Sample records for detailed temporal structure

  1. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  2. Detailed temporal structure of communication networks in groups of songbirds.

    PubMed

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  3. Beyond Time: Temporal and Extra-Temporal Functions of Tense and Aspect Marking in Totela, a Bantu Language of Zambia

    ERIC Educational Resources Information Center

    Crane, Thera Marie

    2011-01-01

    This dissertation aims to characterize the relationship between the temporal and information-structuring functions of tense and aspect marking in Totela, an endangered Bantu language of Zambia and Namibia. To that end, I investigate and describe in detail the semantics and pragmatics of selected tense and aspect markers, showing for each that a…

  4. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  5. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes.

    PubMed

    Grochowski, Christopher M; Gu, Shen; Yuan, Bo; Tcw, Julia; Brennand, Kristen J; Sebat, Jonathan; Malhotra, Dheeraj; McCarthy, Shane; Rudolph, Uwe; Lindstrand, Anna; Chong, Zechen; Levy, Deborah L; Lupski, James R; Carvalho, Claudia M B

    2018-04-25

    Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation. © 2018 Wiley Periodicals, Inc.

  6. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  7. Temporal Structure of Volatility Fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhong; Yamasaki, Kazuko; Stanley, H. Eugene; Havlin, Shlomo

    Volatility fluctuations are of great importance for the study of financial markets, and the temporal structure is an essential feature of fluctuations. To explore the temporal structure, we employ a new approach based on the return interval, which is defined as the time interval between two successive volatility values that are above a given threshold. We find that the distribution of the return intervals follows a scaling law over a wide range of thresholds, and over a broad range of sampling intervals. Moreover, this scaling law is universal for stocks of different countries, for commodities, for interest rates, and for currencies. However, further and more detailed analysis of the return intervals shows some systematic deviations from the scaling law. We also demonstrate a significant memory effect in the return intervals time organization. We find that the distribution of return intervals is strongly related to the correlations in the volatility.

  8. Spatial and temporal features of heavy rainstorm events in Calabria, Southern Italy

    NASA Astrophysics Data System (ADS)

    Terranova, Oreste Giuseppe; Gariano, Stefano Luigi; Greco, Raffaele

    2015-04-01

    Heavy rainstorms often induce flash floods, shallow landslides and debris flows, which cause several damage to manmade infrastructures and loss of lives. The analysis of spatial distribution and temporal features of intense rainfall events is a fundamental step for a better understanding of the phenomena and for its possible prediction. The present study is an attempt to improve, from a statistical point of view, the understanding at sub-hourly scale of the temporal and spatial structure of intense rainfall events, by examining those that have hit Calabria (Southern Italy) in the years 1998-2008. More in detail, a considerable amount of series with high temporal detail (5 min) related to 155 sites (one rain gauge per less than 100 sq km), were analysed. First, more than 152 thousands rainfall events, separated by at least 6 hours of dry weather, were recognized. Then, less than a third (45,533) were selected, since denoted as erosive. Finally, several heavy rainstorm events (HREs) were chosen by considering the rainfall events recorded simultaneously at different rain gauges, even non-contiguous, within the region. In particular, this further selection was conducted, based on heuristic threshold values of cumulated rainfall (≥ 100 mm), maximum intensity (≥ 50 mm/h), and kinetic energy (≥ 29 MJ/ha). Therefore, 25 distinct HREs, including all the well-known catastrophic geo-hydrological events, were subjected to thorough investigation. The obtained HREs, automatically classified according to their structure in time, were analysed as regards both spatial and temporal evolution. At this end, the 25 HREs were distinguished as widespread (17) or localized (8), if the affected area is ≥ 500 sq km or < 500 sq km, respectively. In particular, the temporal storm structure was described by means of the standardized rainfall profile (rainfall amount vs. duration, in terms on cumulative percentages). Then, a 4-digit binary shape code was adopted to automatically identify the shape of the profile (Terranova and Iaquinta, 2011; Terranova and Gariano, 2014). HREs have different spatial extents and temporal patterns. A wide spatial extent of the events does not imply damage proportionally high. Generally, a peak at the beginning of the event (thunderstorm-type) characterizes localized events. On the contrary, widespread events present mixed temporal structures with peaks localized in the last half of their duration. The proposed method improves the knowledge regarding the input of rainfall-runoff watershed models. These models can benefit from design storms, based on the synthesis of recorded rainstorms, having a time structure integrated with the results of the spatial analysis. The notable size of the employed sample, including data with a very detailed time resolution that relate to several rain gauges well distributed throughout the region, gives robustness to the obtained results. References O.G. Terranova, and P. Iaquinta.: Temporal properties of rainfall events in Calabria (southern Italy). Nat. Hazards Earth Syst. Sci., 11, 751-757, 2011. O.G. Terranova, and S.L. Gariano.: Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy). Nat. Hazards Earth Syst. Sci., 14, 2423-2434, 2014.

  9. Hippocampal contributions to recollection in retrograde and anterograde amnesia.

    PubMed

    Gilboa, Asaf; Winocur, Gordon; Rosenbaum, R Shayna; Poreh, Amir; Gao, Fuqiang; Black, Sandra E; Westmacott, Robyn; Moscovitch, Morris

    2006-01-01

    Lesions restricted to the hippocampal formation and/or extended hippocampal system (hippocampal formation, fornix, mammillary bodies, and anterior thalamic nuclei) can disrupt conscious recollection in anterograde amnesia, while leaving familiarity-based memory relatively intact. Familiarity may be supported by extra-hippocampal medial temporal lobe (MTL) structures. Within-task dissociations in recognition memory best exemplify this distinction in anterograde amnesia. The authors report for the first time comparable dissociations within recognition memory in retrograde amnesia. An amnesic patient (A.D.) with bilateral fornix and septal nuclei lesions failed to recognize details pertaining to personal past events only when recollection was required, during recognition of episodic details. His intact recognition of generic and semantic details pertaining to the same events was ascribed to intact familiarity processes. Recollective processes in the controls were reflected by asymmetrical Receiver's Operating Characteristic curves, whereas the patient's Receiver's Operating Characteristic was symmetrical, suggesting that his inferior recognition performance on episodic details was reliant on familiarity processes. Anterograde and retrograde memories were equally affected, with no temporal gradient for retrograde memories. By comparison, another amnesic person (K.C.) with extensive MTL damage (involving extra-hippocampal MTL structures in addition to hippocampal and fornix lesions) had very poor recognition and no recollection of either episodic or generic/semantic details. These data suggest that the extended hippocampal system is required to support recollection for both anterograde and retrograde memories, regardless of their age.

  10. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  11. Cochlear implant-related three-dimensional characteristics determined by micro-computed tomography reconstruction.

    PubMed

    Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei

    2017-01-01

    To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography

    NASA Astrophysics Data System (ADS)

    Yokota, Yusuke; Ishikawa, Tadashi; Watanabe, Shun-ichi

    2018-06-01

    After the twenty-first century, the Global Navigation Satellite System-Acoustic ranging (GNSS-A) technique detected geodetic events such as co- and postseismic effects following the 2011 Tohoku-oki earthquake and slip-deficit rate distributions along the Nankai Trough subduction zone. Although these are extremely important discoveries in geodesy and seismology, more accurate observation that can capture temporal and spatial changes are required for future earthquake disaster prevention. In order to upgrade the accuracy of the GNSS-A technique, it is necessary to understand disturbances in undersea sound speed structures, which are major error sources. In particular, detailed temporal and spatial variations are difficult to observe accurately, and their effect was not sufficiently extracted in previous studies. In the present paper, we reconstruct an inversion scheme for extracting the effect from GNSS-A data and experimentally apply this scheme to the seafloor sites around the Kuroshio. The extracted gradient effects are believed to represent not only a broad sound speed structure but also a more detailed structure generated in the unsteady disturbance. The accuracy of the seafloor positioning was also improved by this new method. The obtained results demonstrate the feasibility of using the GNSS-A technique to detect a seafloor crustal deformation for oceanography research.

  13. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat: Tucson

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.

    2002-01-01

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.

  14. IPUMS: Detailed global data on population characteristics

    NASA Astrophysics Data System (ADS)

    Kugler, T.

    2017-12-01

    Many new and exciting sources of data on human population distributions based on remote sensing, mobile technology, and other mechanisms are becoming available. These new data sources often provide fine scale spatial and/or temporal resolution. However, they typically focus on the location of population, with little or no information on population characteristics. The large and growing collection of data available through the IPUMS family of products complements datasets that provide spatial and temporal detail but little attribute detail by providing the full depth of characteristics covered by population censuses, including demographic, household structure, economic, employment, education, and housing characteristics. IPUMS International provides census microdata for 85 countries. Microdata provide the responses to every census question for each individual in a sample of households. Microdata identify the sub-national geographic unit in which a household is located, but for confidentiality reasons, identified units must include a minimum population, typically 20,000 people. Small-area aggregate data often describe much smaller geographic units, enabling study of detailed spatial patterns of population characteristics. However the structure of aggregate data tables is highly heterogeneous across countries, census years, and even topics within a given census, making these data difficult to work with in any systematic way. A recently funded project will assemble small-area aggregate population and agricultural census data published by national statistical offices. Through preliminary work collecting and cataloging over 10,000 tables, we have identified a small number of structural families that can be used to organize the many different structures. These structural families will form the basis for software tools to document and standardize the tables for ingest into a common database. Both the microdata and aggregate data are made available through IPUMS Terra, facilitating integration with land use, land cover, climate, and other environmental data. These data can be used to address pressing global challenges, such as food and water security, development and deforestation, and environmentally-influenced migration.

  15. Concentration Measurements in Self-Excited Momentum Dominated Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Pasumarthi, K. S.; Agrawal, A. K.

    2004-01-01

    Flow structure of self-excited, laminar, axisymmetric, momentum-dominated helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry technique. Measurements were obtained at temporal resolution of 1 ms and spatial resolution of 0.19 mm for two test cases with Richardson number of 0.034 and 0.018. Power spectra revealed that the oscillation frequency was independent of spatial coordinates, suggesting global oscillations in the flow. Abel inversion algorithm was used to reconstruct the concentration field of helium. Instantaneous concentration contours revealed changes in the flow field and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial locations provided detailed information about the instability in the flow field.

  16. Summary statistics in auditory perception.

    PubMed

    McDermott, Josh H; Schemitsch, Michael; Simoncelli, Eero P

    2013-04-01

    Sensory signals are transduced at high resolution, but their structure must be stored in a more compact format. Here we provide evidence that the auditory system summarizes the temporal details of sounds using time-averaged statistics. We measured discrimination of 'sound textures' that were characterized by particular statistical properties, as normally result from the superposition of many acoustic features in auditory scenes. When listeners discriminated examples of different textures, performance improved with excerpt duration. In contrast, when listeners discriminated different examples of the same texture, performance declined with duration, a paradoxical result given that the information available for discrimination grows with duration. These results indicate that once these sounds are of moderate length, the brain's representation is limited to time-averaged statistics, which, for different examples of the same texture, converge to the same values with increasing duration. Such statistical representations produce good categorical discrimination, but limit the ability to discern temporal detail.

  17. Brain regions underlying word finding difficulties in temporal lobe epilepsy.

    PubMed

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-10-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance. This evidence has highlighted a role for the anterior part of the dominant temporal lobe in oral word production. These conclusions contrast with findings from activation studies involving healthy speakers or acute ischaemic stroke patients, where the region most directly related to word retrieval appears to be the posterior part of the left temporal lobe. To clarify the neural basis of word retrieval in temporal lobe epilepsy, we tested forty-three drug-resistant temporal lobe epilepsy patients (28 left, 15 right). Comprehensive neuropsychological and language assessments were performed. Single spoken word production was elicited with picture or definition stimuli. Detailed analysis allowed the distinction of impaired word retrieval from other possible causes of naming failure. Finally, the neural substrate of the deficit was assessed by correlating word retrieval performance and resting-state brain metabolism in 18 fluoro-2-deoxy-d-glucose-Positron Emission Tomography. Naming difficulties often resulted from genuine word retrieval failures (anomic states), both in picture and in definition tasks. Left temporal lobe epilepsy patients showed considerably worse performance than right temporal lobe epilepsy patients. Performance was poorer in the definition than in the picture task. Across patients and the left temporal lobe epilepsy subgroup, frequency of anomic state was negatively correlated with resting-state brain metabolism in left posterior and basal temporal regions (Brodmann's area 20-37-39). These results show the involvement of posterior temporal regions, within a larger antero-posterior-basal temporal network, in the specific process of word retrieval in temporal lobe epilepsy. A tentative explanation for these findings is that epilepsy induces functional deafferentation between anterior temporal structures devoted to semantic processing and neocortical posterior temporal structures devoted to lexical processing.

  18. Episodic simulation of future events is impaired in mild Alzheimer's disease

    PubMed Central

    Addis, Donna Rose; Sacchetti, Daniel C.; Ally, Brandon A.; Budson, Andrew E.; Schacter, Daniel L.

    2009-01-01

    Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future. PMID:19497331

  19. Spatial and temporal characteristics of flare energy release determined from X-ray and radio imaging observations

    NASA Technical Reports Server (NTRS)

    Hernandez, A. M.; Machado, M. E.; Vilmer, N.; Trottet, G.

    1986-01-01

    Using the Hard X-ray Imaging Spectrometer (HXIS) from the Solar Maximum Mission Satellite, the morphological aspects and temporal evolution of three major flares which occurred on June 29, 1980 are studied. One of these events, observed at 10:40 UT, is analyzed in particular detail, including Hard X-ray Burst Spectrometer (HXRBS) data and metric wavelength data from the Nancay radioheliograph. The flares occurred during the interaction of two distinct magnetic structures. There is an early onset phase during which there is a weak level of particle acceleration, perhaps accompanied by strong heating within the magnetic interaction region. The impulsive phase of high power energy release is associated with a major interaction between the two structures and accompanied by strong acceleration and heating.

  20. Scanning near-field optical microscopy.

    PubMed

    Vobornik, Dusan; Vobornik, Slavenka

    2008-02-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  1. Speaker Invariance for Phonetic Information: an fMRI Investigation

    PubMed Central

    Salvata, Caden; Blumstein, Sheila E.; Myers, Emily B.

    2012-01-01

    The current study explored how listeners map the variable acoustic input onto a common sound structure representation while being able to retain phonetic detail to distinguish among the identity of talkers. An adaptation paradigm was utilized to examine areas which showed an equal neural response (equal release from adaptation) to phonetic change when spoken by the same speaker and when spoken by two different speakers, and insensitivity (failure to show release from adaptation) when the same phonetic input was spoken by a different speaker. Neural areas which showed speaker invariance were located in the anterior portion of the middle superior temporal gyrus bilaterally. These findings provide support for the view that speaker normalization processes allow for the translation of a variable speech input to a common abstract sound structure. That this process appears to occur early in the processing stream, recruiting temporal structures, suggests that this mapping takes place prelexically, before sound structure input is mapped on to lexical representations. PMID:23264714

  2. Effects of temporal correlations in social multiplex networks.

    PubMed

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  3. The mechanisms of temporal inference

    NASA Technical Reports Server (NTRS)

    Fox, B. R.; Green, S. R.

    1987-01-01

    The properties of a temporal language are determined by its constituent elements: the temporal objects which it can represent, the attributes of those objects, the relationships between them, the axioms which define the default relationships, and the rules which define the statements that can be formulated. The methods of inference which can be applied to a temporal language are derived in part from a small number of axioms which define the meaning of equality and order and how those relationships can be propagated. More complex inferences involve detailed analysis of the stated relationships. Perhaps the most challenging area of temporal inference is reasoning over disjunctive temporal constraints. Simple forms of disjunction do not sufficiently increase the expressive power of a language while unrestricted use of disjunction makes the analysis NP-hard. In many cases a set of disjunctive constraints can be converted to disjunctive normal form and familiar methods of inference can be applied to the conjunctive sub-expressions. This process itself is NP-hard but it is made more tractable by careful expansion of a tree-structured search space.

  4. Anatomical recommendations for safe botulinum toxin injection into temporalis muscle: a simplified reproducible approach.

