in some cases, the fine grain sizes exclude the possibility of using a thin section of the ice. Having the orientations of all axes (rather than just the c-axis as in an optical method) yields important new information about ice microstructure. It is important to examine natural ice samples in the same way so that we can scale laboratory observations to nature. In the case of ice deformation, higher strain rates are used in the laboratory than those seen in nature. These are achieved by increasing stress and/or temperature and it is important to assess that the microstructures produced in the laboratory are comparable with those observed in nature. Natural ice samples are coarse grained. Glacier and ice sheet ice has a grain size from a few mm up to several cm. Sea and lake ice has grain sizes of a few cm to many metres. Thus extending EBSD analysis to larger sample sizes to include representative microstructures is needed. The chief impediments to working on large ice samples are sample exchange, limitations on stage motion and temperature control. Large ice samples cannot be transferred through a typical commercial cryo-transfer system that limits sample sizes. We transfer through a nitrogen glove box that encloses the main scanning electron microscope (SEM) door. The nitrogen atmosphere prevents the cold stage and the sample from becoming covered in frost. Having a long optimal working distance for EBSD (around 30mm for the Otago cryo-EBSD facility) , by moving the camera away from the pole piece, enables the stage to move without crashing into either the EBSD camera or the SEM pole piece (final lens). In theory a sample up to 100mm perpendicular to the tilt axis by 150mm parallel to the tilt axis can be analysed. In practice, the motion of our stage is restricted to maximum dimensions of 100 by 50mm by a conductive copper braid on our cold stage. Temperature control becomes harder as the samples become larger. If the samples become too warm then they will start to sublime and the quality of EBSD data will reduce. Large samples need to be relatively thin ( 5mm or less) so that conduction of heat to the cold stage is more effective at keeping the surface temperature low. In the Otago facility samples of up to 40mm by 40mm present little problem and can be analysed for several hours without significant sublimation. Larger samples need more care, e.g. fast sample transfer to keep the sample very cold. The largest samples we work on routinely are 40 by 60mm in size. We will show examples of EBSD data from glacial ice and sea ice from Antarctica and from large laboratory ice samples.

  18. Microstructure and Ultrastructure Alterations in the Pallium of Immature Mice Exposed to Cadmium.

    PubMed

    Yang, X F; Han, Q G; Liu, D Y; Zhang, H T; Fan, G Y; Ma, J Y; Wang, Z L

    2016-11-01

    The aim of this study was to investigate microstructure and ultrastructure alterations in the pallium of immature mice exposed to cadmium. Forty immature mice were randomly divided into control, 1/100 LD 50 (1.87 mg/kg, low), 1/50 LD 50 (3.74 mg/kg, medium), and 1/25 LD 50 (7.48 mg/kg, high) dose groups. After oral cadmium exposure for 40 days, the pallium of mice was obtained for microstructure and ultrastructure studies. The results showed that both microstructure and ultrastructure alterations of the pallium were observed in all treated mice and the most obvious alterations were in the high dose group. Microstructural analysis showed seriously congested capillary in the pia mater of the pallium in the high cadmium group. Meanwhile, vacuolar degenerate or karyopyknosis presented in some neurocytes, capillary quantity, and the number of apoptotic cells increased, some neurocytes became hypertrophy, the pia mater separated from the cortex, and local hemorrhage and accompanied inflammatory cell infiltration were also observed. Ultrastructural analysis showed that rough endoplasmic reticulum was expanded, heterochromatin marginalized, perinuclear space distinctly broadened, swelling and vacuolization mitochondria appeared, synapse was swelling, presynaptic and postsynaptic membranes presented fusion, and most of mitochondrial cristae were ambiguous. The results indicated that cadmium exposure for 40 days induced dose-dependent microstructure and ultrastructure alterations in pallium of immature mice.

  19. The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface

    NASA Astrophysics Data System (ADS)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin

    2018-06-01

    Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.

  20. Coastal Microstructure: From Active Overturn to Fossil Turbulence

    NASA Astrophysics Data System (ADS)

    Tau Leung, Pak

    2011-11-01

    The Remote Anthropogenic Sensing Program was a five year effort (2001- 2005) to examine subsurface phenomena related to a sewage outfall off the coast of Oahu, Hawaii. This research has implications for basic ocean hydrodynamics, particularly for a greatly improved understanding of the evolution of turbulent patches. It was the first time a microstructure measurement was used to study such a buoyancy-driven turbulence generated by a sea-floor diffuser. In 2004, two stations were selected to represent the near field and ambient conditions. They have nearly identical bathymetrical and hydrographical features and provide an ideal environment for a control experiment. Repeated vertical microstructure measurements were performed at both stations for 20 days. A time series of physical parameters was collected and used for statistical analysis. After comparing the data from both stations, it can be concluded that the turbulent mixing generated by the diffuser contributes to the elevated dissipation rate observed in the pycnocline and bottom boundary layer. To further understand the mixing processes in both regions, data were plotted on a Hydrodynamic Phase Diagram. The overturning stages of the turbulent patches are identified by Hydrodynamic Phase Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence theory. This study concluded that: 1. Field Data collected near a sea-floor outfall diffuser show that turbulent patches evolve from active (overturning) to fossil (buoyancy-inhibited) stages, consistent with the process of turbulent patch evolution proposed by fossil turbulence theory. 2. The data show that active (overturning) and fossil (buoyancy-inhibited) patches have smaller length scales than the active+fossil (intermediate) stage of patch evolution, consistent with fossil turbulence theory and with laboratory studies. 3. Compared to a far-field reference, elevated dissipation rates near the diffuser were found in the seasonal pycnocline as well as in the bottom boundary layer. 4. More than 90% of the turbulent patches observed in the water column were non- overturning (active+fossil and fossil). Such patches can provide significant mixing in the interior of the ocean, far from surface and bottom boundary layers.

  1. Single organic microtwist with tunable pitch.

    PubMed

    Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian

    2009-05-19

    A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.

