NASA Astrophysics Data System (ADS)
Cantrell, Jason T.
This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.
Geometric Modelling of Tree Roots with Different Levels of Detail
NASA Astrophysics Data System (ADS)
Guerrero Iñiguez, J. I.
2017-09-01
This paper presents a geometric approach for modelling tree roots with different Levels of Detail, suitable for analysis of the tree anchoring, potentially occupied underground space, interaction with urban elements and damage produced and taken in the built-in environment. Three types of tree roots are considered to cover several species: tap root, heart shaped root and lateral roots. Shrubs and smaller plants are not considered, however, a similar approach can be considered if the information is available for individual species. The geometrical approach considers the difficulties of modelling the actual roots, which are dynamic and almost opaque to direct observation, proposing generalized versions. For each type of root, different geometric models are considered to capture the overall shape of the root, a simplified block model, and a planar or surface projected version. Lower detail versions are considered as compatibility version for 2D systems while higher detail models are suitable for 3D analysis and visualization. The proposed levels of detail are matched with CityGML Levels of Detail, enabling both analysis and aesthetic views for urban modelling.
A Detailed Picture of the (93) Minerva Triple System
NASA Astrophysics Data System (ADS)
Marchis, F.; Descamps, P.; Dalba, P.; Enriquez, J. E.; Durech, J.; Emery, J. P.; Berthier, J.; Vachier, F.; Merlbourne, J.; Stockton, A. N.; Fassnacht, C. D.; Dupuy, T. J.
2011-10-01
We developed an orbital model of the satellites of (93) Minerva based on Keck II AO observations recorded in 2009 and a mutual event between one moon and the primary detected in March 2010. Using new lightcurves we found an approximated ellipsoid shape model for the primary. With a reanalysis of the IRAS data, we derived a preliminary bulk density of 1.5±0.2 g/cc. We will present a detailed analysis of the system, including a 3D shape model of the 93 Minerva primary derived by combining our AO observations, lightcurve, and stellar occultations.
Gritsun, Taras A; le Feber, Joost; Rutten, Wim L C
2012-01-01
A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.
Comet 67P/Churyumov-Gerasimenko: Non-Gravitational Forces Based on its Detailed Shape
NASA Astrophysics Data System (ADS)
Keller, Horst Uwe; Mottola, Stefano; Skorov, Yuri; Davidsson, Björn; Gutiérrez, Pedro; Jorda, Laurent; Maquet, Lucie
2015-11-01
Non-gravitational forces caused by sublimation on a cometary nucleus influence its orbital parameters and its rotational properties. Based on thermal models and rough estimates of the nucleus shape properties such as its mass and density can be derived [1, 2]. The uncertainty of the nucleus shape influences the quality of the results. Changes of the angular momentum of the nucleus rotation are more strongly influenced by details of the shape and surface. The long term observations of the nucleus of comet 67P/Churyumov-Gerasimenko by OSIRIS [3] during the rendezvous with ESA’s Rosetta spacecraft result in a very detailed shape model [3]. We use a shape model with > 105 facets to simulate the distributed forces due to sublimation and to calculate their exerted torques. The determination of the overall activity and its spatial and timely distribution over the nucleus remains a major challenge. Early observations revealed that the rotation period had changed from its last perihelion passage in 2009 [4]. The detailed shape model along with thermal modeling makes it possible to calculate the diurnal activity of the facets [6, 7]. The net torque integrated over the whole surface causes a change in the angular momentum. We also calculate the forces acting on the motion of the nucleus. This can be monitored by determinations of the spacecraft positions during the Rosetta mission. We will compare our results with the traditional approach to calculate the non-gravitational forces [8].[1, 2] Davidsson, B. J. R. & Gutiérrez, P. J., Icarus, 168, 392, 2004, Icarus, 176, 453, 2005[3] H. U. Keller, C. Barbieri, P. Lamy, H. Rickman, R. Rodrigo, K.-P. Wenzel, H. Sierks, M. A’Hearn, F. Angrilli, M. Angulo, et al., SSR, 128 (1-4): 433-506, 2007.[4] Preusker, F., Scholten, F., Matz, K.-D., et al., Astronomy & Astrophysics, accepted, 2015[5] S. Mottola, S. Lowry, C. Snodgrass, P. Lamy, I. Toth, et al. A&A, 569: L2, Sept. 2014.[6] H. U. Keller, S. Mottola, B. Davidsson, S. Schröder, Y. Skorov, E. Kührt, et al.. A&A, in press[7] H. U. Keller, S. Mottola, Y. V. Skorov, and L. Jorda, Astronomy and Astrophysics Letter , 2015.[8] B. G. Marsden, Z. Sekanina, and D. K. Yeomans, Astronomical Journal, 78: 211, Mar. 1973.
VizieR Online Data Catalog: NGC 6302 CO emission SHAPE model (Santander-Garcia+, 2017)
NASA Astrophysics Data System (ADS)
Santander-Garcia, M.; Bujarrabal, V.; Alcolea, J.; Castro-Carrizo, A.; Sanchez Contreras, C.; Quintana-Lacaci, G.; Corradi, R. L. M.; Neri, R.
2016-08-01
SHAPE model of the 12CO and 13CO J=3-2 emission o nebula NGC 6302, to be matched to ALMA observations as described in the paper. The file is intended to be loaded with SHAPE v5 (http://www.astrosen.unam.mx/shape/) and makes use of the SHAPEMOL plugin to achieve the radiative transfer in CO species (i.e. The CO data tables in http://www.astrosen.unam.mx/shape/v5/Downloads/SHAPE_INSTALLERS/index. html must be downloaded and pointed at within SHAPE). For additional details on how to work with SHAPE+SHAPEMOL, see Santander-Garcia et al. (2015, Cat. J/A+A/573/A56). (1 data file).
Asteroid spin and shape modelling using two lightcurve inversion methods
NASA Astrophysics Data System (ADS)
Marciniak, Anna; Bartczak, Przemyslaw; Konstanciak, Izabella; Dudzinski, Grzegorz; Mueller, Thomas G.; Duffard, Rene
2016-10-01
We are conducting an observing campaign to counteract strong selection effects in photometric studies of asteroids. Our targets are long-period (P>12 hours) and low-amplitude (a_max<0.25 mag) asteroids, that although numerous, have poor lightcurve datasets (Marciniak et al. 2015, PSS 118, 256). As a result such asteroids are very poorly studied in terms of their spins and shapes. Our campaign targets a sample of around 100 bright (H<11 mag) main belt asteroids sharing both of these features, resulting in a few tens of new composite lightcurves each year. At present the data gathered so far allowed to construct detailed models for the shape and spin for about ten targets.In this study we perform spin and shape modelling using two lightcurve inversion methods: convex inversion (Kaasalainen et al. 2001, Icarus, 153, 37) and nonconvex SAGE modelling algorithm (Shaping Asteroids with Genetic Evolution, Bartczak et al. 2014, MNRAS, 443, 1802). These two methods are independent from each other, and are based on different assumptions for the shape.Thus, the results obtained on the same datasets provide a cross-check of both the methods and the resulting spin and shape models. The results for the spin solutions are highly consistent, and the shape models are similar, though the ones from SAGE algorithm provide more details of the surface features. Nonconvex shape produced by SAGE have been compared with direct images from spacecrafts and the first results for targets like Eros or Lutetia (Batczak et al. 2014, ACM conf. 29B) provide a high level of agreement.Another way of validation is the shape model comparison with the asteroid shape contours obtained using different techniques (like the stellar occultation timings or adaptive optics imaging) or against data in thermal infrared range gathered by ground and space-bound observatories. The thermal data could provide assignment of size and albedo, but also can help to resolve spin-pole ambiguities. In special cases, the thermal data from Spitzer and Wise/NEOWise might even help in testing specific shape features via thermal infrared lightcurves.
Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modeling
NASA Astrophysics Data System (ADS)
Simmel, M.; Bühl, J.; Ansmann, A.; Tegen, I.
2015-09-01
The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather high temperatures of -6 °C. For comparison, a second mixed phase case at about -25 °C is introduced. To further look into the details of cloud microphysical processes, a simple dynamics model of the Asai-Kasahara (AK) type is combined with detailed spectral microphysics (SPECS) forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics, as well as main cloud features, to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity), whereas the ice phase is much more sensitive to the microphysical parameters (ice nucleating particle (INP) number, ice particle shape). The choice of ice particle shape may induce large uncertainties that are on the same order as those for the temperature-dependent INP number distribution.
Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modelling
NASA Astrophysics Data System (ADS)
Simmel, M.; Bühl, J.; Ansmann, A.; Tegen, I.
2015-01-01
The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather warm temperatures of -6 °C. For comparison, a second mixed phase case at about -25 °C is introduced. To further look into the details of cloud microphysical processes a simple dynamics model of the Asai-Kasahara type is combined with detailed spectral microphysics forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics as well as main cloud features to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity) whereas the ice phase is much more sensitive to the microphysical parameters (ice nuclei (IN) number, ice particle shape). The choice of ice particle shape may induce large uncertainties which are in the same order as those for the temperature-dependent IN number distribution.
Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept
NASA Technical Reports Server (NTRS)
Wintzer, Mathias; Ordaz, Irian; Fenbert, James W.
2015-01-01
The detailed outer mold line shaping of a Mach 1.6, demonstrator-sized low-boom concept is presented. Cruise trim is incorporated a priori as part of the shaping objective, using an equivalent-area-based approach. Design work is performed using a gradient-driven optimization framework that incorporates a three-dimensional, nonlinear flow solver, a parametric geometry modeler, and sensitivities derived using the adjoint method. The shaping effort is focused on reducing the under-track sonic boom level using an inverse design approach, while simultaneously satisfying the trim requirement. Conceptual-level geometric constraints are incorporated in the optimization process, including the internal layout of fuel tanks, landing gear, engine, and crew station. Details of the model parameterization and design process are documented for both flow-through and powered states, and the performance of these optimized vehicles presented in terms of inviscid L/D, trim state, pressures in the near-field and at the ground, and predicted sonic boom loudness.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
PMT waveform modeling at the Daya Bay experiment
NASA Astrophysics Data System (ADS)
Sören, Jetter; Dan, Dwyer; Jiang, Wen-Qi; Liu, Da-Wei; Wang, Yi-Fang; Wang, Zhi-Min; Wen, Liang-Jian
2012-08-01
Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented, including the single photoelectron charge response, waveform shape, nonlinearity, saturation, overshoot, oscillation, prepulsing, and afterpulsing. The results were used to build a detailed model of the PMT signal characteristics over a wide range of light intensities. Including the PMT model in simulated Daya Bay particle interactions shows no significant systematic effects that are detrimental to the experimental sensitivity.
L-shaped piezoelectric motor--part II: analytical modeling.
Avirovik, Dragan; Karami, M Amin; Inman, Daniel; Priya, Shashank
2012-01-01
This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM). © 2012 IEEE
Shape-driven 3D segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2006-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.
Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly.
Fonseca, Pedro; Romano, Flavio; Schreck, John S; Ouldridge, Thomas E; Doye, Jonathan P K; Louis, Ard A
2018-04-07
Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.
Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly
NASA Astrophysics Data System (ADS)
Fonseca, Pedro; Romano, Flavio; Schreck, John S.; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.
2018-04-01
Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.
Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia
2016-05-31
Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease.
Response properties in the adsorption-desorption model on a triangular lattice
NASA Astrophysics Data System (ADS)
Šćepanović, J. R.; Stojiljković, D.; Jakšić, Z. M.; Budinski-Petković, Lj.; Vrhovac, S. B.
2016-06-01
The out-of-equilibrium dynamical processes during the reversible random sequential adsorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. We focused on the influence of the order of symmetry axis of the shape on the response of the reversible RSA model to sudden perturbations of the desorption probability Pd. We provide a detailed discussion of the significance of collective events for governing the time coverage behavior of shapes with different rotational symmetries. We calculate the two-time density-density correlation function C(t ,tw) for various waiting times tw and show that longer memory of the initial state persists for the more symmetrical shapes. Our model displays nonequilibrium dynamical effects such as aging. We find that the correlation function C(t ,tw) for all objects scales as a function of single variable ln(tw) / ln(t) . We also study the short-term memory effects in two-component mixtures of extended objects and give a detailed analysis of the contribution to the densification kinetics coming from each mixture component. We observe the weakening of correlation features for the deposition processes in multicomponent systems.
Exploratory study of the relations between spatial ability and drawing from memory.
Czarnolewski, Mark Y; Eliot, John
2012-04-01
Test scores of 119 students, attending either a public four-year college or a technical school, were related to their proportionality and detail drawing scores on the Memory for Designs Test. In regression models, the ETS Maze Tracing, Eliot-Price Mental Rotations, and Bender-Gestalt tests were consistent predictors of proportionality scores, with the latter two tests uniquely related to these. The ETS Shapes Memory Test and the Form Board Test were the strongest predictors for detail accuracy scores. The Shapes test predicted proportionality when the CTY Visual Memory Test BB was excluded. The models then provided support for the hypothesis that drawing designs from memory, a critical skill in drawing, regardless of whether one focuses on accuracy for proportionality scores or for detail scores, is jointly related to the measures of recognition, production, and traditional spatial ability measures. This study identified multifaceted skills in drawing from memory.
Shape-Driven 3D Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2013-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875
Resonance and streaming of armored microbubbles
NASA Astrophysics Data System (ADS)
Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric
2015-11-01
A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.
An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization.
Jalba, Andrei C; Sobiecki, Andre; Telea, Alexandru C
2016-01-01
Computing skeletons of 2D shapes, and medial surface and curve skeletons of 3D shapes, is a challenging task. In particular, there is no unified framework that detects all types of skeletons using a single model, and also produces a multiscale representation which allows to progressively simplify, or regularize, all skeleton types. In this paper, we present such a framework. We model skeleton detection and regularization by a conservative mass transport process from a shape's boundary to its surface skeleton, next to its curve skeleton, and finally to the shape center. The resulting density field can be thresholded to obtain a multiscale representation of progressively simplified surface, or curve, skeletons. We detail a numerical implementation of our framework which is demonstrably stable and has high computational efficiency. We demonstrate our framework on several complex 2D and 3D shapes.
A Statistical Analysis of YORP Coefficients
NASA Astrophysics Data System (ADS)
McMahon, Jay W.; Scheeres, D.
2013-10-01
The YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect is theorized to be a major factor in the evolution of small asteroids (<10 km) in the near-Earth and main belt populations. YORP torques, which originate from absorbed sunlight and subsequent thermal radiation, causes secular changes in an asteroid's spin rate and spin vector orientation (e.g. Rubincam, Journal of Geophysical Research, 1995). This in turn controls the magnitude and direction of the Yarkovsky effect, which causes a drift in an asteroid's heliocentric semi-major axis (Vokrouhlicky and Farinella, Nature, 2000). YORP is also thought to be responsible for the creation of multiple asteroid systems and asteroid pairs through the process of rotational fission (Pravec et al, Nature, 2010). Despite the fact that the YORP effect has been measured on several asteroids (e.g. Taylor et al, Science, 2007 and Kaasalainen et al, Nature, 2007), it has proven very difficult to predict the effect accurately from a shape model due to the sensitivity of the YORP coefficients to shape changes (Statler, Icarus, 2009). This has been especially troublesome for Itokawa, for which a very detailed shape model is available (Scheeres et al, Icarus 2007; Breiter et al, Astronomy & Astrophysics, 2009). In this study, we compute the YORP coefficients for a number asteroids with detailed shape models available on the PDS-SBN. We then statistically perturb the asteroid shapes at the same resolution, creating a family of YORP coefficients for each shape. Next, we analyze the change in YORP coefficients between a shape model of accuracy obtainable from radar with one including small-scale topography on the surface as was observed on Itokawa. The combination of these families of coefficients will effectively give error bars on our knowledge of the YORP coefficients given a shape model of some accuracy. Finally, we discuss the statistical effect of boulder and craters, and the modification of these results due to recent studies on thermal beaming (Rozitis and Green, Mon. Not. R. Astron. Soc., 2012) and "tangential" YORP (Golubov and Krugly, The Astrophysical Journal Letters, 2012).
Fu, Guifang; Dai, Xiaotian; Symanzik, Jürgen; Bushman, Shaun
2017-01-01
Leaf shape traits have long been a focus of many disciplines, but the complex genetic and environmental interactive mechanisms regulating leaf shape variation have not yet been investigated in detail. The question of the respective roles of genes and environment and how they interact to modulate leaf shape is a thorny evolutionary problem, and sophisticated methodology is needed to address it. In this study, we investigated a framework-level approach that inputs shape image photographs and genetic and environmental data, and then outputs the relative importance ranks of all variables after integrating shape feature extraction, dimension reduction, and tree-based statistical models. The power of the proposed framework was confirmed by simulation and a Populus szechuanica var. tibetica data set. This new methodology resulted in the detection of novel shape characteristics, and also confirmed some previous findings. The quantitative modeling of a combination of polygenetic, plastic, epistatic, and gene-environment interactive effects, as investigated in this study, will improve the discernment of quantitative leaf shape characteristics, and the methods are ready to be applied to other leaf morphology data sets. Unlike the majority of approaches in the quantitative leaf shape literature, this framework-level approach is data-driven, without assuming any pre-known shape attributes, landmarks, or model structures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Shape analysis modeling for character recognition
NASA Astrophysics Data System (ADS)
Khan, Nadeem A. M.; Hegt, Hans A.
1998-10-01
Optimal shape modeling of character-classes is crucial for achieving high performance on recognition of mixed-font, hand-written or (and) poor quality text. A novel scheme is presented in this regard focusing on constructing such structural models that can be hierarchically examined. These models utilize a certain `well-thought' set of shape primitives. They are simplified enough to ignore the inter- class variations in font-type or writing style yet retaining enough details for discrimination between the samples of the similar classes. Thus the number of models per class required can be kept minimal without sacrificing the recognition accuracy. In this connection a flexible multi- stage matching scheme exploiting the proposed modeling is also described. This leads to a system which is robust against various distortions and degradation including those related to cases of touching and broken characters. Finally, we present some examples and test results as a proof-of- concept demonstrating the validity and the robustness of the approach.
Assessing Shape Characteristics of Jupiter Trojans in the Kepler Campaign 6 Field
NASA Astrophysics Data System (ADS)
Sharkey, Benjamin; Ryan, Erin L.; Woodward, Charles E.
2017-10-01
We report estimates of spin pole orientations and body-centric axis ratios of nine Jupiter Trojan asteroids through convex shape models derived from Kepler K2 photometry. Our sample contains single-component as well as candidate binary systems (identified through lightcurve features). Photometric baselines on the targets covered 7 to 93 full rotation periods. By incorporating a bias against highly elongated physical shapes, spin vector orientations of single-component systems were constrained to several discrete regions. Single-component convex models failed to converge on two binary candidates while two others demonstrated pronounced tapering that may be consistent with concavities of contact binaries. Further work to create two-component models is likely necessary to constrain the candidate binary targets. We find that Kepler K2 photometry provides robust datasets capable of providing detailed information on physical shape parameters of Jupiter Trojans.
A Comprehensive Multi-Level Model for Campus-Based Leadership Education
ERIC Educational Resources Information Center
Rosch, David; Spencer, Gayle L.; Hoag, Beth L.
2017-01-01
Within this application brief, we propose a comprehensive model for mapping the shape and optimizing the effectiveness of leadership education in campus-wide university settings. The four-level model is highlighted by inclusion of a philosophy statement detailing the values and purpose of leadership education on campus, a set of skills and…
Development of a 3D rockfall simulation model for point cloud topography
NASA Astrophysics Data System (ADS)
Noël, François; Wyser, Emmanuel; Jaboyedoff, Michel; Clouthier, Catherine; Locat, Jacques
2017-04-01
Rockfall simulations are generally used, for example, as input data to generate rockfall susceptibility map, to evaluate the reach probability of an infrastructure or to define input parameter values for mitigation designs. During the simulations, the lateral and vertical deviations of the particle and the change of velocity happening during the impacts have to be evaluated. Numerous factors control rockfall paths and velocities, like the particle's and terrain's shapes and compositions. Some models, especially the ones using discrete element methods, can consider a lot of physical factors. However, a compromise often has to be done between the time needed to produce a sufficient amount of 2D or 3D rockfall trajectories and the level of complexity of the model. In this presentation, the current version of our rockfall model in development is detailed and the compromises that were made are explained. For example, it is hard to predict the sizes and shapes of the components that could fall from a developing rock instability, or if they will break after the first impact or stay as massive blocks. For this reason, we decided for now to simplify the particle's shape to a sphere which can vary in size and to use a cubical shape to compute the 3D rotational inertia. In contrast to the particle's characteristics, the terrain's shape is known and can be acquired in detail using current topographical acquisition methods, e.g. airborne and terrestrial laser scans and aerial based structure from motion. We made no sacrifice on that side and developed our model so it can simulate rockfalls directly on 3D point clouds topographical data. It is also been shown that calibrating velocity weighting factors, often called restitution coefficients, is not an easy task. Divergent results could be obtained by different users using the same simulation program simply because they use different weighting factors, which are hard to evaluate and quantify from field work. Moreover, the normal velocity weighting factor does not seems to be constant as the impact conditions change, even if the terrain composition does not change. It could be correlated with the incident angle. We then decided for now to let impact characteristics control velocity changes with some variability and to use the detailed topographic representation to control the direction after a rebound. As a high topographical level of detail is used, less random variability is needed. Therefore, it would be easier for different users working on the same study area to get similar results as long as detailed enough topographical data are used. Some applications cases are also shown. Further development should focus on more calibration with known rockfall events, taking into account impact against trees and fragmentation of rock blocks, and improving the impact model by studying impacts on different terrain compositions from a mechanical approach using discrete element method based simulations.
In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.
Gan, Chaoye; Wang, Zhexuan; Chen, Yong
2017-04-01
The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Advanced transcatheter aortic valve implantation (TAVI) planning from CT with ShapeForest.
Swee, Joshua K Y; Grbić, Saša
2014-01-01
Transcatheter aortic valve implantation (TAVI) is becoming a standard treatment for non-operable and high-risk patients with symptomatic severe aortic valve stenosis. As there is no direct view or access to the affected anatomy, comprehensive preoperative planning is crucial for a successful outcome, with the most important decisions made during planning being the selection of the proper implant size, and determining the correct C-arm angulations. While geometric models extracted from 3D images are often used to derive these measurements, the complex shape variation of the AV anatomy found in these patients causes many of the shape representations used to estimate such geometric models to fail in capturing morphological characteristics in sufficient detail. In addition, most current approaches only model the aortic valve (AV), omitting modeling the left ventricle outflow tract (LVOT) entirely despite its high correlation with severe complications such as annulus ruptures, paravalvular leaks and myocardial infarction. We propose a fully automated method to extract patient specific models of the AV and the LVOT, and derive comprehensive biomarkers for accurate TAVI planning. We utilize a novel shape representation--the ShapeForest--which is able to model complex shape variation, preserves local shape information, and incorporates prior knowledge during shape space inference. Extensive quantitative and qualitative experiments performed on 630 volumetric data sets demonstrate an accuracy of 0.69 mm for the AV and 0.83 mm for the LVOT, an improvement of over 16% and 18% respectively when compared against state of the art methods.
Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature
NASA Astrophysics Data System (ADS)
Wysocki, Adam; Elgeti, Jens; Gompper, Gerhard
2015-05-01
The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.
Simplified model of pinhole imaging for quantifying systematic errors in image shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, Laura Robin; Izumi, N.; Khan, S. F.
In this paper, we examine systematic errors in x-ray imaging by pinhole optics for quantifying uncertainties in the measurement of convergence and asymmetry in inertial confinement fusion implosions. We present a quantitative model for the total resolution of a pinhole optic with an imaging detector that more effectively describes the effect of diffraction than models that treat geometry and diffraction as independent. This model can be used to predict loss of shape detail due to imaging across the transition from geometric to diffractive optics. We find that fractional error in observable shapes is proportional to the total resolution element wemore » present and inversely proportional to the length scale of the asymmetry being observed. Finally, we have experimentally validated our results by imaging a single object with differently sized pinholes and with different magnifications.« less
Simplified model of pinhole imaging for quantifying systematic errors in image shape
Benedetti, Laura Robin; Izumi, N.; Khan, S. F.; ...
2017-10-30
In this paper, we examine systematic errors in x-ray imaging by pinhole optics for quantifying uncertainties in the measurement of convergence and asymmetry in inertial confinement fusion implosions. We present a quantitative model for the total resolution of a pinhole optic with an imaging detector that more effectively describes the effect of diffraction than models that treat geometry and diffraction as independent. This model can be used to predict loss of shape detail due to imaging across the transition from geometric to diffractive optics. We find that fractional error in observable shapes is proportional to the total resolution element wemore » present and inversely proportional to the length scale of the asymmetry being observed. Finally, we have experimentally validated our results by imaging a single object with differently sized pinholes and with different magnifications.« less
NASA Astrophysics Data System (ADS)
Iqtait, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.
NASA Astrophysics Data System (ADS)
Simmel, Martin; Bühl, Johannes; Ansmann, Albert; Tegen, Ina
2015-04-01
The present work combines remote sensing observations and detailed microphysics cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather warm temperatures of -6°C. For comparison, a second mixed phase case at about -25°C is introduced. To further look into the details of cloud microphysical processes a simple dynamics model of the Asai-Kasahara type is combined with detailed spectral microphysics forming the model system AK-SPECS. Temperature and humidity profiles are taken either from observation (radiosonde) or GDAS reanalysis. Vertical velocities are prescribed to force the dynamics as well as main cloud features to be close to the observations. Subsequently, sensitivity studies with respect to dynamical as well as ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity) whereas the ice phase is much more sensitive to the microphysical parameters (ice nuclei (IN) number, ice particle shape). The choice of ice particle shape may induce large uncertainties which are in the same order as those for the temperature-dependent IN number distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.
An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.
Constitutive modeling of glassy shape memory polymers
NASA Astrophysics Data System (ADS)
Khanolkar, Mahesh
The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.
NASA Astrophysics Data System (ADS)
Zhang, Shuqing; Wang, Yongquan; Zhi, Xiyang
2017-05-01
A method of diminishing the shape error of membrane mirror is proposed in this paper. The inner inflating pressure is considerably decreased by adopting the pre-shaped membrane. Small deformation of the membrane mirror with greatly reduced shape error is sequentially achieved. Primarily a finite element model of the above pre-shaped membrane is built on the basis of its mechanical properties. Then accurate shape data under different pressures can be acquired by iteratively calculating the node displacements of the model. Shape data are applicable to build up deformed reflecting surfaces for the simulative analysis in ZEMAX. Finally, ground-based imaging experiments of 4-bar targets and nature scene are conducted. Experiment results indicate that the MTF of the infrared system can reach to 0.3 at a high spatial resolution of 10l p/mm, and texture details of the nature scene are well-presented. The method can provide theoretical basis and technical support for the applications in lightweight optical components with ultra-large apertures.
NASA Astrophysics Data System (ADS)
Dallmann, N. A.; Carlsten, B. E.; Stonehill, L. C.
2017-12-01
Orbiting nuclear spectrometers have contributed significantly to our understanding of the composition of solar system bodies. Gamma rays and neutrons are produced within the surfaces of bodies by impacting galactic cosmic rays (GCR) and by intrinsic radionuclide decay. Measuring the flux and energy spectrum of these products at one point in an orbit elucidates the elemental content of the area in view. Deconvolution of measurements from many spatially registered orbit points can produce detailed maps of elemental abundances. In applying these well-established techniques to small and irregularly shaped bodies like Phobos, one encounters unique challenges beyond those of a large spheroid. Polar mapping orbits are not possible for Phobos and quasistatic orbits will realize only modest inclinations unavoidably limiting surface coverage and creating North-South ambiguities in deconvolution. The irregular shape causes self-shadowing both of the body to the spectrometer but also of the body to the incoming GCR. The view angle to the surface normal as well as the distance between the surface and the spectrometer is highly irregular. These characteristics can be synthesized into a complicated and continuously changing measurement system point spread function. We have begun to explore different model-based, statistically rigorous, iterative deconvolution methods to produce elemental abundance maps for a proposed future investigation of Phobos. By incorporating the satellite orbit, the existing high accuracy shape-models of Phobos, and the spectrometer response function, a detailed and accurate system model can be constructed. Many aspects of this model formation are particularly well suited to modern graphics processing techniques and parallel processing. We will present the current status and preliminary visualizations of the Phobos measurement system model. We will also discuss different deconvolution strategies and their relative merit in statistical rigor, stability, achievable resolution, and exploitation of the irregular shape to partially resolve ambiguities. The general applicability of these new approaches to existing data sets from Mars, Mercury, and Lunar investigations will be noted.
Evidence from mixed hydrate nucleation for a funnel model of crystallization.
Hall, Kyle Wm; Carpendale, Sheelagh; Kusalik, Peter G
2016-10-25
The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes.
Evidence from mixed hydrate nucleation for a funnel model of crystallization
Hall, Kyle Wm.; Carpendale, Sheelagh; Kusalik, Peter G.
2016-01-01
The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes. PMID:27790987
Fast multiview three-dimensional reconstruction method using cost volume filtering
NASA Astrophysics Data System (ADS)
Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.
2014-03-01
As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lon N. Haney; David I. Gertman
2003-04-01
Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less
DAMIT: a database of asteroid models
NASA Astrophysics Data System (ADS)
Durech, J.; Sidorin, V.; Kaasalainen, M.
2010-04-01
Context. Apart from a few targets that were directly imaged by spacecraft, remote sensing techniques are the main source of information about the basic physical properties of asteroids, such as the size, the spin state, or the spectral type. The most widely used observing technique - time-resolved photometry - provides us with data that can be used for deriving asteroid shapes and spin states. In the past decade, inversion of asteroid lightcurves has led to more than a hundred asteroid models. In the next decade, when data from all-sky surveys are available, the number of asteroid models will increase. Combining photometry with, e.g., adaptive optics data produces more detailed models. Aims: We created the Database of Asteroid Models from Inversion Techniques (DAMIT) with the aim of providing the astronomical community access to reliable and up-to-date physical models of asteroids - i.e., their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects, as well as for statistical studies of the whole set. Methods: Most DAMIT models were derived from photometric data by the lightcurve inversion method. Some of them have been further refined or scaled using adaptive optics images, infrared observations, or occultation data. A substantial number of the models were derived also using sparse photometric data from astrometric databases. Results: At present, the database contains models of more than one hundred asteroids. For each asteroid, DAMIT provides the polyhedral shape model, the sidereal rotation period, the spin axis direction, and the photometric data used for the inversion. The database is updated when new models are available or when already published models are updated or refined. We have also released the C source code for the lightcurve inversion and for the direct problem (updates and extensions will follow).
How-to-Do-It: A Physical Model Illustrating Protein Synthesis on the Ribosome.
ERIC Educational Resources Information Center
Rogerson, Allen C.; Cheney, Richard W., Jr.
1989-01-01
Describes a way to help students grasp intermediate steps in the movement and relationships of the various components involved in the addition of an amino acid to a nascent peptide chain. Includes drawings of the model in operation, construction details, and suggested shapes and labeling of components. (RT)
Linear structures on the small inner satellites of Saturn
NASA Technical Reports Server (NTRS)
Stooke, Philip J.
1993-01-01
Shape modelling methods developed for non-spherical worlds were applied to four satellites of Saturn: Prometheus, Pandora, Janus, and Epimetheus. This results in the first detailed shaded relief maps of their surfaces. Ridges and valleys are described with their implications for satellite history and asteroid 951 Gaspra. They probably result from fracturing during break-up of parent bodies and/or later large impacts. Prometheus and perhaps Gaspra may be coated with debris from parent body fragmentation as well as more recent regolith. These four satellites are covered by relatively few useful images, so the shapes are imperfectly known and positions of features on maps may be wrong by up to a few tens of degrees in some areas (worst where a feature is seen only near a limb). Nevertheless, these shape models are more useful than the previous triaxial ellipsoid models.
Well bore breakouts and in situ stress
Zoback, Mark D.; Moos, Daniel; Mastin, Larry; Anderson, Roger N.
1985-01-01
The detailed cross-sectional shape of stress induced well bore breakouts has been studied using specially processed ultrasonic borehole televiewer data. Breakout shapes are shown for a variety of rock types and introduce a simple elastic failure model which explains many features of the observations. Both the observations and calculations indicate that the breakouts define relatively broad and flat curvilinear surfaces which enlarge the borehole in the direction of minimum horizontal compression. Refs.
Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems
NASA Technical Reports Server (NTRS)
He, Yuning; Davies, Misty Dawn
2014-01-01
The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images
NASA Astrophysics Data System (ADS)
Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas
2016-10-01
Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay-Doppler images.This work was supported by NASA Ames, NVIDIA, Autodesk and the SETI Institute as part of the NASA Frontier Development Lab program.
NASA Astrophysics Data System (ADS)
Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.
2018-05-01
In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.
Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, LI; Greenberg, Paul S.
1995-01-01
Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.
Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O
2008-05-01
A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.
Physical models of collective cell motility: from cell to tissue
NASA Astrophysics Data System (ADS)
Camley, B. A.; Rappel, W.-J.
2017-03-01
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Radar scattering functions using Itokawa as ground truth
NASA Astrophysics Data System (ADS)
Nolan, M.; Bramson, A.; Magri, C.