    PubMed

    Lee, Won-Kang; Bae, Jung-Hee; Hu, Kyung-Seok; Kato, Takafumi; Kim, Seong-Taek

    2017-03-01

    The objective of this study was to simplify the anatomically safe and reproducible approach for BoNT injection and to generate a detailed topographic map of the important anatomical structures of the temporal region by dividing the temporalis into nine equally sized compartments. Nineteen sides of temporalis muscle were used. The topographies of the superficial temporal artery, middle temporal vein, temporalis tendon, and the temporalis muscle were evaluated. Also evaluated was the postural relations among the foregoing anatomical structures in the temporalis muscle, pivoted upon a total of nine compartments. The temporalis above the zygomatic arch exhibited an oblique quadrangular shape with rounded upper right and left corners. The distance between the anterior and posterior margins of the temporalis muscle was equal to the width of the temporalis rectangle, and the distance between the reference line and the superior temporalis margin was equal to its height. The mean ratio of width to height was 5:4. We recommend compartments Am, Mu, and Pm (coordinates of the rectangular outline) as areas in the temporal region for BoNT injection, because using these sites will avoid large blood vessels and tendons, thus improving the safety and reproducibility of the injection.

  5. Neural microgenesis of personally familiar face recognition

    PubMed Central

    Ramon, Meike; Vizioli, Luca; Liu-Shuang, Joan; Rossion, Bruno

    2015-01-01

    Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network. PMID:26283361

  6. Neural microgenesis of personally familiar face recognition.

    PubMed

    Ramon, Meike; Vizioli, Luca; Liu-Shuang, Joan; Rossion, Bruno

    2015-09-01

    Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network.

  7. Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus.

    PubMed

    Bowles, Ben; Crupi, Carina; Mirsattari, Seyed M; Pigott, Susan E; Parrent, Andrew G; Pruessner, Jens C; Yonelinas, Andrew P; Köhler, Stefan

    2007-10-09

    It is well established that the medial-temporal lobe (MTL) is critical for recognition memory. The MTL is known to be composed of distinct structures that are organized in a hierarchical manner. At present, it remains controversial whether lower structures in this hierarchy, such as perirhinal cortex, support memory functions that are distinct from those of higher structures, in particular the hippocampus. Perirhinal cortex has been proposed to play a specific role in the assessment of familiarity during recognition, which can be distinguished from the selective contributions of the hippocampus to the recollection of episodic detail. Some researchers have argued, however, that the distinction between familiarity and recollection cannot capture functional specialization within the MTL and have proposed single-process accounts. Evidence supporting the dual-process view comes from demonstrations that selective hippocampal damage can produce isolated recollection impairments. It is unclear, however, whether temporal-lobe lesions that spare the hippocampus can produce selective familiarity impairments. Without this demonstration, single-process accounts cannot be ruled out. We examined recognition memory in NB, an individual who underwent surgical resection of left anterior temporal-lobe structures for treatment of intractable epilepsy. Her resection included a large portion of perirhinal cortex but spared the hippocampus. The results of four experiments based on three different experimental procedures (remember-know paradigm, receiver operating characteristics, and response-deadline procedure) indicate that NB exhibits impaired familiarity with preserved recollection. The present findings thus provide a crucial missing piece of support for functional specialization in the MTL.

  8. Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data

    Treesearch

    James E. Vogelmann; Jay R. Kost; Brian Tolk; Stephen Howard; Karen Short; Xuexia Chen; Chengquan Huang; Kari Pabst; Matthew G. Rollins

    2011-01-01

    LANDFIRE is a large interagency project designed to provide nationwide spatial data for fire management applications. As part of the effort, many 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used in conjunction with a large volume of field information to generate detailed vegetation type and structure data sets for the entire...

  9. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk.

    PubMed

    Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N

    2017-03-01

    Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population's capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.

  10. Relaxation of water infiltration pulses observed with GPR

    NASA Astrophysics Data System (ADS)

    Hantschel, Lisa; Hemmer, Benedikt; Roth, Kurt

    2017-04-01

    We observe the relaxation of infiltration pulses in sandy soil with ground-penetrating radar (GPR). The spatial distribution of water in the infiltration area and its temporal evolution is represented by ordinary reflections at layer boundaries as well as multiple reflections at the wetting front and the pulse boundaries. The structure of these highly resolved signals are reproduced by numerical simulations of electromagnetic wave propagation. The temporally highly resolved electrical fields reveal the origin also of complex reflection signals. The usage of these more complex signals might allow a more detailed representation of the infiltration process by direct analysis as well as in combination with inversion techniques.

  11. Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.

    PubMed

    Maximova, Tatiana; Plaku, Erion; Shehu, Amarda

    2016-07-07

    Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.

  12. Transparent model of temporal bone and vestibulocochlear organ made by 3D printing.

    PubMed

    Suzuki, Ryoji; Taniguchi, Naoto; Uchida, Fujio; Ishizawa, Akimitsu; Kanatsu, Yoshinori; Zhou, Ming; Funakoshi, Kodai; Akashi, Hideo; Abe, Hiroshi

    2018-01-01

    The vestibulocochlear organ is composed of tiny complex structures embedded in the petrous part of the temporal bone. Landmarks on the temporal bone surface provide the only orientation guide for dissection, but these need to be removed during the course of dissection, making it difficult to grasp the underlying three-dimensional structures, especially for beginners during gross anatomy classes. We report herein an attempt to produce a transparent three-dimensional-printed model of the human ear. En bloc samples of the temporal bone from donated cadavers were subjected to computed tomography (CT) scanning, and on the basis of the data, the surface temporal bone was reconstructed with transparent resin and the vestibulocochlear organ with white resin to create a 1:1.5 scale model. The carotid canal was stuffed with red cotton, and the sigmoid sinus and internal jugular vein were filled with blue clay. In the inner ear, the internal acoustic meatus, cochlea, and semicircular canals were well reconstructed in detail with white resin. The three-dimensional relationships of the semicircular canals, spiral turns of the cochlea, and internal acoustic meatus were well recognizable from every direction through the transparent surface resin. The anterior semicircular canal was obvious immediately beneath the arcuate eminence, and the topographical relationships of the vestibulocochlear organ and adjacent great vessels were easily discernible. We consider that this transparent temporal bone model will be a very useful aid for better understanding of the gross anatomy of the vestibulocochlear organ.

  13. SCANNING NEAR-FIELD OPTICAL MICROSCOPY

    PubMed Central

    Vobornik, Dušan; Vobornik, Slavenka

    2008-01-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution. PMID:18318675

  14. Brain activity related to working memory for temporal order and object information.

    PubMed

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The functional and structural asymmetries of the superior temporal sulcus.

    PubMed

    Specht, Karsten; Wigglesworth, Philip

    2018-02-01

    The superior temporal sulcus (STS) is an anatomical structure that increasingly interests researchers. This structure appears to receive multisensory input and is involved in several perceptual and cognitive core functions, such as speech perception, audiovisual integration, (biological) motion processing and theory of mind capacities. In addition, the superior temporal sulcus is not only one of the longest sulci of the brain, but it also shows marked functional and structural asymmetries, some of which have only been found in humans. To explore the functional-structural relationships of these asymmetries in more detail, this study combines functional and structural magnetic resonance imaging. Using a speech perception task, an audiovisual integration task, and a theory of mind task, this study again demonstrated an involvement of the STS in these processes, with an expected strong leftward asymmetry for the speech perception task. Furthermore, this study confirmed the earlier described, human-specific asymmetries, namely that the left STS is longer than the right STS and that the right STS is deeper than the left STS. However, this study did not find any relationship between these structural asymmetries and the detected brain activations or their functional asymmetries. This can, on the other hand, give further support to the notion that the structural asymmetry of the STS is not directly related to the functional asymmetry of the speech perception and the language system as a whole, but that it may have other causes and functions. © 2018 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  16. CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness

    PubMed Central

    Bartsch, Thorsten; Döhring, Juliane; Rohr, Axel; Jansen, Olav; Deuschl, Günther

    2011-01-01

    Autobiographical memories in our lives are critically dependent on temporal lobe structures. However, the contribution of CA1 neurons in the human hippocampus to the retrieval of episodic autobiographical memory remains elusive. In patients with a rare acute transient global amnesia, highly focal lesions confined to the CA1 field of the hippocampus can be detected on MRI. We studied the effect of these lesions on autobiographical memory using a detailed autobiographical interview including the remember/know procedure. In 14 of 16 patients, focal lesions in the CA1 sector of the hippocampal cornu ammonis were detected. Autobiographical memory was significantly affected over all time periods, including memory for remote periods. Impairment of episodic memory and autonoetic consciousness exhibited a strong temporal gradient extending 30 to 40 y into the past. These results highlight the distinct and critical role of human hippocampal CA1 neurons in autobiographical memory retrieval and for re-experiencing detailed episodic memories. PMID:21987814

  17. An investigation of chaotic Kolmogorov flows

    NASA Technical Reports Server (NTRS)

    Platt, N.; Sirovich, L.; Fitzmaurice, N.

    1990-01-01

    A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.

  18. Implementation and evaluation of a hypercube-based method for spatiotemporal exploration and analysis

    NASA Astrophysics Data System (ADS)

    Marchand, Pierre; Brisebois, Alexandre; Bédard, Yvan; Edwards, Geoffrey

    This paper presents the results obtained with a new type of spatiotemporal topological dimension implemented within a hypercube, i.e., within a multidimensional database (MDDB) structure formed by the conjunction of several thematic, spatial and temporal dimensions. Our goal is to support efficient SpatioTemporal Exploration and Analysis (STEA) in the context of Automatic Position Reporting System (APRS), the worldwide amateur radio system for position report transmission. Mobile APRS stations are equipped with GPS navigation systems to provide real-time positioning reports. Previous research about the multidimensional approach has proved good potential for spatiotemporal exploration and analysis despite a lack of explicit topological operators (spatial, temporal and spatiotemporal). Our project implemented such operators through a hierarchy of operators that are applied to pairs of instances of objects. At the top of the hierarchy, users can use simple operators such as "same place", "same time" or "same time, same place". As they drill down into the hierarchy, more detailed topological operators are made available such as "adjacent immediately after", "touch during" or more detailed operators. This hierarchy is structured according to four levels of granularity based on cognitive models, generalized relationships and formal models of topological relationships. In this paper, we also describe the generic approach which allows efficient STEA within the multidimensional approach. Finally, we demonstrate that such an implementation offers query run times which permit to maintain a "train-of-thought" during exploration and analysis operations as they are compatible with Newell's cognitive band (query runtime<10 s) (Newell, A., 1990. Unified theories of cognition. Harvard University Press, Cambridge MA, 549 p.).

  19. An Investigation of Chaotic Kolmogorov Flows

    DTIC Science & Technology

    1990-08-01

    plane for the Poincare sections used later. The choice of the constant D controls apparent positioning of the hyperplane in the phase...discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and...examine in some detail the behavior of the flow and its transition states for a range of the bifurcation parameter Re. We use Poincare sections to

  20. Turbulent flame-wall interaction: a DNS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan

    2010-01-01

    A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less

  1. The effect of compression speed on intelligibility: simulated hearing-aid processing with and without original temporal fine structure information.

    PubMed

    Hopkins, Kathryn; King, Andrew; Moore, Brian C J

    2012-09-01

    Hearing aids use amplitude compression to compensate for the effects of loudness recruitment. The compression speed that gives the best speech intelligibility varies among individuals. Moore [(2008). Trends Amplif. 12, 300-315] suggested that an individual's sensitivity to temporal fine structure (TFS) information may affect which compression speed gives most benefit. This hypothesis was tested using normal-hearing listeners with a simulated hearing loss. Sentences in a competing talker background were processed using multi-channel fast or slow compression followed by a simulation of threshold elevation and loudness recruitment. Signals were either tone vocoded with 1-ERB(N)-wide channels (where ERB(N) is the bandwidth of normal auditory filters) to remove the original TFS information, or not processed further. In a second experiment, signals were vocoded with either 1 - or 2-ERB(N)-wide channels, to test whether the available spectral detail affects the optimal compression speed. Intelligibility was significantly better for fast than slow compression regardless of vocoder channel bandwidth. The results suggest that the availability of original TFS or detailed spectral information does not affect the optimal compression speed. This conclusion is tentative, since while the vocoder processing removed the original TFS information, listeners may have used the altered TFS in the vocoded signals.

  2. The Episodic Memory System: Neurocircuitry and Disorders

    PubMed Central

    Dickerson, Bradford C; Eichenbaum, Howard

    2010-01-01

    The ability to encode and retrieve our daily personal experiences, called episodic memory, is supported by the circuitry of the medial temporal lobe (MTL), including the hippocampus, which interacts extensively with a number of specific distributed cortical and subcortical structures. In both animals and humans, evidence from anatomical, neuropsychological, and physiological studies indicates that cortical components of this system have key functions in several aspects of perception and cognition, whereas the MTL structures mediate the organization and persistence of the network of memories whose details are stored in those cortical areas. Structures within the MTL, and particularly the hippocampus, have distinct functions in combining information from multiple cortical streams, supporting our ability to encode and retrieve details of events that compose episodic memories. Conversely, selective damage in the hippocampus, MTL, and other structures of the large-scale memory system, or deterioration of these areas in several diseases and disorders, compromises episodic memory. A growing body of evidence is converging on a functional organization of the cortical, subcortical, and MTL structures that support the fundamental features of episodic memory in humans and animals. PMID:19776728

  3. Recovering the fine structures in solar images

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  4. Hippocampus in health and disease: An overview

    PubMed Central

    Anand, Kuljeet Singh; Dhikav, Vikas

    2012-01-01

    Hippocampus is a complex brain structure embedded deep into temporal lobe. It has a major role in learning and memory. It is a plastic and vulnerable structure that gets damaged by a variety of stimuli. Studies have shown that it also gets affected in a variety of neurological and psychiatric disorders. In last decade or so, lot has been learnt about conditions that affect hippocampus and produce changes ranging from molecules to morphology. Progresses in radiological delineation, electrophysiology, and histochemical characterization have made it possible to study this archicerebral structure in greater detail. Present paper attempts to give an overview of hippocampus, both in health and diseases. PMID:23349586

  5. Structural health monitoring of engineered structures using a space-borne synthetic aperture radar multi-temporal approach: from cultural heritage sites to war zones

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Tapete, Deodato; Cigna, Francesca; Perissin, Daniele; Salzer, Jacqueline; Lundgren, Paul; Fielding, Eric; Burgmann, Roland; Biondi, Filippo; Milillo, Giovanni; Serio, Carmine

    2016-10-01

    Structural health monitoring (SHM) of engineered structures consists of an automated or semi-automated survey system that seeks to assess the structural condition of an anthropogenic structure. The aim of an SHM system is to provide insights into possible induced damage or any inherent signals of deformation affecting the structure in terms of detection, localization, assessment, and prediction. During the last decade there has been a growing interest in using several remote sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR satellites with short repeat time acquisitions permit detailed surveys temporal resolution and millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to the remote sensing of engineered structures. We show how by using multiple-geometry SAR-based products which exploit both phase and amplitude of the SAR signal we can address the main objectives of an SHM system including detection and localization. We highlight that, when external data such as rain or temperature records are available or simple elastic models can be assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment and prediction. We highlight examples of the potential for such imaging capabilities to enable advances in SHM from space, focusing on dams and cultural heritage areas.

  6. Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension

    PubMed Central

    Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.

    2016-01-01

    Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858

  7. Perirhinal cortex and temporal lobe epilepsy

    PubMed Central

    Biagini, Giuseppe; D'Antuono, Margherita; Benini, Ruba; de Guzman, Philip; Longo, Daniela; Avoli, Massimo

    2013-01-01

    The perirhinal cortex—which is interconnected with several limbic structures and is intimately involved in learning and memory—plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus. PMID:24009554

  8. Impact of Inflow Conditions on Coherent Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Yu, Paulo; Durgesh, Vibhav; Johari, Hamid

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.

  9. Fine resolution mapping of population age-structures for health and development applications.

    PubMed

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  10. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan.