  2. CAEBAT Model Featured on American Chemical Society Journal Tenth

    Science.gov Websites

    University's School of Mechanical Engineering has yielded new insights for lithium-ion (Li-ion) battery corresponding article, "Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes" detailing the microstructural modifications can greatly improve overall Li-ion battery performance. The value of this work is

  3. Transportation Research News | Transportation News | Transportation

    Science.gov Websites

    Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level -Phase Stochastics in Lithium-Ion Battery Electrodes" detailing the research and resulting revolutionizes the way lithium-ion (Li-ion) batteries are evaluated so designs can be improved before batteries

  4. News and Feature Stories | NREL

    Science.gov Websites

    insights for lithium-ion (Li-ion) battery electrodes at the microstructural level, that can lead to Lithium-Ion Battery Electrodes" detailing the research and resulting discoveries, is showcased inside 19th annual Middle School Electric Car Competition, where students raced solar and lithium-ion powered

  5. Study on the injectability of a novel glucose modified magnesium potassium phosphate chemically bonded ceramic.

    PubMed

    Tan, Yongshan; Dong, Jinmei; Yu, Hongfa; Li, Ying; Wen, Jing; Wu, Chengyou

    2017-10-01

    A novel magnesium potassium phosphate chemically bonded ceramic (MKPCBC) was prepared as a byproduct of boron-containing magnesium oxide (B-MgO) after extracting Li 2 CO 3 from salt lakes. In this work, the influence of glucose on the properties of MKPCBC, such as the setting time, compressive strength and hydration heat, was investigated. In addition, we studied the effect of the magnesium-phosphate ratio (M/P) and liquid-solid ratio (L/S) on the injectability of MKPCBC. The pH change in glucose modified MKPCBC paste was also investigated. The phase composition and microstructure were studied in detail by using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). The results show that the optimal content of glucose is 6wt%. The optimum proportions of M/P and L/S for MKPCBC are 1.5 and 0.25, respectively. The properties of the novel MPCBC can meet the requirements of biomaterials. In addition, the retardation mechanism of glucose on MKPCBC and the hydration mechanism of novel MKPCBC were studied in detail through the continuous monitoring of the phase composition and microstructure. Copyright © 2017. Published by Elsevier B.V.

  6. Corpus callosum vasculature predicts white matter microstructure abnormalities following pediatric mild traumatic brain injury.

    PubMed

    Wendel, Kara M; Lee, Jeong Bin; Affeldt, Bethann; Hamer, Mary; Harahap-Carrillo, Indira S; Pardo, Andrea C; Obenaus, Andre

    2018-05-09

    Emerging data suggest that pediatric traumatic brain injury (TBI) is associated with impaired developmental plasticity and poorer neuropsychological outcomes than adults with similar head injuries. Unlike adult mild TBI (mTBI), the effects of mTBI on white matter (WM) microstructure and vascular supply are not well-understood in the pediatric population. The cerebral vasculature plays an important role providing necessary nutrients and removing waste. To address this critical element, we examined the microstructure of the corpus callosum (CC) following pediatric mTBI using diffusion tensor imaging (DTI), and investigated myelin, oligodendrocytes, and vasculature of WM with immunohistochemistry. We hypothesized that pediatric mTBI leads to abnormal WM microstructure and impacts the vasculature within the CC, and that these alterations to WM vasculature contribute to the long-term altered microstructure. We induced a closed head injury mTBI at postnatal day 14, then at 4, 14, and 60 days post injury (DPI) mice were sacrificed for analysis. We observed persistent changes in apparent diffusion coefficient (ADC) within the ipsilateral CC following mTBI, indicating microstructural changes, but surprisingly changes in myelin and oligodendrocyte densities were minimal. However, vasculature features of the ipsilateral CC such as vessel density, length, and number of junctions were persistently altered following mTBI. Correlative analysis showed a strong inverse relationship between ADC and vessel density at 60 DPI, suggesting increased vessel density following mTBI may restrict WM diffusion characteristics. Our findings suggest that WM vasculature contributes to the long-term microstructural changes within the ipsilateral CC following mTBI.

  7. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.

    PubMed

    Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef

    2013-08-01

    Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Textural evolution of plagioclase feldspar across a shear zone: Implications for deformation mechanism and rock strength

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Austrheim, Håkon; Mukai, Hiroki; Putnis, Christine V.

    2014-05-01

    Caledonian amphibolite facies shear zones developed in granulite facies anorthosites and anorthositic gabbros of the Bergen Arcs, western Norway allow a detailed study of the relationships between fluid-infiltration, mineral reactions, the evolution of microstructure and deformation mechanisms. A sequence of rocks from the relatively pristine granulites into a shear zone has been studied by optical microscopy, EMPA, SEM, EBSD and TEM, focusing on the progressive development of microstructure in the plagioclase feldspars, leading up to their deformation in the shear zone. At the outcrop scale, fluid infiltration into the granulites is marked by a distinct colour change in the plagioclase from lilac/brown to white. This is associated with the breakdown of the intermediate composition plagioclase (~An50) in the granulite to a complex intergrowth of Na-rich and Ca-rich domains. EBSD analysis shows that this intergrowth retains the crystallographic orientation of the parent feldspar, but that the Ca-rich domains contain many low-angle boundaries as well as twin-related domains. Within the shear zone, this complex intergrowth coarsens by grain boundary migration, annihilating grain boundaries but retaining the Na-rich and Ca-rich zoning pattern. Analysis of nearest-neighbour misorientations of feldspar grains in the shear zone demonstrates that local crystallographic preferred orientation (CPO) is inherited from the parent granulite grain orientations. Random pair misorientation angle distributions show that there is no CPO in the shear zone as a whole, nor is there significant shape preferred orientation (SPO) in individual grains. These observations are interpreted in terms of fluid-induced weakening and deformation by dissolution-precipitation (pressure solution) creep.

  9. Far-Field High-Energy Diffraction Microscopy: A Non-Destructive Tool for Characterizing the Microstructure and Micromechanical State of Polycrystalline Materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...

    2017-08-31

    A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less

  10. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber.

    PubMed

    Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V

    2015-09-01

    A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.

  11. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    NASA Astrophysics Data System (ADS)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  12. The fractography-modeling link in cleavage fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, A.W.

    1997-12-31

    Cleavage fracture has historically been modelled, out of necessity, in rather idealized terms. In real materials, however, there are a number of difficulties in linking such models with metallographic and fractographic observations. Some of the most vivid examples occur for {alpha}{sub 2} titanium aluminide alloys, in which, when the microstructure contains primary {alpha}{sub 2} particles, the primary particles crack first. When basketweave or Widmanstaetten structures of {alpha}{sub 2} laths comprise the microstructure, it appears that individual laths crack first. And in colony structures, cracking occurs first across the {alpha}{sub 2} lath colonies. Both detailed fractographic observations, and also a statisticalmore » model for brittle fracture by failure of weakest links, have been developed. The extent to which this can be interpreted in classical cleavage terms will be discussed.« less

  13. Design and fabrication of integrated micro/macrostructure for 3D functional gradient systems based on additive manufacturing

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu

    2018-05-01

    Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.

  14. Morphological analysis of the growth stages of in-vivo mouse hair follicles by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jha, Rakesh Kumar; Kim, Kanghae; Jeon, Mansik; Kim, Jeehyun; Kang, Minyoung; Han, Insook; Kim, Moonkyu

    2016-09-01

    Swept-source optical coherence tomography (SS-OCT), a bio-photonic imaging modality, was used to demonstrate an initial feasibility experiment for detecting morphological variations of in-vivo mouse hair follicles for the anagen and the telogen growth stages. Two C57BL/6 adult male mice, one undergoing the anagen stage and the other undergoing the telogen stage of the hair follicle growth cycle, were selected for the experiment. The OCT cross-sectional images of mice skin were acquired in-vivo within an interval of 15 days, and the observed morphological changes were analyzed. The micro-structural features of mice skin on the 15th experimental day were further compared with corresponding histological observations. The preliminary result of this study provides clear insights into the structural details of mouse skin, confirming the resemblance of the OCT images with the corresponding histological measurements, and ensures the suitability of SS-OCT for non-invasive analysis of hair follicle conditions.