2014-07-01
Determining shape models from radar and lightcurve data is an inverse problem that involves computing the expected radar image that would result from a given shape and viewing geometry. The original work of Hudson [1] used models of radar scattering derived from observations of the terrestrial planets. Hudson verified his results using a laboratory simulation of delay-Doppler imaging. Here we compare radar data to synthetic data using the Hayabusa-derived shape model of Itokawa [2] to model Arecibo and Goldstone radar images [3,4]. The synthetic images match the observations well (see figure), but sometimes have bright pixels on the leading edge (top) of the data that are not seen in the synthetic images. We model the scattering dependence on incidence angle as a function tabulated every 0.1 degrees of incidence angle. The resulting fit is a good match to a cos^n θ distribution, but with a strong spike near (but not exactly at) zero incidence. We are studying the details of the low-angle scattering.
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
NASA Astrophysics Data System (ADS)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; ...
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
Design of a Shape Memory Alloy deployment hinge for reflector facets
NASA Technical Reports Server (NTRS)
Anders, W. S.; Rogers, C. A.
1991-01-01
A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.
Measuring the X-shaped structures in edge-on galaxies
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.
2017-11-01
We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.
Janssen, Stefan; Schudoma, Christian; Steger, Gerhard; Giegerich, Robert
2011-11-03
Many bioinformatics tools for RNA secondary structure analysis are based on a thermodynamic model of RNA folding. They predict a single, "optimal" structure by free energy minimization, they enumerate near-optimal structures, they compute base pair probabilities and dot plots, representative structures of different abstract shapes, or Boltzmann probabilities of structures and shapes. Although all programs refer to the same physical model, they implement it with considerable variation for different tasks, and little is known about the effects of heuristic assumptions and model simplifications used by the programs on the outcome of the analysis. We extract four different models of the thermodynamic folding space which underlie the programs RNAFOLD, RNASHAPES, and RNASUBOPT. Their differences lie within the details of the energy model and the granularity of the folding space. We implement probabilistic shape analysis for all models, and introduce the shape probability shift as a robust measure of model similarity. Using four data sets derived from experimentally solved structures, we provide a quantitative evaluation of the model differences. We find that search space granularity affects the computed shape probabilities less than the over- or underapproximation of free energy by a simplified energy model. Still, the approximations perform similar enough to implementations of the full model to justify their continued use in settings where computational constraints call for simpler algorithms. On the side, we observe that the rarely used level 2 shapes, which predict the complete arrangement of helices, multiloops, internal loops and bulges, include the "true" shape in a rather small number of predicted high probability shapes. This calls for an investigation of new strategies to extract high probability members from the (very large) level 2 shape space of an RNA sequence. We provide implementations of all four models, written in a declarative style that makes them easy to be modified. Based on our study, future work on thermodynamic RNA folding may make a choice of model based on our empirical data. It can take our implementations as a starting point for further program development.
NASA Technical Reports Server (NTRS)
Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.
2014-01-01
Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.
Multi Sensor Data Integration for AN Accurate 3d Model Generation
NASA Astrophysics Data System (ADS)
Chhatkuli, S.; Satoh, T.; Tachibana, K.
2015-05-01
The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.
NASA Astrophysics Data System (ADS)
Tran, H.; Hartmann, J. M.
2011-06-01
Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.
A new method of automatic landmark tagging for shape model construction via local curvature scale
NASA Astrophysics Data System (ADS)
Rueda, Sylvia; Udupa, Jayaram K.; Bai, Li
2008-03-01
Segmentation of organs in medical images is a difficult task requiring very often the use of model-based approaches. To build the model, we need an annotated training set of shape examples with correspondences indicated among shapes. Manual positioning of landmarks is a tedious, time-consuming, and error prone task, and almost impossible in the 3D space. To overcome some of these drawbacks, we devised an automatic method based on the notion of c-scale, a new local scale concept. For each boundary element b, the arc length of the largest homogeneous curvature region connected to b is estimated as well as the orientation of the tangent at b. With this shape description method, we can automatically locate mathematical landmarks selected at different levels of detail. The method avoids the use of landmarks for the generation of the mean shape. The selection of landmarks on the mean shape is done automatically using the c-scale method. Then, these landmarks are propagated to each shape in the training set, defining this way the correspondences among the shapes. Altogether 12 strategies are described along these lines. The methods are evaluated on 40 MRI foot data sets, the object of interest being the talus bone. The results show that, for the same number of landmarks, the proposed methods are more compact than manual and equally spaced annotations. The approach is applicable to spaces of any dimensionality, although we have focused in this paper on 2D shapes.
Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry
Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José
2018-01-01
Sensing advances in plant phenotyping are of vital importance in basic and applied plant research. Plant phenotyping enables the modeling of complex shapes, which is useful, for example, in decision-making for agronomic management. In this sense, 3D processing algorithms for plant modeling is expanding rapidly with the emergence of new sensors and techniques designed to morphologically characterize. However, there are still some technical aspects to be improved, such as an accurate reconstruction of end-details. This study adapted low-cost techniques, Structure from Motion (SfM) and MultiView Stereo (MVS), to create 3D models for reconstructing plants of three weed species with contrasting shape and plant structures. Plant reconstruction was developed by applying SfM algorithms to an input set of digital images acquired sequentially following a track that was concentric and equidistant with respect to the plant axis and using three different angles, from a perpendicular to top view, which guaranteed the necessary overlap between images to obtain high precision 3D models. With this information, a dense point cloud was created using MVS, from which a 3D polygon mesh representing every plants’ shape and geometry was generated. These 3D models were validated with ground truth values (e.g., plant height, leaf area (LA) and plant dry biomass) using regression methods. The results showed, in general, a good consistency in the correlation equations between the estimated values in the models and the actual values measured in the weed plants. Indeed, 3D modeling using SfM algorithms proved to be a valuable methodology for weed phenotyping, since it accurately estimated the actual values of plant height and LA. Additionally, image processing using the SfM method was relatively fast. Consequently, our results indicate the potential of this budget system for plant reconstruction at high detail, which may be usable in several scenarios, including outdoor conditions. Future research should address other issues, such as the time-cost relationship and the need for detail in the different approaches. PMID:29614039
Design of a dynamic sonar emitter inspired by hipposiderid bats.
Yang, Luhui; Yu, Allison; Mueller, Rolf
2018-06-19
The ultrasonic emission in the biosonar systems of bats such as the Old World leaf-nosed bats (family Hipposideridae) and the related horseshoe bats (family Rhinolophidae) is characterized by a unique dynamics where baffle shapes ("noseleaves") deform while diffracting the outgoing wave packets. As of now, nothing comparable to this dynamics has been used in any related engineering application (e.g., sonar or radar). Prior work with simple concave baffle shapes has demonstrated an impact of the dynamics on the emission characteristics, but it has remained unclear if this was simply due to the change in aperture size or also influenced by geometrical shape detail. Hence, it has also remained unclear if the time-variant effects reported so far could be further enhanced through different static and dynamic geometries. To address this issue, we have created a dynamic emission baffle with biomimetic shape detail modeled after Pratt's roundleaf bats (\\textit{Hipposideros pratti}). The impact of this shape's dynamic deformation on the time-variant emission characteristics was evaluated by virtue of the gradient magnitude and the entropy in the gradient orientation. The results have shown that the dynamics resulted in much larger gradients in a signal representation that changed jointly over direction and time. © 2018 IOP Publishing Ltd.
How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.
Möbius, Wolfram; Murray, Andrew W; Nelson, David R
2015-12-01
As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles.
How Obstacles Perturb Population Fronts and Alter Their Genetic Structure
Möbius, Wolfram; Murray, Andrew W.; Nelson, David R.
2015-01-01
As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle’s shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call ‘geometry-enhanced genetic drift’, complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles. PMID:26696601
Optimal sensor placement for modal testing on wind turbines
NASA Astrophysics Data System (ADS)
Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph
2016-09-01
The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
NASA Astrophysics Data System (ADS)
Wichmann, Andreas; Kada, Martin
2016-06-01
There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.
NASA Astrophysics Data System (ADS)
Sousa, Vagner Candido de; Silva, Tarcísio Marinelli Pereira; De Marqui Junior, Carlos
2017-10-01
In this paper, the combined effects of semi-passive control using shunted piezoelectric material and passive pseudoelastic hysteresis of shape memory springs on the aerolastic behavior of a typical section is investigated. An aeroelastic model that accounts for the presence of both smart materials employed as mechanical energy dissipation devices is presented. The Brinson model is used to simulate the shape memory material. New expressions for the modeling of the synchronized switch damping on inductor technique (developed for enhanced piezoelectric damping) are presented, resulting in better agreement with experimental data. The individual effects of each nonlinear mechanism on the aeroelastic behavior of the typical section are first verified. Later, the combined effects of semi-passive piezoelectric control and passive shape memory alloy springs on the post-critical behavior of the system are discussed in details. The range of post-flutter airflow speeds with stable limit cycle oscillations is significantly increased due to the combined effects of both sources of energy dissipation, providing an effective and autonomous way to modify the behavior of aeroelastic systems using smart materials.
Fingerprinting breakthrough curves in soils
NASA Astrophysics Data System (ADS)
Koestel, J. K.
2017-12-01
Conservative solute transport through soil is predominantly modeled using a few standard solute transport models like the convection dispersion equation or the mobile-immobile model. The adequacy of these models is seldom investigated in detail as it would require knowledge on the 3-D spatio-temporal evolution of the solute plume that is normally not available. Instead, shape-measures of breakthrough curves (BTCs) such as the apparent dispersivity and the relative 5%-arrival time may be used to fingerprint breakthrough curves as well as forward solutions of solute transport models. In this fashion the similarity of features from measured and modeled BTC data becomes quantifiable. In this study I am presenting a new set of shape-measures that characterize the log-log tailings of BTC. I am using the new shape measures alongside with more established ones to map the features of BTCs obtained forward models of the convective dispersive equation, log-normal and Gamma transfer functions, the mobile-immobile model and the continuous time random walk model with respect to their input parameters. In a second step, I am comparing corresponding shape-measures for 206 measured BTCs extracted from peer-reviewed literature. Preliminary results show that power-law tailings are very common in BTCs from soil samples and that BTC features that are exclusive to a mobile-immobile type solute transport process are very rarely found.
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.
Brette, Romain; Gerstner, Wulfram
2005-11-01
We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiological protocols (current-clamp injection of pulses and ramps) and apply it to a detailed conductance-based model of a regular spiking neuron. Our simple model predicts correctly the timing of 96% of the spikes (+/-2 ms) of the detailed model in response to injection of noisy synaptic conductances. The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro.
Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2014-10-01
Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding heights, widths and volumes, as well as of other geometric features that in detail describe the shape of intervertebral disc spaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian
2016-06-01
Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) (0.5 m spatial resolution), constrained by the SELENE and LRO Elevation Model (SLDEM 2015) of 60 m spatial resolution. The results indicate that local details are largely recovered by the algorithm while low frequency topographic consistency is affected by the low-resolution DEM.
Computer-aided roll pass design in rolling of airfoil shapes
NASA Technical Reports Server (NTRS)
Akgerman, N.; Lahoti, G. D.; Altan, T.
1980-01-01
This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.
Electrolyte solutions at curved electrodes. II. Microscopic approach
NASA Astrophysics Data System (ADS)
Reindl, Andreas; Bier, Markus; Dietrich, S.
2017-04-01
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
Electrolyte solutions at curved electrodes. II. Microscopic approach.
Reindl, Andreas; Bier, Markus; Dietrich, S
2017-04-21
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
Modeling and Correcting the Time-Dependent ACS PSF
NASA Technical Reports Server (NTRS)
Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie
2006-01-01
The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.
Viscous and Interacting Flow Field Effects.
1980-06-01
in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of
Symmetry remnants in the face of competing interactions in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leviatan, A., E-mail: ami@phys.huji.ac.il; Macek, M., E-mail: michal.macek@yale.edu
2015-10-15
Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.
Jack Rabbit Pretest Shadowplate Drawings For TATB IHE Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M M; McDaniel, D W
The Jack Rabbit Pretest (PT) series consisted of 5 focused hydrodynamic experiments 2021E PT3, PT4, PT5, PT6, and PT7. They were fired in March and April of 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory, Livermore, California. These experiments measured deadzone formation and impulse gradients created during the detonation of TATB based insensitive high explosive. When setting up computer simulations of the Jack Rabbit Pretest series, the modeler or code developer can execute simulations with increasing degrees of refinement using detail found in the shadowplate design. The easiest way to get started is by treating themore » shadowplate in each experiment as a monolithic homogeneous piece of stainless steel. The simulation of detonation would begin as a point initiation below the center, bottom surface of the shadowplate. The detonation running through the ultrafine TATB booster can be simulated using program burn and then switched over to a reactive flow detonation model as the detonation front crosses the boundary into the main charge LX-17 IHE. A modeler wanting to further refine the simulation and progression of shock through the shadowplate can use the more detailed shadowplate design information presented in this document. The source drawings are included in Appendix A of this document. Their titles and drawing numbers are listed. Each experiment's shadowplate consists of two major components. A 303 stainless steel shape that defines the outer dimensions of shadowplate and a cylindrical 303 stainless steel detonator housing that is located in a closely machined pocket in the shape. The SIMPLE ASSY drawing accurately represents the dimensions of the outer shape, it's machined cylindrical pocket, and detonator body which is treated as a monolithic, homogeneous piece of stainless steel. The detonator body cross section shows an accurately dimensioned void where the slapper flyer barrel, LX-16 (pressed PETN) pellet, and pellet can flyer barrel are located. The FULL ASSY drawing accurately represents the dimensions of the outer shadowplate shape and it's machined pocket. The detonator dimensions and materials are detailed in cross section and exploded view. All diameters, thicknesses, and materials are called out in the drawing. You will notice that the detonator includes a multilayer slapper assembly with two layers of electrically insulating Kapton sandwiching the copper foil bridge circuit. The Kapton insulated circuit is sandwiched between two thin stainless steel sheets. This slapper assembly is secured to the detonator body with two screws. There is a 0.25 mm gap between the slapper assembly and the outer shadowplate shape. The stainless steel detonator body contains an off-center titanium wheel. This titanium wheel is secured to the detonator body with one screw and two pins to maintain position and orientation of the pellet can assembly in the center of the detonator body. The titanium wheel contains a tantalum/tungsten washer and pellet can assembly. The pellet can assembly consists of a pressed LX-16 initiator pellet contained in an extruded aluminum foil can. It may be useful for the modeler to include some of the details of the shadowplate and detonator design to further refine simulations of the Jack Rabbit Pretest experiments. These details may be relevant to the progression of shock originating from the PETN initiation pellet and ultrafine TATB booster that propagates through the shadowplate.« less
Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.
Li, Nianbei; Ren, Jie
2014-08-29
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.
Numerical Modeling of the Deformation Behavior of Fault Bounded Lens Shaped Bodies in 2D
NASA Astrophysics Data System (ADS)
van der Zee, W.; Urai, J. L.
2001-12-01
Fault zones cause dramatic discontinuous changes in mechanical properties. The early stages of evolution of fault zones are important for its long-term behavior. We consider faults which develop from deformation bands or pre-existing joints which are the initially unconnected discontinuities. With further deformation, these coalesce into a connected network, and develop into a 'mature' fault gouge. When segments are not coplanar, soft linkage or bends in the fault plane (releasing and restraining bends, fault bounded lens-shaped bodies etc) necessarily occurs. Further movement causes additional deformation, and the fault zone has a strongly variable thickness. Here, we present the results of detailed fieldwork combined with numerical modeling on the deformation of fault bounded lens-shaped bodies in the fault zone. Detailed study of a number of lenses in the field shows that the lens is invariably more deformed than the surrounding material. This observation can be explained in several ways. In one end member most of the deformation in the future lens occurs before full coalescence of the slip planes and the formation of the lens. The other end member is that the slip planes coalesce before plastic deformation of the lens is occurring. The internal deformation of the lens occurs after the lens is formed, due to the redistributed stresses in the structure. If this is the case, then lens shaped bodies can be always expected to deform preferentially. Finite element models were used to investigate the shear behavior of a planar fault with a lens shaped body or a sinus-shaped asperity. In a sensitivity analysis, we consider different lens shapes and fault friction coefficients. Results show that 1) during slip, the asperity shears off to form a lens shaped body 2) lens interior deforms more than the surroundings, due to the redistribution of stresses 3) important parameters in this system are the length-thickness ratio of the lens and the fault friction coefficient 4) lens structures can evolve in different ways, but in the final stage the result is a lens with deformed interior In the later stages after further displacement, these zones of preferential deformation evolve into sections containing thick gouge, and the initial lens width controls long term fault gouge thickness.
A test of reproductive power in snakes.
Boback, Scott M; Guyer, Craig
2008-05-01
Reproductive power is a contentious concept among ecologists, and the model has been criticized on theoretical and empirical grounds. Despite these criticisms, the model has successfully predicted the modal (optimal) size in three large taxonomic groups and the shape of the body size distribution in two of these groups. We tested the reproductive power model on snakes, a group that differs markedly in physiology, foraging ecology, and body shape from the endothermic groups upon which the model was derived. Using detailed field data from the published literature, snake-specific constants associated with reproductive power were determined using allometric relationships of energy invested annually in egg production and population productivity. The resultant model accurately predicted the mode and left side of the size distribution for snakes but failed to predict the right side of that distribution. If the model correctly describes what is possible in snakes, observed size diversity is limited, especially in the largest size classes.
The mathematical and computer modeling of the worm tool shaping
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Lyashkov, A. A.; Ayusheev, T. V.
2017-06-01
Traditionally mathematical profiling of the worm tool is carried out on the first T. Olivier method, known in the theory of gear gearings, with receiving an intermediate surface of the making lath. It complicates process of profiling and its realization by means of computer 3D-modeling. The purpose of the work is the improvement of mathematical model of profiling and its realization based on the methods of 3D-modeling. Research problems are: receiving of the mathematical model of profiling which excludes the presence of the making lath in it; realization of the received model by means of frame and superficial modeling; development and approbation of technology of solid-state modeling for the solution of the problem of profiling. As the basic, the kinematic method of research of the mutually envelope surfaces is accepted. Computer research is executed by means of CAD based on the methods of 3D-modeling. We have developed mathematical model of profiling of the worm tool; frame, superficial and solid-state models of shaping of the mutually enveloping surfaces of the detail and the tool are received. The offered mathematical models and the technologies of 3D-modeling of shaping represent tools for theoretical and experimental profiling of the worm tool. The results of researches can be used at design of metal-cutting tools.
Shape reconstruction of irregular bodies with multiple complementary data sources
NASA Astrophysics Data System (ADS)
Kaasalainen, M.; Viikinkoski, M.; Carry, B.; Durech, J.; Lamy, P.; Jorda, L.; Marchis, F.; Hestroffer, D.
2011-10-01
Irregularly shaped bodies with at most partial in situ data are a particular challenge for shape reconstruction and mapping. We have created an inversion algorithm and software package for complementary data sources, with which it is possible to create shape and spin models with feature details even when only groundbased data are available. The procedure uses photometry, adaptive optics or other images, occultation timings, and interferometry as main data sources, and we are extending it to include range-Doppler radar and thermal infrared data as well. The data sources are described as generalized projections in various observable spaces [2], which allows their uniform handling with essentially the same techniques, making the addition of new data sources inexpensive in terms of computation time or software development. We present a generally applicable shape support that can be automatically used for all surface types, including strongly nonconvex or non-starlike shapes. New models of Kleopatra (from photometry, adaptive optics, and interferometry) and Hermione are examples of this approach. When using adaptive optics images, the main information from these is extracted from the limb and terminator contours that can be determined much more accurately than the image pixel brightnesses that inevitably contain large errors for most targets. We have shown that the contours yield a wealth of information independent of the scattering properties of the surface [3]. Their use also facilitates a very fast and robustly converging algorithm. An important concept in the inversion is the optimal weighting of the various data modes. We have developed a mathematicallly rigorous scheme for this purpose. The resulting maximum compatibility estimate [3], a multimodal generalization of the maximum likelihood estimate, ensures that the actual information content of each source is properly taken into account, and that the resolution scale of the ensuing model can be reliably estimated. We have applied our procedure to several asteroids, and the ground truth from the Rosetta/Lutetia flyby confirmed the ability of the approach to recover shape details [1] (see also Carry et al., this meeting). We have created a general flyby-version of the procedure to construct full models of planetary targets for which probe images are only available of a part of the surface (a typical setup for many planetary missions). We have successfully combined flyby images with photometry (Steins [4]) and adaptive optics images (Lutetia); the portion of the surface accurately determined by the flyby constrains the shape solution of the "dark side" efficiently.
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
Dynamics of film. [two dimensional continua theory
NASA Technical Reports Server (NTRS)
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
"Parking-garage" structures in nuclear astrophysics and cellular biophysics
NASA Astrophysics Data System (ADS)
Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Huber, Greg; Schneider, A. S.
2016-11-01
A striking shape was recently observed for the endoplasmic reticulum, a cellular organelle consisting of stacked sheets connected by helical ramps [Terasaki et al., Cell 154, 285 (2013), 10.1016/j.cell.2013.06.031]. This shape is interesting both for its biological function, to synthesize proteins using an increased surface area for ribosome factories, and its geometric properties that may be insensitive to details of the microscopic interactions. In the present work, we find very similar shapes in our molecular dynamics simulations of the nuclear pasta phases of dense nuclear matter that are expected deep in the crust of neutron stars. There are dramatic differences between nuclear pasta and terrestrial cell biology. Nuclear pasta is 14 orders of magnitude denser than the aqueous environs of the cell nucleus and involves strong interactions between protons and neutrons, while cellular-scale biology is dominated by the entropy of water and complex assemblies of biomolecules. Nonetheless, the very similar geometry suggests both systems may have similar coarse-grained dynamics and that the shapes are indeed determined by geometrical considerations, independent of microscopic details. Many of our simulations self-assemble into flat sheets connected by helical ramps. These ramps may impact the thermal and electrical conductivities, viscosity, shear modulus, and breaking strain of neutron star crust. The interaction we use, with Coulomb frustration, may provide a simple model system that reproduces many biologically important shapes.
Integrated topology and shape optimization in structural design
NASA Technical Reports Server (NTRS)
Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.
1990-01-01
Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Bingnan; Zhao Enguang; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
2011-07-15
The shapes of light normal nuclei and {Lambda} hypernuclei are investigated in the ({beta},{gamma}) deformation plane by using a newly developed constrained relativistic mean field (RMF) model. As examples, the results of some C, Mg, and Si nuclei are presented and discussed in details. We found that for normal nuclei the present RMF calculations and previous Skyrme-Hartree-Fock models predict similar trends of the shape evolution with the neutron number increasing. But some quantitative aspects from these two approaches, such as the depth of the minimum and the softness in the {gamma} direction, differ a lot for several nuclei. For {Lambda}more » hypernuclei, in most cases, the addition of a {Lambda} hyperon alters slightly the location of the ground state minimum toward the direction of smaller {beta} and softer {gamma} in the potential energy surface E{approx}({beta},{gamma}). There are three exceptions, namely, {sub {Lambda}}{sup 13}C, {sub {Lambda}}{sup 23}C, and {sub {Lambda}}{sup 31}Si in which the polarization effect of the additional {Lambda} is so strong that the shapes of these three hypernuclei are drastically different from their corresponding core nuclei.« less
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters
NASA Astrophysics Data System (ADS)
Wetterer, C.; Sheppard, D.; Hunt, B.
The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.
The outflow structure of GW170817 from late-time broad-band observations
NASA Astrophysics Data System (ADS)
Troja, E.; Piro, L.; Ryan, G.; van Eerten, H.; Ricci, R.; Wieringa, M. H.; Lotti, S.; Sakamoto, T.; Cenko, S. B.
2018-07-01
We present our broad-band study of GW170817 from radio to hard X-rays, including NuSTAR and Chandra observations up to 165 d after the merger, and a multimessenger analysis including LIGO constraints. The data are compared with predictions from a wide range of models, providing the first detailed comparison between non-trivial cocoon and jet models. Homogeneous and power-law shaped jets, as well as simple cocoon models are ruled out by the data, while both a Gaussian shaped jet and a cocoon with energy injection can describe the current data set for a reasonable range of physical parameters, consistent with the typical values derived from short GRB afterglows. We propose that these models can be unambiguously discriminated by future observations measuring the post-peak behaviour, with Fν ∝ t˜-1.0 for the cocoon and Fν∝ t˜-2.5 for the jet model.
The outflow structure of GW170817 from late time broadband observations
NASA Astrophysics Data System (ADS)
Troja, E.; Piro, L.; Ryan, G.; van Eerten, H.; Ricci, R.; Wieringa, M.; Lotti, S.; Sakamoto, T.; Cenko, S. B.
2018-04-01
We present our broadband study of GW170817 from radio to hard X-rays, including NuSTAR and Chandra observations up to 165 days after the merger, and a multi-messenger analysis including LIGO constraints. The data are compared with predictions from a wide range of models, providing the first detailed comparison between non-trivial cocoon and jet models. Homogeneous and power-law shaped jets, as well as simple cocoon models are ruled out by the data, while both a Gaussian shaped jet and a cocoon with energy injection can describe the current dataset for a reasonable range of physical parameters, consistent with the typical values derived from short GRB afterglows. We propose that these models can be unambiguously discriminated by future observations measuring the post-peak behaviour, with Fν∝t˜-1.0 for the cocoon and Fν∝t˜-2.5 for the jet model.
Linking snowflake microstructure to multi-frequency radar observations
NASA Astrophysics Data System (ADS)
Leinonen, J.; Moisseev, D.; Nousiainen, T.
2013-04-01
Spherical or spheroidal particle shape models are commonly used to calculate numerically the radar backscattering properties of aggregate snowflakes. A more complicated and computationally intensive approach is to use detailed models of snowflake structure together with numerical scattering models that can operate on arbitrary particle shapes. Recent studies have shown that there can be significant differences between the results of these approaches. In this paper, an analytical model, based on the Rayleigh-Gans scattering theory, is formulated to explain this discrepancy in terms of the effect of discrete ice crystals that constitute the snowflake. The ice crystals cause small-scale inhomogeneities whose effects can be understood through the density autocorrelation function of the particle mass, which the Rayleigh-Gans theory connects to the function that gives the radar reflectivity as a function of frequency. The derived model is a weighted sum of two Gaussian functions. A term that corresponds to the average shape of the particle, similar to that given by the spheroidal shape model, dominates at low frequencies. At high frequencies, that term vanishes and is gradually replaced by the effect of the ice crystal monomers. The autocorrelation-based description of snowflake microstructure appears to be sufficient for multi-frequency radar studies. The link between multi-frequency radar observations and the particle microstructure can thus be used to infer particle properties from the observations.
AIRID: an application of the KAS/Prospector expert system builder to airplane identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, J.P.
1984-01-01
The Knowledge Acquisition System/Prospector expert system building tool developed by SRI, International, has been used to construct an expert system to identify aircraft on the basis of observables such as wing shape, engine number/location, fuselage shape, and tail assembly shape. Additional detailed features are allowed to influence the identification as other favorable features. Constraints on the observations imposed by bad weather and distant observations have been included as contexts to the models. Models for Soviet and US fighter aircraft have been included. Inclusion of other types of aircraft such as bombers, transports, and reconnaissance craft is straightforward. Two models permitmore » exploration of the interaction of semantic and taxonomic networks with the models. A full set of text data for fluid communication with the user has been included. The use of demons as triggered output responses to enhance utility to the user has been explored. This paper presents discussion of the ease of building the expert system using this powerful tool and problems encountered in the construction process.« less
Venus cloud bobber mission: A long term survey of the Venusian surface
NASA Technical Reports Server (NTRS)
Wai, James; Derengowski, Cheryl; Lautzenhiser, Russ; Emerson, Matt; Choi, Yongho
1994-01-01
We have examined the Venus Balloon concept in order to further develop the ideas and concepts behind it, and to creatively apply them to the design of the major Venus Balloon components. This report presents our models of the vertical path taken by the Venus Balloon and the entry into Venusian atmosphere. It also details our designs of the balloon, gondola, heat exchanger, power generator, and entry module. A vehicle is designed for a ballistic entry into the Venusian atmosphere, and an atmospheric model is created. The model is then used to set conditions. The shape and material of the vehicle are optimized, and the dimensions of the vehicle are then determined. Equipment is chosen and detailed that will be needed to collect and transmit information and control the mission. A gondola is designed that will enable this sensitive electronic equipment to survive in an atmosphere of very high temperature and pressure. This shape and the material of the shell are optimized, and the size is minimized. Insulation and supporting structures are designed to protect the payload equipment and to minimize mass. A method of cooling the gondola at upper altitudes was established. Power needs of the gondola equipment are determined. Power generation options are discussed and two separate thermoelectric generation models are outlined.
DETAIL VIEW OF LARGE BORE HOLE, SHOWING TRIANGULAR SHAPE FORMED ...
DETAIL VIEW OF LARGE BORE HOLE, SHOWING TRIANGULAR SHAPE FORMED BY CHISEL METHOD OF DRILLING - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA
Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric
2009-01-01
The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.
On the Nernst-Planck equation.
Maex, Reinoud
2017-01-01
This review first discusses Nernst's and Planck's early papers on electro-diffusion, the brief priority conflict that followed, and the role these papers played in shaping the emerging concept of membrane excitability. The second part discusses in greater detail the constraints of the Nernst-Planck theory, and shows more recent examples of its applicability for neuronal modelling.
Numerical details and SAS programs for parameter recovery of the SB distribution
Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques
2010-01-01
The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...
Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng
2008-08-01
Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
Automatic Reconstruction of Spacecraft 3D Shape from Imagery
NASA Astrophysics Data System (ADS)
Poelman, C.; Radtke, R.; Voorhees, H.
We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.
Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials
Li, Nianbei; Ren, Jie
2014-01-01
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668
Aerodynamic Parameters of a UK City Derived from Morphological Data
NASA Astrophysics Data System (ADS)
Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.
2013-03-01
Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.
Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito
2006-01-01
We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.
NASA Technical Reports Server (NTRS)
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
SHERMAN - A shape-based thermophysical model II. Application to 8567 (1996 HW1)
NASA Astrophysics Data System (ADS)
Howell, E. S.; Magri, C.; Vervack, R. J.; Nolan, M. C.; Taylor, P. A.; Fernández, Y. R.; Hicks, M. D.; Somers, J. M.; Lawrence, K. J.; Rivkin, A. S.; Marshall, S. E.; Crowell, J. L.
2018-03-01
We apply a new shape-based thermophysical model, SHERMAN, to the near-Earth asteroid (NEA) 8567 (1996 HW1) to derive surface properties. We use the detailed shape model of Magri et al. (2011) for this contact binary NEA to analyze spectral observations (2-4.1 microns) obtained at the NASA IRTF on several different dates to find thermal parameters that match all the data. Visible and near-infrared (0.8-2.5 microns) spectral observations are also utilized in a self-consistent way. We find that an average visible albedo of 0.33, thermal inertia of 70 (SI units) and surface roughness of 50% closely match the observations. The shape and orientation of the asteroid is very important to constrain the thermal parameters to be consistent with all the observations. Multiple viewing geometries are equally important to achieve a robust solution for small, non-spherical NEAs. We separate the infrared beaming effects of shape, viewing geometry and surface roughness for this asteroid and show how their effects combine. We compare the diameter and albedo that would be derived from the thermal observations assuming a spherical shape with those from the shape-based model. We also discuss how observations from limited viewing geometries compare to the solution from multiple observations. The size that would be derived from the individual observation dates varies by 20% from the best-fit solution, and can be either larger or smaller. If the surface properties are not homogeneous, many solutions are possible, but the average properties derived here are very tightly constrained by the multiple observations, and give important insights into the nature of small NEAs.
LDV measurements in an annular combustor model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Barron, Dean A.
1986-01-01
The design and setup of a Laser Doppler Velocimeter (LDV) system used to take velocity measurements in an annular combustor model are covered. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. The LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.
LDV Measurements in an Annular Combustor Model
NASA Technical Reports Server (NTRS)
Barron, Dean A.
1996-01-01
This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.
Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang
2016-02-01
Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our method attained a higher prediction accuracy and better captured the spatiotemporal dynamic change of the highly folded cortical surface than the previous proposed prediction method. Copyright © 2015 Elsevier B.V. All rights reserved.
Approaches to Validation of Models for Low Gravity Fluid Behavior
NASA Technical Reports Server (NTRS)
Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad
2005-01-01
This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.
Traveling Magnetic Field Applications for Vertical Bridgman Growth: Modeling and Experiment
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2004-01-01
Traveling magnetic fields offer a direct control of the metallic melt meridional flow in long cylinders. It induces the Lorentz body force that can counteract with the buoyancy force induced by radial temperature non-uniformity. It can significantly offset a natural convection in the system, or it can even set up the flow in opposite direction, thus affecting the interface shape, the growth rate and macrosegregation. Results of our numerical modeling of the Vertical Bridgman crystal growth of InSb will be discussed. The experimental part of this investigation will address the effect of the applied traveling magnetic fields on the interface shape of InSb crystals. Specifics of the growth apparatus design for this research will be provided in details.