    PubMed

    Badgley, Brian D; Ferguson, John; Vanden Heuvel, Amy; Kleinheinz, Gregory T; McDermott, Colleen M; Sandrin, Todd R; Kinzelman, Julie; Junion, Emily A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan

    USGS Publications Warehouse

    Badgley, B.D.; Ferguson, J.; Heuvel, A.V.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R.; Kinzelman, J.; Junion, E.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.

  12. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  13. Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.

    PubMed

    Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M

    2003-05-13

    Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.

  14. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.

    PubMed

    Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L

    2017-03-01

    There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Supporting Children in Mastering Temporal Relations of Stories: The TERENCE Learning Approach

    ERIC Educational Resources Information Center

    Di Mascio, Tania; Gennari, Rosella; Melonio, Alessandra; Tarantino, Laura

    2016-01-01

    Though temporal reasoning is a key factor for text comprehension, existing proposals for visualizing temporal information and temporal connectives proves to be inadequate for children, not only for their levels of abstraction and detail, but also because they rely on pre-existing mental models of time and temporal connectives, while in the case of…

  16. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    NASA Astrophysics Data System (ADS)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  17. Emotion’s Influence on Memory for Spatial and Temporal Context

    PubMed Central

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A.

    2010-01-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item’s valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. PMID:21379376

  18. Bayesian Tracking within a Feedback Sensing Environment: Estimating Interacting, Spatially Constrained Complex Dynamical Systems from Multiple Sources of Controllable Devices

    DTIC Science & Technology

    2014-07-25

    composition of simple temporal structures to a speaker diarization task with the goal of segmenting conference audio in the presence of an unknown number of...application domains including neuroimaging, diverse document selection, speaker diarization , stock modeling, and target tracking. We detail each of...recall performance than competing methods in a task of discovering articles preferred by the user • a gold-standard speaker diarization method, as

  19. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    PubMed

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  20. Advanced spectroscopic analysis of 0.8-1.0-MA Mo x pinches and the influence of plasma electron beams on L-shell spectra of Mo ions.

    PubMed

    Shlyaptseva, A S; Hansen, S B; Kantsyrev, V L; Fedin, D A; Ouart, N; Fournier, K B; Safronova, U I

    2003-02-01

    This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.

  1. Transient Auditory Storage of Acoustic Details Is Associated with Release of Speech from Informational Masking in Reverberant Conditions

    ERIC Educational Resources Information Center

    Huang, Ying; Huang, Qiang; Chen, Xun; Wu, Xihong; Li, Liang

    2009-01-01

    Perceptual integration of the sound directly emanating from the source with reflections needs both temporal storage and correlation computation of acoustic details. We examined whether the temporal storage is frequency dependent and associated with speech unmasking. In Experiment 1, a break in correlation (BIC) between interaurally correlated…

  2. Microsatellite DNA Analysis Revealed a Drastic Genetic Change of Plasmodium vivax Population in the Republic of Korea During 2002 and 2003

    PubMed Central

    Iwagami, Moritoshi; Hwang, Seung-Young; Kim, So-Hee; Park, So-Jung; Lee, Ga-Young; Matsumoto-Takahashi, Emilie Louise Akiko; Kho, Weon-Gyu; Kano, Shigeyuki

    2013-01-01

    Background Vivax malaria was successfully eliminated in the Republic of Korea (South Korea) in the late 1970s, but it was found to have re-emerged from 1993. In order to control malaria and evaluate the effectiveness of malaria controls, it is important to develop a spatiotemporal understanding of the genetic structure of the parasite population. Here, we estimated the population structure and temporal dynamics of the transmission of Plasmodium vivax in South Korea by analyzing microsatellite DNA markers of the parasite. Methodology/Principal Findings We analyzed 14 microsatellite DNA loci of the P. vivax genome from 163 South Korean isolates collected from 1994 to 2008. Allelic data were used to analyze linkage disequilibrium (LD), genetic differentiation and population structure, in order to make a detailed estimate of temporal change in the parasite population. The LD analysis showed a gradual decrease in LD levels, while the levels of genetic differentiation between successive years and analysis of the population structure based on the Bayesian approach suggested that a drastic genetic change occurred in the South Korean population during 2002 and 2003. Conclusions/Significance Although relapse and asymptomatic parasite carriage might influence the population structure to some extent, our results suggested the continual introduction of P. vivax into South Korea through other parasite population sources. One possible source, particularly during 2002 and 2003, is North Korea. Molecular epidemiology using microsatellite DNA of the P. vivax population is effective for assessing the population structure and temporal dynamics of parasite transmission; information that can assist in the elimination of vivax malaria in endemic areas. PMID:24205429

  3. Investigating Visual Alerting in the Maritime Domain; Report on 3 Experiments, With Supporting Documentation

    DTIC Science & Technology

    2010-04-01

    Methodological Results / Details ................................................ 24 4.1.3.1 Clock Synchronization , Network & Temporal Resolution...xii DRDC Atlantic CR 2010-058 Acknowledgements Special thanks to Carl Helmick, Patti Devlin, Mike Taber, and the Dalhousie lab...Methodological Results / Details 4.1.3.1 Clock Synchronization , Network & Temporal Resolution Due to drift in computer clock times, especially laptop

  4. Fine resolution mapping of population age-structures for health and development applications

    PubMed Central

    Alegana, V. A.; Atkinson, P. M.; Pezzulo, C.; Sorichetta, A.; Weiss, D.; Bird, T.; Erbach-Schoenberg, E.; Tatem, A. J.

    2015-01-01

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings. PMID:25788540

  5. Using simulation to interpret experimental data in terms of protein conformational ensembles.

    PubMed

    Allison, Jane R

    2017-04-01

    In their biological environment, proteins are dynamic molecules, necessitating an ensemble structural description. Molecular dynamics simulations and solution-state experiments provide complimentary information in the form of atomically detailed coordinates and averaged or distributions of structural properties or related quantities. Recently, increases in the temporal and spatial scale of conformational sampling and comparison of the more diverse conformational ensembles thus generated have revealed the importance of sampling rare events. Excitingly, new methods based on maximum entropy and Bayesian inference are promising to provide a statistically sound mechanism for combining experimental data with molecular dynamics simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. High quantum efficiency photocathode simulation for the investigation of novel structured designs

    DOE PAGES

    MacPhee, A. G.; Nagel, S. R.; Bell, P. M.; ...

    2014-09-02

    A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1–30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 μm and a temporal spread of 1–10 ps. As a result, we present the details ofmore » the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.« less

  7. Retrieval of high-fidelity memory arises from distributed cortical networks.

    PubMed

    Wais, Peter E; Jahanikia, Sahar; Steiner, Daniel; Stark, Craig E L; Gazzaley, Adam

    2017-04-01

    Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. An investigation of the temporal character of mesoscale perturbations in the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1977-01-01

    The effectiveness of mesoscale models in explaining perturbations observed in vertical detailed wind profile measurements in the troposphere and lower stratosphere is assessed. The structure and persistence of the data were analyzed and interpreted in terms of several physical models with the goal of establishing explanations for the observed persistent features of the mesoscale flow patterns. The experimental data used in the investigation were obtained by a unique detailed wind profile measurement system. This system is capable of providing resolution of 50 to 100 m wavelengths for the altitude region from approximately 200 m to 18 km. The system consists of a high-resolution tracking radar and special super-pressure balloon configuration known as a Jimsphere.

  9. Prompt optical emission from gamma-ray bursts with multiple timescale variability of central engine activities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Yao; Li, Zhuo

    2014-04-01

    Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.

  10. A geo-computational algorithm for exploring the structure of diffusion progression in time and space.

    PubMed

    Chin, Wei-Chien-Benny; Wen, Tzai-Hung; Sabel, Clive E; Wang, I-Hsiang

    2017-10-03

    A diffusion process can be considered as the movement of linked events through space and time. Therefore, space-time locations of events are key to identify any diffusion process. However, previous clustering analysis methods have focused only on space-time proximity characteristics, neglecting the temporal lag of the movement of events. We argue that the temporal lag between events is a key to understand the process of diffusion movement. Using the temporal lag could help to clarify the types of close relationships. This study aims to develop a data exploration algorithm, namely the TrAcking Progression In Time And Space (TaPiTaS) algorithm, for understanding diffusion processes. Based on the spatial distance and temporal interval between cases, TaPiTaS detects sub-clusters, a group of events that have high probability of having common sources, identifies progression links, the relationships between sub-clusters, and tracks progression chains, the connected components of sub-clusters. Dengue Fever cases data was used as an illustrative case study. The location and temporal range of sub-clusters are presented, along with the progression links. TaPiTaS algorithm contributes a more detailed and in-depth understanding of the development of progression chains, namely the geographic diffusion process.

  11. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  12. Emotion's influence on memory for spatial and temporal context.

    PubMed

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A

    2011-02-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item's valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  13. Identification and characterization of agro-ecological infrastructures by remote sensing

    NASA Astrophysics Data System (ADS)

    Ducrot, D.; Duthoit, S.; d'Abzac, A.; Marais-Sicre, C.; Chéret, V.; Sausse, C.

    2015-10-01

    Agro-Ecological Infrastructures (AEIs) include many semi-natural habitats (hedgerows, grass strips, grasslands, thickets…) and play a key role in biodiversity preservation, water quality and erosion control. Indirect biodiversity indicators based on AEISs are used in many national and European public policies to analyze ecological processes. The identification of these landscape features is difficult and expensive and limits their use. Remote sensing has a great potential to solve this problem. In this study, we propose an operational tool for the identification and characterization of AEISs. The method is based on segmentation, contextual classification and fusion of temporal classifications. Experiments were carried out on various temporal and spatial resolution satellite data (20-m, 10-m, 5-m, 2.5-m, 50-cm), on three French regions southwest landscape (hilly, plain, wooded, cultivated), north (open-field) and Brittany (farmland closed by hedges). The results give a good idea of the potential of remote sensing image processing methods to map fine agro-ecological objects. At 20-m spatial resolution, only larger hedgerows and riparian forests are apparent. Classification results show that 10-m resolution is well suited for agricultural and AEIs applications, most hedges, forest edges, thickets can be detected. Results highlight the multi-temporal data importance. The future Sentinel satellites with a very high temporal resolution and a 10-m spatial resolution should be an answer to AEIs detection. 2.50-m resolution is more precise with more details. But treatments are more complicated. At 50-cm resolution, accuracy level of details is even higher; this amplifies the difficulties previously reported. The results obtained allow calculation of statistics and metrics describing landscape structures.

  14. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  15. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  16. Methods for implantation of micro-wire bundles and optimization of single/multiunit recordings from human mesial temporal lobe

    PubMed Central

    Misra, A; Burke, JF; Ramayya, A; Jacobs, J; Sperling, MR; Moxon, KA; Kahana, MJ; Evans, JJ; Sharan, AD

    2014-01-01

    Objective The authors report methods developed for the implantation of micro-wire bundles into mesial temporal lobe structures and subsequent single neuron recording in epileptic patients undergoing in-patient diagnostic monitoring. This is done with the intention of lowering the perceived barriers to routine single neuron recording from deep brain structures in the clinical setting. Approach Over a 15 month period, 11 patients were implanted with platinum micro-wire bundles into mesial temporal structures. Protocols were developed for A) monitoring electrode integrity through impedance testing, B) ensuring continuous 24-7 recording, C) localizing micro-wire position and “splay” pattern and D) monitoring grounding and referencing to maintain the quality of recordings. Main Result Five common modes of failure were identified: 1) broken micro-wires from acute tensile force, 2) broken micro-wires from cyclic fatigue at stress points, 3) poor in-vivo micro-electrode separation, 4) motion artifact and 5) deteriorating ground connection and subsequent drop in common mode noise rejection. Single neurons have been observed up to 14 days post implantation and on 40% of micro-wires. Significance Long-term success requires detailed review of each implant by both the clinical and research teams to identify failure modes, and appropriate refinement of techniques while moving forward. This approach leads to reliable unit recordings without prolonging operative times, which will help increase the availability and clinical viability of human single neuron data. PMID:24608589

  17. Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics.

    PubMed

    Larmuseau, Maarten H D; Ottoni, Claudio; Raeymaekers, Joost A M; Vanderheyden, Nancy; Larmuseau, Hendrik F M; Decorte, Ronny

    2012-04-01

    The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the 'autochthonous' micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north-south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale 'autochthonous' population structure in Western Europe.

  18. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  19. A Hybrid Forward-Adjoint Data Assimilation Method for Reconstructing the Temporal Evolution of Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2017-12-01

    Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.

  20. Postencephalitic focal retrograde amnesia after bilateral anterior temporal lobe damage.

    PubMed

    Tanaka, Y; Miyazawa, Y; Hashimoto, R; Nakano, I; Obayashi, T

    1999-07-22

    Marked retrograde amnesia with no or almost no anterograde amnesia is rare. Recently, a combination of ventrolateral prefrontal and temporopolar cortical lesions has been suggested as the cause of such isolated or focal retrograde amnesia. It is also assumed that when the right-sided cortical structures are damaged, autobiographical episodic memories are affected. To search for new anatomic substrates for focal retrograde amnesia. We performed extensive neuropsychological tests and obtained detailed neuroimages on a 43-year-old woman who showed a severe, persistent retrograde amnesia but only a limited anterograde amnesia after probable herpes simplex encephalitis. Tests of autobiographical memory revealed that she had a memory loss extending back to her childhood for both semantics and incidents; however, the ability to recall specific episodes appeared much more severely impaired than the ability to recall factual information about her past. The patient also showed profound impairments in recalling public memories; however, her scores improved nearly to a control level on forced-choice recognition memory tasks, although the recall of memories for a decade just before her illness remained mildly impaired. MRI revealed focal pathologies in the temporal poles and the anterior parts of the inferotemporal lobes on both sides, predominantly on the left, with some extension to the anterior parts of the medial temporal lobes. There was additional damage to the left insular cortex and its surrounding structures but no evidence of frontal lobe damage on MRIs or cognitive tests. A profound retrograde amnesia may be produced by damage to the bilateral temporal poles and anterior inferotemporal lobes in the absence of frontal lobe pathologies, and a dense and persistent episodic old memory loss can arise even with a relatively small lesion in the right anterior temporal lobe if it is combined with extensive damage to the left.

  1. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    PubMed

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  2. Medial temporal and neocortical contributions to remote memory for semantic narratives: evidence from amnesia.

    PubMed

    Verfaellie, Mieke; Bousquet, Kathryn; Keane, Margaret M

    2014-08-01

    Studies of remote memory for semantic facts and concepts suggest that hippocampal lesions lead to a temporally graded impairment that extends no more than ten years prior to the onset of amnesia. Such findings have led to the notion that once consolidated, semantic memories are represented neocortically and are no longer dependent on the hippocampus. Here, we examined the fate of well-established semantic narratives following medial temporal lobe (MTL) lesions. Seven amnesic patients, five with lesions restricted to the MTL and two with lesions extending into lateral temporal cortex (MTL+), were asked to recount fairy tales and bible stories that they rated as familiar. Narratives were scored for number and type of details, number of main thematic elements, and order in which the main thematic elements were recounted. In comparison to controls, patients with MTL lesions produced fewer details, but the number and order of main thematic elements generated was intact. By contrast, patients with MTL+ lesions showed a pervasive impairment, affecting not only the generation of details, but also the generation and ordering of main steps. These findings challenge the notion that, once consolidated, semantic memories are no longer dependent on the hippocampus for retrieval. Possible hippocampal contributions to the retrieval of detailed semantic narratives are discussed. Published by Elsevier Ltd.

  3. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    NASA Astrophysics Data System (ADS)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at <20° off nadir). In this paper we will explain how imaging data from lightweight and easily deployed unmanned aerial vehicles (UAVs) can be used to generate structure from motion (SFM) products describing the very fine detailed (<3 cm pixel resolution) structure of the agricultural environment. We will demonstrate how these products can be delivered using advanced free and open source post-processing alternatives and low cost sensors (digital cameras) and platforms (UAVs). We furthermore draw attention to the influence post-processing solutions have on the accuracy of the final product, the digital surface model (DSM), by using recently acquired data. Specifically, when applied in a structurally complex field site with irregular surface roughness patterns, over a land use gradient, from livestock grazing to agricultural crops. We will demonstrate the added value of using very fine detail data, highlighting important structural properties and patterns overlooked with coarser spatial resolution data.