  15. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  16. Design and analysis of the trapeziform and flat acoustic cloaks with controllable invisibility performance in a quasi-space

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-07-01

    We present the design, implementation and detailed performance analysis for a class of trapeziform and flat acoustic cloaks. An effective large invisible area is obtained compared with the traditional carpet cloak. The cloaks are realized with homogeneous metamaterials which are made of periodic arrangements of subwavelength unit cells composed of steel embedded in air. The microstructures and its effective parameters of the cloaks are determined quickly and precisely in a broadband frequency range by using the effective medium theory and the proposed parameters optimization method. The invisibility capability of the cloaks can be controlled by the variation of the key design parameters and scale factor which are proved to have more influence on the performance in the near field than that in the far field. Different designs are suitable for different application situations. Good cloaking performance demonstrates that such a device can be physically realized with natural materials which will greatly promote the real applications of invisibility cloak.

  17. Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content

    NASA Astrophysics Data System (ADS)

    Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.

    2016-03-01

    Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.

  18. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qingge; Song, Gian; Gorti, Sarma B.

    Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into accountmore » to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.« less

  19. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  20. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging

    DOE PAGES

    Xie, Qingge; Song, Gian; Gorti, Sarma B.; ...

    2018-02-21

    Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into accountmore » to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.« less

  1. Phase Transformation and Creep of Mg-Al-Ca Based Die-Cast Alloys

    NASA Astrophysics Data System (ADS)

    Suzuki, Akane; Saddock, Nicholas D.; Jones, J. Wayne; Pollock, Tresa M.

    The microstructure and microstructural stability of die-cast AC53 (Mg-5Al-3Ca) and AXJ530 (Mg-5Al-3Ca-0.15Sr) have been investigated in detail by transmission electron microscopy (TEM). Both alloys have an as-cast microstructure of α-Mg with (Mg, Al)2Ca (dihexagonal C36) eutectic at grain boundaries. During aging at 573 K, the C36 phase transforms to Al2Ca (cubic Cl5) phase. These two phases have a crystallographic orientation relationship of (0001)C36//{111}C15 and [2110]C36//[011]C15, and the transformation from C36 to C15 occurs by a shear-assisted process. Despite this change in the phase constitution, the network structure of the intermetallic compound(s) surrounding α-Mg grains is fairly stable, morphologically, even after prolonged exposure at elevated temperature. In the α-Mg matrix phase, precipitation of Al2Ca was observed after aging for 360 ks at 573 K. The precipitates are disc-shaped with a habit plane of {111}C15//(0001)α. AXJ530 shows higher creep resistance than AC53. The dislocation substructure that evolved during creep deformation was investigated in both alloys, and the basal and non-basal slip of a-dislocation and other slip modes of a+c- dislocations were observed. The relationship between creep properties and microstructure is discussed.

  2. In vivo quantification of white matter microstructure for use in aging: a focus on two emerging techniques.

    PubMed

    Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A; Dean, Douglas; Little, Deborah; Deoni, Sean C

    2014-02-01

    Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. Although DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  4. Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Isasti, N.; Jorge-Badiola, D.; Taheri, M. L.; López, B.; Uranga, P.

    2011-12-01

    Thermomechanical processing of microalloyed steels containing niobium can be performed to obtain deformed austenite prior to transformation. Accelerated cooling can be employed to refine the final microstructure and, consequently, to improve both strength and toughness. This general rule is fulfilled if the transformation occurs on a quite homogeneous austenite microstructure. Nevertheless, the presence of coarse austenite grains before transformation in different industrial processes is a usual source of concern, and regarding toughness, the coarsest high-angle boundary units would determine its final value. Sets of deformation dilatometry tests were carried out using three 0.06 pct Nb microalloyed steels to evaluate the effect of Mo alloying additions (0, 0.16, and 0.31 pct Mo) on final transformation from both recrystallized and unrecrystallized coarse-grained austenite. Continuous cooling transformation (CCT) diagrams were created, and detailed microstructural characterization was achieved through the use of optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), and electron backscattered diffraction (EBSD). The resultant microstructures ranged from polygonal ferrite (PF) and pearlite (P) at slow cooling ranges to bainitic ferrite (BF) accompanied by martensite (M) for fast cooling rates. Plastic deformation of the parent austenite accelerated both ferrite and bainite transformation, moving the CCT curves to higher temperatures and shorter times. However, an increase in the final heterogeneity was observed when BF packets were formed, creating coarse high-angle grain boundary units.

  5. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  6. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  7. Effects of welding heat and travel speed on the impact property and microstructure of FC welds

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo; Jeong, Sang Hoon; Lim, Dong Yong; Yun, Jin Oh; Kim, Myung Hyun

    2010-10-01

    This paper is concerned with the effects of welding heat (current x voltage = W) and travel speed (v) on the impact property and microstructure of FC (flux cored) welds. Two sets of plate were welded under different welding conditions such as higher W, v and lower W, v, while maintaining identical heat input. We evaluated the effects of each factor by Charpy impact test and observation of the microstructure, and then compared these data with the results of the numerical temperature analysis. The size of the re-heated zone was increased as the v value decreased, and the results of numerical analysis also revealed the same tendency. Cooling rate of welds (both of as-welded and re-heated zones) decreased as the W value increased. Despite identical heat input conditions, the use of lower W and v made the microstructure finer and increased the volume fraction of AF, thereby leading to a substantial improvement of the impact property.

  8. Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT

    2016-05-06

    Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less

  9. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone.

    PubMed

    Thali, Michael J; Taubenreuther, Ulrike; Karolczak, Marek; Braun, Marcel; Brueschweiler, Walter; Kalender, Willi A; Dirnhofer, Richard

    2003-11-01

    When a knife is stabbed in bone, it leaves an impression in the bone. The characteristics (shape, size, etc.) may indicate the type of tool used to produce the patterned injury in bone. Until now it has been impossible in forensic sciences to document such damage precisely and non-destructively. Micro-computed tomography (Micro-CT) offers an opportunity to analyze patterned injuries of tool marks made in bone. Using high-resolution Micro-CT and computer software, detailed analysis of three-dimensional (3D) architecture has recently become feasible and allows microstructural 3D bone information to be collected. With adequate viewing software, data from 2D slice of an arbitrary plane can be extracted from 3D datasets. Using such software as a "digital virtual knife," the examiner can interactively section and analyze the 3D sample. Analysis of the bone injury revealed that Micro-CT provides an opportunity to correlate a bone injury to an injury-causing instrument. Even broken knife tips can be graphically and non-destructively assigned to a suspect weapon.