Hudson, Kerry D; Farran, Emily K
2013-09-01
Drawings by individuals with Williams syndrome (WS) typically lack cohesion. The popular hypothesis is that this is a result of excessive focus on local-level detail at the expense of global configuration. In this study, we explored a novel hypothesis that inadequate attention might underpin drawing in WS. WS and typically developing (TD) non-verbal ability matched groups copied and traced a house figure comprised of geometric shapes. The house was presented on a computer screen for 5-s periods and participants pressed a key to re-view the model. Frequency of key-presses indexed the looks to the model. The order that elements were replicated was recorded to assess hierarchisation of elements. If a lack of attention to the model explained poor drawing performance, we expected participants with WS to look less frequently to the model than TD children when copying. If a local-processing preference underpins drawing in WS, more local than global elements would be produced. Results supported the first, but not second hypothesis. The WS group looked to the model infrequently, but global, not local, parts were drawn first, scaffolding local-level details. Both groups adopted a similar order of drawing and tracing of parts, suggesting typical, although delayed strategy-use in the WS group. Additionally both groups drew larger elements of the model before smaller elements, suggested a size-bias when drawing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G
2017-01-01
Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10- 20 μm .
Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.
2016-01-01
Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10 – 20µm. PMID:27723590
Effect of Ice Shape Fidelity on Swept-Wing Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Bragg, Michael B.; Broeren, Andy P.; Lum, Christopher W.; Woodard, Brian S.; Lee, Sam
2017-01-01
Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.
Divertor target shape optimization in realistic edge plasma geometry
NASA Astrophysics Data System (ADS)
Dekeyser, W.; Reiter, D.; Baelmans, M.
2014-07-01
Tokamak divertor design for next-step fusion reactors heavily relies on numerical simulations of the plasma edge. Currently, the design process is mainly done in a forward approach, where the designer is strongly guided by his experience and physical intuition in proposing divertor shapes, which are then thoroughly assessed by numerical computations. On the other hand, automated design methods based on optimization have proven very successful in the related field of aerodynamic design. By recasting design objectives and constraints into the framework of a mathematical optimization problem, efficient forward-adjoint based algorithms can be used to automatically compute the divertor shape which performs the best with respect to the selected edge plasma model and design criteria. In the past years, we have extended these methods to automated divertor target shape design, using somewhat simplified edge plasma models and geometries. In this paper, we build on and extend previous work to apply these shape optimization methods for the first time in more realistic, single null edge plasma and divertor geometry, as commonly used in current divertor design studies. In a case study with JET-like parameters, we show that the so-called one-shot method is very effective is solving divertor target design problems. Furthermore, by detailed shape sensitivity analysis we demonstrate that the development of the method already at the present state provides physically plausible trends, allowing to achieve a divertor design with an almost perfectly uniform power load for our particular choice of edge plasma model and design criteria.
Chemical kinetic modeling of propene oxidation at low and intermediate temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilk, R.D.; Cernansky, N.P.; Pitz, W.J.
1986-01-13
A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 590 to 740/sup 0/K, equivalence ratios of 0.8 to 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species measured experimentally in a static reactor by Wilk, Cernansky, and Cohen. The detailed model predicted a temperature region of approximately constant induction periodmore » which corresponded very closely to the region of negative temperature coefficient behavior found in the experiment. Overall, the calculated concentrations of acetaldehyde, ethene, and methane were somewhat low compared to the experimental measurements, and the calculated concentrations of formaldehyde and methanol were high. The characteristic s-shape of the fuel concentration history was well predicted. The importance of OH+C/sub 3/H/sub 6/ and related rections in determining product distributions and the importance of consumption reactions for allyl radicals was demonstrated by the modeling calculations. 18 refs., 4 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Vaidyanathan, Raj
2016-01-01
The report summarizes the accomplishments made during the 4-year duration of the project. Here, the major emphasis is placed on the different tasks performed by the two research teams; i.e., the modeling activities by the University of Akron (UA) team and the experimental and neutron diffraction studies conducted by the University of Central Florida (UCF) team, during this 4-year period. Further technical details are given in the upcoming sections by UA and UCF for each of the milestones/years (together with the corresponding figures and captions).The project majorly involved the development, validation, and application of a general theoretical model that is capable of capturing the nonlinear hysteretic responses, including pseudoelasticity, shape memory effect, rate-dependency, multi-axiality, asymmetry in tension versus compression response of shape memory alloys. Among the targeted goals for the SMA model was its ability to account for the evolutionary character response (including transient and long term behavior under sustained cycles) for both conventional and high temperature (HT) SMAs, as well as being able to simulate some of the devices which exploit these unique material systems. This required extensive (uniaxial and multi-axial) experiments needed to guide us in calibrating and characterizing the model. Moreover, since the model is formulated on the theoretical notion of internal state variables (ISVs), neutron diffraction experiments were needed to establish the linkage between the micromechanical changes and these ISVs. In addition, the design of the model should allow easy implementation in large scale finite element application to study the behavior of devices making use of these SMA materials under different loading controls. Summary of the activities, progress/achievements made during this period is given below in details for the University of Akron and the University (Section 2.0) of Central Florida (Section 3.0).
2013-11-01
duration, or shock-pulse shape. Used in this computational study is a coarse-grained model of the lipid vesicle as a simplified model of a cell...Figures iv List of Tables iv 1. Introduction 1 2. Model and Methods 3 3. Results and Discussion 6 3.1 Simulation of the Blast Waves with Low Peak...realistic detail but to focus on a simple model of the major constituent of a cell membrane, the phospholipid bilayer. In this work, we studied the
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Chrysler, M. D.; Gladen, R. W.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We report a detailed line shape analysis of the positron induced C KVV Auger line shape from highly oriented pyrolytic graphite (HOPG) and a single layer of graphene grown on polycrystalline Cu. A model consisting of the self-fold of the one-electron density of states including terms for hole-hole interactions, charge screening effects, and intrinsic loss mechanisms is compared to experimental C KVV line shapes measured using a positron induced Auger electron spectrometer (PAES). In traditional Auger spectroscopies which use an electron or photon to initiate the Auger process, extracting the relatively small Auger signal from the large secondary background can be quite difficult. Using a very low energy positron beam to create the core hole through an anti-matter matter annihilation entirely eliminates this background. Additionally, PAES has sensitivity to the top most atomic layer since the positron becomes trapped in an image potential well at the surface before annihilation. Therefore, the PAES signal from a single layer of graphene on polycrystalline Cu is primarily from the graphene overlayer with small contributions from the Cu substrate while the PAES signal from HOPG can be viewed as a single graphene layer with a graphite substrate. The influence of these two substrates on C KVV line shape is discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
2 Figure 2: Implementation of multiscale enrichment into FEA ...corresponding to the mth degree of freedom, and is the associated degree of freedom. For FEA , the standard shape function, NI, which can be...varies depending on the governing method. In this presentation we will focus in the FEA approach. Reference [4] gives complete details on the
Modeling a ball screw/ball nut in substructuring
NASA Technical Reports Server (NTRS)
Butler, Thomas G.
1991-01-01
In the particular NASTRAN application discussed here, a nut was attached to a stationary structure. The object of the analysis was to determine the vibration characteristics of the whole structure for various configurations; i.e., the evaluation of the mode shapes and frequencies when parts were moved to different mating positions. Details of the analysis are given.
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of 3d Building Models Accuracy Based on the Airborne Laser Scanning Point Clouds
NASA Astrophysics Data System (ADS)
Ostrowski, W.; Pilarska, M.; Charyton, J.; Bakuła, K.
2018-05-01
Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term "3D building models" can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.
1979-01-01
The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
Fast viscosity solutions for shape from shading under a more realistic imaging model
NASA Astrophysics Data System (ADS)
Wang, Guohui; Han, Jiuqiang; Jia, Honghai; Zhang, Xinman
2009-11-01
Shape from shading (SFS) has been a classical and important problem in the domain of computer vision. The goal of SFS is to reconstruct the 3-D shape of an object from its 2-D intensity image. To this end, an image irradiance equation describing the relation between the shape of a surface and its corresponding brightness variations is used. Then it is derived as an explicit partial differential equation (PDE). Using the nonlinear programming principle, we propose a detailed solution to Prados and Faugeras's implicit scheme for approximating the viscosity solution of the resulting PDE. Furthermore, by combining implicit and semi-implicit schemes, a new approximation scheme is presented. In order to accelerate the convergence speed, we adopt the Gauss-Seidel idea and alternating sweeping strategy to the approximation schemes. Experimental results on both synthetic and real images are performed to demonstrate that the proposed methods are fast and accurate.
Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.
Al-Heniti, Saleh; Umar, Ahmad
2013-01-01
In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).
Global performance enhancements via pedestal optimisation on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2017-02-01
Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.
NASA Astrophysics Data System (ADS)
Chan, Iatneng
2012-02-01
In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.
Multiscale 3-D shape representation and segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2007-04-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.
Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron
2013-01-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745
CUSP-SHAPED STRUCTURE OF A JET OBSERVED BY IRIS AND SDO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuzong; Zhang, Jun, E-mail: yuzong@nao.cas.cn, E-mail: zjun@nao.cas.cn
2017-01-01
On 2014 August 29, the trigger and evolution of a cusp-shaped jet were captured in detail at 1330 Å by the Interface Region Imaging Spectrograph . At first, two neighboring mini-prominences arose in turn from the low solar atmosphere and collided with a loop-like system over them. The collisions between the loop-like system and the mini-prominences lead to the blowout, and then a cusp-shaped jet formed with a spire and an arch-base. In the spire, many brightening blobs originating from the junction between the spire and the arch-base moved upward in a rotating manner and then in a straight line inmore » the late phase of the jet. In the arch-base, dark and bright material simultaneously tracked in a fan-like structure, and the majority of the material moved along the fan's threads. At the later phase of the jet's evolution, bidirectional flows emptied the arch-base, while downflows emptied the spire, thus making the jet entirely vanish. The extremely detailed observations in this study shed new light on how magnetic reconnection alters the inner topological structure of a jet and provides a beneficial complement for understanding current jet models.« less
The Dawn Topography Investigation
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Jaumann, R.; Nathues, A.; Sierks, H.; Roatsch, T.; Preusker, E; Scholten, F.; Gaskell, R. W.; Jorda, L.; Keller, H.-U.;
2011-01-01
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.
Lateral tunneling through voltage-controlled barriers
NASA Technical Reports Server (NTRS)
Manion, S. J.; Bell, L. D.; Kaiser, W. J.; Maker, P. D.; Muller, R. E.
1991-01-01
The paper reports on a detailed experimental investigation of lateral tunneling between electrodes of a two-dimensional electron gas separated by the voltage-controlled barrier of a nanometer Schottky gate. The experimental data are modeled using the WKB method to calculate the tunneling probability of electrons through a barrier whose shape is determined from a solution of the two-dimensional Poisson equation. This model is in excellent agreement with the experimental data over a two order of magnitude range of current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, C.; Romanczukiewicz, T.; Wereszczynski, A.
A restriction of the baby Skyrme model consisting of the quartic and potential terms only is investigated in detail for a wide range of potentials. Further, its properties are compared with those of the corresponding full baby Skyrme models. We find that topological (charge) as well as geometrical (nucleus/shell shape) features of baby Skyrmions are captured already by the soliton solutions of the restricted model. Further, we find a coincidence between the compact or noncompact nature of solitons in the restricted model, on the one hand, and the existence or nonexistence of multi-Skyrmions in the full baby Skyrme model, onmore » the other hand.« less
3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model
Kim, Jaeil; Valdés Hernández, Maria del C.; Royle, Natalie A.; Maniega, Susana Muñoz; Aribisala, Benjamin S.; Gow, Alan J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.; Park, Jinah
2016-01-01
Background Structural changes of the brain's third ventricle have been acknowledged as an indicative measure of the brain atrophy progression in neurodegenerative and endocrinal diseases. To investigate the ventricular enlargement in relation to the atrophy of the surrounding structures, shape analysis is a promising approach. However, there are hurdles in modeling the third ventricle shape. First, it has topological variations across individuals due to the inter-thalamic adhesion. In addition, as an interhemispheric structure, it needs to be aligned to the midsagittal plane to assess its asymmetric and regional deformation. Method To address these issues, we propose a model-based shape assessment. Our template model of the third ventricle consists of a midplane and a symmetric mesh of generic shape. By mapping the template's midplane to the individuals’ brain midsagittal plane, we align the symmetric mesh on the midline of the brain before quantifying the third ventricle shape. To build the vertex-wise correspondence between the individual third ventricle and the template mesh, we employ a minimal-distortion surface deformation framework. In addition, to account for topological variations, we implement geometric constraints guiding the template mesh to have zero width where the inter-thalamic adhesion passes through, preventing vertices crossing between left and right walls of the third ventricle. The individual shapes are compared using a vertex-wise deformity from the symmetric template. Results Experiments on imaging and demographic data from a study of aging showed that our model was sensitive in assessing morphological differences between individuals in relation to brain volume (i.e. proxy for general brain atrophy), gender and the fluid intelligence at age 72. It also revealed that the proposed method can detect the regional and asymmetrical deformation unlike the conventional measures: volume (median 1.95 ml, IQR 0.96 ml) and width of the third ventricle. Similarity measures between binary masks and the shape model showed that the latter reconstructed shape details with high accuracy (Dice coefficient ≥0.9, mean distance 0.5 mm and Hausdorff distance 2.7 mm). Conclusions We have demonstrated that our approach is suitable to morphometrical analyses of the third ventricle, providing high accuracy and inter-subject consistency in the shape quantification. This shape modeling method with geometric constraints based on anatomical landmarks could be extended to other brain structures which require a consistent measurement basis in the morphometry. PMID:27084320
NASA Astrophysics Data System (ADS)
Chen, Liping; Zheng, Renhui; Shi, Qiang; Yan, YiJing
2010-01-01
We extend our previous study of absorption line shapes of molecular aggregates using the Liouville space hierarchical equations of motion (HEOM) method [L. P. Chen, R. H. Zheng, Q. Shi, and Y. J. Yan, J. Chem. Phys. 131, 094502 (2009)] to calculate third order optical response functions and two-dimensional electronic spectra of model dimers. As in our previous work, we have focused on the applicability of several approximate methods related to the HEOM method. We show that while the second order perturbative quantum master equations are generally inaccurate in describing the peak shapes and solvation dynamics, they can give reasonable peak amplitude evolution even in the intermediate coupling regime. The stochastic Liouville equation results in good peak shapes, but does not properly describe the excited state dynamics due to the lack of detailed balance. A modified version of the high temperature approximation to the HEOM gives the best agreement with the exact result.
Systematic description of the effect of particle shape on the strength properties of granular media
NASA Astrophysics Data System (ADS)
Azéma, Emilien; Estrada, Nicolas; Preechawuttipong, Itthichai; Delenne, Jean-Yves; Radjai, Farhang
2017-06-01
In this paper, we explore numerically the effect of particle shape on the mechanical behavior of sheared granular packings. In the framework of the Contact Dynamic (CD)Method, we model angular shape as irregular polyhedral particles, non-convex shape as regular aggregates of four overlapping spheres, elongated shape as rounded cap rectangles and platy shape as square-plates. Binary granular mixture consisting of disks and elongated particles are also considered. For each above situations, the number of face of polyhedral particles, the overlap of spheres, the aspect ratio of elongated and platy particles, are systematically varied from spheres to very angular, non-convex, elongated and platy shapes. The level of homogeneity of binary mixture varies from homogenous packing to fully segregated packings. Our numerical results suggest that the effects of shape parameters are nonlinear and counterintuitive. We show that the shear strength increases as shape deviate from spherical shape. But, for angular shapes it first increases up to a maximum value and then saturates to a constant value as the particles become more angular. For mixture of two shapes, the strength increases with respect of the increase of the proportion of elongated particles, but surprisingly it is independent with the level of homogeneity of the mixture. A detailed analysis of the contact network topology, evidence that various contact types contribute differently to stress transmission at the micro-scale.
Traditional Payment Models in Radiology: Historical Context for Ongoing Reform.
Silva, Ezequiel; McGinty, Geraldine B; Hughes, Danny R; Duszak, Richard
2016-10-01
The passage of the Medicare Access and CHIP Reauthorization Act (MACRA) replaces the sustainable growth rate with a payment system based on quality and alternative payment model participation. The general structure of payment under MACRA is included in the statute, but the rules and regulations defining its implementation are yet to be formalized. It is imperative that the radiology profession inform policymakers on their role in health care under MACRA. This will require a detailed understanding of prior legislative and nonlegislative actions that helped shape MACRA. To that end, the authors provide a detailed historical context for payment reform, focusing on the payment quality initiatives and alternative payment model demonstrations that helped provide the foundation of future MACRA-driven payment reform. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
A Study of Pulse Shape Evolution and X-Ray Reprocessing in Her X-1
NASA Technical Reports Server (NTRS)
Cushman, Paula P.
1998-01-01
This study focused on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium". More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in HerX-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.
NASA Astrophysics Data System (ADS)
Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu
2018-03-01
A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.
Relaxation of the Martian Crustal Dichotomy Boundary in the Ismenius Region
NASA Technical Reports Server (NTRS)
Guest, A.; Smrekar, S. E.
2004-01-01
The origin of the Martian crustal dichotomy remains a puzzle that when solved can provide an insight to the geological and geophysical evolution of Mars. In this study we model crustal relaxation in order to better constrain the original topographic shape, rheology, and temperature of the Martian crust. Our approach is to model the detailed geologic history of the Ismenius region of Mars, including slope, strain, and timing of faulting [1]. This region may contain the best preserved section of the dichotomy boundary as it is relatively unaffected by large impacts and erosion. So far the only study Martian crustal relaxation [2] suggests that the original topographic shape of the dichotomy is preserved. However, in this area strain from faulting implies at least some relaxation [1].
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
Fast and robust shape diameter function.
Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe
2018-01-01
The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.
Reweighting anthropometric data using a nearest neighbour approach.
Kumar, Kannan Anil; Parkinson, Matthew B
2018-07-01
When designing products and environments, detailed data on body size and shape are seldom available for the specific user population. One way to mitigate this issue is to reweight available data such that they provide an accurate estimate of the target population of interest. This is done by assigning a statistical weight to each individual in the reference data, increasing or decreasing their influence on statistical models of the whole. This paper presents a new approach to reweighting these data. Instead of stratified sampling, the proposed method uses a clustering algorithm to identify relationships between the detailed and reference populations using their height, mass, and body mass index (BMI). The newly weighted data are shown to provide more accurate estimates than traditional approaches. The improved accuracy that accompanies this method provides designers with an alternative to data synthesis techniques as they seek appropriate data to guide their design practice.Practitioner Summary: Design practice is best guided by data on body size and shape that accurately represents the target user population. This research presents an alternative to data synthesis (e.g. regression or proportionality constants) for adapting data from one population for use in modelling another.
Weighing trees with lasers: advances, challenges and opportunities
Boni Vicari, M.; Burt, A.; Calders, K.; Lewis, S. L.; Raumonen, P.; Wilkes, P.
2018-01-01
Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods. PMID:29503726
Characterization of Nonlinear Rate Dependent Response of Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Volk, Brent; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.
2007-01-01
Shape Memory Polymers (SMPs) are a class of polymers, which can undergo deformation in a flexible state at elevated temperatures, and when cooled below the glass transition temperature, while retaining their deformed shape, will enter and remain in a rigid state. Upon heating above the glass transition temperature, the shape memory polymer will return to its original, unaltered shape. SMPs have been reported to recover strains of over 400%. It is important to understand the stress and strain recovery behavior of SMPs to better develop constitutive models which predict material behavior. Initial modeling efforts did not account for large deformations beyond 25% strain. However, a model under current development is capable of describing large deformations of the material. This model considers the coexisting active (rubber) and frozen (glass) phases of the polymer, as well as the transitions between the material phases. The constitutive equations at the continuum level are established with internal state variables to describe the microstructural changes associated with the phase transitions. For small deformations, the model reduces to a linear model that agrees with those reported in the literature. Thermomechanical characterization is necessary for the development, calibration, and validation of a constitutive model. The experimental data reported in this paper will assist in model development by providing a better understanding of the stress and strain recovery behavior of the material. This paper presents the testing techniques used to characterize the thermomechanical material properties of a shape memory polymer (SMP) and also presents the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation (VIC) system was used to measure the strain. The details of this technique will also be presented in this paper. A series of tensile tests were performed on specimens such that strain levels of 10, 25, 50, and 100% were applied to the material while it was above its glass transition temperature. After deforming the material to a specified applied strain, the material was then cooled to below the glass transition temperature (Tg) while retaining the deformed shape. Finally, the specimen was heated again to above the transition temperature, and the resulting shape recovery profile was measured. Results show that strain recovery occurs at a nonlinear rate with respect to time. Results also indicate that the ratio of recoverable strain/applied strain increases as the applied strain increases.
NASA Technical Reports Server (NTRS)
Mackay, N. G.; Green, S. F.; Gardner, D. J.; Mcdonnell, J. A. M.
1995-01-01
Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.
Photometric survey, modelling, and scaling of long-period and low-amplitude asteroids
NASA Astrophysics Data System (ADS)
Marciniak, A.; Bartczak, P.; Müller, T.; Sanabria, J. J.; Alí-Lagoa, V.; Antonini, P.; Behrend, R.; Bernasconi, L.; Bronikowska, M.; Butkiewicz-Bąk, M.; Cikota, A.; Crippa, R.; Ditteon, R.; Dudziński, G.; Duffard, R.; Dziadura, K.; Fauvaud, S.; Geier, S.; Hirsch, R.; Horbowicz, J.; Hren, M.; Jerosimic, L.; Kamiński, K.; Kankiewicz, P.; Konstanciak, I.; Korlevic, P.; Kosturkiewicz, E.; Kudak, V.; Manzini, F.; Morales, N.; Murawiecka, M.; Ogłoza, W.; Oszkiewicz, D.; Pilcher, F.; Polakis, T.; Poncy, R.; Santana-Ros, T.; Siwak, M.; Skiff, B.; Sobkowiak, K.; Stoss, R.; Żejmo, M.; Żukowski, K.
2018-02-01
Context. The available set of spin and shape modelled asteroids is strongly biased against slowly rotating targets and those with low lightcurve amplitudes. This is due to the observing selection effects. As a consequence, the current picture of asteroid spin axis distribution, rotation rates, radiometric properties, or aspects related to the object's internal structure might be affected too. Aims: To counteract these selection effects, we are running a photometric campaign of a large sample of main belt asteroids omitted in most previous studies. Using least chi-squared fitting we determined synodic rotation periods and verified previous determinations. When a dataset for a given target was sufficiently large and varied, we performed spin and shape modelling with two different methods to compare their performance. Methods: We used the convex inversion method and the non-convex SAGE algorithm, applied on the same datasets of dense lightcurves. Both methods search for the lowest deviations between observed and modelled lightcurves, though using different approaches. Unlike convex inversion, the SAGE method allows for the existence of valleys and indentations on the shapes based only on lightcurves. Results: We obtain detailed spin and shape models for the first five targets of our sample: (159) Aemilia, (227) Philosophia, (329) Svea, (478) Tergeste, and (487) Venetia. When compared to stellar occultation chords, our models obtained an absolute size scale and major topographic features of the shape models were also confirmed. When applied to thermophysical modelling (TPM), they provided a very good fit to the infrared data and allowed their size, albedo, and thermal inertia to be determined. Conclusions: Convex and non-convex shape models provide comparable fits to lightcurves. However, some non-convex models fit notably better to stellar occultation chords and to infrared data in sophisticated thermophysical modelling (TPM). In some cases TPM showed strong preference for one of the spin and shape solutions. Also, we confirmed that slowly rotating asteroids tend to have higher-than-average values of thermal inertia, which might be caused by properties of the surface layers underlying the skin depth. The photometric data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A7
Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.
NASA Technical Reports Server (NTRS)
Bragg, M. B.
1986-01-01
An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods.
Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia
2017-01-01
This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets. PMID:29216199
KTX circuit model and discharge waveform prediction
NASA Astrophysics Data System (ADS)
Bai, Wei; Lan, T.; Mao, W. Z.; You, W.; Li, H.; Liu, A. D.; Xie, J. L.; Wan, S. D.; Liu, W. D.; Yang, L.; Fu, P.; Xiao, C. J.; Ding, W. X.
2013-10-01
The Keda Torus eXperiment (KTX) is a constructing reversed field pinch (RFP) device in University of Science and Technology of China. The KTX power supply system includes the Ohmic heating, field shaping and toroidal power supply systems, which produce the Ohmic field, equilibrium field and toroidal field, respectively. The detailed circuit model will be introduced in this poster. Another purpose is to predict its discharge waveforms using the modified Bessel function mode (MBFM), which describes the evolution of plasma current and magnetic flux in RFP base on Taylor theory. Furthermore, the power supply requirements of external field shaping winding are also predicted in the model, which will be very helpful for the design of plasma equilibrium controlling system. Supported by ITER-China program (No. 2011GB106000), NNSFC (Nos. 10990210, 10990211, 10335060 and 10905057), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).
Extended Graph-Based Models for Enhanced Similarity Search in Cavbase.
Krotzky, Timo; Fober, Thomas; Hüllermeier, Eyke; Klebe, Gerhard
2014-01-01
To calculate similarities between molecular structures, measures based on the maximum common subgraph are frequently applied. For the comparison of protein binding sites, these measures are not fully appropriate since graphs representing binding sites on a detailed atomic level tend to get very large. In combination with an NP-hard problem, a large graph leads to a computationally demanding task. Therefore, for the comparison of binding sites, a less detailed coarse graph model is used building upon so-called pseudocenters. Consistently, a loss of structural data is caused since many atoms are discarded and no information about the shape of the binding site is considered. This is usually resolved by performing subsequent calculations based on additional information. These steps are usually quite expensive, making the whole approach very slow. The main drawback of a graph-based model solely based on pseudocenters, however, is the loss of information about the shape of the protein surface. In this study, we propose a novel and efficient modeling formalism that does not increase the size of the graph model compared to the original approach, but leads to graphs containing considerably more information assigned to the nodes. More specifically, additional descriptors considering surface characteristics are extracted from the local surface and attributed to the pseudocenters stored in Cavbase. These properties are evaluated as additional node labels, which lead to a gain of information and allow for much faster but still very accurate comparisons between different structures.
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
Development of a Numerical Model for High-Temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.
2006-01-01
A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.
Universality of fragment shapes.
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-03-16
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.
Universality of fragment shapes
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-01-01
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L. (Technical Monitor); Walker, Bruce E.
2004-01-01
Hersh Walker Acoustics (HWA) has performed a series of wind tunnel tests to support crack-repair studies for ITA flowliner vent slots. The overall goal of these tests is to determine if slot shape details have a significant influence on the propensity of the flowliner to produce aero-acoustic oscillations that could increase unsteady stresses on the flowliner walls. The test series, conducted using a full-scale two-dimensional model of a six-slot segment of the 38 slot liner, was intended to investigate the effects of altering slot shape by grinding away cracked portions.
Swinging motion of active deformable particles in Poiseuille flow
NASA Astrophysics Data System (ADS)
Tarama, Mitsusuke
2017-08-01
Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.
Modified Bloch equations and spectral hole burning in solids
NASA Astrophysics Data System (ADS)
Asadullina, N. Ya; Asadullin, T. Ya; Asadullin, Ya Ya
2001-06-01
On the grounds of Bloch equations modified by taking into account the power dependence of the dispersion and damping parameters, we give general expressions for hole shapes burnt in the absorption and polarization spectra of the two-level systems. The general expressions are used for detailed numerical calculations of the hole shapes and hole widths in a concrete paramagnetic system (quartz with [AlO4]0 centres). This system earlier was studied experimentally and theoretically through the transient nutation and free induction decay methods. The results on the hole width in our modified-Bloch-equations model are in good qualitative agreement with the FID data.
A wave shaping approach of ferrite inductors exhibiting hysteresis using orthogonal field bias
NASA Astrophysics Data System (ADS)
Adly, A. A.; Abd-El-Hafiz, S. K.; Mahgoub, A. O.
2018-05-01
Advances in power electronic systems have considerably contributed to a wide spectrum of applications. In most power electronic circuits, inductors play crucial functions. Utilization of ferrite cores becomes a must when large inductances are required. Nevertheless, this results in an additional complexity due to their hysteresis nature. Recently, an efficient approach for modeling vector hysteresis using tri-node Hopfield neural networks (HNNs) has been introduced. This paper presents a wave shaping approach using hollow cylindrical ferrite core inductors having axial and toroidal windings. The approach investigates the possibility of tuning the inductor permeability to minimize circuit harmonics. Details of the approach are given in the paper.
A Navier-Stokes phase-field crystal model for colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
A Navier-Stokes phase-field crystal model for colloidal suspensions.
Praetorius, Simon; Voigt, Axel
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
NASA Astrophysics Data System (ADS)
Wu, Bo; Liu, Wai Chung; Grumpe, Arne; Wöhler, Christian
2018-06-01
Lunar Digital Elevation Model (DEM) is important for lunar successful landing and exploration missions. Lunar DEMs are typically generated by photogrammetry or laser altimetry approaches. Photogrammetric methods require multiple stereo images of the region of interest and it may not be applicable in cases where stereo coverage is not available. In contrast, reflectance based shape reconstruction techniques, such as shape from shading (SfS) and shape and albedo from shading (SAfS), apply monocular images to generate DEMs with pixel-level resolution. We present a novel hierarchical SAfS method that refines a lower-resolution DEM to pixel-level resolution given a monocular image with known light source. We also estimate the corresponding pixel-wise albedo map in the process and based on that to regularize the shape reconstruction with pixel-level resolution based on the low-resolution DEM. In this study, a Lunar-Lambertian reflectance model is applied to estimate the albedo map. Experiments were carried out using monocular images from the Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC), with spatial resolution of 0.5-1.5 m per pixel, constrained by the Selenological and Engineering Explorer and LRO Elevation Model (SLDEM), with spatial resolution of 60 m. The results indicate that local details are well recovered by the proposed algorithm with plausible albedo estimation. The low-frequency topographic consistency depends on the quality of low-resolution DEM and the resolution difference between the image and the low-resolution DEM.
On the shape of martian dust and water ice aerosols
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Clancy, R. T.; Clayton, G. C.
2000-10-01
Researchers have often calculated radiative properties of Martian aerosols using either Mie theory for homogeneous spheres or semi-empirical theories. Given that these atmospheric particles are randomly oriented, this approach seems fairly reasonable. However, the idea that randomly oriented nonspherical particles have scattering properties equivalent to even a select subset of spheres is demonstratably false} (Bohren and Huffman 1983; Bohren and Koh 1985, Appl. Optics, 24, 1023). Fortunately, recent computational developments now enable us to directly compute scattering properties for nonspherical particles. We have combined a numerical approach for axisymmetric particle shapes, i.e., cylinders, disks, spheroids (Waterman's T-Matrix approach as improved by Mishchenko and collaborators; cf., Mishchenko et al. 1997, JGR, 102, D14, 16,831), with a multiple-scattering radiative transfer algorithm to constrain the shape of water ice and dust aerosols. We utilize a two-stage iterative process. First, we empirically derive a scattering phase function for each aerosol component (starting with some ``guess'') from radiative transfer models of MGS Thermal Emission Spectrometer Emission Phase Function (EPF) sequences (for details on this step, see Clancy et al., DPS 2000). Next, we perform a series of scattering calculations, adjusting our parameters to arrive at a ``best-fit'' theoretical phase function. In this presentation, we provide details on the second step in our analysis, including the derived phase functions (for several characteristic EPF sequences) as well as the particle properties of the best-fit theoretical models. We provide a sensitivity analysis for the EPF model-data comparisons in terms of perturbations in the particle properties (i.e., range of axial ratios, sizes, refractive indices, etc). This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC).
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Experimental and analytic studies of the triggered lightning environment of the F106B
NASA Technical Reports Server (NTRS)
Rudolph, Terence; Easterbrook, Calvin C.; Ng, Poh H.; Haupt, Robert W.; Perala, Rodney A.
1987-01-01
The triggered lightning environment of the F106B aircraft is investigated. Scale modeling of the F106B with a metallized model was done to measure electric field enhancement factors on the aircraft and on canonically shaped conducting objects. These are then compared to numerically determined quantities. Detailed numerical modeling is done of the development of the triggered lightning channel. This is done using nonlinear air chemistry models to model a variety of physical phenomena which occur in a triggered lightning event. The effect of a triggered lightning strike on internal wires in the F106B is investigated using finite difference models and transmission line models to calculate the electromagnetic coupling of lightning currents through seams and joints of the aircraft to internal cables. Time domain waveforms are computed and compared to measured waveforms. The effect of thunderstorm particles on the initial triggering of a lightning strike is investigated. The electric field levels needed to cause air breakdown in the presence and absence of thunderstorm particles are calculated. This is done as a function of the size, shape, and density of the particles.