  4. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    USGS Publications Warehouse

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  5. From seconds to months: an overview of multi-scale dynamics of mobile telephone calls

    NASA Astrophysics Data System (ADS)

    Saramäki, Jari; Moro, Esteban

    2015-06-01

    Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.

  6. Development of Sensitivity to Audiovisual Temporal Asynchrony during Midchildhood

    ERIC Educational Resources Information Center

    Kaganovich, Natalya

    2016-01-01

    Temporal proximity is one of the key factors determining whether events in different modalities are integrated into a unified percept. Sensitivity to audiovisual temporal asynchrony has been studied in adults in great detail. However, how such sensitivity matures during childhood is poorly understood. We examined perception of audiovisual temporal…

  7. Topological structure dynamics revealing collective evolution in active nematics

    PubMed Central

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733

  8. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation wetlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies.

    PubMed

    Schuppert, M; Münte, T F; Wieringa, B M; Altenmüller, E

    2000-03-01

    Perceptual musical functions were investigated in patients suffering from unilateral cerebrovascular cortical lesions. Using MIDI (Musical Instrument Digital Interface) technique, a standardized short test battery was established that covers local (analytical) as well as global perceptual mechanisms. These represent the principal cognitive strategies in melodic and temporal musical information processing (local, interval and rhythm; global, contour and metre). Of the participating brain-damaged patients, a total of 69% presented with post-lesional impairments in music perception. Left-hemisphere-damaged patients showed significant deficits in the discrimination of local as well as global structures in both melodic and temporal information processing. Right-hemisphere-damaged patients also revealed an overall impairment of music perception, reaching significance in the temporal conditions. Detailed analysis outlined a hierarchical organization, with an initial right-hemisphere recognition of contour and metre followed by identification of interval and rhythm via left-hemisphere subsystems. Patterns of dissociated and associated melodic and temporal deficits indicate autonomous, yet partially integrated neural subsystems underlying the processing of melodic and temporal stimuli. In conclusion, these data contradict a strong hemispheric specificity for music perception, but indicate cross-hemisphere, fragmented neural substrates underlying local and global musical information processing in the melodic and temporal dimensions. Due to the diverse profiles of neuropsychological deficits revealed in earlier investigations as well as in this study, individual aspects of musicality and musical behaviour very likely contribute to the definite formation of these widely distributed neural networks.

  10. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  11. Second operation after the failure of previous resection for epilepsy.

    PubMed

    Awad, I A; Nayel, M H; Lüders, H

    1991-04-01

    We present our surgical experience with second operations in 15 patients with recurrent intractable partial seizures after resection for epilepsy. The interval from the first operation until the first recurrence of seizures ranged from 1 day to 7 months (mean, 62 days). The interval between the first and second operations ranged from 3 months to 12 years (mean, 38 months). Detailed video-electroencephalographic interictal and ictal recording was performed in all patients (invasive electrodes were used in 11 patients). Ictal onset was shown to be remote from the zone of previous resection in 3 of 15 cases (all 3 extratemporal and in the ipsilateral hemisphere). Recurrent seizures arose from the area of previous extratemporal resection in 2 of 15 patients, and from the area of previous temporal resection in 10 of 15 patients. Both cases of extratemporal recurrences and 3 of the 10 cases of temporal lobe recurrences in the area of previous resection were associated with residual unresected structural lesion. Of the 10 patients with local temporal recurrence, 6 had proven epileptogenicity in the residual mesial structures, and 4 had residual epileptogenicity in the unresected lateral temporal lobe. The patients have been monitored for 8 to 82 months (mean, 18 months) after the second operation: 7 patients (47%) have remained seizure-free and another 5 (33%) have achieved a reduction in seizure frequency of more than 90%. There was no mortality or significant morbidity in this series. We conclude that the extent and distribution of residual epileptogenicity after failed epilepsy surgery are highly variable.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits

    NASA Astrophysics Data System (ADS)

    Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is in temperate forests but near-term research will expand into the high-arctic and eventually tropical systems. The results of this prototype study show that off-the-shelf technology can be used to develop a low-cost alternative for mapping plant traits and three-dimensional structure for ecological research.

  13. Acoustic detail guides attention allocation in a selective listening task.

    PubMed

    Wöstmann, Malte; Schröger, Erich; Obleser, Jonas

    2015-05-01

    The flexible allocation of attention enables us to perceive and behave successfully despite irrelevant distractors. How do acoustic challenges influence this allocation of attention, and to what extent is this ability preserved in normally aging listeners? Younger and healthy older participants performed a masked auditory number comparison while EEG was recorded. To vary selective attention demands, we manipulated perceptual separability of spoken digits from a masking talker by varying acoustic detail (temporal fine structure). Listening conditions were adjusted individually to equalize stimulus audibility as well as the overall level of performance across participants. Accuracy increased, and response times decreased with more acoustic detail. The decrease in response times with more acoustic detail was stronger in the group of older participants. The onset of the distracting speech masker triggered a prominent contingent negative variation (CNV) in the EEG. Notably, CNV magnitude decreased parametrically with increasing acoustic detail in both age groups. Within identical levels of acoustic detail, larger CNV magnitude was associated with improved accuracy. Across age groups, neuropsychological markers further linked early CNV magnitude directly to individual attentional capacity. Results demonstrate for the first time that, in a demanding listening task, instantaneous acoustic conditions guide the allocation of attention. Second, such basic neural mechanisms of preparatory attention allocation seem preserved in healthy aging, despite impending sensory decline.

  14. Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics

    PubMed Central

    Larmuseau, Maarten HD; Ottoni, Claudio; Raeymaekers, Joost AM; Vanderheyden, Nancy; Larmuseau, Hendrik FM; Decorte, Ronny

    2012-01-01

    The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the ‘autochthonous' micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north–south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale ‘autochthonous' population structure in Western Europe. PMID:22126748

  15. [The role of temporal fine structure in tone recognition and music perception].

    PubMed

    Zhou, Q; Gu, X; Liu, B

    2017-11-07

    The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.

  16. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  17. Sub-block motion derivation for merge mode in HEVC

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Jung; Chen, Ying; Chen, Jianle; Zhang, Li; Karczewicz, Marta; Li, Xiang

    2016-09-01

    The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. In this paper, two additional merge candidates, advanced temporal motion vector predictor and spatial-temporal motion vector predictor, are developed to improve motion information prediction scheme under the HEVC structure. The proposed method allows each Prediction Unit (PU) to fetch multiple sets of motion information from multiple blocks smaller than the current PU. By splitting a large PU into sub-PUs and filling motion information for all the sub-PUs of the large PU, signaling cost of motion information could be reduced. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. Simulation results show that 2.4% performance improvement over HEVC can be achieved.

  18. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    NASA Astrophysics Data System (ADS)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  19. Precipitation in a boiling soup: is microphysics driving the statistical properties of intense turbulent convection?

    NASA Astrophysics Data System (ADS)

    Parodi, A.; von Hardenberg, J.; Provenzale, A.

    2012-04-01

    Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.

  20. Retinal thickness changes after phacoemulsification

    PubMed Central

    Pardianto, Gede; Moeloek, Nila; Reveny, Julia; Wage, Sutarman; Satari, Imsyah; Sembiring, Rosita; Srisamran, Nuttamon

    2013-01-01

    Purpose To determine the effect of phacoemulsification on macular volume and thickness using spectral domain optical coherence tomography examinations. Methods Twenty-seven eyes of 27 subjects who underwent phacoemulsification were studied. All nine areas of the macula were examined by spectral domain optical coherence tomography preoperatively and 2 months postoperatively. Effective phacoemulsification time and absolute phacoemulsification time were also recorded. Results There were statistically significant differences in macular thickness between preoperative and postoperative spectral domain optical coherence tomography examinations in nine areas including macular volume. In the paracentral macular area, the thickness of three quadrants significantly increased (superior P=0.015; temporal P=0.001; and nasal P=0.023). Peripheral macular thickness also increased significantly in the superior (P=0.05) and temporal macular areas (P<0.001). The macular volume increased significantly after phacoemulsification (P<0.001). There were no correlations between absolute/effective phacoemulsification time and macular cellular structures (P>0.05), but a significant correlation (P=0.011) was found between absolute phacoemulsification time and change in macular volume. Conclusion Macular thickness changes in the nasal, superior, and temporal quadrants of the paracentral area and the superior and temporal quadrants of the peripheral area, as well as macular volume, may be used as detailed biomarkers to measure the effects of intraocular pressure fluctuations and maneuvers in phacoemulsification intraocular surgeries. PMID:24235812

  1. Imaging subsurface hydrothermal structure using a dense geophone array in Yellowstone

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Lin, F. C.; Farrell, J.; Smith, R. B.

    2016-12-01

    The recent development of ambient noise cross-correlation and the availability of large N seismic arrays allow for the study of detailed shallow crustal structure. In this study, we apply multi-component noise cross-correlation to explore shallow hydrothermal structure near Old Faithful geyser in Yellowstone National Park using a temporary geophone array. The array was composed of 133 three-component 5-Hz geophones and was deployed for two weeks during November 2015. The average station spacing is 50 meters and the full aperture of the array is around 1 km with good azimuthal and spatial coverage. The Upper Geyser Basin, where Old Faithful is located, has the largest concentration of geysers in the world. This unique active hydrothermal environment and hence the extremely inhomogeneous noise source distribution makes the construction of empirical Green's functions difficult based on the traditional noise cross-correlation method. In this presentation, we show examples of the constructed cross-correlation functions and demonstrate their spatial and temporal relationships with known hydrothermal activity. We also demonstrate how useful seismic signals can be extracted from these cross-correlation functions and used for subsurface imaging. In particular, we will discuss the existence of a recharge cavity beneath Old Faithful revealed by the noise cross-correlations. In addition, we also investigated the temporal structure variation based on time-lapse noise cross-correlations and these preliminary results will also be discussed.

  2. Autobiographical Planning and the Brain: Activation and Its Modulation by Qualitative Features.

    PubMed

    Spreng, R Nathan; Gerlach, Kathy D; Turner, Gary R; Schacter, Daniel L

    2015-11-01

    To engage in purposeful behavior, it is important to make plans, which organize subsequent actions. Most studies of planning involve "look-ahead" puzzle tasks that are unrelated to personal goals. We developed a task to assess autobiographical planning, which involves the formulation of personal plans in response to real-world goals, and examined autobiographical planning in 63 adults during fMRI scanning. Autobiographical planning was found to engage the default network, including medial-temporal lobe and midline structures, and executive control regions in lateral pFC and parietal cortex and caudate. To examine how specific qualitative features of autobiographical plans modulate neural activity, we performed parametric modulation analyses. Ratings of plan detail, novelty, temporal distance, ease of plan formulation, difficulty in goal completion, and confidence in goal accomplishment were used as covariates in six hierarchical linear regression models. This modeling procedure removed shared variance among the ratings, allowing us to determine the independent relationship between ratings of interest and trial-wise BOLD signal. We found that specific autobiographical planning, describing a detailed, achievable, and actionable planning process for attaining a clearly envisioned future, recruited both default and frontoparietal brain regions. In contrast, abstract autobiographical planning, plans that were constructed from more generalized semantic or affective representations of a less tangible and distant future, involved interactions among default, sensory perceptual, and limbic brain structures. Specific qualities of autobiographical plans are important predictors of default and frontoparietal control network engagement during plan formation and reflect the contribution of mnemonic and executive control processes to autobiographical planning.

  3. Development of diagenetic seals in carbonates and sandstones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.; Almon, W.

    1983-03-01

    Diagenetic seals effectively block the movement of reservoir hydrocarbons in many sandstone and carbonate rock units. Diagenetic seals in sandstones and carbonate rocks encase reservoir rocks with either depositional or diagenetic porosity. Diagenetic reservoir porosity may originate before or after the establishment of an effective diagenetic seal. Hydrocarbon traps with diagenetic seals may conform in their geometry as well to structure or stratigraphy as to diagenetic facies. Therefore, some structural and stratigraphic traps may, in part or entirely, depend on diagenetic seals. Detailed analysis of diagenetic seals in sandstones and carbonate rocks can considerably improve our ability to predict theirmore » occurrence and to recognize their spatial and temporal relationship to reservoir rocks and hydrocarbon migration.« less

  4. Nonequilibrium fluctuations in metaphase spindles: polarized light microscopy, image registration, and correlation functions

    NASA Astrophysics Data System (ADS)

    Brugués, Jan; Needleman, Daniel J.

    2010-02-01

    Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluctuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative polarized light microscopy. These correlation functions are only physically meaningful if corrections are made for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired from liquid crystal physics.

  5. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures

    PubMed Central

    Butler, Rebecca A.

    2014-01-01

    Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants’ scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl’s gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants’ behavioural performance more robustly and selectively than the use of raw assessment scores or diagnostic classifications because principle components analysis extracts statistically unique, orthogonal behavioural components of interest. As such, in addition to improving our understanding of lesion–symptom mapping in stroke aphasia, the same approach could be used to clarify brain–behaviour relationships in other neurological disorders. PMID:25348632

  6. Functional phosphoproteomic mass spectrometry-based approaches

    PubMed Central

    2012-01-01

    Mass Spectrometry (MS)-based phosphoproteomics tools are crucial for understanding the structure and dynamics of signaling networks. Approaches such as affinity purification followed by MS have also been used to elucidate relevant biological questions in health and disease. The study of proteomes and phosphoproteomes as linked systems, rather than research studies of individual proteins, are necessary to understand the functions of phosphorylated and un-phosphorylated proteins under spatial and temporal conditions. Phosphoproteome studies also facilitate drug target protein identification which may be clinically useful in the near future. Here, we provide an overview of general principles of signaling pathways versus phosphorylation. Likewise, we detail chemical phosphoproteomic tools, including pros and cons with examples where these methods have been applied. In addition, basic clues of electrospray ionization and collision induced dissociation fragmentation are detailed in a simple manner for successful phosphoproteomic clinical studies. PMID:23369623

  7. Mix-and-diffuse serial synchrotron crystallography

    DOE PAGES

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio; ...

    2017-10-09

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  8. Mix-and-diffuse serial synchrotron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  9. Surgical Considerations of Intractable Mesial Temporal Lobe Epilepsy

    PubMed Central

    Boling, Warren W.

    2018-01-01

    Surgery of temporal lobe epilepsy is the best opportunity for seizure freedom in medically intractable patients. The surgical approach has evolved to recognize the paramount importance of the mesial temporal structures in the majority of patients with temporal lobe epilepsy who have a seizure origin in the mesial temporal structures. For those individuals with medically intractable mesial temporal lobe epilepsy, a selective amygdalohippocampectomy surgery can be done that provides an excellent opportunity for seizure freedom and limits the resection to temporal lobe structures primarily involved in seizure genesis. PMID:29461485

  10. The future of human cerebral cartography: a novel approach

    PubMed Central

    Frackowiak, Richard; Markram, Henry

    2015-01-01

    Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context. PMID:25823868

  11. Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1990-1991 STRESS experiment

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.

    1997-08-01

    As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd

  12. A general temporal data model and the structured population event history register

    PubMed Central

    Clark, Samuel J.

    2010-01-01

    At this time there are 37 demographic surveillance system sites active in sub-Saharan Africa, Asia and Central America, and this number is growing continuously. These sites and other longitudinal population and health research projects generate large quantities of complex temporal data in order to describe, explain and investigate the event histories of individuals and the populations they constitute. This article presents possible solutions to some of the key data management challenges associated with those data. The fundamental components of a temporal system are identified and both they and their relationships to each other are given simple, standardized definitions. Further, a metadata framework is proposed to endow this abstract generalization with specific meaning and to bind the definitions of the data to the data themselves. The result is a temporal data model that is generalized, conceptually tractable, and inherently contains a full description of the primary data it organizes. Individual databases utilizing this temporal data model can be customized to suit the needs of their operators without modifying the underlying design of the database or sacrificing the potential to transparently share compatible subsets of their data with other similar databases. A practical working relational database design based on this general temporal data model is presented and demonstrated. This work has arisen out of experience with demographic surveillance in the developing world, and although the challenges and their solutions are more general, the discussion is organized around applications in demographic surveillance. An appendix contains detailed examples and working prototype databases that implement the examples discussed in the text. PMID:20396614

  13. Soil Viral Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a Modified Community Fingerprinting Approach (fRAPD)

    PubMed Central

    Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis

    2017-01-01

    Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022

  14. Temporal disconnectivity of the energy landscape in glassy systems

    NASA Astrophysics Data System (ADS)

    Lempesis, Nikolaos; Boulougouris, Georgios C.; Theodorou, Doros N.