  10. Finite element analysis of the upsetting of a 5056 aluminum alloy sample with consideration of its microstructure

    NASA Astrophysics Data System (ADS)

    Voronin, S. V.; Chaplygin, K. K.

    2017-12-01

    Computer simulation of upsetting the finite element models (FEMs) of an isotropic 5056 aluminum alloy sample and a 5056 aluminum alloy sample with consideration of microstructure is carried out. The stress and strain distribution patterns at different process stages are obtained. The strain required for the deformation of the FEMs of 5056 alloy samples is determined. The influence of the material microstructure on the stress-strain behavior and technological parameters are demonstrated.

  11. A Monte Carlo-finite element model for strain energy controlled microstructural evolution - 'Rafting' in superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1989-01-01

    This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.

  12. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    NASA Astrophysics Data System (ADS)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.

  13. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    PubMed

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samih, Y., E-mail: youssef.samih@univ-lorraine.fr; Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures; Beausir, B.

    2013-09-15

    Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustratedmore » through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.« less

  15. Investigation of Microstructure and Mechanical Properties of ECAP-Processed AM Series Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gopi, K. R.; Nayaka, H. Shivananda; Sahu, Sandeep

    2016-09-01

    Magnesium alloy Mg-Al-Mn (AM70) was processed by equal channel angular pressing (ECAP) at 275 °C for up to 4 passes in order to produce ultrafine-grained microstructure and improve its mechanical properties. ECAP-processed samples were characterized for microstructural analysis using optical microscopy, scanning electron microscopy, and transmission electron microscopy. Microstructural analysis showed that, with an increase in the number of ECAP passes, grains refined and grain size reduced from an average of 45 to 1 µm. Electron backscatter diffraction analysis showed the transition from low angle grain boundaries to high angle grain boundaries in ECAP 4 pass sample as compared to as-cast sample. The strength and hardness values an showed increasing trend for the initial 2 passes of ECAP processing and then started decreasing with further increase in the number of ECAP passes, even though the grain size continued to decrease in all the successive ECAP passes. However, the strength and hardness values still remained quite high when compared to the initial condition. This behavior was found to be correlated with texture modification in the material as a result of ECAP processing.

  16. DE-NE0000724 - Research Performance Final Report - Investigation of Thermal Aging Effects on the Evolution of Microstructure and Mechanical Properties of Cast Duplex Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankem, Sreeramamurthy; Perea, Daniel E.; Kolli, R. Prakash

    This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to thesemore » conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging. Concurrent analysis of the microstructure and nanostructure by atom probe tomography (APT) and transmission electron microscopy (TEM) provide mechanistic insight into the kinetic and mechanical behavior occurring on the nano-scale. The presence and morphology of the ferrite, austenite, and carbide phases have been characterized, and formation of new phases during aging, including spinodal decomposition products (α- and α'-ferrite) and G-phase, have been observed. The mechanical and structural characterization have been used to create accurate FEM models based on the real micro- and nano-structures of the systems. These models provide new insight into the local deformation behavior of these steels and the effects of each individual phase (including ferrite, austenite, carbides, and spinodal decomposition products) on the evolving bulk mechanical behavior of the system. The project was divided into three major tasks: 1. Initial Microstructure and Mechanical Property Survey and Initiate Heat Treatment; 2. Microstructural Characterization and Mechanical Property Testing During Aging; and 3. Microstructure-based Finite Element Modeling. Each of these tasks was successfully executed, resulting in reliable data and analysis that add to the overall body of work on the CDSS materials. Baseline properties and aging trends in mechanical data confirm prior observations and add new insights into the mechanical behavior of the steels. Structural characterization on multiple length scales provides new information on phase changes occurring during aging and sheds light on the kinetic processes occurring at the atomic scale. Furthermore, a combination of mechanical testing and microstructural characterization techniques was utilized to design FEM models of local deformation behavior of the ferrite and austenite phases, providing valuable new information regarding the effects of each of the microstructural components on the hardening and embrittlement processes. The data and analysis presented in this report and the publication associated with this project (§V) increase the understanding of aging and deformation in CF–3 and CF–8 steels. These results provide valuable information that can be utilized to aid in making informed decisions regarding the ongoing use of these steels in commercial nuclear infrastructure.« less

  17. The effect of butter grains on physical properties of butter-like emulsions.

    PubMed

    Rønholt, Stine; Buldo, Patrizia; Mortensen, Kell; Andersen, Ulf; Knudsen, Jes C; Wiking, Lars

    2014-01-01

    Milk fat exists as globules in its natural state in milk. The potential of using globular fat to modulate the rheological properties and crystallization behavior in butter-like emulsions was studied in the present work. We conducted a comparative study of butter-like emulsions, with a fat phase consisting of 0, 10, 25, 50, or 100% anhydrous milk fat (AMF), the remaining fat being butter grains, and all samples containing 20% water, to obtain systematic variation in the ratio of globular fat. All emulsions were studied over 4wk of storage at 5°C. By combining small and large deformation rheology, we conducted a detailed characterization of the rheological behavior of butter-like emulsions. We applied differential scanning calorimetry to monitor thermal behavior, confocal laser scanning microscopy for microstructural analysis, and low-field pulsed nuclear magnetic resonance spectrometry to measure solid fat content. By combining these techniques, we determined that increasing the fraction of globular fat (by mixing with butter grains) decreases the hardness of butter-like emulsions up to an order of magnitude at d 1. However, no difference was observed in thermal behavior as a function of butter grain content, as all emulsions containing butter grains revealed 2 endothermal peaks corresponding to the high (32.7°C ± 0.6) and medium (14.6°C ± 0.1) melting fractions of fatty acids. In terms of microstructure, decreasing the amount of butter grains in the emulsions resulted in formation of a denser fat crystal network, corresponding to increased hardness. Moreover, microstructural analysis revealed that the presence of butter grains resulted in faster formation of a continuous fat crystal network compared with the 100% AMF sample, which was dominated by crystal clusters surrounded by liquid oil. During storage, hardness remained stable and no changes in thermal behavior were observed, despite an increase in solid fat content of up to 5%. After 28d of storage, we observed no difference in either microstructural or rheological properties, indicating that formation of primary bonds occurs primarily within the first day of storage. The rheological behavior of butter-like emulsions is not determined solely by hardness, but also by stiffness related to secondary bonds within the fat crystal network. The complex rheological behavior of milk fat-based emulsions is better characterized using multiple parameters. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. 3D geometrical characterization and modelling of solid oxide cells electrodes microstructure by image analysis

    NASA Astrophysics Data System (ADS)

    Moussaoui, H.; Debayle, J.; Gavet, Y.; Delette, G.; Hubert, M.; Cloetens, P.; Laurencin, J.