A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahzadeh, Mohammadreza; Sabaeian, Mohammad, E-mail: Sabaeian@scu.ac.ir
2014-06-15
During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron insidemore » the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.« less
Mechanochemical Symmetry Breaking in Hydra Aggregates
Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna
2015-01-01
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896
Consolidation Process in Near Net Shape Manufacturing of Armstrong CP-Ti/Ti-6Al-4V Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori; Kiggans, Jim; Clark, Michael B
2010-01-01
This paper summarizes our recent efforts to develop the manufacturing technologies of consolidated net-shape components by using new low-cost commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy powders made by the Armstrong process. Fabrication processes of net shape/ near net shape components, such as uniaxial die-pressing, cold isostatic pressing (CIP), sintering, roll compaction and stamping, have been evaluated. The press-and-sinter processing of the powders were systematically investigated in terms of theoretical density and microstructure as a function of time, pressure, and temperature. Up to 96.4% theoretical density has been achieved with the press-and-sinter technology. Tensile properties of the consolidated samples exhibitmore » good ductility as well as equivalent yield/ultimate tensile strengths to those of fully consolidate materials, even with the presence of a certain amount of porosity. A consolidation model is also under development to interpret the powder deformation during processing. Net shape components made of the Armstrong powder can successfully be fabricated with clearer surface details by using press-and-sinter processing.« less
Influence of hole shape on sound absorption of underwater anechoic layers
NASA Astrophysics Data System (ADS)
Ye, Changzheng; Liu, Xuewei; Xin, Fengxian; Lu, Tian Jian
2018-07-01
A theoretical model is established to evaluate the sound absorption performance of underwater anechoic layers containing periodically distributed axial holes. Based on the concept for homogenized equivalent layer and on the theory of wave propagation in viscoelastic cylindrical tubes, the transfer function method is used to obtain the absorption coefficient of the anechoic layer adhered on the rigid plate. Three different types of axial holes are considered, the cylindrical, the conical and the horn shaped one. Results obtained with full finite element simulations are used to validate the model predictions. For each hole type, the vibration characteristics of the anechoic layer as well as the propagation of longitudinal and transverse waves in the layer are analyzed in detail to explore the physical mechanisms underlying its absorption performance. Furthermore, a three-dimensional finite element model for oblique incidence is developed to study the effect of hole shape at different incidence angles. The results show that two new absorption peaks appear since the oblique incidence excites two horizontal modes. Among the three hole types, the horn one achieves the best absorption performance at relatively low frequencies both in normal incidence and in oblique incidence.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-03-08
Jet shapes have been measured in inclusive jet production in proton-proton collisions at s√=7 TeV using 3 pb⁻¹ of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-k t algorithm with transverse momentum 30 GeVT<600 GeV and rapidity in the region |y|<2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderatemore » jet rapidity dependence. Within QCD, the data test a variety of perturbative and nonperturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.« less
Challenges in modeling the X-29 flight test performance
NASA Technical Reports Server (NTRS)
Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen
1987-01-01
Presented are methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. However, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.
Challenges in modeling the X-29A flight test performance
NASA Technical Reports Server (NTRS)
Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen
1987-01-01
The paper presents the methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. Despite these obstacles, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete the performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.
Transition Studies on a Swept-Wing Model
NASA Technical Reports Server (NTRS)
Saric, William S.
1996-01-01
The present investigation contributes to the understanding of boundary-layer stability and transition by providing detailed measurements of carefully-produced stationary crossflow vortices. It is clear that a successful prediction of transition in swept-wing flows must include an understanding of the detailed physics involved. Receptivity and nonlinear effects must not be ignored. Linear stability theory correctly predicts the expected wavelengths and mode shapes for stationary crossflow, but fails to predict the growth rates, even for low amplitudes. As new computational and analytical methods are developed to deal with three-dimensional boundary layers, the data provided by this experiment will serve as a useful benchmark for comparison.
Vibration Control of Deployable Astromast Boom: Preliminary Experiments
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Hamilton, David A.
1994-01-01
This paper deals with the dynamic characterization of a flexible aerospace solar boom. The modeling issues and sine dwell vibration testing to determine natural frequencies and mode shapes of a continuous-longer on deployable ASTROMAST lattice boom are discussed. The details of the proof-of-concept piezoelectric active vibration experiments on a simple cantilever beam to control its vibrations are presented. The control parameters like voltage to the controller crystal and its location are investigated, to determine the effectiveness of control element to suppress selected resonant vibrations of the test specimen. Details of this experiment and plans for its future adaptation to the prototype structure are also discussed.
Pulse Shape Evolution, HER X-1
NASA Technical Reports Server (NTRS)
VanParadijs, Johannes A.
1998-01-01
This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.
The implementation of non-Voigt line profiles in the HITRAN database: H2 case study
NASA Astrophysics Data System (ADS)
Wcisło, P.; Gordon, I. E.; Tran, H.; Tan, Y.; Hu, S.-M.; Campargue, A.; Kassi, S.; Romanini, D.; Hill, C.; Kochanov, R. V.; Rothman, L. S.
2016-07-01
Experimental capabilities of molecular spectroscopy and its applications nowadays require a sub-percent or even sub-per mille accuracy of the representation of the shapes of molecular transitions. This implies the necessity of using more advanced line-shape models which are characterized by many more parameters than a simple Voigt profile. It is a great challenge for modern molecular spectral databases to store and maintain the extended set of line-shape parameters as well as their temperature dependences. It is even more challenging to reliably retrieve these parameters from experimental spectra over a large range of pressures and temperatures. In this paper we address this problem starting from the case of the H2 molecule for which the non-Voigt line-shape effects are exceptionally pronounced. For this purpose we reanalyzed the experimental data reported in the literature. In particular, we performed detailed line-shape analysis of high-quality spectra obtained with cavity-enhanced techniques. We also report the first high-quality cavity-enhanced measurement of the H2 fundamental vibrational mode. We develop a correction to the Hartmann-Tran profile (HTP) which adjusts the HTP to the particular model of the velocity-changing collisions. This allows the measured spectra to be better represented over a wide range of pressures. The problem of storing the HTP parameters in the HITRAN database together with their temperature dependences is also discussed.
Smart wing wind tunnel model design
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.
1997-05-01
To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.
Volumes and bulk densities of forty asteroids from ADAM shape modeling
NASA Astrophysics Data System (ADS)
Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.
2017-05-01
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua
2004-01-01
The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.
Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.E.; Stears, J.G.; Frank, E.D.
1983-03-01
Shaped filters that are constructed of lead-loaded acrylic material for use in patient radiography are discussed. Use of the filters will result in improved overall image quality with significant exposure reduction to the patient (approximately a 2X reduction in breast exposure and a 3X reduction in thyroid gland exposure). Detailed drawings of the shaped filters for scoliosis radiography, cervical spine radiography, and for long film changers in special procedures are provided. The use of the scoliosis filters is detailed and includes phantom and patient radiographs and dose reduction information.
Quantitative assessment of human body shape using Fourier analysis
NASA Astrophysics Data System (ADS)
Friess, Martin; Rohlf, F. J.; Hsiao, Hongwei
2004-04-01
Fall protection harnesses are commonly used to reduce the number and severity of injuries. Increasing the efficiency of harness design requires the size and shape variation of the user population to be assessed as detailed and as accurately as possible. In light of the unsatisfactory performance of traditional anthropometry with respect to such assessments, we propose the use of 3D laser surface scans of whole bodies and the statistical analysis of elliptic Fourier coefficients. Ninety-eight male and female adults were scanned. Key features of each torso were extracted as a 3D curve along front, back and the thighs. A 3D extension of Elliptic Fourier analysis4 was used to quantify their shape through multivariate statistics. Shape change as a function of size (allometry) was predicted by regressing the coefficients onto stature, weight and hip circumference. Upper and lower limits of torso shape variation were determined and can be used to redefine the design of the harness that will fit most individual body shapes. Observed allometric changes are used for adjustments to the harness shape in each size. Finally, the estimated outline data were used as templates for a free-form deformation of the complete torso surface using NURBS models (non-uniform rational B-splines).
Levels of detail analysis of microwave scattering from human head models for brain stroke detection
2017-01-01
In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115
Dóka, Éva; Lente, Gábor
2017-04-13
This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.
Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones.
Sohn, Bong-Soo
2017-03-11
This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.
Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones
Sohn, Bong-Soo
2017-01-01
This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing. PMID:28287487
NASA Technical Reports Server (NTRS)
Borderies, Nicole
1989-01-01
Theoretical models of planetary-ring dynamics are discussed in a detailed analytical review and illustrated with graphs and diagrams. The streamline concept is introduced, and the phenomena associated with the transport of angular momentum are described. Particular attention is then given to (1) broad rings like those of Saturn (shepherding, density-wave excitation, gaps, bending-wave excitation, multiringlet structures, inner-edge shepherding, and the possibility of polar rings around Neptune), (2) narrow rings like those of Uranus (shepherding, ring shapes, and a self-gravity model of rigid precession), and (3) ring arcs like those seen in stellar-occultation observations of Neptune.
A mathematical framework for modelling cambial surface evolution using a level set method
Sellier, Damien; Plank, Michael J.; Harrington, Jonathan J.
2011-01-01
Background and Aims During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale. Methods The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes. Key Results The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself. Conclusions Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure. PMID:21470972
Samuel, O M; Casanova, P M; Olopade, J O
2018-03-01
To evaluate sexual-size dimorphism and attempt at categorization of inter-individual shapes of foramen magnum outlines using Fourier descriptors which allow for shape outline evaluations with a resultant specimen character definition. Individual characterization and quantification of foramen magnum shapes in direct caudal view based on elliptical Fourier technique was applied to 46 tropical raccoon skulls (26 females, 20 males). Incremental number of harmonics demonstrates morphological contributions of such descriptors with their relations to specific anatomical constructions established. The initial harmonics (1st to 3rd) described the general foramen shapes while the second (4th to 12th) demonstrated fine morphological details. Sexual-size dimorphism was observed in females (87.1%) and 91.7% in males, normalization of size produces 75% in females and 83% in males. With respect to foramen magnum dimorphism analysis, the result obtained through elliptic Fourier analysis was comparatively better in detail information of outline contours than earlier classical methods. The first four effective principal components defined 70.63% of its shape properties while the rest (22.51%) constituted fine details of morphology. Both size and shape seems important in sexual dimorphisms in this species, this investigation suggest clinical implications, taxonomic and anthropologic perspectives in foramen characterization magnum characterization and further postulates an increased possibility of volume reduction cerebellar protrusion, ontogenic magnum shape irregularities in the sample population with neurologic consequences especially among females. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The detailed balance requirement and general empirical formalisms for continuum absorption
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.
Photoacoustic imaging optimization with raw signal deconvolution and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Guo, Chengwen; Wang, Jing; Qin, Yu; Zhan, Hongchen; Yuan, Jie; Cheng, Qian; Wang, Xueding
2018-02-01
Photoacoustic (PA) signal of an ideal optical absorb particle is a single N-shape wave. PA signals of a complicated biological tissue can be considered as the combination of individual N-shape waves. However, the N-shape wave basis not only complicates the subsequent work, but also results in aliasing between adjacent micro-structures, which deteriorates the quality of the final PA images. In this paper, we propose a method to improve PA image quality through signal processing method directly working on raw signals, which including deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent point spread function (PSF) which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA signals with two constraints, positive polarity and spectrum consistence. With our proposed method, the built PA images can yield more detail structural information. Micro-structures are clearly separated and revealed. To validate the effectiveness of this method, we present numerical simulations and phantom studies consist of a densely distributed point sources model and a blood vessel model. In the future, our study might hold the potential for clinical PA imaging as it can help to distinguish micro-structures from the optimized images and even measure the size of objects from deconvolved signals.
NASA Technical Reports Server (NTRS)
Boulet, C.; Ma, Q.
2016-01-01
Line mixing effects have been calculated in the ?1 parallel band of self-broadened NH3. The theoretical approach is an extension of a semi-classical model to symmetric-top molecules with inversion symmetry developed in the companion paper [Q. Ma and C. Boulet, J. Chem. Phys. 144, 224303 (2016)]. This model takes into account line coupling effects and hence enables the calculation of the entire relaxation matrix. A detailed analysis of the various coupling mechanisms is carried out for Q and R inversion doublets. The model has been applied to the calculation of the shape of the Q branch and of some R manifolds for which an obvious signature of line mixing effects has been experimentally demonstrated. Comparisons with measurements show that the present formalism leads to an accurate prediction of the available experimental line shapes. Discrepancies between the experimental and theoretical sets of first order mixing parameters are discussed as well as some extensions of both theory and experiment.
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
NASA Astrophysics Data System (ADS)
Erickson, Robert R.
Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.
Impact of temperature-velocity distribution on fusion neutron peak shape
Munro, D. H.; Field, J. E.; Hatarik, R.; ...
2017-02-21
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.
2017-05-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.
Buckling of paramagnetic chains in soft gels
NASA Astrophysics Data System (ADS)
Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.
We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staley, Martin
2017-09-20
This high-performance ray tracing library provides very fast rendering; compact code; type flexibility through C++ "generic programming" techniques; and ease of use via an application programming interface (API) that operates independently of any GUI, on-screen display, or other enclosing application. Kip supports constructive solid geometry (CSG) models based on a wide variety of built-in shapes and logical operators, and also allows for user-defined shapes and operators to be provided. Additional features include basic texturing; input/output of models using a simple human-readable file format and with full error checking and detailed diagnostics; and support for shared data parallelism. Kip is writtenmore » in pure, ANSI standard C++; is entirely platform independent; and is very easy to use. As a C++ "header only" library, it requires no build system, configuration or installation scripts, wizards, non-C++ preprocessing, makefiles, shell scripts, or external libraries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring
The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failuremore » mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Song-Hua; Chang, James Y. H.; Boring,Ronald L.
2010-03-01
The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identifiedmore » human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less
Egorov, Vladimir V
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
2017-01-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984
NASA Astrophysics Data System (ADS)
Egorov, Vladimir V.
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
Mereghetti, Paolo; Wade, Rebecca C
2012-07-26
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.
Girls in detail, boys in shape: gender differences when drawing cubes in depth.
Lange-Küttner, C; Ebersbach, M
2013-08-01
The current study tested gender differences in the developmental transition from drawing cubes in two- versus three dimensions (3D), and investigated the underlying spatial abilities. Six- to nine-year-old children (N = 97) drew two occluding model cubes and solved several other spatial tasks. Girls more often unfolded the various sides of the cubes into a layout, also called diagrammatic cube drawing (object design detail). In girls, the best predictor for drawing the cubes was Mental Rotation Test (MRT) accuracy. In contrast, boys were more likely to preserve the optical appearance of the cube array. Their drawing in 3D was best predicted by MRT reaction time and the Embedded Figures Test (EFT). This confirmed boys' stronger focus on the contours of an object silhouette (object shape). It is discussed whether the two gender-specific approaches to drawing in three dimensions reflect two sides of the appearance-reality distinction in drawing, that is graphic syntax of object design features versus visual perception of projective space. © 2012 The British Psychological Society.
Exploratory Study of RNA Polymerase II Using Dynamic Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzanne; Ishikawa, Mitsuru; Fu, Jianhua
2002-03-01
An exploratory study of the microtopological dimensions and shape features of yeast RNA polymerase II (y-poly II) on freshly cleaved mica was made in phosphate aqueous buffer solution at room temperature following previous work by Hansma and others. The molecules were imaged by stabilization on freshly cleaved mica at a limiting resolution of 10 Å and scanned using dynamical atomic force microscopy with a 10 nm multi-wall carbon nanotube in the resonance frequency modulation mode. They indicated microtopological shape and dimensional features similar to those predicted by electron density plots derived from the X-ray crystallographic model. It is concluded that this is considered primarily a feasibility study with definitive conclusions subject to more detailed systematic measurements of the 3D microtopology. These measurements appear to establish validity of the noncontact atomic force microscopy (nc-AFM) approach into defining the primary microtopology and biochemical functionality of RNA polymerase II. Further nc-AFM studies at higher resolution using dynamical nc-AFM will be required to clearly define the detailed 3D microtopology of RNA polymerase II in anaerobic aqueous environments for both static and dynamic conditions.
NASA Astrophysics Data System (ADS)
Cui, Yan; Liao, Xiaoping
2012-05-01
In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped-clamped and free-free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh-Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W-1 and superior return and insertion losses (S11 and S21), less than -22.16 dB and -0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range.
Design, analysis, and testing of a metal matrix composite web/flange intersection
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.
1992-01-01
An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.
Using artificial neural networks to model aluminium based sheet forming processes and tools details
NASA Astrophysics Data System (ADS)
Mekras, N.
2017-09-01
In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).
Model of outgrowths in the spiral galaxies NGC 4921 and NGC 7049 and the origin of spiral arms
NASA Astrophysics Data System (ADS)
Carlqvist, Per
2013-02-01
NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.
Impact of Atmospheric Chromatic Effects on Weak Lensing Measurements
NASA Astrophysics Data System (ADS)
Meyers, Joshua E.; Burchat, Patricia R.
2015-07-01
Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.
NASA Astrophysics Data System (ADS)
Richardson, J.; Graves, K.; Bowling, T.
2014-07-01
Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates (left plot) and will tend to move down and to the left in shape/spin space as the body evolves (right plot), barring other influences such as YORP spin-up [6]. Moderate rotators (Group B: green points) have slopes that are influenced equally by gravity and spin, lie in or near the self-correcting MSS zone (right plot), and will generally experience the lowest erosion rates (left plot). These objects comprise 12 (43%) of the 28 bodies studied, perhaps indicating some prevalence for the MSS zone. On the other hand, a sample of 1300 asteroid shape and spin parameters (small grey points), derived from asteroid lightcurve data [7], do not show this same degree of correlation, perhaps indicating the relative weakness of erosion-driven shape modification as compared to other influences. We will continue to investigate this phenomenon as the number of detailed shape models from ground-based radar and other observations continues to increase.
NASA Astrophysics Data System (ADS)
Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.
2017-11-01
This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.
Microscale hydrodynamics near moving contact lines
NASA Technical Reports Server (NTRS)
Garoff, Stephen; Chen, Q.; Rame, Enrique; Willson, K. R.
1994-01-01
The hydrodynamics governing the fluid motions on a microscopic scale near moving contact lines are different from those governing motion far from the contact line. We explore these unique hydrodynamics by detailed measurement of the shape of a fluid meniscus very close to a moving contact line. The validity of present models of the hydrodynamics near moving contact lines as well as the dynamic wetting characteristics of a family of polymer liquids are discussed.
Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia
NASA Astrophysics Data System (ADS)
Babeyko, A. Y.; Hoechner, A.; Sobolev, S. V.
2010-07-01
We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.
Reflectance from images: a model-based approach for human faces.
Fuchs, Martin; Blanz, Volker; Lensch, Hendrik; Seidel, Hans-Peter
2005-01-01
In this paper, we present an image-based framework that acquires the reflectance properties of a human face. A range scan of the face is not required. Based on a morphable face model, the system estimates the 3D shape and establishes point-to-point correspondence across images taken from different viewpoints and across different individuals' faces. This provides a common parameterization of all reconstructed surfaces that can be used to compare and transfer BRDF data between different faces. Shape estimation from images compensates deformations of the face during the measurement process, such as facial expressions. In the common parameterization, regions of homogeneous materials on the face surface can be defined a priori. We apply analytical BRDF models to express the reflectance properties of each region and we estimate their parameters in a least-squares fit from the image data. For each of the surface points, the diffuse component of the BRDF is locally refined, which provides high detail. We present results for multiple analytical BRDF models, rendered at novel orientations and lighting conditions.
Mechanisms of Carrier Transport Induced by a Microswimmer Bath
Kaiser, Andreas; Sokolov, Andrey; Aranson, Igor S.; ...
2014-10-20
Recently, it was found that a wedgelike microparticle (referred to as ”carrier”) which is only allowed to translate but not to rotate exhibits a directed translational motion along the wedge cusp if it is exposed to a bath of microswimmers. Here we model this effect in detail by resolving the microswimmers explicitly using interaction models with different degrees of mutual alignment. Using computer simulations we study the impact of these interactions on the transport efficiency of V-shaped carrier. We show that the transport mechanisms itself strongly depends on the degree of alignment embodied in the modelling of the individual swimmermore » dynamics. For weak alignment, optimal carrier transport occurs in the turbulent microswimmer state and is induced by swirl depletion inside the carrier. For strong aligning interactions, optimal transport occurs already in the dilute regime and is mediated by a polar cloud of swimmers in the carrier wake pushing the wedge-particle forward. Finally, we also demonstrate that the optimal shape of the carrier leading to maximal transport speed depends on the kind of interaction model used.« less
Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Yu, Q.; Helmholz, P.; Belton, D.; West, G.
2014-04-01
The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.
Laser/lidar analysis and testing
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1994-01-01
Section 1 of this report details development of a model of the output pulse frequency spectrum of a pulsed transversely excited (TE) CO2 laser. In order to limit the computation time required, the model was designed around a generic laser pulse shape model. The use of such a procedure allows many possible laser configurations to be examined. The output pulse shape is combined with the calculated frequency chirp to produce the electric field of the output pulse which is then computationally mixed with a local oscillator field to produce the heterodyne beat signal that would fall on a detector. The power spectral density of this heterodyne signal is then calculated. Section 2 reports on a visit to the LAWS laser contractors to measure the performance of the laser breadboards. The intention was to acquire data using a digital oscilloscope so that it could be analyzed. Section 3 reports on a model developed to assess the power requirements of a 5J LAWS instrument on a Spot MKII platform in a polar orbit. The performance was assessed for three different latitude dependent sampling strategies.
Development of a shape memory alloy actuated biomimetic vehicle
NASA Astrophysics Data System (ADS)
Garner, L. J.; Wilson, L. N.; Lagoudas, D. C.; Rediniotis, O. K.
2000-10-01
The development of a biomimetic active hydrofoil that utilizes shape memory alloy (SMA) actuator technology is presented. This work is the first stage prototype of a vehicle that will consist of many actuated body segments. The current work describes the design, modeling and testing of a single-segment demonstration SMA actuated hydrofoil. The SMA actuation elements are two sets of thin wires on either side of an elastomeric component that joins together the leading and trailing edges of the hydrofoil. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects the trailing edge of the hydrofoil. In this paper the design of the hydrofoil and the experimental tests preformed thereon are explained. A detailed account of SMA actuator preparation (training) and material characterization is given. Finite-element method (FEM) modeling of hydrofoil response to electrical heating of the SMA actuators is carried out using a thermomechanical constitutive model for the SMA with input from the material characterization. The modeling predictions are finally compared with experimental measurements of the trailing edge deflection and the SMA actuator temperature.
Recommended Isolated-Line Profile for Representing High-Resolution Spectroscoscopic Transitions
NASA Astrophysics Data System (ADS)
Tennyson, J.; Bernath, P. F.; Campargue, A.; Császár, A. G.; Daumont, L.; Gamache, R. R.; Hodges, J. T.; Lisak, D.; Naumenko, O. V.; Rothman, L. S.; Tran, H.; Hartmann, J.-M.; Zobov, N. F.; Buldyreva, J.; Boone, C. D.; De Vizia, M. Domenica; Gianfrani, L.; McPheat, R.; Weidmann, D.; Murray, J.; Ngo, N. H.; Polyansky, O. L.
2014-06-01
Recommendations of an IUPAC Task Group, formed in 2011 on "Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory" (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules are presented. The well-documented inadequacies of the Voigt profile, used almost universally by databases and radiative-transfer codes to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule, have resulted in the development of a variety of alternative line profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially-Correlated quadratic-Speed-Dependent Hard-Collision profile should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann-Tran profile (HTP). This profile is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. For further details see: J. Tennyson et al, Pure Appl. Chem., 2014, in press.
Emergence of tissue mechanics from cellular processes: shaping a fly wing
NASA Astrophysics Data System (ADS)
Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank
Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.
Physics behind the mechanical nucleosome positioning code
NASA Astrophysics Data System (ADS)
Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut
2017-11-01
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
NASA Astrophysics Data System (ADS)
Massip, Florian; Arndt, Peter F.
2013-04-01
Recently, an enrichment of identical matching sequences has been found in many eukaryotic genomes. Their length distribution exhibits a power law tail raising the question of what evolutionary mechanism or functional constraints would be able to shape this distribution. Here we introduce a simple and evolutionarily neutral model, which involves only point mutations and segmental duplications, and produces the same statistical features as observed for genomic data. Further, we extend a mathematical model for random stick breaking to analytically show that the exponent of the power law tail is -3 and universal as it does not depend on the microscopic details of the model.
Surface facial modelling and allometry in relation to sexual dimorphism.
Velemínská, J; Bigoni, L; Krajíček, V; Borský, J; Šmahelová, D; Cagáňová, V; Peterka, M
2012-04-01
Sexual dimorphism is responsible for a substantial part of human facial variability, the study of which is essential for many scientific fields ranging from evolution to special biomedical topics. Our aim was to analyse the relationship between size variability and shape facial variability of sexual traits in the young adult Central European population and to construct average surface models of adult males and females. The method of geometric morphometrics allowed not only the identification of dimorphic traits, but also the evaluation of static allometry and the visualisation of sexual facial differences. Facial variability in the studied sample was characterised by a strong relationship between facial size and shape of sexual dimorphic traits. Large size of face was associated with facial elongation and vice versa. Regarding shape sexual dimorphic traits, a wide, vaulted and high forehead in combination with a narrow and gracile lower face were typical for females. Variability in shape dimorphic traits was smaller in females compared to males. For female classification, shape sexual dimorphic traits are more important, while for males the stronger association is with face size. Males generally had a closer inter-orbital distance and a deeper position of the eyes in relation to the facial plane, a larger and wider straight nose and nostrils, and more massive lower face. Using pseudo-colour maps to provide a detailed schematic representation of the geometrical differences between the sexes, we attempted to clarify the reasons underlying the development of such differences. Copyright © 2012 Elsevier GmbH. All rights reserved.
Optical measurement of unducted fan flutter
NASA Technical Reports Server (NTRS)
Kurkov, Anatole P.; Mehmed, Oral
1990-01-01
A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.
Human spleen and red blood cells
NASA Astrophysics Data System (ADS)
Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming
2016-11-01
Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.
Ammari, Habib; Boulier, Thomas; Garnier, Josselin; Wang, Han
2017-01-31
Understanding active electrolocation in weakly electric fish remains a challenging issue. In this article we propose a mathematical formulation of this problem, in terms of partial differential equations. This allows us to detail two algorithms: one for localizing a target using the multi-frequency aspect of the signal, and another one for identifying the shape of this target. Shape recognition is designed in a machine learning point of view, and takes advantage of both the multi-frequency setup and the movement of the fish around its prey. Numerical simulations are shown for the computation of the electric field emitted and sensed by the fish; they are then used as an input for the two algorithms.
Ambient occlusion effects for combined volumes and tubular geometry.
Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D
2013-06-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.
[Reform of public health in Central Europe during the 18th century].
Kapronczay, Károly
2010-01-01
Author outlines the history of making and of development of public health during the period of enlightenment in Central Europe, with special regards on the Habsurg Empire, on Poland and on Russia. This development--including the foundation or reforms of medical education--was highly influenced by the ideas of the enlightened absolutism and by other international trends of the age as well. The detailed analysis of the factors shaping the history of public health in the three rather different countries shows an interesing parallelism regarding main issues. While re-organization of public health in all these countries was initiated and directed by the government and shaped according to western models, it was strongly influenced by local possibilities, culture and history.
Ambient Occlusion Effects for Combined Volumes and Tubular Geometry
Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.
2013-01-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506
Deep sub-wavelength metrology for advanced defect classification
NASA Astrophysics Data System (ADS)
van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.
2017-06-01
Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Fengtao; Yuan Jianmin
The experimental transmission spectrum of a hot bromine plasma [J. E. Bailey et al., J. Quant. Spectrosc. Radiat. Transf. 81, 31 (2003)] has been simulated by using a detailed level accounting model (DLA). With assumption of the local thermodynamic equilibrium, the major absorption lines of the experimental spectrum are well reproduced by the present DLA calculation, and the details of the absorption line shapes are used to determine the temperature of the plasma. In contrast to the results of two former statistical models, where the temperature was determined via a global fitting to the experimental data, the present DLA diagnosesmore » the plasma temperature by the line ratios of different charge states in the 2p{yields}3d transition groups resulting in a temperature of 37 eV. It is shown that a change of 1 eV in temperature could cause perceptible changes in the simulated spectrum. It is also shown that the 2p{sub 1/2}{yields}3d{sub 3/2} absorptions have been overestimated by the statistical models.« less
Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li
2002-01-01
Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.
Origin and transport of high energy particles in the galaxy
NASA Technical Reports Server (NTRS)
Wefel, John P.
1987-01-01
The origin, confinement, and transport of cosmic ray nuclei in the galaxy was studied. The work involves interpretations of the existing cosmic ray physics database derived from both balloon and satellite measurements, combined with an effort directed towards defining the next generation of instruments for the study of cosmic radiation. The shape and the energy dependence of the cosmic ray pathlength distribution in the galaxy was studied, demonstrating that the leaky box model is not a good representation of the detailed particle transport over the energy range covered by the database. Alternative confinement methods were investigated, analyzing the confinement lifetime in these models based upon the available data for radioactive secondary isotopes. The source abundances of several isotopes were studied using compiled nuclear physics data and the detailed transport calculations. The effects of distributed particle acceleration on the secondary to primary ratios were investigated.
Cookbook asymptotics for spiral and scroll waves in excitable media.
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.
Cookbook asymptotics for spiral and scroll waves in excitable media
NASA Astrophysics Data System (ADS)
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion.
Bim from Laser SCANS… not Just for Buildings: Nurbs-Based Parametric Modeling of a Medieval Bridge
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Banfi, F.; Brumana, R.; Previtali, M.; Roncoroni, F.
2016-06-01
Building Information Modelling is not limited to buildings. BIM technology includes civil infrastructures such as roads, dams, bridges, communications networks, water and wastewater networks and tunnels. This paper describes a novel methodology for the generation of a detailed BIM of a complex medieval bridge. The use of laser scans and images coupled with the development of algorithms able to handle irregular shapes allowed the creation of advanced parametric objects, which were assembled to obtain an accurate BIM. The lack of existing object libraries required the development of specific families for the different structural elements of the bridge. Finally, some applications aimed at assessing the stability and safety of the bridge are illustrated and discussed. The BIM of the bridge can incorporate this information towards a new "BIMonitoring" concept to preserve the geometric complexity provided by point clouds, obtaining a detailed BIM with object relationships and attributes.
Analysis of the pump-turbine S characteristics using the detached eddy simulation method
NASA Astrophysics Data System (ADS)
Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao
2015-01-01
Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.
Three dimensional modeling of cirrus during the 1991 FIRE IFO 2: Detailed process study
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.
1993-01-01
A three-dimensional model of cirrus cloud formation and evolution, including microphysical, dynamical, and radiative processes, was used to simulate cirrus observed in the FIRE Phase 2 Cirrus field program (13 Nov. - 7 Dec. 1991). Sulfate aerosols, solution drops, ice crystals, and water vapor are all treated as interactive elements in the model. Ice crystal size distributions are fully resolved based on calculations of homogeneous freezing of solution drops, growth by water vapor deposition, evaporation, aggregation, and vertical transport. Visible and infrared radiative fluxes, and radiative heating rates are calculated using the two-stream algorithm described by Toon et al. Wind velocities, diffusion coefficients, and temperatures were taken from the MAPS analyses and the MM4 mesoscale model simulations. Within the model, moisture is transported and converted to liquid or vapor by the microphysical processes. The simulated cloud bulk and microphysical properties are shown in detail for the Nov. 26 and Dec. 5 case studies. Comparisons with lidar, radar, and in situ data are used to determine how well the simulations reproduced the observed cirrus. The roles played by various processes in the model are described in detail. The potential modes of nucleation are evaluated, and the importance of small-scale variations in temperature and humidity are discussed. The importance of competing ice crystal growth mechanisms (water vapor deposition and aggregation) are evaluated based on model simulations. Finally, the importance of ice crystal shape for crystal growth and vertical transport of ice are discussed.
Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS
NASA Astrophysics Data System (ADS)
Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.
2017-02-01
The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.
High sensitivity of tidewater outlet glacier dynamics to shape
NASA Astrophysics Data System (ADS)
Enderlin, E. M.; Howat, I. M.; Vieli, A.
2013-02-01
Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e. bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.
High sensitivity of tidewater outlet glacier dynamics to shape
NASA Astrophysics Data System (ADS)
Enderlin, E. M.; Howat, I. M.; Vieli, A.
2013-06-01
Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e., bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.
A strain energy filter for 3D vessel enhancement with application to pulmonary CT images.
Xiao, Changyan; Staring, Marius; Shamonin, Denis; Reiber, Johan H C; Stolk, Jan; Stoel, Berend C
2011-02-01
The traditional Hessian-related vessel filters often suffer from detecting complex structures like bifurcations due to an over-simplified cylindrical model. To solve this problem, we present a shape-tuned strain energy density function to measure vessel likelihood in 3D medical images. This method is initially inspired by established stress-strain principles in mechanics. By considering the Hessian matrix as a stress tensor, the three invariants from orthogonal tensor decomposition are used independently or combined to formulate distinctive functions for vascular shape discrimination, brightness contrast and structure strength measuring. Moreover, a mathematical description of Hessian eigenvalues for general vessel shapes is obtained, based on an intensity continuity assumption, and a relative Hessian strength term is presented to ensure the dominance of second-order derivatives as well as suppress undesired step-edges. Finally, we adopt the multi-scale scheme to find an optimal solution through scale space. The proposed method is validated in experiments with a digital phantom and non-contrast-enhanced pulmonary CT data. It is shown that our model performed more effectively in enhancing vessel bifurcations and preserving details, compared to three existing filters. Copyright © 2010 Elsevier B.V. All rights reserved.