    2013-03-01

    An alternative graphical representation of the potential energy landscape (PEL) has been developed and applied to a binary Lennard-Jones glassy system, providing insight into the unique topology of the system's potential energy hypersurface. With the help of this representation one is able to monitor the different explored basins of the PEL, as well as how - and mainly when - subsets of basins communicate with each other via transitions in such a way that details of the prior temporal history have been erased, i.e., local equilibration between the basins in each subset has been achieved. In this way, apart from detailed information about the structure of the PEL, the system's temporal evolution on the PEL is described. In order to gather all necessary information about the identities of two or more basins that are connected with each other, we consider two different approaches. The first one is based on consideration of the time needed for two basins to mutually equilibrate their populations according to the transition rate between them, in the absence of any effect induced by the rest of the landscape. The second approach is based on an analytical solution of the master equation that explicitly takes into account the entire explored landscape. It is shown that both approaches lead to the same result concerning the topology of the PEL and dynamical evolution on it. Moreover, a "temporal disconnectivity graph" is introduced to represent a lumped system stemming from the initial one. The lumped system is obtained via a specially designed algorithm [N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011), 10.1063/1.3663207]. The temporal disconnectivity graph provides useful information about both the lumped and the initial systems, including the definition of "metabasins" as collections of basins that communicate with each other via transitions that are fast relative to the observation time. Finally, the two examined approaches are compared to an "on the fly" molecular dynamics-based algorithm [D. G. Tsalikis, N. Lempesis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Theory Comput. 6, 1307 (2010), 10.1021/ct9004245].

  15. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  16. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  18. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  19. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.

  20. DEVELOPMENT OF SHORT UNDULATORS FOR ELECTRON-BEAM-RADIATION INTERACTION STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Andorf, M. B.; Fagerberg, G.

    Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent-radiation generation, phase space cooling or formation of temporally-structured beams. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail our plans to build short (11-period) undulators with 7-cm period refurbishing parts of the aladdin U3 undulator [1]. Possible use of these undulators at available test facilities to support experiments relevant to cooling techniques and radiation sources are outlined.

  1. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2005-01-01

    The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study [Julian, et al., 2003; Julian, et al., 2004] comparing data from 1996 and 2003 found significant variations in the ratio of the seismic wave-speeds, Vp/Vs, at shallow depths over this time interval. This report describes results of a more detailed study of each year from 1996 through 2004.

  2. Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study.

    PubMed

    Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H

    2018-04-10

    Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.

  3. The value of a kurtosis metric in estimating the hazard to hearing of complex industrial noise exposures.

    PubMed

    Qiu, Wei; Hamernik, Roger P; Davis, Robert I

    2013-05-01

    A series of Gaussian and non-Gaussian equal energy noise exposures were designed with the objective of establishing the extent to which the kurtosis statistic could be used to grade the severity of noise trauma produced by the exposures. Here, 225 chinchillas distributed in 29 groups, with 6 to 8 animals per group, were exposed at 97 dB SPL. The equal energy exposures were presented either continuously for 5 d or on an interrupted schedule for 19 d. The non-Gaussian noises all differed in the level of the kurtosis statistic or in the temporal structure of the noise, where the latter was defined by different peak, interval, and duration histograms of the impact noise transients embedded in the noise signal. Noise-induced trauma was estimated from auditory evoked potential hearing thresholds and surface preparation histology that quantified sensory cell loss. Results indicated that the equal energy hypothesis is a valid unifying principle for estimating the consequences of an exposure if and only if the equivalent energy exposures had the same kurtosis. Furthermore, for the same level of kurtosis the detailed temporal structure of an exposure does not have a strong effect on trauma.

  4. Verbal memory after temporal lobe epilepsy surgery in children: Do only mesial structures matter?

    PubMed

    Law, Nicole; Benifla, Mony; Rutka, James; Smith, Mary Lou

    2017-02-01

    Previous findings have been mixed regarding verbal memory outcome after left temporal lobectomy in children, and there are few studies comparing verbal memory change after lateral versus mesial temporal lobe resections. We compared verbal memory outcome associated with sparing or including the mesial structures in children who underwent left or right temporal lobe resection. We also investigated predictors of postsurgical verbal memory change. We retrospectively assessed verbal memory change approximately 1 year after unilateral temporal lobe epilepsy surgery using a list learning task. Participants included 23 children who underwent temporal lobe surgery with sparing of the mesial structures (13 left), and 40 children who had a temporal lobectomy that included resection of mesial structures (22 left). Children who underwent resection from the left lateral and mesial temporal lobe were the only group to show decline in verbal memory. Furthermore, when we considered language representation in the left temporal resection group, patients with left language representation and spared mesial structures showed essentially no change in verbal memory from preoperative to follow-up, whereas those with left language representation and excised mesial structures showed a decline. Postoperative seizure status had no effect on verbal memory change in children after left temporal lobe surgery. Finally, we found that patients with intact preoperative verbal memory experienced a significant decline compared to those with below average preoperative verbal memory. Our findings provide evidence of significant risk factors for verbal memory decline in children, specific to left mesial temporal lobe epilepsy. Children who undergo left temporal lobe surgery that includes mesial structures may be most vulnerable for verbal memory decline, especially when language representation is localized to the left hemisphere and when preoperative verbal memory is intact. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  5. Comparing spatial and temporal patterns of river water isotopes across networks

    EPA Science Inventory

    A detailed understanding of the spatial and temporal dynamics of water sources across river networks is central to managing the impacts of climate change. Because the stable isotope composition of precipitation varies geographically, variation in surface-water isotope signatures ...

  6. Convective boundary layer heights over mountainous terrain - A review of concepts -

    NASA Astrophysics Data System (ADS)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  7. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation

    NASA Astrophysics Data System (ADS)

    Beyst, Bregje; Hostens, Kris; Mees, Jan

    2001-12-01

    Monthly samples were taken in the surf zone of sandy beaches along the Belgian coast from May 1996 until July 1997 at four selected stations. Temporal patterns of the macrocrustacean and fish species residing the surf zone were investigated, as well as the abiotic variables structuring the community. In total 34 species were recorded belonging to caridean shrimps (3), anomuran and brachyuran crabs (5), cephalopods (2) and fish (24). The brown shrimp Crangon crangon dominated almost all samples (>80%). Total densities often exceeded 400 ind per 100 m2, and if C. crangon was excluded 10 ind per 100 m2. Notwithstanding the harsh hydrodynamic conditions, the surf zone of Belgian sandy beaches is used intensively by a number of epibenthic macro-crustaceans and demersal fish species. Seven resident and ten migrant species were identified. As mainly juvenile fishes were present, the surf zone of the Belgian sandy beaches may act as a nursery for longer (e.g. plaice Pleuronectes platessa) or shorter (e.g. brill Scophthalmus rhombus) periods. However, its nursery function should be studied in more detail, since the highly dynamic circumstances and more specifically wave height and wind speed may be important structuring factors for the epibenthic communities. The surf zone of Belgian sandy beaches also seems to function as a transient area to other nurseries (e.g. bass Dicentrarchus labrax) or between a nursery and the true marine environment (e.g. dab Limanda limanda). Temporal variation in community structure was greatly masked by spatial differences between sites. Although variables such as salinity and hydrodynamic factors may have influenced the data, clear temperature-related, seasonal patterns occur. Most likely, extreme winter conditions and subsequent migration of organisms to deeper waters caused a decline in winter in both density and diversity.

  8. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

    PubMed Central

    Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010

  9. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  10. Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment

    DOE PAGES

    Hare, J. D.; Suttle, L.; Lebedev, S. V.; ...

    2017-02-21

    We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields (B=3 T), advected by supersonic, sub-Alfvénic carbon plasma flows (V in = 50 km/s), are brought together and mutually annihilate inside a thin current layer (δ = 0.6 mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging, and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows, and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures (T e = 100more » eV, T i = 600 eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. Finally, we observe the repeated formation and ejection of plasmoids, consistent with the predictions from semicollisional plasmoid theory.« less

  11. Phenomenal characteristics associated with projecting oneself back into the past and forward into the future: influence of valence and temporal distance.

    PubMed

    D'Argembeau, Arnaud; Van der Linden, Martial

    2004-12-01

    As humans, we frequently engage in mental time travel, reliving past experiences and imagining possible future events. This study examined whether similar factors affect the subjective experience associated with remembering the past and imagining the future. Participants mentally "re-experienced" or "pre-experienced" positive and negative events that differed in their temporal distance from the present (close versus distant), and then rated the phenomenal characteristics (i.e., sensorial, contextual, and emotional details) associated with their representations. For both past and future, representations of positive events were associated with a greater feeling of re-experiencing (or pre-experiencing) than representations of negative events. In addition, representations of temporally close events (both past and future) contained more sensorial and contextual details, and generated a stronger feeling of re-experiencing (or pre-experiencing) than representations of temporally distant events. It is suggested that the way we both remember our past and imagine our future is constrained by our current goals.

  12. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  13. Tectonomorphic evolution of the Eastern Cordillera fold-thrust belt, Colombia: New insights based on apatite and zircon (U-Th)/He thermochronometers

    NASA Astrophysics Data System (ADS)

    Ghorbal, B.; Stockli, D. F.; Mora, A.; Horton, B. K.; Blanco, V.; Sanchez, N.

    2010-12-01

    The Eastern Cordillera (EC) of Colombia marks the eastern boundary of Cenozoic fold-thrust deformation in the northern Andes. It is a classic example of an inversion belt formed in the retro-arc region, in this case superimposed on a Triassic/Jurassic to Cretaceous intracontinental rift system of northern South America. Ongoing thrust reactivation (inversion) in this contractional orogen provides an excellent opportunity to study the patterns of deformation and influence of preexisting anisotropies (Mora et al., 2006). The objective of this detailed (U-Th)/He study is to unravel the tectonic and thermal evolution of the EC from the Magdalena Valley basin in the west to the Llanos foreland basin in the east and reconstruct the temporal and spatial progression of deformation in the EC fold-thrust belt. Furthermore, the Subandean or foothills zone of Colombia is key for understanding the petroleum systems in the complex frontal zone of the inverted fold-thrust belt. We present detailed apatite and zircon (U-Th)/He thermochronometric data from surface samples along a ~220 km WNW-ESE transect across the EC from the frontal fold-thrust belt at the edge of the Llanos basin to the western edge of the EC, the Magdalena basin. Surface and borehole zircon and apatite (U-Th)/He data, integrated with structural data, show that the EC fold-thrust belt propagated foreland-ward from the axial zone to the modern edges of the fold-thrust belt from at least the early Oligocene to the early Miocene. Detailed apatite and zircon (U-Th)/He data from surface samples and borehole samples in the foothills-Llanos transition zone and the Middle Magdalena Valley basin, between the large-displacement Guaicaramo and Pajarito-Chámeza thrusts in the east and the La Salina fault system in the west show a temporally complex evolution. The frontal fold-thrust belt was characterized by continued progressive foreland-ward migration of deformation and an apparent phase of major out-of-sequence motion along both sides of the orogen in the latest Miocene to early Pliocene, with recent to active deformation again concentrated along the frontal-most faults of the EC. These detailed new apatite and zircon (U-Th)/He thermochronometric data elucidate the progressive deformation, thermal history, and along-long strike variation (Mora et al., 2010) of the fold-thrust belt in the EC of Colombia and provide important new insights into the complex interplay between hydrocarbon maturation and temporal and kinematic evolution of the frontal fold-thrust belt. References [1] Mora, A., M. Parra, M. R. Strecker, A. Kammer, C. Dimaté, and F. Rodriguez, 2006, Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia: Tectonics, v. 25, TC2010. [2] Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. and D.F. Stockli, 2010, Cenozoic deformation patterns in the Eastern Cordillera, Colombia: Inferences from fission track results and structural relationships. AAPG Bulletin, in press.

  14. Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection

    PubMed Central

    Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent

    2016-01-01

    We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628

  15. Spectral splitting of optical pulses inside a dispersive medium at a temporal boundary

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-11-07

    We show numerically that the spectrum of an optical pulse splits into multiple, widely separated, spectral bands when it arrives at a temporal boundary across which refractive index changes suddenly. At the same time, the pulse breaks into several temporally separated pulses traveling at different speeds. The number of such pulses depends on the dispersive properties of the medium. We study the effect of second- and third-order dispersion in detail but also consider briefly the impact of other higher-order terms. As a result, a temporal waveguide formed with two temporal boundaries can reflect the temporally separated pulses again and again,more » increasing the number of pulses trapped within the temporal waveguide.« less

  16. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  17. Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision

    PubMed Central

    Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson

    2014-01-01

    The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339

  18. Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mészárosová, Hana; Karlický, Marian; Jelínek, Petr

    Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less

  19. Autobiographical memory and structural brain changes in chronic phase TBI.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  1. Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.

  2. An Assessment of Stream Confluence Flow Dynamics using Large Scale Particle Image Velocimetry Captured from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lewis, Q. W.; Rhoads, B. L.

    2017-12-01

    The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.

  3. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  4. Observations of stratospheric temperature changes coincident with the recent Antarctic ozone depletions

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Newman, Paul A.

    1988-01-01

    A high degree of correlation between the recent decline in Antarctic total ozone and cooling of the stratosphere during Austral spring has been noted in several recent studies (e.g., Sekiguchi, 1986; Angel, 1986). This study analyzes the observed temperature trends in detail, focusing on the spatial and temporal aspects of the observed cooling. Ozone losses and stratospheric cooling can be correlated for several reasons: (1) ozone losses (from an unspecified cause) will directly reduce temperatures due to decreased solar ultraviolet absorption (Shine, 1986), and/or (2) changes in both ozone and temperature structure due to modification of stratospheric circulation patterns (Mahlman and Fels, 1986). In order to scrutinize various ozone depletion scenarios, detailed information on the observed temperature changes is necessary; the goal is to provide such data. The data used are National Meteorological Center (NMC) Climate Analysis Center (CAC) derived temperatures, covering 1000 to 1 mb (0 to 48 km), for the period 1979 to 1987. Discussions on data origin and quality (assessed by extensive comparisons with radiosonde observations), along with other details of these observations, can be found in Newman and Randel (1988).

  5. The Voronoi spatio-temporal data structure

    NASA Astrophysics Data System (ADS)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.

  6. the Role of Species, Structure, and Biochemical Traits in the Spatial Distribution of a Woodland Community

    NASA Astrophysics Data System (ADS)

    Adeline, K.; Ustin, S.; Roth, K. L.; Huesca Martinez, M.; Schaaf, C.; Baldocchi, D. D.; Gastellu-Etchegorry, J. P.

    2015-12-01

    The assessment of canopy biochemical diversity is critical for monitoring ecological and physiological functioning and for mapping vegetation change dynamics in relation to environmental resources. For example in oak woodland savannas, these dynamics are mainly driven by water constraints. Inversion using radiative transfer theory is one method for estimating canopy biochemistry. However, this approach generally only considers relatively simple scenarios to model the canopy due to the difficulty in encompassing stand heterogeneity with spatial and temporal consistency. In this research, we compared 3 modeling strategies for estimating canopy biochemistry variables (i.e. chlorophyll, carotenoids, water, dry matter) by coupling of the PROSPECT (leaf level) and DART (canopy level) models : i) a simple forest representation made of ellipsoid trees, and two representations taking into account the tree species and structural composition, and the landscape spatial pattern, using (ii) geometric tree crown shapes and iii) detailed tree crown and wood structure retrieved from terrestrial lidar acquisitions. AVIRIS 18m remote sensing data are up-scaled to simulate HyspIRI 30m images. Both spatial resolutions are validated by measurements acquired during 2013-2014 field campaigns (cover/tree inventory, LAI, leaf sampling, optical measures). The results outline the trade-off between accurate and abstract canopy modeling for inversion purposes and may provide perspectives to assess the impact of the California drought with multi-temporal monitoring of canopy biochemistry traits.