    2017-03-01

    A strong correlation exists between the performance of Solid Oxide Cells (SOCs), working either in fuel cell or electrolysis mode, and their electrodes microstructure. However, the basic relationships between the three-dimensional characteristics of the microstructure and the electrode properties are not still precisely understood. Thus, several studies have been recently proposed in an attempt to improve the knowledge of such relations, which are essential before optimizing the microstructure, and hence, designing more efficient SOC electrodes. In that frame, an original model has been adapted to generate virtual 3D microstructures of typical SOCs electrodes. Both the oxygen electrode, which is made of porous LSCF, and the hydrogen electrodes, made of porous Ni-YSZ, have been studied. In this work, the synthetic microstructures are generated by the so-called 3D Gaussian `Random Field model'. The morphological representativeness of the virtual porous media have been validated on real 3D electrode microstructures of a commercial cell, obtained by X-ray nano-tomography at the European Synchrotron Radiation Facility (ESRF). This validation step includes the comparison of the morphological parameters like the phase covariance function and granulometry as well as the physical parameters like the `apparent tortuosity'. Finally, this validated tool will be used, in forthcoming studies, to identify the optimal microstructure of SOCs.

  19. Observation of asphalt binder microstructure with ESEM.

    PubMed

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Stochastic model for the 3D microstructure of pristine and cyclically aged cathodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kuchler, Klaus; Westhoff, Daniel; Feinauer, Julian; Mitsch, Tim; Manke, Ingo; Schmidt, Volker

    2018-04-01

    It is well-known that the microstructure of electrodes in lithium-ion batteries strongly affects their performance. Vice versa, the microstructure can exhibit strong changes during the usage of the battery due to aging effects. For a better understanding of these effects, mathematical analysis and modeling has turned out to be of great help. In particular, stochastic 3D microstructure models have proven to be a powerful and very flexible tool to generate various kinds of particle-based structures. Recently, such models have been proposed for the microstructure of anodes in lithium-ion energy and power cells. In the present paper, we describe a stochastic modeling approach for the 3D microstructure of cathodes in a lithium-ion energy cell, which differs significantly from the one observed in anodes. The model for the cathode data enhances the ideas of the anode models, which have been developed so far. It is calibrated using 3D tomographic image data from pristine as well as two aged cathodes. A validation based on morphological image characteristics shows that the model is able to realistically describe both, the microstructure of pristine and aged cathodes. Thus, we conclude that the model is suitable to generate virtual, but realistic microstructures of lithium-ion cathodes.

  1. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  2. Using in-situ diffraction, elastic plastic self-consistent models and microstructural analysis to interpret the low strain behavior of olivine polycrystals in the D-DIA apparatus

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Kaboli, S.

    2016-12-01

    The textbook stress strain curve has an elastic response followed by a yield point and then plastic flow. Typically in rock deformation experiments the observed `elastic' behavior deviates from the Young's modulus because the mechanical response of the loading frame and friction in the sample assembly and between moving parts of the loading frame cannot be easily corrected for. Stress strain curves generated in a D-DIA apparatus used in conjunction with synchrotron x-rays should not have these problems because the sample length is measured directly by radiography and the stress in the sample is measured from the sample itself by x-ray diffraction. However, the sample's `elastic behavior', in many instances, still deviates from what is expected. For example, in constant strain rate experiments on both polycrystalline San Carlos olivine and fayalite olivine conducted at a variety of temperatures (25 - 1200 C) and pressures (4 and 7 GPa) although we are able to use elastic plastic self-consistent (EPSC) models to describe the plastic behavior of the olivine we are not able to fit the initial elastic behavior for all but the lowest temperature experiments. To a first approximation it appears that samples are generally more compliant than their elastic properties would predict and that the degree of softening is temperature dependent. For D-DIA experiments which have been conducted at strain rates of 10-5 /sec, there are not enough data points to really clarify what is happening in the elastic portion of the experiment. Therefore, we conducted a suite of low strain experiments at 5 x 10-6/sec at temperatures ranging from 400 C to 1200 C. For each experiment we fit the diffraction data using EPSC models. We will present the results from our diffraction analysis as well as detailed microstructural analysis of the experimental samples using electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI). The relative degree of relaxation observed for each grain population in the diffraction data as well as to the predictions of the EPSC model combined with the microstructural data, will be used create a more comprehensive picture of how individual grains and various grain populations contribute to the low strain mechanical behavior of the polycrystal.

  3. Interlaminar fracture of random short-fiber SMC composite

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Suemasu, H.; Zahlan, N. M.

    1984-01-01

    In the experimental phase of the present study of the interlaminar fracture behavior of a randomly oriented short fiber sheet molding compound (SMC) composite, the double cantilever beam fracture test is used to evaluate the mode I interlaminar fracture toughness of different composite thicknesses. In the analytical phase of this work, a geometrically nonlinear analysis is introduced in order to account for large deflections and nonlinear load deflection curves in the evaluation of interlaminar fracture toughness. For the SMC-R50 material studied, interlaminar toughness is an order of magnitude higher than that of unreinforced neat resin, due to unusual damage mechanisms ahead of the crack tip, together with significant fiber bridging across crack surfaces. Composite thickness effects on interlaminar fracture are noted to be appreciable, and a detailed discussion is given on the influence of SMC microstructure.

  4. Photoresist Design for Elastomeric Light Tunable Photonic Devices

    PubMed Central

    Nocentini, Sara; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S.

    2016-01-01

    An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation. PMID:28773646

  5. Photoresist Design for Elastomeric Light Tunable Photonic Devices.

    PubMed

    Nocentini, Sara; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S

    2016-06-29

    An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation.

  6. Characterization of Damage Progression in SCS-6/timetal 21S (0)4 Under Thermomechanical Fatigue Loadings

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    A detailed experimental investigation was performed at a single maximum cyclic stress (sigma max) level to physically characterize the progression of thermomechanical fatigue (lW) damage in continuously reinforced (0 deg) SCS-6/Timetal 21S, a titanium matrix composite. In-phase (IP) and out of-phase (OP) loadings were investigated at sigma max = 1000 MPa with a temperature cycle from 150 to 6500 C. Damage progression, in terms of macroscopic property degradation, was experimentally quantified through an advanced TMF test methodology which incorporates explicit measurements of the isothermal static moduli at the TMF temperature extremes and the coefficient of thermal expansion (CTE) as functions of the TMF cycles. Detailed characterization of the physical damage progression at the microstructural level was performed by interrupting multiple TMF tests at various stages of mechanical property degradation and analyzing the microstructure through extensive destructive metallography. Further, the extent of damage was also quantified through residual static strength measurements. Results indicated that damage initiation occurred very early in cyclic life (N less than 0.1Nf) for both the IP and OP TMF loadings. IP TMF damage was found to be dominated by fiber breakage with a physical damage progression in the microstructure which was difficult to quantify. OP TMF loadings produced matrix cracking exclusively associated with surface initiations. Here, damage progression was easily distinguished in terms of both the number of cracks and their relative inward progressions toward the outer fiber rows with increased cycling. The point at which the leading cracks reached the outer fiber rows (when localized fiber/matrix de-bonding and matrix crack bridging occurred) appeared to be reflected in the macroscopic property degradation curves.