Stable forming conditions and geometrical expansion of L-shape rings in ring rolling process
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Berti, Guido A.; Kim, Dongwook; Kim, Naksoo
2018-05-01
Based on previous research results concerning the radial-axial ring rolling process of flat rings, this paper details an innovative approach for the determination of the stable forming conditions to successfully simulate the radial ring rolling process of L-shape profiled rings. In addition to that, an analytical model for the estimation of the geometrical expansion of L-shape rings from its initial flat ring preform is proposed and validated by comparing its results with those of numerical simulations. By utilizing the proposed approach, steady forming conditions could be achieved, granting a uniform expansion of the ring throughout the process for all of the six tested cases of rings having the final outer diameter of the flange ranging from 545mm and 1440mm. The validation of the proposed approach allowed concluding that the geometrical expansion of the ring, as estimated by the proposed analytical model, is in good agreement with the results of the numerical simulation, with a maximum error of 2.18%, in the estimation of the ring wall diameter, 1.42% of the ring flange diameter and 1.87% for the estimation of the inner diameter of the ring, respectively.
Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.
Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F
2010-01-01
The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Futrell, Jean H.
2015-02-01
We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, David
2016-10-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ollonen, Joni; Da Silva, Filipe O; Mahlow, Kristin; Di-Poï, Nicolas
2018-01-01
The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution.
Ollonen, Joni; Da Silva, Filipe O.; Mahlow, Kristin; Di-Poï, Nicolas
2018-01-01
The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution. PMID:29643813
2014-09-01
Prandtl numbers are implicative of a liquid freestream and coolant rather than gas . The inextricable dependence of film cooling heat transfer on the...McGraw-Hill Higher Education, 2006. [12] Colban, W. F. A Detailed Study of Fan-Shaped Film-Cooling for a Nozzle Guide Vane for an Industrial Gas Turbine...380 A.31 Screenshot of LabView Data Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 B.1 Accuracy of the Ideal Gas Law to model
Shape control of large space structures
NASA Technical Reports Server (NTRS)
Hagan, M. T.
1982-01-01
A survey has been conducted to determine the types of control strategies which have been proposed for controlling the vibrations in large space structures. From this survey several representative control strategies were singled out for detailed analyses. The application of these strategies to a simplified model of a large space structure has been simulated. These simulations demonstrate the implementation of the control algorithms and provide a basis for a preliminary comparison of their suitability for large space structure control.
NASA Astrophysics Data System (ADS)
Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.
2013-05-01
More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.
Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet
2018-02-01
Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.
Identification of Historical Veziragasi Aqueduct Using the Operational Modal Analysis
Ercan, E.; Nuhoglu, A.
2014-01-01
This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed. PMID:24511287
NASA Technical Reports Server (NTRS)
Schindler, K.; Birn, J.; Hesse, M.
2012-01-01
Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as "U" or "S" shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.
Face aging effect simulation model based on multilayer representation and shearlet transform
NASA Astrophysics Data System (ADS)
Li, Yuancheng; Li, Yan
2017-09-01
In order to extract detailed facial features, we build a face aging effect simulation model based on multilayer representation and shearlet transform. The face is divided into three layers: the global layer of the face, the local features layer, and texture layer, which separately establishes the aging model. First, the training samples are classified according to different age groups, and we use active appearance model (AAM) at the global level to obtain facial features. The regression equations of shape and texture with age are obtained by fitting the support vector machine regression, which is based on the radial basis function. We use AAM to simulate the aging of facial organs. Then, for the texture detail layer, we acquire the significant high-frequency characteristic components of the face by using the multiscale shearlet transform. Finally, we get the last simulated aging images of the human face by the fusion algorithm. Experiments are carried out on the FG-NET dataset, and the experimental results show that the simulated face images have less differences from the original image and have a good face aging simulation effect.
Procedural 3d Modelling for Traditional Settlements. The Case Study of Central Zagori
NASA Astrophysics Data System (ADS)
Kitsakis, D.; Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2017-02-01
Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects' detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.
NASA Astrophysics Data System (ADS)
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.
NASA Astrophysics Data System (ADS)
Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge
2003-09-01
Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.
Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.; ...
2012-01-01
A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012), 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertaintymore » quantification results for a 3D PDE application.« less
Behaviour of several fatigue prone bridge details
NASA Astrophysics Data System (ADS)
Kubiš, Petr; Ryjáček, Pavel
2017-09-01
Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.
NASA Astrophysics Data System (ADS)
Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.
2014-02-01
Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.
Electrowetting-actuated zoom lens with spherical-interface liquid lenses.
Peng, Runling; Chen, Jiabi; Zhuang, Songlin
2008-11-01
The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
Thermophysical modelling for high-resolution digital terrain models
NASA Astrophysics Data System (ADS)
Pelivan, I.
2018-07-01
A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavourable illumination conditions such as little-to-no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment, and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disc-integrated and disc-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.
Thermophysical modeling for high-resolution digital terrain models
NASA Astrophysics Data System (ADS)
Pelivan, I.
2018-04-01
A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.
Basal paravian functional anatomy illuminated by high-detail body outline
Wang, Xiaoli; Pittman, Michael; Zheng, Xiaoting; Kaye, Thomas G.; Falk, Amanda R.; Hartman, Scott A.; Xu, Xing
2017-01-01
Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit. PMID:28248287
Tsubota, Ken-Ichi; Wada, Shigeo; Liu, Hao
2014-08-01
Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ([Formula: see text]), biconcave disk shape ([Formula: see text]) and their intermediate shapes ([Formula: see text]) with the nonuniformity parameter [Formula: see text], while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of [Formula: see text] and an out-of-plane bending rigidity of [Formula: see text] of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for [Formula: see text] and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for [Formula: see text]; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the [Formula: see text] value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for [Formula: see text]. The condition [Formula: see text] precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of [Formula: see text] and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the RBC mechanics at equilibrium. Our numerical results demonstrate that moderate nonuniformity in a membrane's natural state with respect to in-plane shear deformation plays a key role in RBC mechanics.
Motion-adapted catheter navigation with real-time instantiation and improved visualisation
Kwok, Ka-Wai; Wang, Lichao; Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Yang, Guang-Zhong
2014-01-01
The improvements to catheter manipulation by the use of robot-assisted catheter navigation for endovascular procedures include increased precision, stability of motion and operator comfort. However, navigation through the vasculature under fluoroscopic guidance is still challenging, mostly due to physiological motion and when tortuous vessels are involved. In this paper, we propose a motion-adaptive catheter navigation scheme based on shape modelling to compensate for these dynamic effects, permitting predictive and dynamic navigations. This allows for timed manipulations synchronised with the vascular motion. The technical contribution of the paper includes the following two aspects. Firstly, a dynamic shape modelling and real-time instantiation scheme based on sparse data obtained intra-operatively is proposed for improved visualisation of the 3D vasculature during endovascular intervention. Secondly, a reconstructed frontal view from the catheter tip using the derived dynamic model is used as an interventional aid to user guidance. To demonstrate the practical value of the proposed framework, a simulated aortic branch cannulation procedure is used with detailed user validation to demonstrate the improvement in navigation quality and efficiency. PMID:24744817
Fish robotics and hydrodynamics
NASA Astrophysics Data System (ADS)
Lauder, George
2010-11-01
Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.
Rare-gas impurities in alkali metals: Relation to optical absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meltzer, D.E.; Pinski, F.J.; Stocks, G.M.
1988-04-15
An investigation of the nature of rare-gas impurity potentials in alkali metals is performed. Results of calculations based on simple models are presented, which suggest the possibility of resonance phenomena. These could lead to widely varying values for the exponents which describe the shape of the optical-absorption spectrum at threshold in the Mahan--Nozieres--de Dominicis theory. Detailed numerical calculations are then performed with the Korringa-Kohn-Rostoker coherent-potential-approximation method. The results of these highly realistic calculations show no evidence for the resonance phenomena, and lead to predictions for the shape of the spectra which are in contradiction to observations. Absorption and emission spectramore » are calculated for two of the systems studied, and their relation to experimental data is discussed.« less
NASA Astrophysics Data System (ADS)
Tsujiuchi, Y.; Makino, Y.
A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.
Giannini, Vincenzo; Maier, Stefan A.; Craster, Richard V.
2016-01-01
According to the hydrodynamic Drude model, surface plasmon resonances of metallic nanostructures blueshift owing to the non-local response of the metal’s electron gas. The screening length characterizing the non-local effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained non-local description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary-shaped nanometallic structures is then developed. The effect of non-locality is not always a perturbation and we present a detailed analysis of the ‘bonding’ modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalization of those predicted assuming a local metal permittivity. PMID:27493575
L-shaped piezoelectric motor--part I: design and experimental analysis.
Avirovik, Dragan; Priya, Shashank
2012-01-01
This paper proposes an L-shaped piezoelectric motor consisting of two piezoelectric bimorphs of different lengths arranged perpendicularly to each other. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. A detailed finite element model was developed to optimize the dimensions of bimorph to achieve an effective coupling at the resonance frequency of 246 Hz. The motor was characterized by developing rotational and linear stages. The linear stage was tested with different friction contact surfaces and the maximum velocity was measured to be 12 mm/s. The rotational stage was used to obtain additional performance characteristics from the motor: maximum velocity of 120 rad/s, mechanical torque of 4.7 × 10-(5) N·m, and efficiency of 8.55%. © 2012 IEEE
Fixed gain and adaptive techniques for rotorcraft vibration control
NASA Technical Reports Server (NTRS)
Roy, R. H.; Saberi, H. A.; Walker, R. A.
1985-01-01
The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.
Kharmanda, G
2016-11-01
A new strategy of multi-objective structural optimization is integrated into Austin-Moore prosthesis in order to improve its performance. The new resulting model is so-called Improved Austin-Moore. The topology optimization is considered as a conceptual design stage to sketch several kinds of hollow stems according to the daily loading cases. The shape optimization presents the detailed design stage considering several objectives. Here, A new multiplicative formulation is proposed as a performance scale in order to define the best compromise between several requirements. Numerical applications on 2D and 3D problems are carried out to show the advantages of the proposed model.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM
NASA Astrophysics Data System (ADS)
Tripathi, A.; Pandey, M.; Nagamatsu, S.; Pandey, S. S.; Hayase, S.; Takashima, W.
2017-11-01
We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.
The NASA High Speed ASE Project: Computational Analyses of a Low-Boom Supersonic Configuration
NASA Technical Reports Server (NTRS)
Silva, Walter A.; DeLaGarza, Antonio; Zink, Scott; Bounajem, Elias G.; Johnson, Christopher; Buonanno, Michael; Sanetrik, Mark D.; Yoo, Seung Y.; Kopasakis, George; Christhilf, David M.;
2014-01-01
A summary of NASA's High Speed Aeroservoelasticity (ASE) project is provided with a focus on a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The summary includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, structured and unstructured CFD grids, and discussion of the FEM development including sizing and structural constraints applied to the N+2 configuration. Linear results obtained to date include linear mode shapes and linear flutter boundaries. In addition to the tasks associated with the N+2 configuration, a summary of the work involving the development of AeroPropulsoServoElasticity (APSE) models is also discussed.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Drach, Andrew; Khalighi, Amir H; Sacks, Michael S
2018-02-01
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states. Copyright © 2017 John Wiley & Sons, Ltd.
Granular convection observed by magnetic resonance imaging.
Ehrichs, E E; Jaeger, H M; Karczmar, G S; Knight, J B; Kuperman, V Y; Nagel, S R
1995-03-17
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.
1987-10-01
durability test at 800 C, 95% r.h. 71 SEM photomicrograph at 1600 x of E-8385 film spun coat . from a 2 wt% solution onto a ferrotype plate. .I 72 Theoretical ...TiO2 to the high energy side. While Auger line shapes theoretically yield oxidation state information, stoichiometry conclusions from experi- 0 mental...the justification for the methods chosen in this work. ,*p-* ., Fadley et al. [37] present a detailed theoretical discussion on quantitative XPS
Simulating Fatigue Crack Growth in Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.
2000-01-01
The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.
A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis
NASA Astrophysics Data System (ADS)
Dion, Marc; Kashyap, Satish; Louie, Aloisius
1991-06-01
This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.
Structure of the charge density wave in cuprate superconductors: Lessons from NMR
NASA Astrophysics Data System (ADS)
Atkinson, W. A.; Ufkes, S.; Kampf, A. P.
2018-03-01
Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.
The surfaces of Larissa and Proteus
NASA Astrophysics Data System (ADS)
Stooke, Philip J.
1994-01-01
Topographic models of Neptune's small inner satellites Larissa and Proteus were derived from the shapes of limbs and terminators in Voyager images, modified locally to accomodate large craters and ridges. The models are presented here in tabular and graphic form, including the first map of Larissa and the first detailed relief map of Proteus. The shape of Larissa is approximated by a triaxial ellipsoid with axes of 208, 192 and 178 km, but is only weakly constrained by the single available view. The volume is estimated to be 3.5 +/- 1.0 x 106cu km. The surface is heavily cratered and may be crossed by one or two poorly seen linear ridges. Proteus is approximated by a triaxial ellipsoid with axes of 424, 390 and 396 km (the latter being the rotation axis dimension). The volume is estimated to be 3.4 +/- 0.4 x 107 cu km. Its surface appears to be very heavily cratered and extensive evidence for linear fractures is observed despite very low image quality.
Face shape differs in phylogenetically related populations.
Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter
2014-11-01
3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study.
NASA Technical Reports Server (NTRS)
Thompson, D.; Mogili, P.; Chalasani, S.; Addy, H.; Choo, Y.
2004-01-01
Steady-state solutions of the Reynolds-averaged Navier-Stokes (RANS) equations were computed using the Colbalt flow solver for a constant-section, rectangular wing based on an extruded two-dimensional glaze ice shape. The one equation Spalart-Allmaras turbulence model was used. The results were compared with data obtained from a recent wind tunnel test. Computed results indicate that the steady RANS solutions do not accurately capture the recirculating region downstream of the ice accretion, even after a mesh refinement. The resulting predicted reattachment is farther downstream than indicated by the experimental data. Additionally, the solutions computed on a relatively coarse baseline mesh had detailed flow characteristics that were different from those computed on the refined mesh or the experimental data. Steady RANS solutions were also computed to investigate the effects of spanwise variation in the ice shape. The spanwise variation was obtained via a bleeding function that merged the ice shape with the clean wing using a sinusoidal spanwise variation. For these configurations, the results predicted for the extruded shape provided conservative estimates for the performance degradation of the wing. Additionally, the spanwise variation in the ice shape and the resulting differences in the flow fields did not significantly change the location of the primary reattachment.
Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis,Michael J.
2006-01-01
Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.
Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Goekcen, Tahir
2015-01-01
Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
An approach to achieve progress in spacecraft shielding
NASA Astrophysics Data System (ADS)
Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.
2004-01-01
Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.
Interactive Streamline Exploration and Manipulation Using Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei
2015-01-12
Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features. A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden ones in detail. In this paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields. We define a view-dependent focus+contextmore » technique that moves the streamlines occluding the focus area using a novel displacement model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone for the surrounding streamlines, and the displacement of the contextual streamlines is solved interactively with a goal of preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.« less
Park, Jong Bo; Shin, Dongha; Kang, Sangmin; Cho, Sung-Pyo; Hong, Byung Hee
2016-11-01
Two nanobubbles that merge in a graphene liquid cell take elliptical shapes rather than the ideal circular shapes. This phenomenon was investigated in detail by using in situ transmission electron microscopy (TEM). The results show that the distortion in the two-dimensional shapes of the merging nanobubbles is attributed to the anisotropic gas transport flux between the nanobubbles. We also predicted and confirmed the same phenomenon in a three-nanobubble system, indicating that the relative size difference is important in determining the shape of merging nanobubbles.
A morpho-kinematic and spectroscopic study of the bipolar nebulae: M 2-9, Mz 3, and Hen 2-104
NASA Astrophysics Data System (ADS)
Clyne, N.; Akras, S.; Steffen, W.; Redman, M. P.; Gonçalves, D. R.; Harvey, E.
2015-10-01
Context. Complex bipolar shapes can be generated either as a planetary nebula or a symbiotic system. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. Aims: The physical properties, structure, and dynamics of the bipolar nebulae, M 2-9, Mz 3, and Hen 2-104, are investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. Both a morpho-kinematic study and a spectroscopic analysis, can be used to more accurately determine the kinematics and nature of each nebula. Methods: Long-slit optical echelle spectra are used to investigate the morpho-kinematics of M 2-9, Mz 3, and Hen 2-104. The morpho-kinematic modelling software SHAPE is used to constrain both the morphology and kinematics of each nebula by means of detailed 3D models. Near-infrared (NIR) data, as well as optical, spectra are used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. Results: The best-fitted 3D models for M 2-9, Mz 3, and Hen 2-104 provide invaluable kinematical information on the expansion velocity of its nebular components by means of synthetic spectra. The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. The optical diagnostic diagram is shown to successfully separate the two types of nebulae, however, the NIR colour-colour diagram is not as accurate in separating these objects. Conclusions: The morphology, kinematics, and evolutionary history of M 2-9, Mz 3, and Hen 2-104 are better understood using the interactive 3D modelling tool shape. The expansion velocities of the components for each nebula are better constrained and fitted with a vector field to reveal their direction of motion. The optical and NIR diagnostic diagrams used are important techniques for separating Galactic symbiotic-type nebulae from genuine planetary nebulae.
Semi-empirical "leaky-bucket" model of laser-driven x-ray cavities
NASA Astrophysics Data System (ADS)
Moody, J. D.; Landen, O. L.; Divol, L.; LePape, S.; Michel, P.; Town, R. P. J.; Hall, G.; Widmann, K.; Moore, A.
2017-04-01
A semi-empirical analytical model is shown to approximately describe the energy balance in a laser-driven x-ray cavity, such as a hohlraum, for general laser pulse-shapes. Agreement between the model and measurements relies on two scalar parameters, one characterizes the efficiency of x-ray generation for a given laser power and the other represents a characteristic power-loss rate. These parameters, once obtained through estimation or optimization for a particular hohlraum design, can be used to predict either the x-ray flux or the coupled laser power time-history in terms of other quantities for similar hohlraum designs. The value of the model is that it can be used as an approximate "first-look" at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.
Biophysical model of the role of actin remodeling on dendritic spine morphology
Miermans, C. A.; Kusters, R. P. T.; Hoogenraad, C. C.; Storm, C.
2017-01-01
Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. It is well established that the remodeling of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present a quantitative, model-based scenario for spine plasticity validated using realistic and physiologically relevant parameters. Our model points to a crucial role for the actin cytoskeleton. In the early stages of spine formation, the interplay between the elastic properties of the spine membrane and the protrusive forces generated in the actin cytoskeleton propels the incipient spine. In the maturation stage, actin remodeling in the form of the combined dynamics of branched and bundled actin is required to form mature, mushroom-like spines. Importantly, our model shows that constricting the spine-neck aids in the stabilization of mature spines, thus pointing to a role in stabilization and maintenance for additional factors such as ring-like F-actin structures. Taken together, our model provides unique insights into the fundamental role of actin remodeling and polymerization forces during spine formation and maturation. PMID:28158194
Detailed 3D representations for object recognition and modeling.
Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad
2013-11-01
Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.
NASA Astrophysics Data System (ADS)
Kelly, E. D.; Atakturk, K. R.; Catlos, E. J.; Lizzadro-McPherson, D. J.; Cemen, I.; Lovera, O. M.
2015-12-01
Pressure-temperature (P-T) paths derived from garnet chemical zoning and supported by thermal modeling record alternating burial and exhumation during Main Menderes Metamorphism in western Turkey. We studied six rocks along the Selimiye (Kayabükü) shear zone, three from the footwall (Çine nappe) and three from the hanging wall (Selimiye nappe). The shear zone bounds the southern Menderes Massif metamorphic core complex and has been suggested to record compression followed by extension. The rocks are lower-amphibolite facies garnet-bearing metapelites with nearly identical mineral suites. Retrograde overprinting hinders classical thermobarometry; to overcome this, preserved chemical zoning in garnet combined with a G-minimization approach was used to construct detailed P-T paths (e.g., 50 points in some paths). During continuous temperature increase, the Çine nappe paths show increasing, decreasing, and then increasing pressure (an N-shaped path) ending at 7-8 kbar and ~565-590 °C. The Selimiye nappe paths show a single increase in P-T ending at ~7.3 kbar and ~580 °C. Similar bulk-rock compositions in all samples and the separation by the shear zone suggest that garnets grew during distinct events in each nappe. The timing of garnet growth, and thus the P-T paths, is currently undetermined, as monazite inclusions in garnet appear secondary and complicated by excess common Pb. The Çine nappe N-shaped path describes alternations in burial and exhumation, possibly due to thrust motion along the shear zone. To demonstrate the physical plausibility of the P-T paths, a 2-D finite difference solution to the diffusion-advection equation was applied. The results of the thermal modeling suggest that thrusting, denudation, and renewed thrusting would produce similar changes in P-T to the N-shaped path. Thus, the Çine nappe N-shaped P-T path appears to record a gap in thrust motion along the Selimiye (Kayabükü) shear zone prior to ultimate unroofing of the massif.
A modular approach to large-scale design optimization of aerospace systems
NASA Astrophysics Data System (ADS)
Hwang, John T.
Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.
The Mask Designs for Space Interferometer Mission (SIM)
NASA Technical Reports Server (NTRS)
Wang, Xu
2008-01-01
The Space Interferometer Mission (SIM) consists of three interferometers (science, guide1, and guide2) and two optical paths (metrology and starlight). The system requirements for each interferometer/optical path combination are different and sometimes work against each other. A diffraction model is developed to design and optimize various masks to simultaneously meet the system requirements of three interferometers. In this paper, the details of this diffraction model will be described first. Later, the mask design for each interferometer will be presented to demonstrate the system performance compliance. In the end, a tolerance sensitivity study on the geometrical dimension, shape, and the alignment of these masks will be discussed.
Directional pair distribution function for diffraction line profile analysis of atomistic models
Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo
2013-01-01
The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818
Actin-based propulsion of a microswimmer.
Leshansky, A M
2006-07-01
A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.
Detecting Surgical Tools by Modelling Local Appearance and Global Shape.
Bouget, David; Benenson, Rodrigo; Omran, Mohamed; Riffaud, Laurent; Schiele, Bernt; Jannin, Pierre
2015-12-01
Detecting tools in surgical videos is an important ingredient for context-aware computer-assisted surgical systems. To this end, we present a new surgical tool detection dataset and a method for joint tool detection and pose estimation in 2d images. Our two-stage pipeline is data-driven and relaxes strong assumptions made by previous works regarding the geometry, number, and position of tools in the image. The first stage classifies each pixel based on local appearance only, while the second stage evaluates a tool-specific shape template to enforce global shape. Both local appearance and global shape are learned from training data. Our method is validated on a new surgical tool dataset of 2 476 images from neurosurgical microscopes, which is made freely available. It improves over existing datasets in size, diversity and detail of annotation. We show that our method significantly improves over competitive baselines from the computer vision field. We achieve 15% detection miss-rate at 10(-1) false positives per image (for the suction tube) over our surgical tool dataset. Results indicate that performing semantic labelling as an intermediate task is key for high quality detection.
3-DIMENSIONAL Geometric Survey and Structural Modelling of the Dome of Pisa Cathedral
NASA Astrophysics Data System (ADS)
Aita, D.; Barsotti, R.; Bennati, S.; Caroti, G.; Piemonte, A.
2017-02-01
This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature.
Shape dynamics and Mach's principles: Gravity from conformal geometrodynamics
NASA Astrophysics Data System (ADS)
Gryb, Sean
2012-04-01
In this PhD thesis, we develop a new approach to classical gravity starting from Mach's principles and the idea that the local shape of spatial configurations is fundamental. This new theory, "shape dynamics", is equivalent to general relativity but differs in an important respect: shape dynamics is a theory of dynamic conformal 3-geometry, not a theory of spacetime. Equivalence is achieved by trading foliation invariance for local conformal invariance (up to a global scale). After the trading, what is left is a gauge theory invariant under 3d diffeomorphisms and conformal transformations that preserve the volume of space. The local canonical constraints are linear and the constraint algebra closes with structure constants. Shape dynamics, thus, provides a novel new starting point for quantum gravity. The procedure for the trading of symmetries was inspired by a technique called "best matching". We explain best matching and its relation to Mach's principles. The key features of best matching are illustrated through finite dimensional toy models. A general picture is then established where relational theories are treated as gauge theories on configuration space. Shape dynamics is then constructed by applying best matching to conformal geometry. We then study shape dynamics in more detail by computing its Hamiltonian and Hamilton-Jacobi functional perturbatively. This thesis is intended as a pedagogical but complete introduction to shape dynamics and the Machian ideas that led to its discovery. The reader is encouraged to start with the introduction, which gives a conceptual outline and links to the relevant sections in the text for a more rigorous exposition. When full rigor is lacking, references to the literature are given. It is hoped that this thesis may provide a starting point for anyone interested in learning about shape dynamics.
Mathematical models to characterize early epidemic growth: A Review
Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile
2016-01-01
There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa. PMID:27451336
Mathematical models to characterize early epidemic growth: A review
NASA Astrophysics Data System (ADS)
Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile
2016-09-01
There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-2015 Ebola epidemic in West Africa.
Neural theory for the perception of causal actions.
Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A
2012-07-01
The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.
3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles
2015-01-01
Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models. PMID:26393926
3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.
Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S
2015-01-01
Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.
Navier-Stokes analysis of airfoils with leading edge ice accretions
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.
1993-01-01
A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi
2010-03-01
In this work the self-broadening coefficients and the integrated line intensities for a number of ro-vibrational transitions of vinyl fluoride have been determined for the first time by means of TDL spectroscopy. The spectra recorded in the atmospheric window around 8.7 µm appear very crowded with a density of about 90 lines per cm-1. In order to fit these spectral features a new fitting software has been implemented. The program, which is designed for laser spectroscopy, can fit many lines simultaneously on the basis of different theoretical profiles (Doppler, Lorentz, Voigt, Galatry and Nelkin-Ghatak). Details of the object oriented implementation of the application are given. The reliability of the program is demonstrated by determining the line parameters of some ro-vibrational lines of sulphur dioxide in the ν1 band region around 9 µm. Then the software is used for the line profile analysis of vinyl fluoride. The experimental line shapes show deviations from the Voigt profile, which can be well modelled by using a Dicke narrowed line shape function. This leads to the determination of the self-narrowing coefficient within the framework of the strong collision model.
NASA Astrophysics Data System (ADS)
Zhou, Hanying; Krist, John; Nemati, Bijan
2016-08-01
Current coronagraph instrument design (CGI), as a part of a proposed NASA WFIRST (Wide-Field InfraRed Survey Telescope) mission, allocates two subband filters per full science band in order to contain system complexity and cost. We present our detailed investigation results on the adequacy of such limited number of finite subband filters in achieving full band dark hole contrast with shaped pupil coronagraph. The study is based on diffraction propagation modeling with realistic WFIRST optics, where each subband's complex field estimation is obtained, using Electric Field Conjugation (EFC) wavefront sensing / control algorithm, from pairwise pupil plane deformable mirror (DM) probing and image plane intensity averaging of the resulting fields of multiple (subband) wavelengths. Multiple subband choices and probing and control strategies are explored, including standard subband probing; mixed wavelength and/or weighted Jacobian matrix; subband probing with intensity subtraction; and extended subband probing with intensity subtraction. Overall, the investigation shows that the achievable contrast with limited number of finite subband EFC probing is about 2 2.5x worse than the designed post-EFC contrast for current SPC design. The result suggests that for future shaped pupil design, slightly larger over intended full bandwidth should be considered if it will be used with limited subbands for probing.
Bifurcation of self-folded polygonal bilayers
NASA Astrophysics Data System (ADS)
Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy
2017-09-01
Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.
NASA Astrophysics Data System (ADS)
Simmel, Martin; Bühl, Johannes; Ansmann, Albert; Tegen, Ina
2014-05-01
Over Leipzig, altocumulus clouds are frequently observed using a suite of remote sensing instruments. These observations cover a wide range of heights, temperatures, and microphysical properties of the clouds ranging from purely liquid to heavily frozen. For the current study, two cases were chosen to test the sensitivity of these clouds with respect to several microphysical and dynamical parameters such as aerosol properties (CCN, IN), ice particle shape as well as turbulence. The mixed-phase spectral microphysical model SPECS was coupled to a dynamical model of the Asai-Kasahara type resulting in the model system AK-SPECS. The relatively simple dynamics allows for a fine vertical resolution needed for the rather shallow cloud layers observed. Additionally, the proper description of hydrometeor sedimentation is important especially for the fast growing ice crystals to realistically capture their interaction with the vapour and liquid phase (Bergeron-Findeisen process). Since the focus is on the cloud microphysics, the dynamics in terms of vertical velocity profile is prescribed for the model runs and the feedback of the microphysics on dynamics by release or consumption of latent heat due to phase transfer is not taken into account. The microphysics focuses on (1) ice particle shape allowing hexagonal plates and columns with size-dependant axis ratios and (2) the ice nuclei (IN) budget realized with a prognostic temperature resolved field of potential IN allowing immersion freezing only when active IN and supercooled drops above a certain size threshold are present within a grid cell. Sensitivity studies show for both cases that ice particle shape seems to have the major influence on ice mass formation under otherwise identical conditions. This is due to the effect (1) on terminal fall velocity of the individual ice particle allowing for longer presence times in conditions supersaturated with respect to ice and (2) on water vapour deposition which is enhanced due to increased capacitance because of deviation from the spherical shape.
Mechanisms Of Saucer-Shaped Sill Emplacement: Insight From Experimental Modeling
NASA Astrophysics Data System (ADS)
Galland, O.; Planke, S.; Malthe-Sørenssen, A.; Polteau, S.; Svensen, H.; Podladchikov, Y. Y.
2006-12-01
It has been recently demonstrated that magma intrusions in sedimentary basins had a strong impact on petroleum systems. Most of these intrusions are sills, and especially saucer-shaped sills. These features can be observed in many sedimentary basins (i.e. the Karoo basin, South Africa; the Norwegian and North Sea; the Tunguska basin, Siberia; the Neuquén basin in Argentina). The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes. However, the mechanisms that govern their formation remain poorly constrained. Experiments were conducted to simulate the emplacement of saucer-shaped magma intrusions in sedimentary basins. The model rock and magma were fine-grained silica flour and molten vegetable oil, respectively. This modeling technique allows simultaneous simulation of magma emplacement and brittle deformation at a basin scale. For our purpose, we performed our experiments without external deformation. During the experiments, the oil was injected horizontally at constant flow rate within the silica flour. Then the oil initially emplaced in a sill, whereas the surface of the model inflated into a smooth dome. Subsequently, the oil propagated upwards along inclined sheets, finally reaching the surface at the edge of the dome. The resulting geometries of the intrusions were saucer-shaped sills. Then the oil solidified, and the model was cut in serial cross-sections through which the structures of the intrusive body and of the overburden can be observed. In order to constraint the processes governing the emplacement of such features, we performed a parametric study based on a set of experiments in which we systematically varied parameters such as the depth of emplacement and the injection flow rate of the oil. Our results showed that saucer diameters are larger at deeper level of emplacement. Opposite trend was obtained with varying injection flow rates. Based on our results, we conducted a detailed physical analysis that resulted in the definition of a dimensionless parameter that governs the emplacement of saucers.
Simulating the growth of an charge cloud for a microchannel plate detector
NASA Astrophysics Data System (ADS)
Siwal, Davinder; Wiggins, Blake; Desouza, Romualdo
2015-10-01
Position sensitive microchannel plate (MCP) detectors have a variety of applications in the fields of astronomy, medical imaging, neutron imaging, and ion beam tracking. Recently, a novel approach has been implemented to detect the position of an incident particle. The charge cloud produced by the MCP induces a signal on a wire harp placed between the MCP and an anode. On qualitative grounds it is clear that in this detector the induced signal shape depends on the size of the electron cloud. A detailed study has therefore been performed to investigate the size of the charge cloud within the MCP and its growth as it propagates from the MCP to the anode. A simple model has been developed to calculate the impact of charge repulsion on the growth of the electron cloud. Both the details of the model and its predictions will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.
A Protein in the palm of your hand through augmented reality.
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for the production of 3-D interactive images of protein structures that can be manipulated in real time through the use of augmented reality software. Users first see a real-time image of themselves using the computer's camera, then, when they hold up a trigger image, a model of a molecule appears automatically in the video. This model rotates and translates in space in response to movements of the trigger card. The system described has been optimized to allow customization for the display of user-selected structures to create engaging, educational visualizations to explore 3-D structures. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
Gabriel, Jan; Petrov, Oleg V; Kim, Youngsik; Martin, Steve W; Vogel, Michael
2015-09-01
We use (7)Li NMR to study the ionic jump motion in ternary 0.5Li2S+0.5[(1-x)GeS2+xGeO2] glassy lithium ion conductors. Exploring the "mixed glass former effect" in this system led to the assumption of a homogeneous and random variation of diffusion barriers in this system. We exploit that combining traditional line-shape analysis with novel field-cycling relaxometry, it is possible to measure the spectral density of the ionic jump motion in broad frequency and temperature ranges and, thus, to determine the distribution of activation energies. Two models are employed to parameterize the (7)Li NMR data, namely, the multi-exponential autocorrelation function model and the power-law waiting times model. Careful evaluation of both of these models indicates a broadly inhomogeneous energy landscape for both the single (x=0.0) and the mixed (x=0.1) network former glasses. The multi-exponential autocorrelation function model can be well described by a Gaussian distribution of activation barriers. Applicability of the methods used and their sensitivity to microscopic details of ionic motion are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
Altitude-dependent Drift of a Chemical Release Cloud at Middle Latitudes
NASA Astrophysics Data System (ADS)
Pedersen, T.; Holmes, J. M.; Sutton, E. K.