  7. Contributions of pitch contour, tonality, rhythm, and meter to melodic similarity.

    PubMed

    Prince, Jon B

    2014-12-01

    The identity of a melody resides in its sequence of pitches and durations, both of which exhibit surface details as well as structural properties. In this study, pitch contour (pattern of ups and downs) served as pitch surface information, and tonality (musical key) as pitch structure; in the temporal dimension, surface information was the ordinal duration ratios of adjacent notes (rhythm), and meter (beat, or pulse) comprised the structure. Factorially manipulating the preservation or alteration of all of these forms of information in 17 novel melodies (typifying Western music) enabled measuring their effect on perceived melodic similarity. In Experiment 1, 34 participants (varied musical training) rated the perceived similarity of melody pairs transposed to new starting pitches. Rhythm was the largest contributor to perceived similarity, then contour, meter, and tonality. Experiment 2 used the same melodies but varied the tempo within a pair, and added a prefix of 3 chords, which oriented the listener to the starting pitch and tempo before the melody began. Now contour was the strongest influence on similarity ratings, followed by tonality, and then rhythm; meter was not significant. Overall, surface features influenced perceived similarity more than structural, but both had observable effects. The primary theoretical advances in melodic similarity research are that (a) the relative emphasis on pitch and temporal factors is flexible; (b) pitch and time functioned independently when factorially manipulated, regardless of which dimension is more influential; and (c) interactions between surface and structural information were unreliable and never occurred between dimensions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Electron petrography of silica polymorphs associated with pseudotachylite, Vredefort structure, South Africa

    NASA Technical Reports Server (NTRS)

    White, J. C.

    1992-01-01

    High-pressure silica polymorphs (coesite and stishovite) were described from the Vredefort structure in association with pseudotachylite veinlets. In addition to the fundamental significance of the polymorphs to genetic interpretations of the structure, it was additionally argued that the type of pseudotachylite with which they occur forms during the compressional phase of the shock process, while the larger, classic pseudotachylite occurrences are barren of polymorphs and formed during passage of the rarefaction wave. This identification of temporal relationships among transient shock features at a regional scale is similar to observations from the Manicouagan structure, Quebec, where texturally distinct diaplectic plagioclase glasses formed during both compressional and decompressional phases of the shock process. The clarification of such relationships impinges directly on interpretations of natural shock processes and the identification of high probability targets for polymorph searches. Detailed analytical scanning (SEM) and transmission electron microscopy (TEM) were utilized to further establish the nature of both the pseudotachylite and the silica polymorph occurrences in the Vredefort rocks. The results of this investigation are discussed.

  9. Influence of wing tip morphology on vortex dynamics of flapping flight

    NASA Astrophysics Data System (ADS)

    Krishna, Swathi; Mulleners, Karen

    2013-11-01

    The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.

  10. A Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins That Modulate Lateral Root Development in Arabidopsis[W][OPEN

    PubMed Central

    Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.

    2013-01-01

    To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021

  11. Crop identification using Landsat temporal-spectral profiles

    NASA Technical Reports Server (NTRS)

    Odenweller, J. B.; Johnson, K. I.

    1982-01-01

    The temporal-spectral profile is a detailed indicator of the physical state of a field through time. Characteristic profiles have been observed for a variety of crops and other cover classes from Landsat data in the United States Corn Belt. These profiles contain information to support crop identification at various levels.

  12. Reconceptualizing Children's Suggestibility: Bidirectional and Temporal Properties

    ERIC Educational Resources Information Center

    Gilstrap, Livia L.; Ceci, Stephen J.

    2005-01-01

    Forty-one children (3 to 7 years) were exposed to a staged event and later interviewed by 1 of 41 professional interviewers. All interviews were coded with a detailed, mutually exclusive, and exhaustive coding scheme capturing adult behaviors (leading questions vs. neutral) and child behaviors (acquiescence vs. denial) in a temporally organized…

  13. Temporal Patterns of Communication in the Workplace

    ERIC Educational Resources Information Center

    Su, Norman Makoto

    2009-01-01

    In this dissertation, we report on results of an in-depth observational study to understand the temporal dimension of communication in the workplace. By employing the "shadowing" method for in situ to-the-second data gathering of information workers' behaviors, we gained a detailed snapshot of informants' workdays, "warts and all." Our…

  14. BAPA Database: Linking landslide occurrence with rainfall in Asturias (Spain)

    NASA Astrophysics Data System (ADS)

    Valenzuela, Pablo; José Domínguez-Cuesta, María; Jiménez-Sánchez, Montserrat

    2015-04-01

    Asturias is a region in northern Spain with a temperate and humid climate. In this region, slope instability processes are very common and often cause economic losses and, sometimes, human victims. To prevent the geological risk involved, it is of great interest to predict landslide spatial and temporal occurrence. Some previous investigations have shown the importance of rainfall as a trigger factor. Despite the high incidence of these phenomena in Asturias, there are no databases of recent and actual landslides. The BAPA Project (Base de Datos de Argayos del Principado de Asturias - Principality of Asturias Landslide Database) aims to create an inventory of slope instabilities which have occurred between 1980 and 2015. The final goal is to study in detail the relationship between rainfall and slope instabilities in Asturias, establishing precipitation thresholds and soil moisture conditions necessary to instability triggering. This work presents the database progress showing its structure divided into various fields that essentially contain information related to spatial, temporal, geomorphological and damage data.

  15. Example-Based Super-Resolution Fluorescence Microscopy.

    PubMed

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  16. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  17. High-resolution imaging of a shock front in plastic by phase contrast imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Jiang, S.; Zhao, Y.; Schropp, A.; Fernandez-Panella, A.; Rinderknecht, H. G.; Wilks, S.; Fournier, K.; Galtier, E.; Xing, Z.; Granados, E.; Gamboa, E.; Glenzer, S. H.; Heimann, P.; Zastrau, U.; Cho, B. I.; Eggert, J. H.; Collins, G. W.; Ping, Y.

    2017-10-01

    Understanding the propagation of shock waves is important for many areas of high energy density physics, including inertial confinement fusion (ICF) and shock compression science. In order to probe the shock front structures in detail, a diagnostic capable of detecting both the small spatial and temporal changes in the material is required. Here we show the experiment using hard X-ray phase contrast imaging (PCI) to probe the shock wave propagation in polyimide with submicron spatial resolution. The experiment was performed at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Lightsource (LCLS). PCI together with the femtosecond time scales of x-ray free electron lasers enables the imaging of optically opaque materials that undergo rapid temporal and spatial changes. The result reveals the evolution of the density profile with time. Work performed under DOE Contract No. DE-AC52-07NA27344 with support from OFES Early Career and LLNL LDRD program.

  18. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  19. Temporal and Statistical Information in Causal Structure Learning

    ERIC Educational Resources Information Center

    McCormack, Teresa; Frosch, Caren; Patrick, Fiona; Lagnado, David

    2015-01-01

    Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical…

  20. MODEST: A Tool for Geodesy and Astronomy

    NASA Technical Reports Server (NTRS)

    Sovers, Ojars J.; Jacobs, Christopher S.; Lanyi, Gabor E.

    2004-01-01

    Features of the JPL VLBI modeling and estimation software "MODEST" are reviewed. Its main advantages include thoroughly documented model physics, portability, and detailed error modeling. Two unique models are included: modeling of source structure and modeling of both spatial and temporal correlations in tropospheric delay noise. History of the code parallels the development of the astrometric and geodetic VLBI technique and the software retains many of the models implemented during its advancement. The code has been traceably maintained since the early 1980s, and will continue to be updated with recent IERS standards. Scripts are being developed to facilitate user-friendly data processing in the era of e-VLBI.

  1. Voyager observations of solar wind proton temperature - 1-10 AU

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Lazarus, A. J.

    1982-01-01

    Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.

  2. Design, Kinematic Optimization, and Evaluation of a Teleoperated System for Middle Ear Microsurgery

    PubMed Central

    Miroir, Mathieu; Nguyen, Yann; Szewczyk, Jérôme; Sterkers, Olivier; Bozorg Grayeli, Alexis

    2012-01-01

    Middle ear surgery involves the smallest and the most fragile bones of the human body. Since microsurgical gestures and a submillimetric precision are required in these procedures, the outcome can be potentially improved by robotic assistance. Today, there is no commercially available device in this field. Here, we describe a method to design a teleoperated assistance robotic system dedicated to the middle ear surgery. Determination of design specifications, the kinematic structure, and its optimization are detailed. The robot-surgeon interface and the command modes are provided. Finally, the system is evaluated by realistic tasks in experimental dedicated settings and in human temporal bone specimens. PMID:22927789

  3. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities

    PubMed Central

    Hansen, Oskar Liset Pryds; Bowden, Joseph J.; Treier, Urs A.; Normand, Signe; Høye, Toke

    2016-01-01

    The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level. Here, we investigate how arthropod assemblages of spiders and beetles respond to variation in habitat structure at small spatial scales. We sampled transitions in shrub dominance and soil moisture between three different habitats (fen, dwarf shrub heath, and tall shrub tundra) at three different sites along a fjord gradient in southwest Greenland, using yellow pitfall cups. We identified 2,547 individuals belonging to 47 species. We used species richness estimation, indicator species analysis and latent variable modeling to examine differences in arthropod community structure in response to habitat variation at local (within site) and regional scales (between sites). We estimated species responses to the environment by fitting species-specific generalized linear models with environmental covariates. Species assemblages were segregated at the habitat and site level. Each habitat hosted significant indicator species, and species richness and diversity were significantly lower in fen habitats. Assemblage patterns were significantly linked to changes in soil moisture and vegetation height, as well as geographic location. We show that meter-scale variation among habitats affects arthropod community structure, supporting the notion that the Arctic tundra is a heterogeneous environment. To gain sufficient insight into temporal biodiversity change, we require studies of species distributions detailing species habitat preferences. PMID:27478709

  4. Some experiments in swirling flows: Detailed velocity measurements of a vortex breakdown using a laser Doppler anemometer. Ph.D. Thesis - Cornell Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Faler, J. H.

    1976-01-01

    The results of an experimental study of spiraling flows in a slightly diverging, circular duct are reported. Seven types of flow disturbances were observed. In addition to the spiral and axisymmetric vortex breakdowns and the double helix mode, four other forms were identified and are reported. The type and axial location of the disturbance depended on the Reynolds and circulation numbers of the flow. Detailed velocity measurements were made by using a laser Doppler anemometer. Measurements made far upstream of any disturbance showed that the introduction of swirl resulted in the formation of a high axial velocity jet centered around the vortex center. A mapping of the velocity field of a so-called axisymmetric breakdown, formed at a Reynolds number of 2560, revealed that the recirculation zone is a two-celled structure, with four stagnation points on the vortex axis marking the axial extremes of the concentric cells. The dominant feature of the flow inside the bubble was the strong, periodic velocity fluctuations. Existing theoretical models do not predict the two-celled structure and the temporal velocity fluctuations that were observed.

  5. Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    PubMed Central

    Goodier, Sarah A. M.; Cotterill, Fenton P. D.; O'Ryan, Colleen; Skelton, Paul H.; de Wit, Maarten J.

    2011-01-01

    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish. PMID:22194910

  6. Temporal Structure of Support Surface Translations Drive the Temporal Structure of Postural Control During Standing

    PubMed Central

    Rand, Troy J.; Myers, Sara A.; Kyvelidou, Anastasia; Mukherjee, Mukul

    2015-01-01

    A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (P < .001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (P < .001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation. PMID:25994281

  7. Postscript: Distinguishing between Temporal Context and Short-Term Store

    ERIC Educational Resources Information Center

    Howard, Marc W.; Kahana, Michael J.; Sederberg, Per B.

    2008-01-01

    Space does not allow us to make detailed rebuttals to Davelaar, Usher, Haarmann, and Goshen-Gottstein's criticisms of the temporal context model's (TCM-A's) ability to account for dissociations between immediate and delayed recall nor to explain how TCM could account for list discrimination experiments. We agree that future work is needed to reach…

  8. A hyper-temporal remote sensing protocol for detecting ecosystem disturbance, classifying ecological state, and assessing soil resilience

    USDA-ARS?s Scientific Manuscript database

    Hyper-temporal remote sensing is capable of detecting detailed information on vegetation dynamics relating to plant functional types (PFT), a useful proxy for estimating soil physical and chemical properties. A central concept of PFT is that plant morphological and physiological adaptations are link...

  9. A Case Study of a Child with Dyslexia and Spatial-Temporal Gifts

    ERIC Educational Resources Information Center

    Cooper, Eileen E.; Ness, Maryann; Smith, Mary

    2004-01-01

    This case study details the history and K-5 school experience of a boy with dyslexia and spatial-temporal gifts. It describes assessment, evaluation, and identification procedures; the learning specialist's interventions and program; the critical role of the parent; and the services provided by the gifted program. Specific interventions are…

  10. Application research on temporal GIS in the transportation information management system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Qin, Qianqing; Wang, Chao

    2006-10-01

    The application, development and key matters of applying spatio-temporal GIS to traffic information management system are discussed in this paper by introducing the development of spatio-temporal database, current models of spatio-temporal data, traits of traffic information management system. This paper proposes a method of organizing spatio-temporal data taking road object changes into consideration, and describes its data structure in 3 aspects, including structure of spatio-temporal object, organizing method spatio-temporal data and storage means of spatio-temporal data. Trying to manage types of spatio-temporal data involved in traffic system, such as road information, river information, railway information, social and economical data, and etc, uniformly, efficiently and with low redundancy.

  11. Temporally selective attention modulates early perceptual processing: event-related potential evidence.

    PubMed

    Sanders, Lisa D; Astheimer, Lori B

    2008-05-01

    Some of the most important information we encounter changes so rapidly that our perceptual systems cannot process all of it in detail. Spatially selective attention is critical for perception when more information than can be processed in detail is presented simultaneously at distinct locations. When presented with complex, rapidly changing information, listeners may need to selectively attend to specific times rather than to locations. We present evidence that listeners can direct selective attention to time points that differ by as little as 500 msec, and that doing so improves target detection, affects baseline neural activity preceding stimulus presentation, and modulates auditory evoked potentials at a perceptually early stage. These data demonstrate that attentional modulation of early perceptual processing is temporally precise and that listeners can flexibly allocate temporally selective attention over short intervals, making it a viable mechanism for preferentially processing the most relevant segments in rapidly changing streams.

  12. Examining Procrastination Across Multiple Goal Stages: A Longitudinal Study of Temporal Motivation Theory

    PubMed Central

    Steel, Piers; Svartdal, Frode; Thundiyil, Tomas; Brothen, Thomas

    2018-01-01

    Procrastination is among the most common of motivational failures, putting off despite expecting to be worse off. We examine this dynamic phenomenon in a detailed and realistic longitudinal design (Study 1) as well as in a large correlational data set (N = 7400; Study 2). The results are largely consistent with temporal motivation theory. People’s pacing style reflects a hyperbolic curve, with the steepness of the curve predicted by self-reported procrastination. Procrastination is related to intention-action gaps, but not intentions. Procrastinators are susceptible to proximity of temptation and to the temporal separation between their intention and the planned act; the more distal, the greater the gap. Critical self-regulatory skills in explaining procrastination are attention control, energy regulation and automaticity, accounting for 74% of the variance. Future research using this design is recommended, as it provides an almost ideal blend of realism and detailed longitudinal assessment. PMID:29666590

  13. Examining Procrastination Across Multiple Goal Stages: A Longitudinal Study of Temporal Motivation Theory.

    PubMed

    Steel, Piers; Svartdal, Frode; Thundiyil, Tomas; Brothen, Thomas

    2018-01-01

    Procrastination is among the most common of motivational failures, putting off despite expecting to be worse off. We examine this dynamic phenomenon in a detailed and realistic longitudinal design (Study 1) as well as in a large correlational data set ( N = 7400; Study 2). The results are largely consistent with temporal motivation theory. People's pacing style reflects a hyperbolic curve, with the steepness of the curve predicted by self-reported procrastination. Procrastination is related to intention-action gaps, but not intentions. Procrastinators are susceptible to proximity of temptation and to the temporal separation between their intention and the planned act; the more distal, the greater the gap. Critical self-regulatory skills in explaining procrastination are attention control, energy regulation and automaticity, accounting for 74% of the variance. Future research using this design is recommended, as it provides an almost ideal blend of realism and detailed longitudinal assessment.