  7. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  8. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  9. A novel method of multi-scale simulation of macro-scale deformation and microstructure evolution on metal forming

    NASA Astrophysics Data System (ADS)

    Huang, Shiquan; Yi, Youping; Li, Pengchuan

    2011-05-01

    In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.

  10. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.

    PubMed

    Mishchenko, Lidiya; Hatton, Benjamin; Bahadur, Vaibhav; Taylor, J Ashley; Krupenkin, Tom; Aizenberg, Joanna

    2010-12-28

    Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.

  12. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    NASA Astrophysics Data System (ADS)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  13. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less

  14. Manufacturing Challenges Implementing Material Changes for the Super Light Weight External Tank: A Welding Process Perspective

    NASA Technical Reports Server (NTRS)

    Lawless, K.; Jones, C.

    2001-01-01

    A viewgraph presentation gives an overview of the manufacturing challenges in implementing welding material changes for the super lightweight external tank. Details are given on the external tank configuration, the weld purging equipment used, planning the selection of weld filler wire alloy, the initial weld microstructure, the wide panel tensile testing, and the dome cap welding.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz; Wei, Shanghai; Han, Jie

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientationmore » has been studied in detail.« less

  16. A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites

    NASA Astrophysics Data System (ADS)

    Ni, Qing-Qing; Li, Ran; Xia, Hong

    2017-02-01

    When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.

  17. Microstructure effects on the recrystallization of low-symmetry alpha-uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Rodney James; Richards, Andrew Walter; Coughlin, Daniel Robert

    2015-10-01

    We employ electron backscatter diffraction (EBSD) to investigate microstructural evolution of uranium during recrystallization. To understand the relationship between microstructure and recrystallization, we use measures of intra-granular misorientation within grains and near grain boundaries in both deformed (non-recrystallized) uranium and recrystallizing uranium. The data show that the level of intra-granular misorientation depends on crystallographic orientation. However, contrary to expectation, this relationship does not significantly affect the recrystallization texture. Rather, the analysis suggests that recrystallization nucleation occurs along high angle grain boundaries in the deformed microstructure. Specifically, we show that the nucleation of recrystallized grains correlates well with the spatially heterogeneousmore » distribution of high angle boundaries. Due to the inhomogeneous distribution of high angle boundaries, the recrystallized microstructure after long times exhibits clustered distributions of small and large grains. Twin boundaries do not appear to act as recrystallization nucleation sites.« less

  18. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    PubMed Central

    Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex

    2015-01-01

    A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature. PMID:28793594

  19. Alterations of bone microstructure and strength in end-stage renal failure.

    PubMed

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  20. High-resolution neutron diffraction study of microstructural changes in nanocrystalline ball-milled niobium carbide NbC{sub 0.93}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.

    2015-11-15

    High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less

  1. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.

    PubMed

    Jiang, Z; Chen, W; Burkhart, C

    2013-11-01

    Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  3. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    NASA Astrophysics Data System (ADS)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  4. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ming-Liang, E-mail: mlzhu@ecust.edu.cn; Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{submore » 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.« less

  5. Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Song, Hye Yun

    Additive manufacturing (AM) is the process for making 3-D objects by adding materials layer by layer. It can result in a marked reduction of the time and cost associated with designing and producing highly complex parts. Over the past decade, significant progress has been made in machine hardware and control software for process development to achieve dimensional accuracy and mitigate defects. On the other hand, the knowledge on microstructure-property relationship in the additively manufactured builds is still being established. In additive manufacturing, the interactions between the heat source and the material lead to a series of physical phenomena including localized heating, melting, solidification and micro-segregation, and cooling. Far-from-equilibrium microstructure can form as the material experiences a large number of repeated, rapid heating and cooling cycles (i.e. temperature gyrations) during depositions. The mechanical properties of additively manufactured parts are significantly influenced by their final microstructure. The overarching goal of the present research is to improve the fundamental understanding of microstructure-property relationship for AM parts. Specially, it is investigated the high-temperature creep strength of InconelRTM 718 (abbreviated as IN718 thereafter) fabricated by laser-powder bed fusion (L-PBF) AM. The specific objectives include (1) effect of support on the local microstructure, (2) microstructure evolution during post-built heat treatment, and (3) creep strength. Detailed microstructure characterization is performed using a multitude of tools including micro-hardness mapping, scanning electron microscope (SEM) along with electron backscatter diffraction (EBSD), and transmission electron microscope (TEM) for selected area diffraction (SAD) analysis and energy-dispersive X-ray spectroscopy (EDS). The characterized microstructure is correlated to the mechanical properties. Highlights of the research findings are discussed in the following. A support is a "temporary" structure typically built in-situ with the primary part to provide the structural support to the mass of overhanging features; it is subsequently removed after fabrication. During the building process, the existence of such support can affect the local heat flow from the build to the substrate, which in turn may influence the local microstructure. The first objective of this research is to develop a fundamental understanding of the effect of the support on the microstructure fabricated by L-PBF AM. Two groups of as-built samples, with support and without support, are studied. SEM along with EBSD is used to analyze the microstructure characteristics including the growth of the microstructures, the fraction of different microstructure and the misorientation among the microstructure grains. At the nano-scale resolution, TEM is used to identify the precipitate phases. In addition, the micro-hardness values are also measured for samples built with and without support. As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma' prime and gamma''. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values are measured for as-built conditions and several heat-treated conditions including the modified homogenization, solution anneal and aging steps. Finally, the oxidation behavior during the heat treatment is also discussed and compared to that for a piece of actual cast. The third objective of the present study is the evaluation of the mechanical properties of heat-treated IN718 builds produced by L-PBF AM. Particularly, creep test are performed to quantify the mechanical properties of the heat-treated IN718 builds. The creep samples are heat-treated using the following condition: homogenization at 1100 °C for 2 hours followed by air cooling (AC), and aging at 760 °C for 10 hours also followed by AC. For the creep test, the samples are loaded at a constant stress (690 MPa or 100 ksi) at 649 °C (1200 °F) in accordance to Aerospace Material Standards (AMS) 5663. The creep rate of the heat-treated AM sample is compared with the literature data for wrought cases. The relationship of creep strength to the characteristic of the microstructures in the heat-treated IN718 builds is discussed. In summary, the research results provide insights into the microstructure-creep-strength relationship for IN718 fabricated by additive manufacturing. Particularly, a modified post-built heat treatment is developed to maximize the formation of strengthening precipitates and achieve large grains in IN718, resulting in a markedly higher creep strength when compared to the literature data for wrought cases. Taken as a whole, the new knowledge generated in this dissertation is essential to ensure the performance of additively manufactured parts in structural applications.

  6. Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model.