2017-12-01
A chemical release experiment conducted at the White Sands Missile Range in February 2015 consisted of firing of three identical canisters at different altitudes along a near-vertical trajectory, creating a large structured cloud after diffusion and expansion of the three initial dispersals. Dedicated optical observations from near the launch site and a remote site allow determination of the position and motion of the extended optical cloud as a function of time, while photographs captured and posted by members of the general public provide additional look angles to constrain the cloud shape in more detail. We compare the observed drift and evolution of the cloud with empirical and theoretical models of the neutral winds to examine the altitudinal shear in the neutral winds and their effects on the motion and shape of the extended optical cloud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
2014-11-01
Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purposemore » of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. Results: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. Conclusions: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x–y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.« less
NASA Astrophysics Data System (ADS)
Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo
2011-03-01
Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.
24. Detail view of the east elevation, looking at the ...
24. Detail view of the east elevation, looking at the north end T-shaped chimney stack (Note: top of flag pole peeking above the ridge line) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA
NASA Astrophysics Data System (ADS)
Barnouin, Olivier; Michel, Patrick; Richardson, Derek
2016-04-01
In order to understand the origin of the 65803 Didymos, the target of the Asteroid Impact and Deflection Assessment mission, and gain insights on the origin and evolution of the asteroid's162173 Ryugu and 101955 Bennu, we investigate systematically the shapes of all re-accumulated fragments produced by the catastrophic disruption of a parent body that is 1 km in diameter or larger. These new fragments eventually become new asteroids of the size that current sample-return missions plan to explore. We choose a range of impact conditions by varying the parent bodies' strength, size and porosity, and the velocity and size of the projectile. Impact conditions range from near the catastrophic threshold, usually designated by Q*, where half of the target's mass escapes, to far greater values above this threshold. Our numerical investigations of the catastrophic disruption, which are undertaken using an SPH hydrocode, include a model of fragmentation for porous materials. The gravitationally dominated phase of reaccumulation of our asteroids is computed using the N-body code pkdgrav. At sufficiently slow impact speeds in the N-body model, particles are permitted to stick, forming irregular, competent pieces that can gather into non-idealized rubble piles as a result of re-accumulation. Shape and spin information of re-accumulated bodies are thus preserved. Due to numerical expense, this first study uses what we call a hard-sphere model, rather than a soft-sphere spring and dashpot model. This latter model is more commonly used in granular flow simulations for which detailed treatment of the multicontact physics is needed, which is not the case here, and comes at the expense of much smaller timesteps. With the hard-sphere model, there are three supported collision outcomes for bonded aggregates: sticking on contact (to grow the aggregate); bouncing (computed for these generally non-central impacts); and fragmentation (wherein the particles involved become detached from their respective aggregates and proceed to bounce as rigid spheres, possibly releasing more particles). We adjusted the strength of the forming aggregates to the measured strength of materials in the lab, scaled to the aggregate size, by using strength size scaling rules. In the future we expect to compare our hard-sphere models to a few soft-sphere for reasonable granular materials to best characterize differences between the two approaches, if any. Our results indicate that while 25143 Itokawa-like potato-shaped asteroids are typically the outcome of disruption, often more spherical or "top-shaped" asteroids can also be produced. Our results confirm what others have already noted, namely that a "top-shaped" or diamond shaped asteroid is not necessarily the result of the formation of YORP spin-up. Other criteria besides just shape need to be developed to determine whether or not the evolution of an asteroid and its surface geology have been dominated by YORP-related processes or by impact-derived re-accretion.
NASA Astrophysics Data System (ADS)
Dutton, Kenneth
Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.
Contam airflow models of three large buildings: Model descriptions and validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Douglas R.; Price, Phillip N.
2009-09-30
Airflow and pollutant transport models are useful for several reasons, including protection from or response to biological terrorism. In recent years they have been used for deciding how many biological agent samplers are needed in a given building to detect the release of an agent; to figure out where those samplers should be located; to predict the number of people at risk in the event of a release of a given size and location; to devise response strategies in the event of a release; to determine optimal trade-offs between sampler characteristics (such as detection limit and response time); and somore » on. For some of these purposes it is necessary to model a specific building of interest: if you are trying to determine optimal sampling locations, you must have a model of your building and not some different building. But for many purposes generic or 'prototypical' building models would suffice. For example, for determining trade-offs between sampler characteristics, results from one building will carry over other, similar buildings. Prototypical building models are also useful for comparing or testing different algorithms or computational pproaches: different researchers can use the same models, thus allowing direct comparison of results in a way that is not otherwise possible. This document discusses prototypical building models developed by the Airflow and Pollutant Transport Group at Lawrence Berkeley National Laboratory. The models are implemented in the Contam v2.4c modeling program, available from the National Institutes for Standards and Technology. We present Contam airflow models of three virtual buildings: a convention center, an airport terminal, and a multi-story office building. All of the models are based to some extent on specific real buildings. Our goal is to produce models that are realistic, in terms of approximate magnitudes, directions, and speeds of airflow and pollutant transport. The three models vary substantially in detail. The airport model is the simplest; the onvention center model is more detailed; and the large office building model is quite complicated. We give several simplified floor plans in this document, to explain basic features of the buildings. The actual models are somewhat more complicated; for instance, spaces that are represented as rectangles in this document sometimes have more complicated shapes in the models. (However, note that the shape of a zone is irrelevant in Contam). Consult the Contam models themselves for detailed floor plans. Each building model is provided with three ventilation conditions, representing mechanical systems in which 20%, 50%, or 80% of the building air is recirculated and the rest is provided from outdoors. Please see the section on 'Use of the models' for important information about issues to consider if you wish to modify the models to provide no mechanical ventilation or eliminate provision of outdoor air.« less
Predicting shrinkage and warpage in injection molding: Towards automatized mold design
NASA Astrophysics Data System (ADS)
Zwicke, Florian; Behr, Marek; Elgeti, Stefanie
2017-10-01
It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.
Lhires III High Resolution Spectrograph
NASA Astrophysics Data System (ADS)
Thizy, O.
2007-05-01
By spreading the light from celestial objects by wavelength, spectroscopists are like detectives looking for clues and identifying guilty phenomena that shape their spectra. We will review some basic principles in spectroscopy that will help, at our amateur level, to understand how spectra are shaped. We will review the Lhires III highresolution spectrograph Mark Three that was designed to reveal line profile details and subtle changes. Then, we will do an overview of educational and scientific projects that are conducted with the Lhires III and detail the COROT Be star program and the BeSS database for which the spectrograph is a key instrument.
McNeil, Casey L.; Bain, Clint L.; Macdonald, Stuart J.
2011-01-01
The observation that male genitalia diverge more rapidly than other morphological traits during evolution is taxonomically widespread and likely due to some form of sexual selection. One way to elucidate the evolutionary forces acting on these traits is to detail the genetic architecture of variation both within and between species, a program of research that is considerably more tractable in a model system. Drosophila melanogaster and its sibling species, D. simulans, D. mauritiana, and D. sechellia, are morphologically distinguishable only by the shape of the posterior lobe, a male-specific elaboration of the genital arch. We extend earlier studies identifying quantitative trait loci (QTL) responsible for lobe divergence across species and report the first genetic dissection of lobe shape variation within a species. Using an advanced intercross mapping design, we identify three autosomal QTL contributing to the difference in lobe shape between a pair of D. melanogaster inbred lines. The QTL each contribute 4.6–10.7% to shape variation, and two show a significant epistatic interaction. Interestingly, these intraspecific QTL map to the same locations as interspecific lobe QTL, implying some shared genetic control of the trait within and between species. As a first step toward a mechanistic understanding of natural lobe shape variation, we find an association between our QTL data and a set of genes that show sex-biased expression in the developing genital imaginal disc (the precursor of the adult genitalia). These genes are good candidates to harbor naturally segregating polymorphisms contributing to posterior lobe shape. PMID:22384345
Vibration mode shape recognition using image processing
NASA Astrophysics Data System (ADS)
Wang, Weizhuo; Mottershead, John E.; Mares, Cristinel
2009-10-01
Currently the most widely used method for comparing mode shapes from finite elements and experimental measurements is the modal assurance criterion (MAC), which can be interpreted as the cosine of the angle between the numerical and measured eigenvectors. However, the eigenvectors only contain the displacement of discrete coordinates, so that the MAC index carries no explicit information on shape features. New techniques, based upon the well-developed philosophies of image processing (IP) and pattern recognition (PR) are considered in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD) are the most popular shape descriptors due to their outstanding properties in IP and PR. These include (1) for the ZMD-rotational invariance, expression and computing efficiency, ease of reconstruction and robustness to noise; (2) for the FD—separation of the global shape and shape-details by low and high frequency components, respectively, invariance under geometric transformation; (3) for the WD—multi-scale representation and local feature detection. Once a shape descriptor has been adopted, the comparison of mode shapes is transformed to a comparison of multidimensional shape feature vectors. Deterministic and statistical methods are presented. The deterministic problem of measuring the degree of similarity between two mode shapes (possibly one from a vibration test and the other from a finite element model) may be carried out using Pearson's correlation. Similar shape feature vectors may be arranged in clusters separated by Euclidian distances in the feature space. In the statistical analysis we are typically concerned with the classification of a test mode shape according to clusters of shape feature vectors obtained from a randomised finite element model. The dimension of the statistical problem may often be reduced by principal component analysis. Then, in addition to the Euclidian distance, the Mahalanobis distance, defining the separation of the test point from the cluster in terms of its standard deviation, becomes an important measure. Bayesian decision theory may be applied to formally minimise the risk of misclassification of the test shape feature vector. In this paper the ZMD is applied to the problem of mode shape recognition for a circular plate. Results show that the ZMD has considerable advantages over the traditional MAC index when identifying the cyclically symmetric mode shapes that occur in axisymmetric structures at identical frequencies. Mode shape recognition of rectangular plates is carried out by the FD. Also, the WD is applied to the problem of recognising the mode shapes in the thin and thick regions of a plate with different thicknesses. It shows the benefit of using the WD to identify mode-shapes having both local and global components. The comparison and classification of mode shapes using IP and PR provides a 'toolkit' to complement the conventional MAC approach. The selection of a particular shape descriptor and classification method will depend upon the problem in hand and the experience of the analyst.
NASA Astrophysics Data System (ADS)
Biswas, A.
2016-12-01
A proficient way to deal with appraisal model parameters from total gradient of gravity and magnetic data in light of Very Fast Simulated Annealing (VFSA) has been exhibited. This is the first run through of applying VFSA in deciphering total gradient of potential field information with another detailing estimation brought on because of detached causative sources installed in the subsurface. The model parameters translated here are the amplitude coefficient (k), accurate origin of causative source (x0) depth (z0) and the shape factor (q). The outcome of VFSA improvement demonstrates that it can exceptionally decide all the model parameters when shape variable is fixed. The model parameters assessed by the present strategy, for the most part the shape and depth of the covered structures was observed to be in astounding concurrence with the genuine parameters. The technique has likewise the capability of dodging very uproarious information focuses and enhances the understanding results. Investigation of Histogram and cross-plot examination likewise proposes the translation inside the assessed ambiguity. Inversion of noise-free and noisy synthetic data information for single structures and field information shows the viability of the methodology. The procedure has been carefully and adequately connected to genuine field cases (Leona Anomaly, Senegal for gravity and Pima copper deposit, USA for magnetic) with the nearness of mineral bodies. The present technique can be to a great degree material for mineral investigation or ore bodies of dyke-like structure rooted in the shallow and more deep subsurface. The calculation time for the entire procedure is short.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkevich, N. A.; Johnson, D. D.
NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore » unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less
MreB Orientation Correlates with Cell Diameter in Escherichia coli.
Ouzounov, Nikolay; Nguyen, Jeffrey P; Bratton, Benjamin P; Jacobowitz, David; Gitai, Zemer; Shaevitz, Joshua W
2016-09-06
Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff.
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats' skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs. PMID:26792991
NASA Astrophysics Data System (ADS)
Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.
2017-12-01
The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough suggest a spatial relationship between the extent of U-shaped profiles and low-velocity shallow sediments. Towards the SE end of the model we observe a large overlap of U-shaped indices, and a shallow low-velocity zone in the mapped extent of the last glacial maximum suggestive of overpressure due to loading by ice sheet activity.
A GUIDE TO AERATION/CIRCULATION TECHNIQUES FOR ...
The application of aeration/circulation techniques to lakes are reviewed from a theoretical and practical viewpoint. The effect of destratification on algal production is related to the mixed depth with the use of a mathematical model. Procedures are given to determine air required to mix lakes of different sizes and shapes. It was found that approximately 30 scfm of air per 1,000,000 sq ft of lake surface area can be used. Hypolimnetic aeration systems that have been used are described in detail. Procedures for design are given.
Exploring the Full Range of Properties of Quasar Spectral Distribution
NASA Technical Reports Server (NTRS)
Wilkes, B.
1999-01-01
The aim of this work is to obtain multi-wavelength supporting data for the sample of quasars and active galaxies observed in the far-infrared (IR) by ISO as part of our Key Project on quasars and active galaxies. This dataset then provides complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modeling of that continuum. The report is made up of a short project summary, and a bibliography of published papers, proceedings and presentations.
Analysis of a minimal Rho-GTPase circuit regulating cell shape
NASA Astrophysics Data System (ADS)
Holmes, William R.; Edelstein-Keshet, Leah
2016-08-01
Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.
NASA Astrophysics Data System (ADS)
Quan, Lulin; Yang, Zhixin
2010-05-01
To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.
Bose Condensation and Lasing in Optical Microstructures - Part 1
NASA Astrophysics Data System (ADS)
Szymanska, M. H.
2002-04-01
In the first part of this thesis I study the intermediate regime between ordinary lasing and a BEC of exciton polaritons. I take into account the fermionic structure of polaritons, treating the excitons as two-level systems coupled to a single mode in a microcavity. I introduce decoherence and dissipation processes to this system. Employing many-body Green function techniques, similar to those used by Abrikosov and Gor'kov in their theory of gapless superconductivity, I provide a mathematical structure that unifies models of lasers with models of condensates. This allows me to study the stability of the polariton condensate with respect to decoherence processes and the crossover between the polariton condensate and the laser. I give detailed indications of a regime in which the condensate should be observed to guide experimental work and show how to distinguish the Bose condensate from a laser. The second part of this thesis is concerned with properties of excitons and modelling of excitonic lasing in quasi-one-dimensional quantum wires. I develop a very general numerical method of calculating the properties of wires with different shapes and materials. Using this method I study the properties of very wide range of T-shaped quantum wires.
BP Piscium: its flaring disc imaged with SPHERE/ZIMPOL★
NASA Astrophysics Data System (ADS)
de Boer, J.; Girard, J. H.; Canovas, H.; Min, M.; Sitko, M.; Ginski, C.; Jeffers, S. V.; Mawet, D.; Milli, J.; Rodenhuis, M.; Snik, F.; Keller, C. U.
2017-03-01
Whether BP Piscium (BP Psc) is either a pre-main sequence T Tauri star at d ≈ 80 pc, or a post-main sequence G giant at d ≈ 300 pc is still not clear. As a first-ascent giant, it is the first to be observed with a molecular and dust disc. Alternatively, BP Psc would be among the nearest T Tauri stars with a protoplanetary disc (PPD). We investigate whether the disc geometry resembles typical PPDs, by comparing polarimetric images with radiative transfer models. Our Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging Polarimeter (ZIMPOL) observations allow us to perform polarimetric differential imaging, reference star differential imaging, and Richardson-Lucy deconvolution. We present the first visible light polarization and intensity images of the disc of BP Psc. Our deconvolution confirms the disc shape as detected before, mainly showing the southern side of the disc. In polarized intensity the disc is imaged at larger detail and also shows the northern side, giving it the typical shape of high-inclination flared discs. We explain the observed disc features by retrieving the large-scale geometry with MCMAX radiative transfer modelling, which yields a strongly flared model, atypical for discs of T Tauri stars.
NASA Astrophysics Data System (ADS)
Král, Robert; Nitsch, Karel
2015-10-01
Influence of growth conditions, i.e. temperature gradient in the furnace and the pulling rate, on the position and the shape of the crystal/melt interface during vertical Bridgman growth was studied. The position and the shape of the crystal/melt interface are a key factor for describing the final quality of growing crystal. Following two methods for characterization of its position and shape were used: (i) direct observation and (ii) direct temperature field measurement during simulated vertical Bridgman growth. As a model compound a lead chloride is used. Three different ampoule positions in two different temperature gradients in the furnace and two experimental arrangements - stationary (0 mm/h pulling rate) and dynamic (3 mm/h pulling rate) were analyzed. Obtained temperature data were projected as 2D planar cut under radial symmetry and denoted as isolevels. Their further conversion by linear approximation into isotherms allowed detail analysis of heat conditions in the system during simulated growth by comparison of isotherms 500 °C (m.p. of lead chloride) at different growth conditions.
Optimizing water permeability through the hourglass shape of aquaporins
Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric
2013-01-01
The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances. PMID:24067650
Structure and Evolution of Band-shaped Convective Rainbands in Typhoon Marokot (2009)
NASA Astrophysics Data System (ADS)
Zhang, Y.
2012-12-01
Typhoon Morakot struck Taiwan on the night of Friday 7 August 2009 as a Category 1 storm (with sustained winds of 80 knots). Although the center made landfall in Hualien county along the central east coast of Taiwan, it was southern Taiwan that received the heaviest rainfall (2878 mm of rain in three days), resulting in the worst flooding over Taiwan in 50 years. This record-breaking rainfall is produced by the continuous impingement of typhoon rainbands with the steep terrain along the southern Central Mountain Range (CMR). In this study, rainband structures of Typhoon Morakot (2009) are analyzed and compared with the observations using outputs from the cloud-resolving WRF model with high spatial resolution (1-km horizontal grid spacing). The characteristics of the unique band-shaped convective rainband in TC Morakot are explained with respect to the following details: (i) horizontal shape, (ii) structure, and (iii) development and evolution process. The kinematic and precipitation structures of convective-scale elements in the Morakot rainbands are analyzed and compared with those of Hurricanes Katrina and Rita (2005).
NASA Technical Reports Server (NTRS)
Sahai, R.; Contreras, C.
2003-01-01
In this paper, we briefly describe the results from imaging surveys of young PNe and PPNe with HST, and then present new results from detailed kinematic studies of several prominent objects which support our hypothesis for shaping PNe.
Lift-Shape Construction, An EFL Project Report.
ERIC Educational Resources Information Center
Evans, Ben H.
Research development of a construction system is detailed in terms of--(1) design and analysis, (2) construction methods, (3) testing, (4) cost analysis, and (5) architectural potentials. The system described permits construction of usual shapes without the use of conventional concrete formwork. The concrete involves development of a structural…
ERIC Educational Resources Information Center
Martin, Frank Edgerton
2002-01-01
Details the University of Cincinnati's campus master plan, designed to overcome deans'"fiefdoms" and make the best use of the limited remaining open space. Three imperatives shaped the plan: siting new buildings to infill the campus fabric rather than taking open space, siting buildings to shape outdoor spaces, and weaving open spaces as…
Jones, Stacy; Pramanik, Avijit; Sweet, Carrie; Keyes, Anthony; Begum, Salma; Vangra, Aruna; Yu, Hongtal; Fu, Peter P; Ray, Paresh Chandra
2017-01-02
This review summarizes recent advances on design strategies for shape-controlled anisotropic gold nanoparticles. Detailed chemical mechanism has been discussed to understand the anisotropic growth. The effect of various chemical parameters and surface facets for the formation of different shaped anisotropic nanoparticles have been addressed.
Self-assembled indium arsenide quantum dots: Structure, formation dynamics, optical properties
NASA Astrophysics Data System (ADS)
Lee, Hao
1998-12-01
In this dissertation, we investigate the properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. The structure and formation dynamics of InAs quantum dots are studied by a variety of structural characterization techniques. Correlations among the growth conditions, the structural characteristics, and the observed optical properties are explored. The most fundamental structural characteristic of the InAs quantum dots is their shape. Through detailed study of the reflection high energy electron diffraction patterns, we determined that self-assembled InAs islands possess a pyramidal shape with 136 bounding facets. Cross-sectional transmission electron microscopy images and atomic force microscopy images strongly support this model. The 136 model we proposed is the first model that is consistent with all reported shape features determined using different methods. The dynamics of coherent island formation is also studied with the goal of establishing the factors most important in determining the size, density, and the shape of self- organized InAs quantum dots. Our studies clearly demonstrate the roles that indium diffusion and desorption play in InAs island formation. An unexpected finding (from atomic force microscopy images) was that the island size distribution bifurcated during post- growth annealing. Photoluminescence spectra of the samples subjected to in-situ annealing prior to the growth of a capping layer show a distinctive double-peak feature. The power-dependence and temperature-dependence of the photoluminescence spectra reveals that the double- peak emission is associated with the ground-state transition of islands in two different size branches. These results confirm the island size bifurcation observed from atomic force microscopy images. The island size bifurcation provides a new approach to the control and manipulation of the island size distribution. Unexpected dependence of the photoluminescence line-shape on sample temperature and pump intensity was observed for samples grown at relatively high substrate temperatures. The behavior is modeled and explained in terms of competition between two overlapping transitions. The study underscores that the growth conditions can have a dramatic impact on the optical properties of the quantum dots. This dissertation includes both my previously published and unpublished authored materials.
Traces de l'interaction entre galaxies
NASA Astrophysics Data System (ADS)
Duc, Pierre-Alain
2016-08-01
Within a galaxy, collisions between stars are exceptional; collisions between galaxies are themselves much more frequent. They are even supposed to play a major role in the formation of structures according to the standard hierarchical cosmological model. Gravitational interactions, tidal forces and following mergers shape the morphology of galaxies, and leave vestiges which can survive for a few Gyr. They consist of stellar shells, streams, tails and plumes which emit a diffuse and extended optical light. Several deep imaging projects use telescopes of all sizes to try to detect this light. We detail here what the census of collisional debris can tel us about the past history of galaxies and about the models and simulations supposedly accounting for it.
Modeling of the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.
2014-07-01
The Yarkovsky and YORP effects are now widely regarded to be fundamental mechanisms, in addition to collisions and gravitational forces, which drive the dynamical and physical evolution of small asteroids in the Solar System [1]. They are caused by the net force and torque resulting from the asymmetric reflection and thermal re-radiation of sunlight from an asteroid's surface. The net force (Yarkovsky effect) causes the asteroid's orbit to drift outwards or inwards depending on whether the asteroid is a prograde or retrograde rotator. The first direct measurement of Yarkovsky orbital drift was achieved by sensitive radar-ranging on the near-Earth asteroid (NEA) (6489) Golevka in 2003 [2]. The net torque (YORP effect) changes the asteroid's rotation rate and the direction of its spin axis. It can cause an asteroid to spin faster or slower depending on the shape asymmetry, and the first direct measurement of the YORP rotational acceleration was achieved by lightcurve observations on NEA (54509) YORP in 2007 [3]. Since these first direct detections, the Yarkovsky orbital drift has been detected in several tens of NEAs [4,5], and the YORP rotational acceleration has been detected in four more NEAs [6--9]. Indirect evidence of the action of these two effects has also been seen in the populations of NEAs [10], small main-belt asteroids [11], and asteroid families [12]. Modeling of these effects allows further insights into the properties of detected asteroids to be gained, such as the bulk density, obliquity, and surface thermal properties. Recently, high-precision astrometric observations of the Yarkovsky orbital drift of PHA (101955) Bennu were combined with suitable models informed by thermal-infrared observations to derive a bulk density with an uncertainty comparable to that of in-situ spacecraft investigations [13]. Also, the recent YORP effect detection in (25143) Itokawa was combined with a model utilizing the highly detailed Hayabusa-derived shape model to infer an inhomogeneous internal bulk density distribution [9]. Prediction and interpretation of these two effects are therefore critically dependent on accurate models that describe how asteroids reflect and thermally re-radiate sunlight. Yarkovsky and YORP effect models must take into account an asteroid's size and shape, mass and moment of inertia, surface thermal/reflection/emission properties, rotation state, and its orbit about the Sun. A variety of analytical, numerical, and semi-analytical models have been developed over the past decade to study these effects with different levels of detail. The Yarkovsky effect is driven by a morning-afternoon temperature asymmetry during a rotation (diurnal effect) or orbit (seasonal effect) that arises on asteroids with non-zero thermal inertias. Models show that this temperature asymmetry can be enhanced by surface roughness through thermal-infrared beaming effects [14]. YORP rotation rate changes are driven by shape irregularities where photon torques induced on opposite sides of the body do not cancel out. These rotation rate changes have been shown to be independent of thermal inertia for asteroids larger than the thermal skin depth [15]. The YORP effect has also been shown to be highly sensitive to small-scale shape variations [16], surface roughness [14], and the shape model resolution [17] such that the uncertainty in any prediction could be very large. However, recent work has shown that this sensitivity could be less than previously thought when both shadowing and global self-heating effects are included [18], and/or when the induced YORP rotation rate change is relatively large [19]. Recently, a new model has been developed that can simultaneously interpret thermal-infrared observations and predict the Yarkovsky/YORP effects for the derived properties, and has been verified against observations for NEA (1862) Apollo [20]. Also, a ''tangential-YORP'' model has been proposed to explain why only YORP rotational acceleration has been observed when YORP rotational deceleration should also be observed in equal numbers [21]. In the talk, the latest Yarkovsky and YORP modeling techniques and methods will be reviewed, and the future directions of such modeling efforts will be discussed.
Numerical calculation and analysis of radial force on the single-action vane pump
NASA Astrophysics Data System (ADS)
Y He, Y.; Y Kong, F.
2013-12-01
Unbalanced radial force is a serious adversity that restricts the working pressure and reduces service life of the single-action vane pump. For revealing and predicting the distribution of radial force on the rotor, a numerical simulation about its transient flow field was performed by using dynamic mesh method with RNG κ ε-turbulent model. The details of transient flow characteristic and pressure fluctuation were obtained, and the radial force and periodic variation can be calculated based on the details. The results show: the radial force has a close relationship with the pressure pulsation; the radial force can be reduced drastically by optimizing the angle of port plate and installing the V-shaped cavity; if the odd number vanes are chosen, it will help reduce the radial force of rotor and optimize the pressure fluctuation effectively.
Tardocchi, M; Nocente, M; Proverbio, I; Kiptily, V G; Blanchard, P; Conroy, S; Fontanesi, M; Grosso, G; Kneupner, K; Lerche, E; Murari, A; Cippo, E Perelli; Pietropaolo, A; Syme, B; Van Eester, D; Gorini, G
2011-11-11
The spectral broadening of characteristic γ-ray emission peaks from the reaction (12)C((3)He,pγ)(14)N was measured in D((3)He) plasmas of the JET tokamak with ion cyclotron resonance heating tuned to the fundamental harmonic of (3)He. Intensities and detailed spectral shapes of γ-ray emission peaks were successfully reproduced using a physics model combining the kinetics of the reacting ions with a detailed description of the nuclear reaction differential cross sections for populating the L1-L8 (14)N excitation levels yielding the observed γ-ray emission. The results provide a paradigm, which leverages knowledge from areas of physics outside traditional plasma physics, for the development of nuclear radiation based methods for understanding and controlling fusion burning plasmas.
PSF modeling by spikes simulations and wings measurements for the MOONS multi fiber spectrograph
NASA Astrophysics Data System (ADS)
Li Causi, G.; Lee, D.; Vitali, F.; Royer, F.; Oliva, E.
2016-08-01
The optical design of MOONS, the next generation thousand-fiber NIR spectrograph for the VLT, involves both on-axis reflective collimators and on-axis very fast reflective cameras, which yields both beam obstruction, due to fiber slit and detector support, and image spread, due to propagation within detector substrate. The need to model and control i) the effect of the diffraction spikes produced by these obstructions, ii) the detector-induced shape variation of the Point Spread Function (PSF), and iii) the intensity profile of the PSF wings, leads us to perform both simulations and lab measurements, in order to optimize the spider design and built a reliable PSF model, useful for simulate realistic raw images for testing the data reduction. Starting from the unobstructed PSF variation, as computed with the ZEMAX software, we numerically computed the diffraction spikes for different spider shapes, to which we added the PSF wing profile, as measured on a sample of the MOONS VPH diffraction grating. Finally, we implemented the PSF defocusing due to the thick detector (for the visible channel), we convolved the PSF with the fiber core image, and we added the optical ghosts, so finally obtaining a detailed and realistic PSF model, that we use for spectral extraction testing, cross talk estimation, and sensitivity predictions.
NASA Astrophysics Data System (ADS)
Jang, Seogjoo
2007-11-01
The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.
Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta,Lucas G.
2011-01-01
Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.
NASA Technical Reports Server (NTRS)
Walsh, Kevin T.; Long, Marshall B.; Smooke, Mitchell D.
1999-01-01
The ability to predict the coupled effects of complex transport phenomena with detailed chemical kinetics in diffusion flames is critical in the modeling of turbulent reacting flows and in understanding the processes by which soot formation and radiative transfer take place. In addition, an understanding of those factors that affect flame extinction in diffusion flames is critical in the suppression of fires and in improving engine efficiency. A goal of this work is to bring to microgravity flame studies the detailed experimental and numerical tools that have been used to study ground-based systems. This will lead to a more detailed understanding of the interaction of convection, diffusion and chemistry in a nonbuoyant environment. To better understand these phenomena, experimental and computational studies of a coflow laminar diffusion flame have been carried out. To date, these studies have focused on a single set of flow conditions, in which a nitrogen-diluted methane fuel stream (65% methane by volume) was surrounded by an air coflow, with exit velocities matched at 35 cm/s. Of particular interest is the change in flame shape due to the absence of buoyant forces, as well as the amount of diluent in the fuel stream and the coflow velocity. As a sensitive marker of changes in the flame shape, the number densities of excited-state CH (A(exp 2 delta) denoted CH*), and excited-state OH (A(exp 2 sigma, denoted OH*) are measured. CH* and OH* number densities are deconvoluted from line-of-sight chemiluminescence measurements made on the NASA KC135 reduced-gravity aircraft. Measured signal levels are calibrated, post-flight, with Rayleigh scattering. In extending the study to microgravity conditions, improvements to the computational model have been made and new calculations performed for a range of gravity conditions. In addition, modifications to the experimental approach were required as a consequence of the constraints imposed by existing microgravity facilities. Results from the computations and experiments are presented.
Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-05-30
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.
Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-01-01
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure. PMID:28507159
Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices
NASA Astrophysics Data System (ADS)
Carlqvist, Per
2010-06-01
NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H ii regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.
NASA Technical Reports Server (NTRS)
Komar, P. D.
1985-01-01
The objectives of the present study of erosional scour marks on Mars involve flume experiments to examine the details of scour patterns around a variety of obstacle shapes, and to review the engineering literature on the scour around bridge piers to determine whether those results might provide a quantitative evaluation of the flows which formed the scour marks in the outflow channels. The flume experiments completed to date examined the scour which develops around a circular island and around a streamlined island (having a lemniscate shape with length/width = 3.0). The islands themselves are non-erodable solids, but are surrounded by a fine-grained sediment bed. The scour patterns which occur around the circular island agree with those produced by prototype bridge piers and by scale-model piers employed in the engineering studies. The scour patterns around the model streamlined islands correspond extremely well with those seen adjacent to the streamlined islands on Mars, providing still more confirmation for a water-flow origin.
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
NASA Astrophysics Data System (ADS)
Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2018-05-01
Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
A new method for shape and texture classification of orthopedic wear nanoparticles.
Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio
2012-09-27
Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.
Observed rate of ionization in shaped-charge releases of barium in the ionosphere
NASA Technical Reports Server (NTRS)
Hallinan, Thomas J.
1988-01-01
Data from 36 Ba shaped-charge releases carried out at an angle of less than 25 deg to the magnetic field, by the technique of Wescott et al. (1972) and Michel (1974), were examined for evidence of a sustained rate of ionization in excess of that attributable to sunlight. In four of the experiments, the time constant for the decay of the neutrals was measured using an ultrasensitive color TV camera and was found to have a value of about 30 sec, consistent with slow (solar) ionization. Although the qualitative appearance of most jets was found to be consistent with a slow process of ionization, some releases produced a thin confined jet that was suggestive of rapid ionization. Two of these jets were analyzed in detail, but no evidence of anomalous ionization was produced. The data obtained in this work agree with the geometrical predictions of the Swift model.
NASA Astrophysics Data System (ADS)
Egedal, J.; Le, A.; Daughton, W.; Wetherton, B.; Cassak, Pa; Chen, Lj; Lavraud, B.; Dorell, J.; Avanov, L.; Gershman, D.