  14. Social Vocalizations of Big Brown Bats Vary with Behavioral Context

    PubMed Central

    Gadziola, Marie A.; Grimsley, Jasmine M. S.; Faure, Paul A.; Wenstrup, Jeffrey J.

    2012-01-01

    Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive big brown bats under four behavioral contexts: low aggression, medium aggression, high aggression, and appeasement. Even limited to these contexts, big brown bats possess a rich repertoire of social vocalizations, with 18 distinct syllable types automatically classified using a spectrogram cross-correlation procedure. For each behavioral context, we describe vocalizations in terms of syllable acoustics, temporal emission patterns, and typical syllable sequences. Emotion-related acoustic cues are evident within the call structure by context-specific syllable types or variations in the temporal emission pattern. We designed a paradigm that could evoke aggressive vocalizations while monitoring heart rate as an objective measure of internal physiological state. Changes in the magnitude and duration of elevated heart rate scaled to the level of evoked aggression, confirming the behavioral state classifications assessed by vocalizations and behavioral displays. These results reveal a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a caller. PMID:22970247

  15. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms.

    PubMed

    Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo

    2017-10-15

    Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Polyester Wax: A New Embedding Medium for the Histopathologic Study of Human Temporal Bones

    PubMed Central

    Merchant, Saumil N.; Burgess, Barbara; O'Malley, Jennifer; Jones, Diane; Adams, Joe C.

    2007-01-01

    Background Celloidin and paraffin are the two common embedding mediums used for histopathologic study of the human temporal bone by light microscopy. Although celloidin embedding permits excellent morphologic assessment, celloidin is difficult to remove, and there are significant restrictions on success with immunostaining. Embedding in paraffin allows immunostaining to be performed, but preservation of cellular detail within the membranous labyrinth is relatively poor. Objectives/Hypothesis Polyester wax is an embedding medium that has a low melting point (37°C), is soluble in most organic solvents, is water tolerant, and sections easily. We hypothesized that embedding in polyester wax would permit good preservation of the morphology of the membranous labyrinth and, at the same time, allow the study of proteins by immunostaining. Methods Nine temporal bones from individuals aged 1 to 94 years removed 2 to 31 hours postmortem, from subjects who had no history of otologic disease, were used. The bones were fixed using 10% formalin, decal-cified using EDTA, embedded in polyester wax, and serially sectioned at a thickness of 8 to 12 μm on a rotary microtome. The block and knife were cooled with frozen CO2 (dry ice) held in a funnel above the block. Sections were placed on glass slides coated with a solution of 1% fish gelatin and 1% bovine albumin, followed by staining of selected sections with hematoxylin and eosin (H&E). Immunostaining was also performed on selected sections using antibodies to 200 kD neurofilament and Na-K-ATPase. Results Polyester wax–embedded sections demonstrated good preservation of cellular detail of the organ of Corti and other structures of the membranous labyrinth, as well as the surrounding otic capsule. The protocol described in this paper was reliable and consistently yielded sections of good quality. Immuno-staining was successful with both antibodies. Conclusion The use of polyester wax as an embedding medium for human temporal bones offers the advantage of good preservation of morphology and ease of immunostaining. We anticipate that in the future, polyester wax embedding will also permit other molecular biologic assays on temporal bone sections such as the retrieval of nucleic acids and the study of proteins using mass spectrometry–based proteomic analysis. PMID:16467713

  17. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  18. Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.

    PubMed

    Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle

    2015-01-01

    Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.

    PubMed

    Potes, Cristhian; Brunner, Peter; Gunduz, Aysegul; Knight, Robert T; Schalk, Gerwin

    2014-08-15

    Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection

    ERIC Educational Resources Information Center

    Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.

    2010-01-01

    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…

  1. Structure, Function, and Propagation of Information across Living Two, Four, and Eight Node Degree Topologies.

    PubMed

    Alagapan, Sankaraleengam; Franca, Eric; Pan, Liangbin; Leondopulos, Stathis; Wheeler, Bruce C; DeMarse, Thomas B

    2016-01-01

    In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.

  2. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  3. Long-term retrograde amnesia...the crucial role of the hippocampus.

    PubMed

    Cipolotti, L; Shallice, T; Chan, D; Fox, N; Scahill, R; Harrison, G; Stevens, J; Rudge, P

    2001-01-01

    For patients with hippocampal pathology, disagreement exists in the literature over whether retrograde amnesia is temporally limited or very extensive depending on whether the anatomical damage is restricted to this structure or also involves additional temporal cortex. We report a comprehensive assessment of retrograde and anterograde memory functions of a severely global amnesic patient (VC). We found that he presented with a remarkably extensive and basically ungraded retrograde amnesia. This impairment profoundly affected four decades preceding the onset of his amnesia and encompassed both non personal and personal facts and events. VC also presented with a severe anterograde amnesia and a deficit in the acquisition of new semantic knowledge in the post-morbid period. Detailed MRI volumetric measurements revealed gross abnormalities in both hippocampi which were markedly shrunken. Of relevance to the debate on retrograde amnesia were the observations that the volumes of both entorhinal cortices and the remainder of both temporal lobes were normal. These data suggest that the hippocampus is critical not only for the efficient encoding and hence normal recall of new information but also for the recall of episodic information acquired before the onset of amnesia. Our results are compatible with the view that retrograde amnesia is both extensive and ungraded when the damage is limited to the hippocampus.

  4. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  5. The making of autobiographical memory: intersections of culture, narratives and identity.

    PubMed

    Fivush, Robyn; Habermas, Tilmann; Waters, Theodore E A; Zaman, Widaad

    2011-10-01

    Autobiographical memory is a uniquely human form of memory that integrates individual experiences of self with cultural frames for understanding identities and lives. In this review, we present a theoretical and empirical overview of the sociocultural development of autobiographical memory, detailing the emergence of autobiographical memory during the preschool years and the formation of a life narrative during adolescence. More specifically, we present evidence that individual differences in parental reminiscing style are related to children's developing autobiographical narratives. Parents who structure more elaborated coherent personal narratives with their young children have children who, by the end of the preschool years, provide more detailed and coherent personal narratives, and show a more differentiated and coherent sense of self. Narrative structuring of autobiographical remembering follows a protracted developmental course through adolescence, as individuals develop social cognitive skills for temporal understanding and causal reasoning that allows autobiographical memories to be integrated into an overarching life narrative that defines emerging identity. In addition, adolescents begin to use culturally available canonical biographical forms, life scripts, and master narratives to construct a life story and inform their own autobiographical narrative identity. This process continues to be socially constructed in local interactions; we present exploratory evidence that parents help adolescents structure life narratives during coconstructed reminiscing and that adolescents use parents and families as a source for their own autobiographical content and structure. Ultimately, we argue that autobiography is a critical developmental skill; narrating our personal past connects us to our selves, our families, our communities, and our cultures.

  6. Application of temporal LNC logic in artificial intelligence

    NASA Astrophysics Data System (ADS)

    Adamek, Marek; Mulawka, Jan

    2016-09-01

    This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.

  7. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes.

    PubMed

    Hohmann, Nora; Koch, Marcus A

    2017-10-23

    Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion.

  8. Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in Plantago spp.

    PubMed

    Phan, Jana L; Tucker, Matthew R; Khor, Shi Fang; Shirley, Neil; Lahnstein, Jelle; Beahan, Cherie; Bacic, Antony; Burton, Rachel A

    2016-12-01

    Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.

    PubMed

    Dornas, João V; Braun, Jochen

    2018-01-15

    Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    USGS Publications Warehouse

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  11. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application.

    PubMed

    Kovatchev, Boris P; Clarke, William L; Breton, Marc; Brayman, Kenneth; McCall, Anthony

    2005-12-01

    Continuous glucose monitors (CGMs) collect detailed blood glucose (BG) time series, which carry significant information about the dynamics of BG fluctuations. In contrast, the methods for analysis of CGM data remain those developed for infrequent BG self-monitoring. As a result, important information about the temporal structure of the data is lost during the translation of raw sensor readings into clinically interpretable statistics and images. The following mathematical methods are introduced into the field of CGM data interpretation: (1) analysis of BG rate of change; (2) risk analysis using previously reported Low/High BG Indices and Poincare (lag) plot of risk associated with temporal BG variability; and (3) spatial aggregation of the process of BG fluctuations and its Markov chain visualization. The clinical application of these methods is illustrated by analysis of data of a patient with Type 1 diabetes mellitus who underwent islet transplantation and with data from clinical trials. Normative data [12,025 reference (YSI device, Yellow Springs Instruments, Yellow Springs, OH) BG determinations] in patients with Type 1 diabetes mellitus who underwent insulin and glucose challenges suggest that the 90%, 95%, and 99% confidence intervals of BG rate of change that could be maximally sustained over 15-30 min are [-2,2], [-3,3], and [-4,4] mg/dL/min, respectively. BG dynamics and risk parameters clearly differentiated the stages of transplantation and the effects of medication. Aspects of treatment were clearly visualized by graphs of BG rate of change and Low/High BG Indices, by a Poincare plot of risk for rapid BG fluctuations, and by a plot of the aggregated Markov process. Advanced analysis and visualization of CGM data allow for evaluation of dynamical characteristics of diabetes and reveal clinical information that is inaccessible via standard statistics, which do not take into account the temporal structure of the data. The use of such methods improves the assessment of patients' glycemic control.

  12. Ion Spectral Structures Observed by the Van Allen Probes and Cluster

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.

    2014-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.

  13. Principles of Temporal Processing Across the Cortical Hierarchy.

    PubMed

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The role of temporal structure in human vision.

    PubMed

    Blake, Randolph; Lee, Sang-Hun

    2005-03-01

    Gestalt psychologists identified several stimulus properties thought to underlie visual grouping and figure/ground segmentation, and among those properties was common fate: the tendency to group together individual objects that move together in the same direction at the same speed. Recent years have witnessed an upsurge of interest in visual grouping based on other time-dependent sources of visual information, including synchronized changes in luminance, in motion direction, and in figure/ ground relations. These various sources of temporal grouping information can be subsumed under the rubric temporal structure. In this article, the authors review evidence bearing on the effectiveness of temporal structure in visual grouping. They start with an overview of evidence bearing on temporal acuity of human vision, covering studies dealing with temporal integration and temporal differentiation. They then summarize psychophysical studies dealing with figure/ground segregation based on temporal phase differences in deterministic and stochastic events. The authors conclude with a brief discussion of neurophysiological implications of these results.

  15. Structural Controllability and Controlling Centrality of Temporal Networks

    PubMed Central

    Pan, Yujian; Li, Xiang

    2014-01-01

    Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676

  16. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  17. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. A global view of F-region electron density and temperature at solar maximum

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Hoegy, W. R.

    1982-01-01

    It is pointed out that the thermal structure of the ionosphere represents a quasi-static balance between a variety of heat sources and sinks which vary spatially and temporally on a wide range of time scales. The present investigation has the objective to present selected early results from the Dynamics Explorer-2 (DE-2) Langmuir probe instrument and to make an initial evaluation of how the thermal structure of the ionosphere at solar maximum differs from that observed at solar minimum. Bowen et al. (1964) and Brace and Reddy (1965) devised early empirical models of the F region electron temperature (Te), based on satellite Langmuir probe measurements at low levels of solar activity. The global structure of Te and the electron density (Ne) obtained in the current investigation is not very different from that reported by Brace and Reddy. The primary difference at solar maximum is that Ne is everywhere much higher, but Te differs only in detail.

  19. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  20. Musical intervention enhances infants’ neural processing of temporal structure in music and speech

    PubMed Central

    Zhao, T. Christina; Kuhl, Patricia K.

    2016-01-01

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing. PMID:27114512

  1. Musical intervention enhances infants' neural processing of temporal structure in music and speech.

    PubMed

    Zhao, T Christina; Kuhl, Patricia K

    2016-05-10

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

  2. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of which compare well to features observed in mapped exposures. For these simple simulations from a small number of pre-existing joints the fault zone evolves in a predictable way: fault linkage is governed by three key factors: Stress ratio of s1 (maximum compressive stress) to s3(minimum compressive stress), original geometry of the pre-existing structures (contractional vs. dilational geometries) and the orientation of the principle stress direction (σ1) to the pre-existing structures. In this paper we present numerical simulations of the temporal and spatial evolution of fault linkage structures from many pre-existing joints. The initial location, size and orientations of these joints are based on field observations of cooling joints in granite from the Sierra Nevada. We show that the constantly evolving geometry and local stress field perturbations contribute significantly to fault zone evolution. The location and orientations of linkage structures previously predicted by the simple simulations are consistent with the predicted geometries in the more complex fault zones, however, the exact location at which individual structures form is not easily predicted. Markedly different fault zone geometries are predicted when the pre-existing joints are rotated with respect to the maximum compressive stress. In particular, fault surfaces range from evolving smooth linear structures to producing complex ‘stepped' fault zone geometries. These geometries have a significant effect on simulations of along and across-fault flow.

  3. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M

    2018-06-02

    Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, L.; McPherron, R. L.; Amm, O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T. I.; Sergeev, V.

    2015-07-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.

  5. Neurons in the human hippocampus and amygdala respond to both low- and high-level image properties

    PubMed Central

    Cabrales, Elaine; Wilson, Michael S.; Baker, Christopher P.; Thorp, Christopher K.; Smith, Kris A.; Treiman, David M.

    2011-01-01

    A large number of studies have demonstrated that structures within the medial temporal lobe, such as the hippocampus, are intimately involved in declarative memory for objects and people. Although these items are abstractions of the visual scene, specific visual details can change the speed and accuracy of their recall. By recording from 415 neurons in the hippocampus and amygdala of human epilepsy patients as they viewed images drawn from 10 image categories, we showed that the firing rates of 8% of these neurons encode image illuminance and contrast, low-level properties not directly pertinent to task performance, whereas in 7% of the neurons, firing rates encode the category of the item depicted in the image, a high-level property pertinent to the task. This simultaneous representation of high- and low-level image properties within the same brain areas may serve to bind separate aspects of visual objects into a coherent percept and allow episodic details of objects to influence mnemonic performance. PMID:21471400

  6. Visual body perception in anorexia nervosa.

    PubMed

    Urgesi, Cosimo; Fornasari, Livia; Perini, Laura; Canalaz, Francesca; Cremaschi, Silvana; Faleschini, Laura; Balestrieri, Matteo; Fabbro, Franco; Aglioti, Salvatore Maria; Brambilla, Paolo

    2012-05-01

    Disturbance of body perception is a central aspect of anorexia nervosa (AN) and several neuroimaging studies have documented structural and functional alterations of occipito-temporal cortices involved in visual body processing. However, it is unclear whether these perceptual deficits involve more basic aspects of others' body perception. A consecutive sample of 15 adolescent patients with AN were compared with a group of 15 age- and gender-matched controls in delayed matching to sample tasks requiring the visual discrimination of the form or of the action of others' body. Patients showed better visual discrimination performance than controls in detail-based processing of body forms but not of body actions, which positively correlated with their increased tendency to convert a signal of punishment into a signal of reinforcement (higher persistence scores). The paradoxical advantage of patients with AN in detail-based body processing may be associated to their tendency to routinely explore body parts as a consequence of their obsessive worries about body appearance. Copyright © 2012 Wiley Periodicals, Inc.