    PubMed

    Yoshioka, S; Matsuhana, B; Tanaka, S; Inouye, Y; Oshima, N; Kinoshita, S

    2011-01-06

    The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model.

  7. Whisker Formation on SAC305 Soldered Assemblies

    NASA Astrophysics Data System (ADS)

    Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.

    2014-11-01

    This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.

  8. In situ-measurement of ice deformation from repeated borehole logging of the EPICA Dronning Maud Land (EDML) ice core, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich

    2017-04-01

    The European Project for Ice Coring in Antarctica (EPICA) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the ice sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of ice transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep ice core. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the ice flow velocity at the position of the EDML core is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the ice sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the ice sheet. The results are discussed with respect to ice microstructural data derived from the EDML ice core. Microstructural data directly reflect the deformation conditions, as the ice polycrystal performs the deformation which leads e.g. to characteristic lattice orientation distributions and grain size and shape appearance. Though overprinted by recrystallization (due to the hot environment for the ice) and the slow deformation, analysis of statistically significant grain numbers reveals indications typical for the changing deformation regimes with depth. Additionally we compare our results with strain rates derived from a simulation with a model for large scale ice deformation, the Parallel Ice Sheet Model (PISM).

  9. C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali

    2001-01-01

    A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.

  10. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  11. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  12. Nonlinear mechanics of composite materials with periodic microstructure

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1991-01-01

    This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

  13. Effects of europium content on the microstructural and ferroelectric properties of Bi4-xEuxTi3O12 thin films

    NASA Astrophysics Data System (ADS)

    Zheng, X. J.; He, L.; Zhou, Y. C.; Tang, M. H.

    2006-12-01

    The effects of europium (Eu) content on the microstructure, fatigue endurance, leakage current density, and remnant polarization (2Pr) of Bi4-xEuxTi3O12 (BET) thin films prepared by metal-organic decomposition method at 700°C annealing temperature were studied in detail. The results showed that 2Pr (82μC/cm2 under 300kV/cm), fatigue endurance (2% loss of 2Pr after 9.0×109 switching cycles), and leakage current density (1×10-8A/cm2 at 200kV/cm) of BET thin film with x =0.85 are better than those of thin films with other contents. Additionally, the mechanism concerning the dependence of ferroelectric properties on Eu content was discussed.

  14. A review of numerical techniques approaching microstructures of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  15. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  16. An overview of LED applications for general illumination

    NASA Astrophysics Data System (ADS)

    Pelka, David G.; Patel, Kavita

    2003-11-01

    This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems

  17. Analysis of microstructure of steel 20 in the range of healing of internal crack

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun; Han, Jingtao

    2012-03-01

    The microstructure and hardness of steel 20 are studied in the range of healing of an artificially created internal crack. In the range of healing of the crack the microstructure is represented primarily by ferrite. The ferrite grains grow through the boundary of the internal crack and contain polyhedral subgrains several hundred nanometers in size. The hardness of the ferrite in the range of healing of the internal crack is higher than in the matrix. A possible cause of this is substructural hardening.

  18. A microstructural lattice model for strain oriented problems: A combined Monte Carlo finite element technique

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1987-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.

  19. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  20. A Community Database of Quartz Microstructures: Can we make measurements that constrain rheology?

    NASA Astrophysics Data System (ADS)

    Toy, Virginia; Peternell, Mark; Morales, Luiz; Kilian, Ruediger

    2014-05-01

    Rheology can be explored by performing deformation experiments, and by examining resultant microstructures and textures as links to naturally deformed rocks. Certain deformation processes are assumed to result in certain microstructures or textures, of which some might be uniquely indicative, while most cannot be unequivocally used to interpret the deformation mechanism and hence rheology. Despite our lack of a sufficient understanding of microstructure and texture forming processes, huge advances in texture measurements and quantification of microstructural parameters have been made. Unfortunately, there are neither standard procedures nor a common consensus on interpretation of many parameters (e.g. texture, grain size, shape preferred orientation). Textures (crystallographic preferred orientations) have been extensively correlated to the interpretation of deformation mechanisms. For example the strength of textures can be measured either from the orientation distribution function (e.g. the J-index (Bunge, 1983) or texture entropy (Hielscher et al., 2007) or via the intensity of polefigures. However, there are various ways to identify a representative volume, to measure, to process the data and to calculate an odf and texture descriptors, which restricts their use as a comparative and diagnostic measurement. Microstructural parameters such as grain size, grain shape descriptors and fabric descriptors are similarly used to deduce and quantify deformation mechanisms. However there is very little consensus on how to measure and calculate some of these very important parameters, e.g. grain size which makes comparison of a vast amount of precious data in the literature very difficult. We propose establishing a community database of a standard set of such measurements, made using typical samples of different types of quartz rocks through standard methods of microstructural and texture quantification. We invite suggestions and discussion from the community about the worth of proposed parameters, methodology and usefulness and willingness to contribute to a database with free access of the community. We further invite institutions to participate on a benchmark analysis of a set of 'standard' thin sections. Bunge, H.J. 1983, Texture Analysis in Materials Science: mathematical methods. Butterworth-Heinemann, 593pp. Hielscher, R., Schaeben, H., Chateigner, D., 2007, On the entropy to texture index relationship in quantitative texture analysis: Journal of Applied Crystallography 40, 371-375.

  1. Higher-Order Theory: Structural/MicroAnalysis Code (HOTSMAC) Developed

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.

    2002-01-01

    The full utilization of advanced materials (be they composite or functionally graded materials) in lightweight aerospace components requires the availability of accurate analysis, design, and life-prediction tools that enable the assessment of component and material performance and reliability. Recently, a new commercially available software product called HOTSMAC (Higher-Order Theory--Structural/MicroAnalysis Code) was jointly developed by Collier Research Corporation, Engineered Materials Concepts LLC, and the NASA Glenn Research Center under funding provided by Glenn's Commercial Technology Office. The analytical framework for HOTSMAC is based on almost a decade of research into the coupled micromacrostructural analysis of heterogeneous materials. Consequently, HOTSMAC offers a comprehensive approach for analyzing/designing the response of components with various microstructural details, including certain advantages not always available in standard displacement-based finite element analysis techniques. The capabilities of HOTSMAC include combined thermal and mechanical analysis, time-independent and time-dependent material behavior, and internal boundary cells (e.g., those that can be used to represent internal cooling passages, see the preceding figure) to name a few. In HOTSMAC problems, materials can be randomly distributed and/or functionally graded (as shown in the figure, wherein the inclusions are distributed linearly), or broken down by strata, such as in the case of thermal barrier coatings or composite laminates.