2016-10-01
During asymmetric magnetic reconnection in the dayside magnetopause in situ spacecraft mea- surements show that electrons from the high density inflow penetrate some distance into the low density inflow. Supported by a kinetic simulation, we present a general derivation of an exclusion energy parameter, which provides a lower kinetic energy bound for an electron to jump across the reconnection region from one inflow region to the other. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, strongly impacting the form of the electron distribution function observed along the low density side separatrix. The dynamics produce two distinct flavors of crescent-shaped electron distributions in a thin boundary layer along the separatrix between the magnetospheric inflow and the reconnection exhaust. The analytical model presented relates these salient details of the distribution function to the electron dynamics in the inner reconnection region.
Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
Bennett, Rachel R; Lee, Calvin K; De Anda, Jaime; Nealson, Kenneth H; Yildiz, Fitnat H; O'Toole, George A; Wong, Gerard C L; Golestanian, Ramin
2016-02-01
Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms. © 2016 The Author(s).
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
A global/local analysis method for treating details in structural design
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad A.; Mccleary, Susan L.; Ransom, Jonathan B.
1993-01-01
A method for analyzing global/local behavior of plate and shell structures is described. In this approach, a detailed finite element model of the local region is incorporated within a coarser global finite element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal correspondence) with the global model at their common boundary; therefore, the two models may be constructed independently. The nodal incompatibility of the models is accounted for by introducing appropriate constraint conditions into the potential energy in a hybrid variational formulation. The primary advantage of this method is that the need for transition modeling between global and local models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are reduced since tedious and complex transitioning need not be performed. Second, errors due to the mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements beyond what is needed to represent the geometry of the component. The method is applied reduced to a plate loaded in tension and transverse bending. The plate has a central hole, and various hole sixes and shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack emanating from a window in the panel. While this method is applied herein to global/local problems, it is also applicable to the coupled analysis of independently modeled components as well as adaptive refinement.
In-cell RNA structure probing with SHAPE-MaP.
Smola, Matthew J; Weeks, Kevin M
2018-06-01
This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.
Analogue modelling of the rupture process of vulnerable stalagmites in an earthquake simulator
NASA Astrophysics Data System (ADS)
Gribovszki, Katalin; Bokelmann, Götz; Kovács, Károly; Hegymegi, Erika; Esterhazy, Sofi; Mónus, Péter
2017-04-01
Earthquakes hit urban centers in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard is therefore very important. In principle, the best way to test Probabilistic Seismic Hazard Assessments (PSHA) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. Long-term information can in principle be gained from intact and vulnerable stalagmites in natural caves. These formations survived all earthquakes that have occurred, over thousands of years - depending on the age of the stalagmite. Their "survival" requires that the horizontal ground acceleration has never exceeded a certain critical value within that time period. To determine this critical value for the horizontal ground acceleration more precisely we need to understand the failure process of these intact and vulnerable stalagmites. More detailed information of the vulnerable stalagmites' rupture is required, and we have to know how much it depends on the shape and the substance of the investigated stalagmite. Predicting stalagmite failure limits using numerical modelling is faced with a number of approximations, e.g. from generating a manageable digital model. Thus it seemed reasonable to investigate the problem by analogue modelling as well. The advantage of analogue modelling among other things is that nearly real circumstances can be produced by simple and quick laboratory methods. The model sample bodies were made from different types of concrete and were cut out from real broken stalagmites originated from the investigated caves. These bodies were reduced-scaled with similar shape as the original, investigated stalagmites. During the measurements we could change both the shape and the material and the time series of acting horizontal acceleration. Comparing the results from analogue to numerical modelling could improve the accuracy of long-term seismic hazard assessment.
Turbulence modeling and combustion simulation in porous media under high Peclet number
NASA Astrophysics Data System (ADS)
Moiseev, Andrey A.; Savin, Andrey V.
2018-05-01
Turbulence modelling in porous flows and burning still remains not completely clear until now. Undoubtedly, conventional turbulence models must work well under high Peclet numbers when porous channels shape is implemented in details. Nevertheless, the true turbulent mixing takes place at micro-scales only, and the dispersion mixing works at macro-scales almost independent from true turbulence. The dispersion mechanism is characterized by the definite space scale (scale of the porous structure) and definite velocity scale (filtration velocity). The porous structure is stochastic one usually, and this circumstance allows applying the analogy between space-time-stochastic true turbulence and the dispersion flow which is stochastic in space only, when porous flow is simulated at the macro-scale level. Additionally, the mentioned analogy allows applying well-known turbulent combustion models in simulations of porous combustion under high Peclet numbers.
Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad
2017-01-01
In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.
Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm.
Heck, Martijn J R; Salumbides, Edcel J; Renault, Amandine; Bente, Erwin A J M; Oei, Yok-Siang; Smit, Meint K; van Veldhoven, René; Nötzel, Richard; Eikema, Kjeld S E; Ubachs, Wim
2009-09-28
For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.
Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs
NASA Technical Reports Server (NTRS)
Grosch, Donald J.
1996-01-01
This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.
NASA Astrophysics Data System (ADS)
Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk
2013-11-01
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.
Enhanced Materials Based on Submonolayer Type-II Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamargo, Maria C; Kuskovsky, Igor L.; Meriles, Carlos
2017-04-15
We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refiningmore » the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.« less
Buckling analysis of SMA bonded sandwich structure – using FEM
NASA Astrophysics Data System (ADS)
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
NASA Technical Reports Server (NTRS)
Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.
1985-01-01
The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.
Scale model testing of drogues for free drifting buoys
NASA Technical Reports Server (NTRS)
Vachon, W. A.
1973-01-01
Instrumented model drogue tests were conducted in a ship model towing tank. The purpose of the tests was to observe and measure deployment and drag characteristics of such shapes as parachutes, crossed vanes, and window shades which may be employed in conjunction with free drifting buoys. Both Froude and Reynolds scaling laws were applied while scaling to full scale relative velocities of from 0 to 0.2 knots. A weighted window shade drogue is recommended because of its performance, high drag coefficient, simplicity, and low cost. Detailed theoretical performance curves are presented for parachutes, crossed vanes, and window shade drogues. Theoretical estimates of depth locking accuracy and buoy-induced dynamic loads pertinent to window shade drogues are presented as a design aid. An example of a window shade drogue design is presented.
75 FR 60068 - Global Free Flow of Information on the Internet
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
...\\ Id. \\8\\ Khan, et. al., Mobile Advertising: An In-Depth Look at the Future of Mobile Advertising, J.P... shaped the questions described below. The Task Force now seeks detailed comments from all stakeholders on...., Access Controlled: The Shaping of Power, Rights, and Rule in Cyberspace (MIT Press 2010), at 6. Many...
Thread angle dependency on flame spread shape over kenaf/polyester combined fabric
NASA Astrophysics Data System (ADS)
Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir
2017-09-01
Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.
Catheterless Long-Term Ambulatory Urodynamic Measurement Using a Novel Three-Device System
Wille, Sebastian; Schumacher, Pauline; Paas, Jenny; Tenholte, Dirk; Eminaga, Okyaz; Müller, Ute; Muthen, Noemi; Mehner, Jan; Cornely, Oliver; Engelmann, Udo
2014-01-01
Aims Long-term urodynamics are required because bladder-emptying disorders are often not clearly revealed by conventional urodynamics. Patients with severe clinical overactive bladder symptoms, for instance, often show normal results. This may be due to the short evaluation time and psychological factors that complicate conventional urodynamics. This study aimed to develop an ambulatory three-component urodynamic measurement system that is easy to operate, registers urodynamic parameters for several days, and has no negative impact on the patient. Methods We developed an intravesical capsule combined with a hand-held device to register voiding desire and micturition, and an alarm pad device that detects urine loss. Recently, the intravesical capsule and its proven function were detailed in the literature. Here, we present detailed in vitro results using a female bladder model. The flexible capsule was C-shaped to minimize the risk of expulsion from the bladder during micturition. Results of biocompatibility evaluation of the intravesical capsule, which is called Wille Capsule (WiCa) are described. Results The WiCa with an oval nose and a maximum outer diameter of 5.5 mm was easily inserted through a 25-French cystoscope. Removing the WiCa by grasping the nose using the female model with bladder was easily conducted. Expulsion of the WiCa during voiding was avoided through a novel C-shaped device design. Based on in vitro cytotoxicity studies, the capsule is a promising and safe device. Conclusion Our novel system is an innovative minimally-invasive tool for accurate long-term urodynamic measurement, and does not require inserting a transurethral catheter. PMID:24840482
Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data
NASA Astrophysics Data System (ADS)
Anirudh, Rushil; Thiagarajan, Jayaraman J.; Bremer, Timo; Kim, Hyojin
2016-03-01
Early detection of lung nodules is currently the one of the most effective ways to predict and treat lung cancer. As a result, the past decade has seen a lot of focus on computer aided diagnosis (CAD) of lung nodules, whose goal is to efficiently detect, segment lung nodules and classify them as being benign or malignant. Effective detection of such nodules remains a challenge due to their arbitrariness in shape, size and texture. In this paper, we propose to employ 3D convolutional neural networks (CNN) to learn highly discriminative features for nodule detection in lieu of hand-engineered ones such as geometric shape or texture. While 3D CNNs are promising tools to model the spatio-temporal statistics of data, they are limited by their need for detailed 3D labels, which can be prohibitively expensive when compared obtaining 2D labels. Existing CAD methods rely on obtaining detailed labels for lung nodules, to train models, which is also unrealistic and time consuming. To alleviate this challenge, we propose a solution wherein the expert needs to provide only a point label, i.e., the central pixel of of the nodule, and its largest expected size. We use unsupervised segmentation to grow out a 3D region, which is used to train the CNN. Using experiments on the SPIE-LUNGx dataset, we show that the network trained using these weak labels can produce reasonably low false positive rates with a high sensitivity, even in the absence of accurate 3D labels.
Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores.
Kim, Juyeong; Song, Xiaohui; Kim, Ahyoung; Luo, Binbin; Smith, John W; Ou, Zihao; Wu, Zixuan; Chen, Qian
2018-05-03
Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli-responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol-terminated polystyrene (PS) or polystyrene-poly(acrylic acid) (PS-b-PAA) shells onto a series of anisotropic gold nanoparticles of shapes not studied previously, including octahedron, concave cube, and bipyramid. These core shapes are complex, rendering shell contours with nanoscale details (e.g., local surface curvature, shell thickness) that are imaged and analyzed quantitatively using the authors' customized analysis codes. It is found that the hybrid nanoparticles based on the chosen core shapes, when coated with the above two polymer shells, exhibit distinct shell segregations upon a variation in solvent polarity or temperature. It is demonstrated for the PS-b-PAA-coated hybrid nanoparticles, the shell segregation is maintained even after a further decoration of the shell periphery with gold seeds; these seeds can potentially facilitate subsequent deposition of other nanostructures to enrich structural and functional diversity. These synthesis, imaging, and analysis methods for the hybrid nanoparticles of anisotropically shaped cores can potentially aid in their predictive design for materials reconfigurable from the bottom up. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and Growth of Rod-Shaped Mn Ultrafine Particle
NASA Astrophysics Data System (ADS)
Kido, Osamu; Suzuki, Hitoshi; Saito, Yoshio; Kaito, Chihiro
2003-09-01
The structure of rod-shaped Mn ultrafine particles was elucidated by electron microscopy. Mn ultrafine particles have characteristic tristetrahedron (α-Mn), rhombic dodecahedron (β-Mn) and rod-shape crystal habits. It was found that the rod-shaped particle resulted from the parallel coalescence of β-Mn particles with the size of 50 nm. Detailed analysis of the defects seen in large rod-shaped particles with the width of 100 nm indicated a mixture of α- and β-phases. A size effect on the phase transition from β to α was observed throughout the rod-shaped crystal structure. The structure and growth of Mn particles were discussed based on the outline of the smoke and the temperature distribution in the smoke.
16. DETAIL, VERTICAL MEMBER L2U2 FROM BELOW AND EAST. UNUSUALLY ...
16. DETAIL, VERTICAL MEMBER L2-U2 FROM BELOW AND EAST. UNUSUALLY SHAPED DESIGN REFLECTS COLUMN STRESSES ALSO NOTE LACING, WHICH COMPRISES ANGLES RATHER THAN COMMON FLAT BARS - Coraopolis Bridge, Spanning Ohio River back channel at Ferree Street & Grand Avenue, Coraopolis, Allegheny County, PA
Instability Paths in the Kirchhoff-Plateau Problem
NASA Astrophysics Data System (ADS)
Giusteri, Giulio G.; Franceschini, Paolo; Fried, Eliot
2016-08-01
The Kirchhoff-Plateau problem concerns the equilibrium shapes of a system in which a flexible filament in the form of a closed loop is spanned by a soap film, with the filament being modeled as a Kirchhoff rod and the action of the spanning surface being solely due to surface tension. Adopting a variational approach, we define an energy associated with shape deformations of the system and then derive general equilibrium and (linear) stability conditions by considering the first and second variations of the energy functional. We analyze in detail the transition to instability of flat circular configurations, which are ground states for the system in the absence of surface tension, when the latter is progressively increased. Such a theoretical study is particularly useful here, since the many different perturbations that can lead to instability make it challenging to perform an exhaustive experimental investigation. We generalize previous results, since we allow the filament to possess a curved intrinsic shape and also to display anisotropic flexural properties (as happens when the cross section of the filament is noncircular). This is accomplished by using a rod energy which is familiar from the modeling of DNA filaments. We find that the presence of intrinsic curvature is necessary to obtain a first buckling mode which is not purely tangent to the spanning surface. We also elucidate the role of twisting buckling modes, which become relevant in the presence of flexural anisotropy.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
Alteration Mineralogy of Adirondack-class Rocks in Gusev Crater, Mars
NASA Astrophysics Data System (ADS)
Hamilton, V. E.; Ruff, S. W.
2009-12-01
The rock Adirondack is the type example of a class of basaltic rocks analyzed by the Mars Exploration Rover Spirit in Gusev crater. Thermal infrared spectra of Adirondack-class rocks acquired by the Mini-TES instrument are distinguishable from spectra of other rock classes by the presence of an emissivity peak at 430 cm-1 and a minimum near 510 cm-1, which are characteristic of olivine. This is the primary spectral class on the plains of Gusev, but spectra of rocks exhibiting similar low wavenumber spectral character have been acquired along the rover traverse in the Columbia Hills, and we have confirmed that these also are Adirondack-class. Linear mixture modeling of their infrared spectra (enabled by applying a correction for dust on the Mini-TES optics) suggests that they are mafic with sulfate minerals present as alteration phases (up to 25%) in the majority of these rocks, broadly consistent with APXS-measured chemistry. The RAT-brushed surface of an unusual plains rock referred to as Mazatzal exhibits a spectral shape and modeled mineralogy consistent with the absence of olivine and the presence of amorphous phases low in silica, and is a coating unlike any other observed on Mars. We have also used a previously-demonstrated factor analysis and target transformation (FATT) technique with Adirondack-class rock spectra to retrieve the spectral shapes of independently-varying components within the data set. Using this approach, we have identified four shapes attributable to two distinct surface components, fine particulate surface dust, and a second dust component similar to downwelling sky radiance and/or dust on the Mini-TES optics. The two surface shapes do not resemble those of the two canonical surface types measured from orbit. One of the surface shapes is very similar to that of the lherzolitic Shergottite ALH A77005. Preliminary linear mixture analysis of this shape shows that it is dominated by olivine (~57%, ~Fo45) and pyroxene (~28%), with minor amounts of oxides and basaltic glass (~15%). This ultramafic composition is similar to that derived from linear mixture modeling of the measured Mini-TES spectra, but differs in detail from the APXS-derived normative mineralogy and Mössbauer ol:px. These differences may be artifacts of the penetration depths and spot sizes of the measurements, or assumptions inherent in the conversions from chemistry and spectra to norms and abundances; work in progress is aimed at explaining these differences. The other shape is modeled with high-silica phases (29%), sulfates (~24%), olivine (~19%), pyroxene (~15%), and oxides (~12%), suggesting it represents a highly altered mineralogy. We linearly modeled the highest-quality measured spectra of Adirondack-class rocks using only the FATT-derived spectral shapes. Surface components are modeled by varying proportions of the two surface shapes, with all containing ≥40% of the ultramafic shape. These preliminary results suggest that Adirondack-class rocks are a single lithology exhibiting sulfate-bearing surface alteration that is variable from rock to rock. We are in the process of converting the mineralogies derived from measured and FATT-derived spectra into bulk oxides and will present quantitative comparisons with APXS data and qualitative comparisons with Mössbauer data.
Space Shuttle main engine nozzle-steerhorn dynamics
NASA Technical Reports Server (NTRS)
Kiefling, L.
1981-01-01
On two occasions during the Space Shuttle main engine development, the LH2 feedline (called the steerhorn, because of its shape) failed during the cutoff transient. A dynamic test was undertaken, and an analytical model was developed and correlated to the dynamic test. Detailed models of the tube bundle were required to obtain the equivalent shell coefficients. All-shell models of the nozzle wall were found better than beam-shell models. The most difficult part of the structure to simulate was the felt-metal pad between the feedline and its mount, which introduced nonlinear stiffness and damping and led to the use of separate low amplitude and high amplitude models. The total structure was found to have 400 modes in the frequency range of interest, 0 to 500 Hz. Good test analysis correlation was obtained and a modified feedline configuration was found to demonstrate a 40% reduction of response stress from the original configuration.
Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping
2011-03-01
Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.
On-line Model Structure Selection for Estimation of Plasma Boundary in a Tokamak
NASA Astrophysics Data System (ADS)
Škvára, Vít; Šmídl, Václav; Urban, Jakub
2015-11-01
Control of the plasma field in the tokamak requires reliable estimation of the plasma boundary. The plasma boundary is given by a complex mathematical model and the only available measurements are responses of induction coils around the plasma. For the purpose of boundary estimation the model can be reduced to simple linear regression with potentially infinitely many elements. The number of elements must be selected manually and this choice significantly influences the resulting shape. In this paper, we investigate the use of formal model structure estimation techniques for the problem. Specifically, we formulate a sparse least squares estimator using the automatic relevance principle. The resulting algorithm is a repetitive evaluation of the least squares problem which could be computed in real time. Performance of the resulting algorithm is illustrated on simulated data and evaluated with respect to a more detailed and computationally costly model FREEBIE.
Mathematical modeling of spinning elastic bodies for modal analysis.
NASA Technical Reports Server (NTRS)
Likins, P. W.; Barbera, F. J.; Baddeley, V.
1973-01-01
The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.
Nonlinear Pressurization and Modal Analysis Procedure for Dynamic Modeling of Inflatable Structures
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Tinker, Michael L.; Saxon, Jeff (Technical Monitor)
2002-01-01
An introduction and set of guidelines for finite element dynamic modeling of nonrigidized inflatable structures is provided. A two-step approach is presented, involving 1) nonlinear static pressurization of the structure and updating of the stiffness matrix and 2) hear normal modes analysis using the updated stiffness. Advantages of this approach are that it provides physical realism in modeling of pressure stiffening, and it maintains the analytical convenience of a standard bear eigensolution once the stiffness has been modified. Demonstration of the approach is accomplished through the creation and test verification of an inflated cylinder model using a large commercial finite element code. Good frequency and mode shape comparisons are obtained with test data and previous modeling efforts, verifying the accuracy of the technique. Problems encountered in the application of the approach, as well as their solutions, are discussed in detail.
Synchronization scenarios in the Winfree model of coupled oscillators
NASA Astrophysics Data System (ADS)
Gallego, Rafael; Montbrió, Ernest; Pazó, Diego
2017-10-01
Fifty years ago Arthur Winfree proposed a deeply influential mean-field model for the collective synchronization of large populations of phase oscillators. Here we provide a detailed analysis of the model for some special, analytically tractable cases. Adopting the thermodynamic limit, we derive an ordinary differential equation that exactly describes the temporal evolution of the macroscopic variables in the Ott-Antonsen invariant manifold. The low-dimensional model is then thoroughly investigated for a variety of pulse types and sinusoidal phase response curves (PRCs). Two structurally different synchronization scenarios are found, which are linked via the mutation of a Bogdanov-Takens point. From our results, we infer a general rule of thumb relating pulse shape and PRC offset with each scenario. Finally, we compare the exact synchronization threshold with the prediction of the averaging approximation given by the Kuramoto-Sakaguchi model. At the leading order, the discrepancy appears to behave as an odd function of the PRC offset.
NASA Astrophysics Data System (ADS)
Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa
2018-06-01
We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.
Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie
2015-01-01
Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly available. PMID:25974182
NASA Astrophysics Data System (ADS)
Mehner, A.; Steffen, W.; Groh, J. H.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; Davidson, K.; de Wit, W. J.; Humphreys, R. M.; Martayan, C.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.
2016-11-01
Aims: The role of episodic mass loss is one of the outstanding questions in massive star evolution. The structural inhomogeneities and kinematics of their nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of η Car outside its famous Homunculus nebula. Methods: We carried out the first large-scale integral field unit observations of η Car in the optical, covering a field of view of 1'× 1' centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of η Car's outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results: The largest coherent structure in η Car's outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. Doppler velocities of up to 3000 km s-1 are observed. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions: The SHAPE modeling of the MUSE observations provides a significant gain in the study of the three-dimensional structure of η Car's outer ejecta. Our SHAPE modeling indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and that this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell immediately outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for η Car-like eruptions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.D-0215(A).
A General Model for Estimating Macroevolutionary Landscapes.
Boucher, Florian C; Démery, Vincent; Conti, Elena; Harmon, Luke J; Uyeda, Josef
2018-03-01
The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models. The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely used in statistical mechanics: the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.].
Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp; Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Tok, Engsoon
2013-09-01
Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the samemore » epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.« less
NASA Astrophysics Data System (ADS)
Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.
2017-12-01
We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.
Dietzek, Benjamin; Brüggemann, Ben; Pascher, Torbjörn; Yartsev, Arkady
2007-10-31
Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.
Detail, Facture, and Colour in the Architecture of Polish Single-Family Houses after 1989
NASA Astrophysics Data System (ADS)
Sztafrowski, Marek
2017-10-01
The article presents single-family houses architecture transformations since 1989, with particularly close attention paid to the significance of detail, facture, and colour. The article presents the architecture as an art of designing and building facilities with both use and aesthetic value, an art of shaping space and building forms. Architectural work should correspond to the intended function, technique, economic and aesthetic requirements, thus shaping all elements of human immediate environment, both inside and outside of the building. Architecture of the building is perceived as form, structure, and function, as well as detail, facture, and colour. Facture and colour are created through materials used for external finishes. The solid of the building is noticed first while looking at the building, then the finishes detail such as colour, facture, and detail. Materials for external finishes are commonly selected for their aesthetic value equally with their technical characteristics. The detail was always a characteristic element of style. However, currently the fashion for details can be observed, the fashion for usage of materials for external finishes and inter-connected with that colour and facture. The architecture of Polish single-family houses underwent considerable metamorphosis after system change of 1989 - from destitute in form, devoid in detail and colour socmodernism, to architecture extremely varied in terms of form, utilised structures, materials, and detail. Hence, appearance of the phenomenon called fashion can be observed in the architecture, understood as constant changeability, seeking novelty, and creation based on opinion-forming centres. The architectural fashion consists of form, function, structure, building materials, detail, facture, and colour trends, e.g. after rejecting socmodernism, steep roofs characteristic for single-family houses trend started. After 1989, initially individual single-family house projects were created; however, rapidly developing building market precipitated the creation of catalogue solutions, repetitive and conventional. Currently, potential customers have access to catalogues of numerous design studios and companies, every last one including few dozens of comprehensive constructions design options of single-family house at the fewest. In the conventional catalogue designs, steep roofs began to gain popularity, becoming increasingly complicated with various choices of roof windows as time passes. The entrances are frequently adorned with porticos and columns. So-called “mansion architecture” of the single-family houses has developed. Recently, fashion alluding to modernism of 1920s has developed in the single-family houses architecture. New trends among architects are adapted with increasing frequency by investors looking for unconventional solutions. The neo-modernism trend is noticeable predominantly in individual projects; however, it appears in catalogue propositions with increasing frequency. Designs of single-family houses of simplistic shape and distinct expression emerge, with flat roofs, minimalistic detail, and vital, carefully chosen in terms of facture and colour, material solutions of wall finishes. Apart from the conventional solutions, presently the building market offers a vast variety of meticulously prepared, factory-made, and thoroughly checked in various realisations details. Architects discontinued using manufactured and individually designed detail in favour of utilising conventional solutions for designed objects. In a well-designed single-family house, facture, colour, and detail of materials utilised in external finishes should harmonise with the building shape and form.
Three Dimensional Thermal Model of Newberry Volcano, Oregon
Trenton Cladouhos
2015-01-30
Final results of a 3D finite difference thermal model of Newberry Volcano, Oregon. Model data are formatted as a text file with four data columns (X, Y, Z, T). X and Y coordinates are in UTM (NAD83 Zone 10N), Z is elevation from mean sea level (meters), T is temperature in °C. Model is 40km X 40km X 12.5 km, grid node spacing is 100m in X, Y, and Z directions. A symmetric cylinder shaped magmatic heat source centered on the present day caldera is the modeled heat source. The center of the modeled body is a -1700 m (elevation) and is 600m thick with a radius of 8700m. This is the best fit results from 2D modeling of the west flank of the volcano. The model accounts for temperature dependent thermal properties and latent heat of crystallization. For additional details, assumptions made, data used, and a discussion of the validity of the model see Frone, 2015 (http://search.proquest.com/docview/1717633771).
Extremely late photometry of the nearby SN 2011fe
NASA Astrophysics Data System (ADS)
Kerzendorf, W. E.; McCully, C.; Taubenberger, S.; Jerkstrand, A.; Seitenzahl, I.; Ruiter, A. J.; Spyromilio, J.; Long, K. S.; Fransson, C.
2017-12-01
Type Ia supernovae are widely accepted to be the outcomes of thermonuclear explosions in white dwarf stars. However, many details of these explosions remain uncertain (e.g. the mass, ignition mechanism and flame speed). Theory predicts that at very late times (beyond 1000 d) it might be possible to distinguish between explosion models. Few very nearby supernovae can be observed that long after the explosion. The Type Ia supernova SN 2011fe located in M101 and along a line of sight with negligible extinction, provides us with the once-in-a-lifetime chance to obtain measurements that may distinguish between theoretical models. In this work, we present the analysis of photometric data of SN 2011fe taken between 900 and 1600 d after explosion with Gemini and HST. At these extremely late epochs theory suggests that the light-curve shape might be used to measure isotopic abundances which is a useful model discriminant. However, we show in this work that there are several currently not well constrained physical processes introducing large systematic uncertainties to the isotopic abundance measurement. We conclude that without further detailed knowledge of the physical processes at this late stage one cannot reliably exclude any models on the basis of this data set.
An enhanced tokamak startup model
NASA Astrophysics Data System (ADS)
Goswami, Rajiv; Artaud, Jean-François
2017-01-01
The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin
Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. Conclusions: The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.« less
Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa
2016-08-01
For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.
Seafloor Topographic Analysis in Staged Ocean Resource Exploration
NASA Astrophysics Data System (ADS)
Ikeda, M.; Okawa, M.; Osawa, K.; Kadoshima, K.; Asakawa, E.; Sumi, T.
2017-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-expense and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We designed a method to focus mineral deposit prospective area in multi-stages (the regional survey, semi-detail survey and detail survey) by extracted topographic features of some well-known seafloor massive sulfide deposits from seafloor topographic analysis using seafloor topographic data acquired by the bathymetric survey. We applied this procedure to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. In Addition, we tried to create a three-dimensional model of seafloor topography by SfM (Structure from Motion) technique using multiple image data of Chimney distributed around well-known seafloor massive sulfide deposit taken with Hi-Vision camera mounted on ROV in detail survey such as geophysical exploration. Topographic features of Chimney was extracted by measuring created three-dimensional model. As the result, it was possible to estimate shape of seafloor sulfide such as Chimney to be mined by three-dimensional model created from image data taken with camera mounted on ROV. In this presentation, we will discuss about focusing mineral deposit prospective area in multi-stages by seafloor topographic analysis using seafloor topographic data in exploration system for seafloor massive sulfide deposit and also discuss about three-dimensional model of seafloor topography created from seafloor image data taken with ROV.
The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams
NASA Astrophysics Data System (ADS)
Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei
2016-08-01
Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.
Probabilistic atlas and geometric variability estimation to drive tissue segmentation.
Xu, Hao; Thirion, Bertrand; Allassonnière, Stéphanie
2014-09-10
Computerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, which presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modeled as deformations of the template image so that it fits the observations. In this paper, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets. Copyright © 2014 John Wiley & Sons, Ltd.
Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A
2011-01-01
Electronic control devices (including the Advanced TASER(®) X26 model produced by TASER International) incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, effects of monophasic square waves with different parameters were compared with those of the X26 electronic control device, using two animal models (frogs and swine). Pulse power, electrical pulse charge, pulse duration, and pulse repetition frequency affected muscle contraction. There was no difference in the charge required, between the square waveform and the X26 waveform, to cause approximately the same muscle-contraction response (in terms of the strength-duration curve). Thus, on the basis of these initial studies, the detailed shape of a waveform may not be important in terms of generating electro-muscular incapacitation. More detailed studies, however, may be required to thoroughly test all potential waveforms to be considered for future use in ECDs. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.
2017-06-01
The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been developed, helping ACS Cobra to adequately handle the optical and thermal coupled simulations. According to current results it can be concluded that the developed model has resulted in a powerful tool to improve the design and operation of future ACS Cobra's Molten Salts Solar Towers, since historical data based on its projects have been used for validation of the final tool.
A Day of Great Illumination: B. F. Skinner's Discovery of Shaping
ERIC Educational Resources Information Center
Peterson, Gail B.
2004-01-01
Despite the seminal studies of response differentiation by the method of successive approximation detailed in chapter 8 of "The Behavior of Organisms" (1938), B. F. Skinner never actually shaped an operant response by hand until a memorable incident of startling serendipity on the top floor of a flour mill in Minneapolis in 1943. That occasion…
Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes
Kraemer, Shannon K.; Rondinone, Adam Justin; Tsai, Yu-Tung; ...
2015-11-02
Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this study, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO 2) impacts the catalysis of supported oxide (vanadia, VO x). TiO 2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO 2 nanoshapes represent different mixturesmore » of surface facets including [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VO x species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO 2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VO x species. It was shown that the shape of TiO 2 support does not pose evident effect on either the structure of surface VO x species or the catalytic performance of surface VO x species in isobutane ODH reaction. Finally, this insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO 2 surfaces and the multi-faceting nature of the TiO 2 nanoshapes.« less
Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraemer, Shannon; Rondinone, Adam J.; Tsai, Yu-Tong
2016-04-01
Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this paper, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO2) impacts the catalysis of supported oxide (vanadia, VOx). TiO2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO2 nanoshapes represent different mixtures of surface facets includingmore » [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VOx species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VOx species. It was shown that the shape of TiO2 support does not pose evident effect on either the structure of surface VOx species or the catalytic performance of surface VOx species in isobutane ODH reaction. This insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO2 surfaces and the multi-faceting nature of the TiO2 nanoshapes.« less
Scale-up of Carbon/Carbon Bipolar Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
David P. Haack
2009-04-08
This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the developmentmore » and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.« less
Cross sections for electron collision with difluoroacetylene
NASA Astrophysics Data System (ADS)
Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young
2017-04-01
We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.
Das, Payel; Matysiak, Silvina; Clementi, Cecilia
2005-01-01
Coarse-grained models have been extremely valuable in promoting our understanding of protein folding. However, the quantitative accuracy of existing simplified models is strongly hindered either from the complete removal of frustration (as in the widely used Gō-like models) or from the compromise with the minimal frustration principle and/or realistic protein geometry (as in the simple on-lattice models). We present a coarse-grained model that “naturally” incorporates sequence details and energetic frustration into an overall minimally frustrated folding landscape. The model is coupled with an optimization procedure to design the parameters of the protein Hamiltonian to fold into a desired native structure. The application to the study of src-Src homology 3 domain shows that this coarse-grained model contains the main physical-chemical ingredients that are responsible for shaping the folding landscape of this protein. The results illustrate the importance of nonnative interactions and energetic heterogeneity for a quantitative characterization of folding mechanisms. PMID:16006532
LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.; Edstrom, D.; Halavanau, A.
2017-07-16
The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.
NASA Technical Reports Server (NTRS)
Crozier, G. F.; Schroeder, W. W.
1978-01-01
The termination of studies carried on for almost three years in the Mobile Bay area and adjacent continental shelf are reported. The initial results concentrating on the shelf and lower bay were presented in the interim report. The continued scope of work was designed to attempt a refinement of the mathematical model, assess the effectiveness of optical measurement of suspended particulate material and disseminate the acquired information. The optical characteristics of particulate solutions are affected by density gradients within the medium, density of the suspended particles, particle size, particle shape, particle quality, albedo, and the angle of refracted light. Several of these are discussed in detail.