  2. A mimic study on effects of fluoride on tooth enamel structures

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Wang, Mu; Liu, Xiang Yang

    2010-03-01

    Tooth enamel is the hardest tissue in human body, and this superior mechanical property is contributed by its unique microstructures, i.e., oriented growth of rod-like apatite crystals into basic structural units called the prisms Fluoride (F^-) has been recognized to have significant effects on the physical and chemical properties of tooth enamel. However, the role of F^- on microstructures of apatite crystals is not well understood yet. Here we report a detailed investigation on the topic. Mimic in vitro growth of tooth enamel structures is performed at the biophysical conditions in simulated body fluids, using belt-like hydroxyapatite crystals as substrates It shows that F^- on the order of 0.1 mM will dramatically change the morphology of the grown crystals from irregular slabs to nano-needles, and the needles are aligned along the substrate with an average misorientation of ˜12 . Branched growth of bundles of nano-needles occurs with further increase of F^-, and finally, growth of highly porous structures as well as microspheres takes place when the F^- concentration exceeds 5 mM. In comparison with real tooth enamel structures, the relationship between enamel microstructures and tooth caries as well as fluorosis is discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.

    Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cellmore » represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Furthermore, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.« less

  4. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  5. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.

    PubMed

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-08-21

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.

  6. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-07-01

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.

  7. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties

    PubMed Central

    Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego

    2017-01-01

    The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented. PMID:28772436

  8. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensilemore » specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.« less

  9. The Effect of Niobium Microalloying on Processing and Application Properties of Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Mohrbacher, Hardy

    Dual phase steel is widely used in today's car body manufacturing. Its characteristics of high n-value and good elongation (A80) are the basis of good press formability. However, practical experience has shown unexpected failure in forming operations where tight bending, stretch flanging or hole expansion are predominant. The inhomogeneous microstructure of soft ferrite and hard martensite in combination with highly localized straining is the origin of these problems. Furthermore, weldability and delayed cracking have been experienced to cause problems in ultra-high strength DP steel. Refinement and homogenization of the two-phase microstructure as well as lowering of the carbon content have been identified as remedies to the mentioned problems. However, mill processing of DP steel with reduced carbon content is more difficult especially for the higher strength levels. Niobium microalloying proved to be very effective in increasing the processing window of low-carbon DP steels besides of its natural effect of refining the microstructure. Meanwhile the production of niobium microalloyed DP steel has been established in several markets including China. The paper details the fundamentals, demonstrates respective production concepts and presents examples of application of Nb-microalloyed DP steels.

  10. Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    NASA Astrophysics Data System (ADS)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.

    2016-10-01

    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

  11. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  12. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  13. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  14. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  15. Temperature stability of coercivity in mischmetal-Fe-Co-B melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Hong-Rui; Liu, Yao; Zuo, Shu-Lan; Xiong, Jie-Fu; Zuo, Wen-Liang; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2018-05-01

    Coercivity temperature coefficient (β) of the permanent magnet depends on its intrinsic magnetic properties and microstructure. In this paper, the relationship between β and the temperature stabilities of magnetocrystalline anisotropy field (H a ) and saturation magnetization (M s ) as well as the microstructure is discussed. Regarding two concerned microstructural factors: grain size and grain boundary, coercivity thermal-stabilities of MM13.5Fe79.5B7 (MM-mischmetal: unseparated La-Ce-Pr-Nd alloy) and MMxFe94‑xB6 (x = 12, 13, 14, 15, 16, 19) melt-spun ribbons, respectively, are investigated. High β values near the theoretical limit are obtained either by decreasing grain size or by reducing MM percentage. In addition, coercivities above room temperature of MM13.5Fe79.5‑yCoyB7 (y = 0, 3, 6, 9, 12, 15) melt-spun ribbons are measured. The detailed influences of Co substitutions on β are analyzed, and the weak temperature dependence of M s is proved to the reason for the observed decrease of β. These findings suggest that proper strategy to minimize local stray fields is the key to enhance coercivity thermal-stability of 2:14:1 structure magnet.

  16. Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys

    NASA Astrophysics Data System (ADS)

    Król, M.; Tański, T.; Sitek, W.

    2015-11-01

    The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point

  17. X-ray tomographic microscopy analysis of the dendrite orientation transition in Al-Zn

    NASA Astrophysics Data System (ADS)

    Friedli, Jonathan; Fife, Julie L.; Di Napoli, Paolo; Rappaz, Michel

    2012-07-01

    Recently, Gonzales and Rappaz [Met. Mat. Trans. A37:2797, 2006] showed the influence of an increasing zinc content on the growth directions of aluminum dendrites. langle100rangle and langle110rangle dendrites were observed below 25wt.% and above 55wt.% zinc, respectively, whereas textured seaweeds and langle320rangle dendrites were observed at intermediate compositions. Considering the complexity of these structures, it is necessary to first characterize them in further details and second, to model them using the phase field method. The so-called Dendrite Orientation Transition (DOT) was thus reinvestigated in quenched Bridgman solidification samples. The combination of X-ray tomographic microscopy and electron backscattered diffraction (EBSD) analysis on a whole range of compositions, from 5 to 90wt.% Zn, allowed insights with unprecedented details about texture, growth directions and mechanisms of the aforementioned structures. We show that seaweeds rather than dendrites are found at all intermediate compositions. Their growth was confirmed to be constrained within a (100) symmetry plane. However, new findings indicate that the observed macroscopic texture does not necessarily correspond to the actual growth directions of the microstructure. Further, it seems to operate by an alternating growth direction mechanism and could be linked to the competition between the langle100rangle and langle110rangle characters of regular dendrites observed at the limits of the DOT. These characters, as well as 3D seaweeds, are observed in phase-field simulations of equiaxed growth and directional solidification, respectively. This study emphasizes the importance of accurate experimental data to validate numerical models and details the progress that such combinations provide for the understanding of growth mechanisms.

  18. Provenance study through analysis of microstructural characteristics using an optical microscope and scanning electron microscopy for Goryeo celadon excavated from the seabed.

    PubMed

    Min-su, Han

    2013-08-01

    This paper aims at identifying the provenance of Goryeo celadons by understanding its microstructural characteristics, such as particles, blisters, forms and amount of pores, and the presence of crystal formation, bodies, and glazes and its boundary, using an optical microscope and scanning electron microscopy (SEM). The analysis of the reproduced samples shows that the glazed layer of the sherd fired at higher temperatures has lower viscosity and therefore it encourages the blisters to be combined together and the layer to become more transparent. In addition, the result showed that the vitrification and melting process of clay minerals such as feldspars and quartzs on the bodies was accelerated for those samples. To factor such characteristics of the microstructure and apply it to the sherds, the samples could be divided into six categories based on status, such as small particles with many small pores or mainly large and small circular pores in the bodies, only a limited number of varied sized blisters in the glazes, and a few blisters and needle-shaped crystals on the boundary surface. In conclusion, the analysis of the microstructural characteristics using an optical microscope and SEM have proven to be useful as a categorizing reference factor in a provenance study on Goryeo celadons.

  19. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure

    PubMed Central

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-01-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058

  20. Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater

    NASA Astrophysics Data System (ADS)

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping

    2011-12-01

    Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.

Top