A Protein in the Palm of Your Hand through Augmented Reality
ERIC Educational Resources Information Center
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for…
Characterization of silicon photomultipliers and validation of the electrical model
NASA Astrophysics Data System (ADS)
Peng, Peng; Qiang, Yi; Ross, Steve; Burr, Kent
2018-04-01
This paper introduces a systematic way to measure most features of the silicon photomultipliers (SiPM). We implement an efficient two-laser procedure to measure the recovery time. Avalanche probability was found to play an important role in explaining the right behavior of the SiPM recovery process. Also, we demonstrate how equivalent circuit parameters measured by optical tests can be used in SPICE modeling to predict details of the time constants relevant to the pulse shape. The SiPM properties measured include breakdown voltage, gain, diode capacitor, quench resistor, quench capacitor, dark count rate, photodetection efficiency, cross-talk and after-pulsing probability, and recovery time. We apply these techniques on the SiPMs from two companies: Hamamatsu and SensL.
Real gas CFD simulations of hydrogen/oxygen supercritical combustion
NASA Astrophysics Data System (ADS)
Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.
2013-03-01
A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.
Mechanics of wafer bonding: Effect of clamping
NASA Astrophysics Data System (ADS)
Turner, K. T.; Thouless, M. D.; Spearing, S. M.
2004-01-01
A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.
Analytical approach to an integrate-and-fire model with spike-triggered adaptation
NASA Astrophysics Data System (ADS)
Schwalger, Tilo; Lindner, Benjamin
2015-12-01
The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spellings, Matthew; Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109; Marson, Ryan L.
Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method ismore » a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.« less
Using Cross Correlation for Evaluating Shape Models of Asteroids
NASA Astrophysics Data System (ADS)
Palmer, Eric; Weirich, John; Barnouin, Olivier; Campbell, Tanner; Lambert, Diane
2017-10-01
The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) sample return mission to Bennu will be using optical navigation during its proximity operations. Optical navigation is heavily dependent upon having an accurate shape model to calculate the spacecraft's position and pointing. In support of this, we have conducted extensive testing of the accuracy and precision of shape models. OSIRIS-REx will be using the shape models generated by stereophotoclinometry (Gaskell, 2008). The most typical technique to evaluate models is to subtract two shape models and produce the differences in the height of each node between the two models. During flight, absolute accuracy cannot be determined; however, our testing allowed us to characterize both systematic and non-systematic errors. We have demonstrated that SPC provides an accurate and reproducible shape model (Weirich, et al., 2017), but also that shape model subtraction only tells part of the story. Our advanced shape model evaluation uses normalized cross-correlation to show a different aspect of quality of the shape model. In this method, we generate synthetic images using the shape model and calculate their cross-correlation with images of the truth asteroid. This technique tests both the shape model's representation of the topographic features (size, shape, depth and relative position), but also estimates of the surface's albedo. This albedo can be used to determine both Bond and geometric albedo of the surface (Palmer, et al., 2014). A high correlation score between the model's synthetic images and the truth images shows that the local topography and albedo has been well represented over the length scale of the image. A global evaluation, such as global shape and size, is best shown by shape model subtraction.
Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong
2014-07-01
In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.
Effect of truncated cone roughness element density on hydrodynamic drag
NASA Astrophysics Data System (ADS)
Womack, Kristofer; Schultz, Michael; Meneveau, Charles
2017-11-01
An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames
NASA Astrophysics Data System (ADS)
Heye, Colin; Raman, Venkat
2012-11-01
A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.
NASA Technical Reports Server (NTRS)
Hunt, G. E.
1972-01-01
The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.
Integrative Systems Models of Cardiac Excitation Contraction Coupling
Greenstein, Joseph L.; Winslow, Raimond L.
2010-01-01
Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca2+ transport. The complexity and integrative nature of heart cell electrophysiology and Ca2+-cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multi-scale modeling techniques have revealed many mechanistic links between micro-scale events, such as Ca2+ binding to a channel protein, and macro-scale phenomena, such as excitation-contraction coupling gain. Here we review experimentally based multi-scale computational models of excitation-contraction coupling and the insights that have been gained through their application. PMID:21212390
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Hamid, M. S.
1977-01-01
The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
FitEM2EM—Tools for Low Resolution Study of Macromolecular Assembly and Dynamics
Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam
2008-01-01
Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top. PMID:18974836
Sparse principal component analysis in medical shape modeling
NASA Astrophysics Data System (ADS)
Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus
2006-03-01
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.
NASA Astrophysics Data System (ADS)
Cho, Adrian
2018-06-01
Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."
Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia
Xu, Zhiliang; Zartman, Jeremiah J.; Alber, Mark
2017-01-01
Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive. PMID:28531187
Cheng, Shing Shin; Kim, Yeongjin; Desai, Jaydev P
2017-09-01
Since shape memory alloy (SMA) has high power density and is magnetic resonance imaging (MRI) compatible, it has been chosen as the actuator for the meso-scale minimally invasive neurosurgical intracranial robot (MINIR-II) that is envisioned to be operated under continuous MRI guidance. We have devised a water cooling strategy to improve its actuation frequency by threading a silicone tube through the spring coils to form a compact cooling module-integrated actuator. To create active bi-directional motion in each robot joint, we configured the SMA springs in an antagonistic way. We modeled the antagonistic SMA spring behavior and provided the detailed steps to simulate its motion for a complete cycle. We investigated heat transfer during the resistive heating and water cooling processes. Characterization experiments were performed to determine the parameters used in both models, which were then verified by comparing the experimental and simulated data. The actuation frequency of the antagonistic SMAs was evaluated for several motion amplitudes and we could achieve a maximum actuation frequency of 0.143 Hz for a sinusoidal trajectory with 2 mm amplitude. Lastly, we developed a robotic system to implement the actuators on the MINIR-II to move its end segment back and forth for approximately ±25°.
NASA Astrophysics Data System (ADS)
Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.
2016-11-01
As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.
Walsby, Anthony E
2005-11-01
The ability of the Planktothrix rubescens to stratify in Lake Zürich is related to the size and shape of the cyanobacterial filaments. Detailed measurements made in the lake are used in a dynamic computer model of buoyancy regulation to investigate the vertical movements of filaments tracking the depth at which the irradiance would support neutral buoyancy. The movement of the filament lags behind the constantly changing target depth owing to (a) the time taken for the filament to respond to the irradiance by changing its density and (b) the time it takes to move by sinking down or floating up through the water column. The model simulates the stratification depth over a 5-month period of the summer from the continuous measurements of irradiance and weekly measurements of light attenuation and temperature, without any further adjustment over the period. Models using filaments of the size observed in Lake Zürich explain several details of the observed depth changes: smaller planktonic cyanobacteria (e.g. Limnothrix sp.) are unable to migrate fast enough and larger ones (e.g. Anabaena spp.) will overshoot and become entrained in the epilimnion. The model can be used to simulate recruitment of Planktothrix filaments from different depths after vernal stratification. Recruitment of filaments from depths down to 45 m will contribute to the metalimnetic population increase in early July.
A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California
Barnard, Patrick L.; Hoover, Daniel
2010-01-01
A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.
NASA Astrophysics Data System (ADS)
Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena
2018-01-01
Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.
Integrated design optimization research and development in an industrial environment
NASA Astrophysics Data System (ADS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-04-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Universal Shapes formed by Interacting Cracks
NASA Astrophysics Data System (ADS)
Fender, Melissa; Lechenault, Frederic; Daniels, Karen
2011-03-01
Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.
Research into the propeller strut for high speed outboard motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Takashi; Sunayama, Yoshihiko
1995-12-31
For better performance of outboard motors for high speed craft, improvement in the performance of the propeller strut located ahead of the propeller is indispensable in addition to ameliorating the performance of the screw propeller itself. Thus, it is extremely important to reduce the drag of the propeller strut, which accounts for the predominant portion of the submerged parts of the motor and hull when the craft is running at high speed and to improve the propeller efficiency in the wake of the propeller strut. This paper, taking up two different shapes of the propeller strut, compares the performances ofmore » the propeller placed in the wake of the propeller strut in tank tests, and discusses the drag of the propeller strut. The two propeller strut shapes are that of a 70% scaled down model of the propeller strut Suzuki`s 200 PS outboard motor and its improved version. The propeller used in the experiment is one having super cavitating blades with the Pseudo-Kirchhoff nose, whose performance the authors have been analyzing systematically. Detailed comparison was further made of the drags of the differently shaped propeller struts by means of computational fluid dynamics.« less
Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries
Scott, R. H. H.; Clark, D. S.; Bradley, D. K.; ...
2013-02-01
In this study, the sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) [1] to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT “ice” layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images indicate that the P4 component of hotmore » spot self-emission shape is insensitive to P4 hot spot shapes, and a positive P4 asymmetry aliases itself as a negative or oblate P2 in these images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed post-shot 2D simulations.« less
NASA Astrophysics Data System (ADS)
Adohi, B. J. P.; Brosseau, C.; Laur, V.; Haidar, B.
2017-01-01
We report on the field-dependent polarization of graphene (GE) filled poly[vinylidene fluoride-co-trifluoroethylene] P(VDF-TrFE) nanostructures fabricated by mechanical melt mixing. This study shows an increase in effective permittivity of these nanomaterials on increasing the GE loading in a manner that is consistent with standard mixing law. Detailed characterization of the unsaturated ferroelectric hysteresis, as well as the butterfly shape of the effective permittivity versus electric bias, of the samples are presented. For GE content set to 9.1 wt. % in the samples containing 50/50 wt. % (VDF/TrFE), the maximum polarization increases by 260% with respect to that of the neat polymer matrix. With a higher VDF content, 73 wt. %, the coercive field remains constant over the range of GE content explored. Additionally, our results highlight the strong impact of the GE loading and temperature on the butterfly shape in permittivity-field loops of these nanocomposites. The experimental findings are consistent with theoretical predictions of the modified Johnson's model [Narayanan et al., Appl. Phys. Lett. 100, 022907 (2012)]. Our findings can open avenues for interplay between conductive nanofillers and ferroelectricity in soft nanomaterials with controlled phase transitions.
Integrated design optimization research and development in an industrial environment
NASA Technical Reports Server (NTRS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-01-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).
Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D
2013-11-01
This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.
Late-time flux evolution of magnetars SGR 1627-41 and Swift J1822.3-1606
NASA Astrophysics Data System (ADS)
An, Hongjun
2013-10-01
The flux relaxations of magnetars post-outburst are of great interest as they permit detailed studies of magnetars and their environments. One model that can explain the flux relaxation is crustal cooling. In the model, heat is deposited after an energetic event in the crust and emitted at the surface. A significant amount of heat can propagate deeper inside, heating the core/crust boundary and changing the shape of the light curve at late times. Therefore, studying the flux relaxation at late times may provides a new opportunity to study the extreme environment near the core. We propose XMM-Newton observations to study the late-time flux evolution of two magnetars, SGR 1627-41 and Swift J1822.3- 1606 to test the crustal cooling model and infer physical properties of the magnetars.
NASA Astrophysics Data System (ADS)
Zhang, Pei; Barlow, Robert; Masri, Assaad; Wang, Haifeng
2016-11-01
The mixture fraction and progress variable are often used as independent variables for describing turbulent premixed and non-premixed flames. There is a growing interest in using these two variables for describing partially premixed flames. The joint statistical distribution of the mixture fraction and progress variable is of great interest in developing models for partially premixed flames. In this work, we conduct predictive studies of the joint statistics of mixture fraction and progress variable in a series of piloted methane jet flames with inhomogeneous inlet flows. The employed models combine large eddy simulations with the Monte Carlo probability density function (PDF) method. The joint PDFs and marginal PDFs are examined in detail by comparing the model predictions and the measurements. Different presumed shapes of the joint PDFs are also evaluated.
Thermophysical Model of S-complex NEAs: 1627 Ivar
NASA Astrophysics Data System (ADS)
Crowell, Jenna; Howell, Ellen S.; Magri, Christopher; Fernandez, Yanga R.; Marshall, Sean E.; Warner, Brian D.; Vervack, Ronald J., Jr.
2016-01-01
We present an updated thermophysical model of 1627 Ivar, an Amor class near Earth asteroid (NEA) with a taxonomic type of Sqw [1]. Ivar's large size and close approach to Earth in 2013 (minimum distance 0.32 AU) provided an opportunity to observe the asteroid over many different viewing angles for an extended period of time, which we have utilized to generate a shape and thermophysical model of Ivar, allowing us to discuss the implications that these results have on the regolith of this asteroid. Using the software SHAPE [2,3], we updated the nonconvex shape model of Ivar, which was constructed by Kaasalainen et al. [4] using photometry. We incorporated 2013 radar data and CCD lightcurves using the Arecibo Observatory's 2380Mz radar and the 0.35m telescope at the Palmer Divide Station respectively, to create a shape model with higher surface detail. We found Ivar to be elongated with maximum extended lengths along principal axes of 12 x 5 x 6 km and a rotation rate of 4.795162 ± 5.4 * 10-6 hrs [5]. In addition to these radar data and lightcurves, we also observed Ivar in the near IR using the SpeX instrument at the NASA IRTF. These data cover a wide range of Ivar's rotational longitudes and viewing geometries. We have used SHERMAN [6,7] with input parameters such as the asteroid's IR emissivity, optical scattering law, and thermal inertia, in order to complete thermal computations based on our shape model and known spin state. Using this procedure, we find which reflective, thermal, and surface properties best reproduce the observed spectra. This allows us to characterize properties of the asteroid's regolith and study heterogeneity of the surface. We will compare these results with those of other S-complex asteroids to better understand this asteroid type and the uniqueness of 1627 Ivar.[1] DeMeo et al. 2009, Icarus 202, 160-180 [2] Magri, C. et al. 2011, Icarus 214, 210-227. [3] Crowell, J. et al. 2014, AAS/DPS 46 [4] Kaasalainen, M. et al. 2004, Icarus 167, 178-196. [5] Crowell, J. et al. 2015, LPSC 46 [6] Crowell, J. et al. 2015, TherMoPS II. [7] Howell, E. et al. 2012, AAS/DPS 44. This work is partially supported by NSF (AST-1109855), NASA (NNX13AQ46G), CLASS (NNA14AB05A), and USRA (06810-05).
CP4 miracle: shaping Yukawa sector with CP symmetry of order four
NASA Astrophysics Data System (ADS)
Ferreira, P. M.; Ivanov, Igor P.; Jiménez, Enrique; Pasechnik, Roman; Serôdio, Hugo
2018-01-01
We explore the phenomenology of a unique three-Higgs-doublet model based on the single CP symmetry of order 4 (CP4) without any accidental symmetries. The CP4 symmetry is imposed on the scalar potential and Yukawa interactions, strongly shaping both sectors of the model and leading to a very characteristic phenomenology. The scalar sector is analyzed in detail, and in the Yukawa sector we list all possible CP4-symmetric structures which do not run into immediate conflict with experiment, namely, do not lead to massless or mass-degenerate quarks nor to insufficient mixing or CP -violation in the CKM matrix. We show that the parameter space of the model, although very constrained by CP4, is large enough to comply with the electroweak precision data and the LHC results for the 125 GeV Higgs boson phenomenology, as well as to perfectly reproduce all fermion masses, mixing, and CP violation. Despite the presence of flavor changing neutral currents mediated by heavy Higgs scalars, we find through a parameter space scan many points which accurately reproduce the kaon CP -violating parameter ɛ K as well as oscillation parameters in K and B ( s) mesons. Thus, CP4 offers a novel minimalistic framework for building models with very few assumptions, sufficient predictive power, and rich phenomenology yet to be explored.
Application of 3D Spatio-Temporal Data Modeling, Management, and Analysis in DB4GEO
NASA Astrophysics Data System (ADS)
Kuper, P. V.; Breunig, M.; Al-Doori, M.; Thomsen, A.
2016-10-01
Many of todaýs world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.
Urine Flow Dynamics Through Prostatic Urethra With Tubular Organ Modeling Using Endoscopic Imagery
Kambara, Yoichi; Yamanishi, Tomonori; Naya, Yukio; Igarashi, Tatsuo
2014-01-01
Voiding dysfunction is common in the aged male population. However, the obstruction mechanism in the lower urinary tract and critical points for obstruction remains uncertain. The aim of this paper was to develop a system to investigate the relationship between voiding dysfunction and alteration of the shape of the prostatic urethra by processing endoscopic video images of the urethra and analyzing the fluid dynamics of the urine stream. A panoramic image of the prostatic urethra was generated from cystourethroscopic video images. A virtual 3-D model of the urethra was constructed using the luminance values in the image. Fluid dynamics using the constructed model was then calculated assuming a static urethra and maximum urine flow rate. Cystourethroscopic videos from 11 patients with benign prostatic hyperplasia were recorded around administration of an alpha-1 adrenoceptor antagonist. The calculated pressure loss through the prostatic urethra in each model corresponded to the prostatic volume, and the improvements of the pressure loss after treatment correlated to the conventional clinical indices. As shown by the proposed method, the shape of the prostatic urethra affects the transporting urine fluid energy, and this paper implies a possible method for detecting critical lesions responsible for voiding dysfunction. The proposed method provides critical information about deformation of the prostatic urethra on voiding function. Detailed differences in the various types of relaxants for the lower urinary tract could be estimated. PMID:27170869
3D Shape and Structure of the Homunculus of eta Carinae
NASA Astrophysics Data System (ADS)
Currie, D. G.; Christou, J.; Tyler, D.; Jefferies, S.; Le Mignant, D.; Bonaccini, D.
2000-12-01
The three-dimensional shape of the Homunculus of eta Carinae, as well as the detailed features of the SouthEast Lobe have been observed using the ADONIS system on the ESO 3.6 meter telescope at La Silla. To measure the normally invisible back wall of the Homunculus, we have observed in the infrared (to reduce the opacity of the front wall) and used the Fabry-Perot Interferometer (to distinguish between the Doppler shifts of the light reflected from the back wall and the brighter light reflected from the front wall). This analysis confirms the Double-Flask model and the orientation of the symmetry axis obtained from the previous analysis of the front wall emission and the assumption of rotational symmetry (Currie et. al. 1995, Currie et. al. 1996, Dowling 1996). To evaluate the fine detail of the turbulent motions in the front wall of the SouthEast Lobe, we use broad band observations in the H and K bands. This will be compared to the similar features seen in the shorter wavelengths (at the same resolution) by the WFPC. In the infrared, we see more detail of the shear behavior already seen at the visible wavelengths (Dowling, 1996). To further explore these features, the results of several types of deconvolution will be considered in order to obtain the optimal resolution for the AO data, and to compare the different data processing methodologies. We wish to thank ESO for the observation time, and the 3.6 meter team for observational support. We also wish to thank the STScI and WFPC IDT team. Support for individual authors has come from ESO, the University of Maryland, AFOSR, and CfAO.
(abstract) Synthesis of Speaker Facial Movements to Match Selected Speech Sequences
NASA Technical Reports Server (NTRS)
Scott, Kenneth C.
1994-01-01
We are developing a system for synthesizing image sequences the simulate the facial motion of a speaker. To perform this synthesis, we are pursuing two major areas of effort. We are developing the necessary computer graphics technology to synthesize a realistic image sequence of a person speaking selected speech sequences. Next, we are developing a model that expresses the relation between spoken phonemes and face/mouth shape. A subject is video taped speaking an arbitrary text that contains expression of the full list of desired database phonemes. The subject is video taped from the front speaking normally, recording both audio and video detail simultaneously. Using the audio track, we identify the specific video frames on the tape relating to each spoken phoneme. From this range we digitize the video frame which represents the extreme of mouth motion/shape. Thus, we construct a database of images of face/mouth shape related to spoken phonemes. A selected audio speech sequence is recorded which is the basis for synthesizing a matching video sequence; the speaker need not be the same as used for constructing the database. The audio sequence is analyzed to determine the spoken phoneme sequence and the relative timing of the enunciation of those phonemes. Synthesizing an image sequence corresponding to the spoken phoneme sequence is accomplished using a graphics technique known as morphing. Image sequence keyframes necessary for this processing are based on the spoken phoneme sequence and timing. We have been successful in synthesizing the facial motion of a native English speaker for a small set of arbitrary speech segments. Our future work will focus on advancement of the face shape/phoneme model and independent control of facial features.
Collectivity in the light radon nuclei measured directly via Coulomb excitation
NASA Astrophysics Data System (ADS)
Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.
2015-06-01
Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.
Zhou, Xiangrong; Xu, Rui; Hara, Takeshi; Hirano, Yasushi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Kido, Shoji; Fujita, Hiroshi
2014-07-01
The shapes of the inner organs are important information for medical image analysis. Statistical shape modeling provides a way of quantifying and measuring shape variations of the inner organs in different patients. In this study, we developed a universal scheme that can be used for building the statistical shape models for different inner organs efficiently. This scheme combines the traditional point distribution modeling with a group-wise optimization method based on a measure called minimum description length to provide a practical means for 3D organ shape modeling. In experiments, the proposed scheme was applied to the building of five statistical shape models for hearts, livers, spleens, and right and left kidneys by use of 50 cases of 3D torso CT images. The performance of these models was evaluated by three measures: model compactness, model generalization, and model specificity. The experimental results showed that the constructed shape models have good "compactness" and satisfied the "generalization" performance for different organ shape representations; however, the "specificity" of these models should be improved in the future.
The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap.
Brown, Jeffrey W; Bullitt, Esther; Sriswasdi, Sira; Harper, Sandra; Speicher, David W; McKnight, C James
2015-06-01
The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin's physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin's quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use.
Nonlinear dynamic modeling of a V-shaped metal based thermally driven MEMS actuator for RF switches
NASA Astrophysics Data System (ADS)
Bakri-Kassem, Maher; Dhaouadi, Rached; Arabi, Mohamed; Estahbanati, Shahabeddin V.; Abdel-Rahman, Eihab
2018-05-01
In this paper, we propose a new dynamic model to describe the nonlinear characteristics of a V-shaped (chevron) metallic-based thermally driven MEMS actuator. We developed two models for the thermal actuator with two configurations. The first MEMS configuration has a small tip connected to the shuttle, while the second configuration has a folded spring and a wide beam attached to the shuttle. A detailed finite element model (FEM) and a lumped element model (LEM) are proposed for each configuration to completely characterize the electro-thermal and thermo-mechanical behaviors. The nonlinear resistivity of the polysilicon layer is extracted from the measured current-voltage (I-V) characteristics of the actuator and the simulated corresponding temperatures in the FEM model, knowing the resistivity of the polysilicon at room temperature from the manufacture’s handbook. Both developed models include the nonlinear temperature-dependent material properties. Numerical simulations in comparison with experimental data using a dedicated MEMS test apparatus verify the accuracy of the proposed LEM model to represent the complex dynamics of the thermal MEMS actuator. The LEM and FEM simulation results show an accuracy ranging from a maximum of 13% error down to a minimum of 1.4% error. The actuator with the lower thermal load to air that includes a folded spring (FS), also known as high surface area actuator is compared to the actuator without FS, also known as low surface area actuator, in terms of the I-V characteristics, power consumption, and experimental static and dynamic responses of the tip displacement.
Visualization of the variability of 3D statistical shape models by animation.
Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter
2004-01-01
Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.
A day of great illumination: B. F. Skinner's discovery of shaping.
Peterson, Gail B
2004-01-01
Despite the seminal studies of response differentiation by the method of successive approximation detailed in chapter 8 of The Behavior of Organisms (1938), B. F. Skinner never actually shaped an operant response by hand until a memorable incident of startling serendipity on the top floor of a flour mill in Minneapolis in 1943. That occasion appears to have been a genuine eureka experience for Skinner, causing him to appreciate as never before the significance of reinforcement mediated by biological connections with the animate social environment, as opposed to purely mechanical connections with the inanimate physical environment. This insight stimulated him to coin a new term (shaping), and also led directly to a shift in his perspective on verbal behavior from an emphasis on antecedents and molecular topographical details to an emphasis on consequences and more molar, functional properties in which the social dyad inherent to the shaping process became the definitive property of verbal behavior. Moreover, the insight seems to have emboldened Skinner to explore the greater implications of his behaviorism for human behavior writ large, an enterprise that characterized the bulk of his post-World War II scholarship. PMID:15693526
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis
Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas
2016-01-01
The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246
Shape characteristics of the foot arch: dynamics in the pregnancy period.
Jelen, Karel; Tetkova, Zuzana; Halounova, Lena; Pavelka, Karel; Koudelka, Tomas; Ruzicka, Pavel
2005-12-01
The aim is data detection and finding some load consequences generated by various mechanical or physiological changes in the interaction of the end segment of the body--the foot--and the environment. Shape instability of the foot caused by e.g. loading of the foot by long-term frequency loads--walking, by extreme loads--sport, by hormonal changes--pregnancy, by aging, by pathologies, etc. The footprint surface was numerically described in 3D by means of stereo-photo-gram-metrical method--DMR digital relief model. Density of discrete points--250-400 per one print. Detailed DMR was constructed by means of triangular web including contour picture with the use of Atlas program. The specified generated web is characterized by triangles with a cca 1 mm side in the number of up to 4,500 elements per one footprint model. The results enable us to deduce shape characteristics of DMR--the shape of the interactive boundary of the foot--the rest surface, to solve foot arch straining, to solve issues of discomfort and distribution of the pressure at the boundary of the foot--the rest surface, the shoe, etc. The gained findings can be interpreted in the field of prevention, therapy, orthopedics, podology, and enable us to come up with recommendations for the orthopedic practice and industrial use in the footwear production, etc. THE MAIN FINDINGS: The difference between volume reductions of the space under the foot arch characterizes the level of "fall" of the arch. This criterion is independent of the foot size, and is in 3D. Shape characteristics of footprints in pregnant women and in the period after childbirth were calculated on the basis of the defined criterion. The results of the group of four women tested in three periods suggest that there is no clear tendency towards the foot arch falling/increasing of the foot arch "fall" during the pregnancy period.
Patch-Based Generative Shape Model and MDL Model Selection for Statistical Analysis of Archipelagos
NASA Astrophysics Data System (ADS)
Ganz, Melanie; Nielsen, Mads; Brandt, Sami
We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning a patch-based dictionary for possible shapes, (2) building up a time-homogeneous Markov model to model the neighbourhood correlations between the patches, and (3) automatic selection of the model complexity by the minimum description length principle. The generative shape model is proposed as a probability distribution of a binary image where the model is intended to facilitate sequential simulation. Our results show that a relatively simple model is able to generate structures visually similar to calcifications. Furthermore, we used the shape model as a shape prior in the statistical segmentation of calcifications, where the area overlap with the ground truth shapes improved significantly compared to the case where the prior was not used.
MTR, TRA603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, USHAPED CONSOLE, ...
MTR, TRA-603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, U-SHAPED CONSOLE, INSTRUMENT PANELS, GLASS DOOR, ASPHALT TILE FLOOR AND COLORS. BLAW-KNOX 3150-803-11, 10/1950. INL INDEX NO. 531-0603-00-098-100570, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DUAL CARPORT AND DETAIL OF CARPORT EAVE AS SEEN FROM ...
DUAL CARPORT AND DETAIL OF CARPORT EAVE AS SEEN FROM THE DRIVEWAY. UNIT A IS SEEN ON THE LEFT AND STORAGE IN THE MIDDLE - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, M-Shaped Four-Bedroom Duplex Type 5, Birch Circle, Cedar Drive, Pearl City, Honolulu County, HI
NASA Astrophysics Data System (ADS)
Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg
2018-03-01
Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çakir, Asli; Aktürk, Selçuk; Righi, Lara
2013-11-14
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur inmore » the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.« less
Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.
Xiao, Huahua; Sun, Jinhua; Chen, Peng
2014-03-15
An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pak, A.; Divol, L.; Kritcher, A. L.; Ma, T.; Ralph, J. E.; Bachmann, B.; Benedetti, L. R.; Casey, D. T.; Celliers, P. M.; Dewald, E. L.; Döppner, T.; Field, J. E.; Fratanduono, D. E.; Berzak Hopkins, L. F.; Izumi, N.; Khan, S. F.; Landen, O. L.; Kyrala, G. A.; LePape, S.; Millot, M.; Milovich, J. L.; Moore, A. S.; Nagel, S. R.; Park, H.-S.; Rygg, J. R.; Bradley, D. K.; Callahan, D. A.; Hinkel, D. E.; Hsing, W. W.; Hurricane, O. A.; Meezan, N. B.; Moody, J. D.; Patel, P.; Robey, H. F.; Schneider, M. B.; Town, R. P. J.; Edwards, M. J.
2017-05-01
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10% to -5%, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additional negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ˜2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. These data indicate that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A.; Divol, L.; Kritcher, A. L.
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less
Pak, A.; Divol, L.; Kritcher, A. L.; ...
2017-03-24
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less
On Machine Capacitance Dimensional and Surface Profile Measurement System
NASA Technical Reports Server (NTRS)
Resnick, Ralph
1993-01-01
A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.
A Computational Model of Multidimensional Shape
Liu, Xiuwen; Shi, Yonggang; Dinov, Ivo
2010-01-01
We develop a computational model of shape that extends existing Riemannian models of curves to multidimensional objects of general topological type. We construct shape spaces equipped with geodesic metrics that measure how costly it is to interpolate two shapes through elastic deformations. The model employs a representation of shape based on the discrete exterior derivative of parametrizations over a finite simplicial complex. We develop algorithms to calculate geodesics and geodesic distances, as well as tools to quantify local shape similarities and contrasts, thus obtaining a formulation that accounts for regional differences and integrates them into a global measure of dissimilarity. The Riemannian shape spaces provide a common framework to treat numerous problems such as the statistical modeling of shapes, the comparison of shapes associated with different individuals or groups, and modeling and simulation of shape dynamics. We give multiple examples of geodesic interpolations and illustrations of the use of the models in brain mapping, particularly, the analysis of anatomical variation based on neuroimaging data. PMID:21057668
Robophysical study of jumping dynamics on granular media
NASA Astrophysics Data System (ADS)
Aguilar, Jeffrey; Goldman, Daniel I.
2016-03-01
Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.
Planning of reach-and-grasp movements: effects of validity and type of object information
NASA Technical Reports Server (NTRS)
Loukopoulos, L. D.; Engelbrecht, S. F.; Berthier, N. E.
2001-01-01
Individuals are assumed to plan reach-and-grasp movements by using two separate processes. In 1 of the processes, extrinsic (direction, distance) object information is used in planning the movement of the arm that transports the hand to the target location (transport planning); whereas in the other, intrinsic (shape) object information is used in planning the preshaping of the hand and the grasping of the target object (manipulation planning). In 2 experiments, the authors used primes to provide information to participants (N = 5, Experiment 1; N = 6, Experiment 2) about extrinsic and intrinsic object properties. The validity of the prime information was systematically varied. The primes were succeeded by a cue, which always correctly identified the location and shape of the target object. Reaction times were recorded. Four models of transport and manipulation planning were tested. The only model that was consistent with the data was 1 in which arm transport and object manipulation planning were postulated to be independent processes that operate partially in parallel. The authors suggest that the processes involved in motor planning before execution are primarily concerned with the geometric aspects of the upcoming movement but not with the temporal details of its execution.
NASA Technical Reports Server (NTRS)
Stoll, Frederick
1993-01-01
The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.
Refined Rotational Period, Pole Solution, and Shape Model for (3200) Phaethon
NASA Astrophysics Data System (ADS)
Ansdell, Megan; Meech, Karen J.; Hainaut, Olivier; Buie, Marc W.; Kaluna, Heather; Bauer, James; Dundon, Luke
2014-09-01
(3200) Phaethon exhibits both comet- and asteroid-like properties, suggesting it could be a rare transitional object such as a dormant comet or previously volatile-rich asteroid. This justifies detailed study of (3200) Phaethon's physical properties as a better understanding of asteroid-comet transition objects can provide insight into minor body evolution. We therefore acquired time series photometry of (3200) Phaethon over 15 nights from 1994 to 2013, primarily using the Tektronix 2048 × 2048 pixel CCD on the University of Hawaii 2.2 m telescope. We utilized light curve inversion to (1) refine (3200) Phaethon's rotational period to P = 3.6032 ± 0.0008 hr; (2) estimate a rotational pole orientation of λ = +85° ± 13° and β = -20° ± 10° and (3) derive a shape model. We also used our extensive light curve data set to estimate the slope parameter of (3200) Phaethon's phase curve as G ~ 0.06, consistent with C-type asteroids. We discuss how this highly oblique pole orientation with a negative ecliptic latitude supports previous evidence for (3200) Phaethon's origin in the inner main asteroid belt as well as the potential for deeply buried volatiles fueling impulsive yet rare cometary outbursts.
NASA Astrophysics Data System (ADS)
Poklad, A.; Pal, J.; Galindo, V.; Grants, I.; Heinze, V.; Meier, D.; Pätzold, O.; Stelter, M.; Gerbeth, G.
2017-07-01
A novel, vertical Bridgman-type technique for growing multi-crystalline silicon ingots in an induction furnace is described. In contrast to conventional growth, a modified setup with a cone-shaped crucible and susceptor is used. A detailed numerical simulation of the setup is presented. It includes a global thermal simulation of the furnace and a local simulation of the melt, which aims at the influence of the melt flow on the temperature and concentration fields. Furthermore, seeded growth of cone-shaped Si ingots using either a monocrystalline seed or a seed layer formed by pieces of poly-Si is demonstrated and compared to growth without seeds. The influences of the seed material on the grain structure and the dislocation density of the ingots are discussed. The second part addresses model experiments for the Czochralski technique using the room temperature liquid metal GaInSn. The studies were focused on the influence of a rotating and a horizontally static magnetic field on the melt flow and the related heat transport in crucibles being heated from bottom and/or side, and cooled by a crystal model covering about 1/3 of the upper melt surface.