  7. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  9. The Temporal Focus Scale: Factor Structure and Association with Alcohol Use in a Sample of Northern Irish School Children

    ERIC Educational Resources Information Center

    McKay, Michael T.; Percy, Andrew; Goudie, Andrew J.; Sumnall, Harry R.; Cole, Jon C.

    2012-01-01

    The Temporal Focus Scale (TFS) is a 12-item self-report measure of cognitive engagement with the temporal domains of past, present and future. Developed in college student samples, a three-factor structure with adequate reliability and validity was documented in a series of independent studies. We tested the factor structure of the scale in a…

  10. Passive force balancing of an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyber, R.; Meinhardt, K.; Thomsen, E.

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  11. Passive force balancing of an active magnetic regenerative liquefier

    DOE PAGES

    Teyber, R.; Meinhardt, K.; Thomsen, E.; ...

    2017-11-02

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  12. Passive force balancing of an active magnetic regenerative liquefier

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.

    2018-04-01

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.

  13. Long-term Spatial Distribution Patterns of Protozoa in Connected Microhabitats

    NASA Astrophysics Data System (ADS)

    Taghon, G. L.; Tuorto, S. J.

    2016-02-01

    Studies of microbial ecosystems usually assume habitat homogeneity. Recent research, however, indicates that habitat structure varies at millimeter scales and that this patchiness affects abundance and behavior of microbes. In this study, two species of ciliated protozoa were maintained, together, for multiple generations in microfluidic devices consisting of arrays of interconnected microhabitats with differing resource availability. The species differed in their population dynamics and tendency to disperse among microhabitats. Both species coexisted for over 45 days, and their coexistence likely resulted from habitat selection at millimeter scales. We demonstrate that it is not only possible, but imperative, that detailed ecological phenomena of microbial systems be studied at the relevant spatial and temporal scales.

  14. Coupling a distributed hydrological model with detailed forest structural information for large-scale global change impact assessment

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein

    2017-04-01

    Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.

  15. Presence of 1/f noise in the temporal structure of psychoacoustic parameters of natural and urban sounds.

    PubMed

    Yang, Ming; De Coensel, Bert; Kang, Jian

    2015-08-01

    1/f noise or pink noise, which has been shown to be universal in nature, has also been observed in the temporal envelope of music, speech, and environmental sound. Moreover, the slope of the spectral density of the temporal envelope of music has been shown to correlate well to its pleasing, dull, or chaotic character. In this paper, the temporal structure of a number of instantaneous psychoacoustic parameters of environmental sound is examined in order to investigate whether a 1/f temporal structure appears in various types of sound that are generally preferred by people in everyday life. The results show, to some extent, that different categories of environmental sounds have different temporal structure characteristics. Only a number of urban sounds considered and birdsong, generally, exhibit 1/f behavior on short to medium duration time scales, i.e., from 0.1 s to 10 s, in instantaneous loudness and sharpness, whereas a more chaotic variation is found in birdsong at longer time scales, i.e., of 10 s-200 s. The other sound categories considered exhibit random or monotonic variations in the different time scales. In general, this study shows that a 1/f temporal structure is not necessarily present in environmental sounds that are commonly perceived as pleasant.

  16. Gamma-Ray Light Curves And Variability Of Bright Fermi -Detected Blazars

    DOE PAGES

    Abdo, A. A.

    2010-09-22

    This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% ofmore » the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f α PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)—measured for a few blazars showing strong activity—complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the brightest gamma-ray blazars.« less

  17. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry.

    PubMed

    Wallace, Gregory L; Happé, Francesca; Giedd, Jay N

    2009-05-27

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.

  18. Electric-field-stimulated protein mechanics

    PubMed Central

    Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama

    2017-01-01

    The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732

  19. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry

    PubMed Central

    Wallace, Gregory L.; Happé, Francesca; Giedd, Jay N.

    2009-01-01

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and ‘weak’ central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure. PMID:19528026

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging duemore » to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.« less

  1. Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Schaff, D.P.; Cole, A.

    2004-01-01

    Double-difference locations of ???8000 earthquakes from 1969-2002 on the Parkfield section of the San Andreas Fault reveal detailed fault structures and seismicity that is, although complex, highly organized in both space and time. Distinctive features of the seismicity include: 1) multiple recurrence of earthquakes of the same size at precisely the same location on the fault (multiplets), implying frictional or geometric controls on their location and size; 2) sub-horizontal alignments of hypocenters along the fault plane (streaks), suggestive of rheological transitions within the fault zone and/or stress concentrations between locked and creeping areas; 3) regions devoid of microearthquakes with typical dimensions of 1-5 km (holes), one of which contains the M6 1966 Parkfield earthquake hypocenter. These features represent long lived structures that persist through many cycles of individual event. Copyright 2004 by the American Geophysical Union.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hao; Zhang, Yu; Guo, Sibei

    The aggregation of amyloid beta (Aβ) peptides plays a crucial role in the pathology and etiology of Alzheimer's disease. Experimental evidence shows that copper ion is an aggregation-prone species with the ability to coordinately bind to Aβ and further induce the formation of neurotoxic Aβ oligomers. However, the detailed structures of Cu(II)–Aβ complexes have not been illustrated, and the kinetics and dynamics of the Cu(II) binding are not well understood. Two Cu(II)–Aβ complexes have been proposed to exist under physiological conditions, and another two might exist at higher pH values. By using ab initio simulations for the spontaneous resonance Ramanmore » and time domain stimulated resonance Raman spectroscopy signals, we obtained the characteristic Raman vibronic features of each complex. Finally, these signals contain rich structural information with high temporal resolution, enabling the characterization of transient states during the fast Cu–Aβ binding and interconversion processes.« less

  3. Seeking Temporal Predictability in Speech: Comparing Statistical Approaches on 18 World Languages.

    PubMed

    Jadoul, Yannick; Ravignani, Andrea; Thompson, Bill; Filippi, Piera; de Boer, Bart

    2016-01-01

    Temporal regularities in speech, such as interdependencies in the timing of speech events, are thought to scaffold early acquisition of the building blocks in speech. By providing on-line clues to the location and duration of upcoming syllables, temporal structure may aid segmentation and clustering of continuous speech into separable units. This hypothesis tacitly assumes that learners exploit predictability in the temporal structure of speech. Existing measures of speech timing tend to focus on first-order regularities among adjacent units, and are overly sensitive to idiosyncrasies in the data they describe. Here, we compare several statistical methods on a sample of 18 languages, testing whether syllable occurrence is predictable over time. Rather than looking for differences between languages, we aim to find across languages (using clearly defined acoustic, rather than orthographic, measures), temporal predictability in the speech signal which could be exploited by a language learner. First, we analyse distributional regularities using two novel techniques: a Bayesian ideal learner analysis, and a simple distributional measure. Second, we model higher-order temporal structure-regularities arising in an ordered series of syllable timings-testing the hypothesis that non-adjacent temporal structures may explain the gap between subjectively-perceived temporal regularities, and the absence of universally-accepted lower-order objective measures. Together, our analyses provide limited evidence for predictability at different time scales, though higher-order predictability is difficult to reliably infer. We conclude that temporal predictability in speech may well arise from a combination of individually weak perceptual cues at multiple structural levels, but is challenging to pinpoint.

  4. Aerosol and cloud vertical structure in New York City: micro-pulse lidar measurements and validation

    NASA Astrophysics Data System (ADS)

    Hassebo, Ahmed; Ahmed, Sameh; Hassebo, Yasser Y.

    2017-02-01

    We report on the measurements of aerosol and cloud vertical structure in New York City (NYC) using the first polarization Micro pulse Lidar (MPL) located at the City University of New York (CUNY). MPL operation, setup, data collection and correction will be introduced. Preliminary results and comparison analysis between 2015 and 2016 of cloud vertical structure and the Planetary Boundary Layer (PBL) above NYC will be discussed. An investigation analysis of the impact of NYC rush hour pollution on the level of PBL depth will be introduced using the MPL measurements (such as temporal and spatial trends in aerosol and cloud structure). Applications of the MPL tow-polarization channels will be investigated. Potential future studies and collaborations in protecting NYC against environmental disasters by employing more devices along with MPL real-time data will be emphasized. For pedagogical purposes, a lab module was developed to be implemented in the newly developed undergraduate track in Earth System Science and Environmental Engineering (ESE) at LaGuardia Community College of CUNY (LaGCC), more details will be presented.

  5. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately quantify the heat flux associates with this hydrothermal outflow. Image mosaics are also key for the installation of instrumentation required by temporal studies, and for the infrastructure of the ESONET pilot seafloor observatory. This type of survey techniques and studies can also be extended to other areas of interest, such as hydrothermal fields, cold seeps, etc.

  6. Exploring Temporal Sequences of Regulatory Phases and Associated Interactions in Low- and High-Challenge Collaborative Learning Sessions

    ERIC Educational Resources Information Center

    Sobocinski, Márta; Malmberg, Jonna; Järvelä, Sanna

    2017-01-01

    Investigating the temporal order of regulatory processes can explain in more detail the mechanisms behind success or lack of success during collaborative learning. The aim of this study is to explore the differences between high- and low-challenge collaborative learning sessions. This is achieved through examining how the three phases of…

  7. Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA

    Treesearch

    Robert T. Brooks

    2009-01-01

    The development and use of acoustic recording technology, surveys have revealed the composition, relative levels of activity, and preliminary habitat use of bat communities of various forest locations. However, detailed examinations of acoustic surveys results to investigate temporal patterns of bat activity are rare. Initial active acoustic surveys of bat activity on...

  8. The Temporality of Participation in School Science: Coordination of Teacher Control and the Pace of Students' Participation

    ERIC Educational Resources Information Center

    Rocksén, Miranda

    2017-01-01

    This study investigates classroom organisation and interaction focusing on phases of activity. The detailed in-depth case study is based on video recordings of 1 science unit consisting of 11 lessons about biological evolution in a Swedish ninth-grade class (aged 15). The study illuminates the temporality of student participation as a fundamental…

  9. Impoverished descriptions of familiar routes in three cases of hippocampal/medial temporal lobe amnesia.

    PubMed

    Herdman, Katherine A; Calarco, Navona; Moscovitch, Morris; Hirshhorn, Marnie; Rosenbaum, R Shayna

    2015-10-01

    Recent research has challenged classic theories of hippocampal function in spatial memory with findings that the hippocampus may be necessary for detailed representations of environments learned long ago, but not for remembering the gist or schematic aspects that are sufficient for navigating within those environments (Rosenbaum et al., 2000; Rosenbaum, Winocur, Binns, & Moscovitch, 2012). We aimed to probe further distinctions between detailed and schematic representations of familiar environments in three cases of hippocampal/medial temporal lobe (MTL) amnesia by testing them on a route description task and mental navigation tasks that assess the identity and location of landmarks, and distances and directions between them. The amnesic cases could describe basic directions along known, imagined routes, estimate distance and direction between well-known landmarks, and produce sketch maps with accurate layouts, suggestive of intact schematic representations. However, findings that their route descriptions lack richness of detail, along with impoverished sketch maps and poor landmark recognition, substantiates previous findings that detailed representations are hippocampus-dependent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. EFFECT OF INTENSE FUNCTIONAL TASK TRAINING UPON TEMPORAL STRUCTURE OF VARIABILITY OF UPPER EXTREMITY POST STROKE

    PubMed Central

    Sethi, Amit; Davis, Sandra; McGuirk, Theresa; Patterson, Tara S.; Richards, Lorie G.

    2012-01-01

    Study Design Quasi-experimental design Introduction Although the effectiveness of constraint induced movement therapy (CIMT) in upper extremity (UE) rehabilitation post stroke is well known, the efficacy of CIMT to enhance the temporal structure of variability in upper extremity movement is not known. Purpose The purpose of this study was to investigate whether CIMT could enhance temporal structure of variability in upper extremity movement in individuals with chronic stroke. Methods Six participants with chronic stroke underwent CIMT for 4 hours/day for 2 weeks. Participants performed three trials of functional reach-to-grasp before and after CIMT. Temporal structure of variability was determined by calculating approximate entropy (ApEn) in shoulder, elbow and wrist flexion/extension joint angles. Results ApEn increased post CIMT, however, statistical significance was not achieved (p > 0.0167). Conclusion Future studies with larger sample size are warranted to investigate the effect of CIMT upon temporal structure of variability in UE movement. PMID:23084461

  11. Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study.

    PubMed

    Suresh, Suraj; Sweet, Jennifer; Fastenau, Philip S; Lüders, Hans; Landazuri, Patrick; Miller, Jonathan

    2015-12-01

    Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores. Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management. Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year. This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.

  12. Implicit transfer of reversed temporal structure in visuomotor sequence learning.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2014-04-01

    Some spatio-temporal structures are easier to transfer implicitly in sequential learning. In this study, we investigated whether the consistent reversal of triads of learned components would support the implicit transfer of their temporal structure in visuomotor sequence learning. A triad comprised three sequential button presses ([1][2][3]) and seven consecutive triads comprised a sequence. Participants learned sequences by trial and error, until they could complete it 20 times without error. Then, they learned another sequence, in which each triad was reversed ([3][2][1]), partially reversed ([2][1][3]), or switched so as not to overlap with the other conditions ([2][3][1] or [3][1][2]). Even when the participants did not notice the alternation rule, the consistent reversal of the temporal structure of each triad led to better implicit transfer; this was confirmed in a subsequent experiment. These results suggest that the implicit transfer of the temporal structure of a learned sequence can be influenced by both the structure and consistency of the change. Copyright © 2013 Cognitive Science Society, Inc.

  13. New Learning of Music after Bilateral Medial Temporal Lobe Damage: Evidence from an Amnesic Patient

    PubMed Central

    Valtonen, Jussi; Gregory, Emma; Landau, Barbara; McCloskey, Michael

    2014-01-01

    Damage to the hippocampus impairs the ability to acquire new declarative memories, but not the ability to learn simple motor tasks. An unresolved question is whether hippocampal damage affects learning for music performance, which requires motor processes, but in a cognitively complex context. We studied learning of novel musical pieces by sight-reading in a newly identified amnesic, LSJ, who was a skilled amateur violist prior to contracting herpes simplex encephalitis. LSJ has suffered virtually complete destruction of the hippocampus bilaterally, as well as extensive damage to other medial temporal lobe structures and the left anterior temporal lobe. Because of LSJ’s rare combination of musical training and near-complete hippocampal destruction, her case provides a unique opportunity to investigate the role of the hippocampus for complex motor learning processes specifically related to music performance. Three novel pieces of viola music were composed and closely matched for factors contributing to a piece’s musical complexity. LSJ practiced playing two of the pieces, one in each of the two sessions during the same day. Relative to a third unpracticed control piece, LSJ showed significant pre- to post-training improvement for the two practiced pieces. Learning effects were observed both with detailed analyses of correctly played notes, and with subjective whole-piece performance evaluations by string instrument players. The learning effects were evident immediately after practice and 14 days later. The observed learning stands in sharp contrast to LSJ’s complete lack of awareness that the same pieces were being presented repeatedly, and to the profound impairments she exhibits in other learning tasks. Although learning in simple motor tasks has been previously observed in amnesic patients, our results demonstrate that non-hippocampal structures can support complex learning of novel musical sequences for music performance. PMID:25232312

  14. Innovations in individual feature history management - The significance of feature-based temporal model

    USGS Publications Warehouse

    Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.

    2008-01-01

    A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.

  15. Functional connectivity between right and left mesial temporal structures.

    PubMed

    Lacuey, Nuria; Zonjy, Bilal; Kahriman, Emine S; Kaffashi, Farhad; Miller, Jonathan; Lüders, Hans O

    2015-09-01

    The aim of this study is to investigate functional connectivity between right and left mesial temporal structures using cerebrocerebral evoked potentials. We studied seven patients with drug-resistant focal epilepsy who were explored with stereotactically implanted depth electrodes in bilateral hippocampi. In all patients cerebrocerebral evoked potentials evoked by stimulation of the fornix were evaluated as part of a research project assessing fornix stimulation for control of hippocampal seizures. Stimulation of the fornix elicited responses in the ipsilateral hippocampus in all patients with a mean latency of 4.6 ms (range 2-7 ms). Two patients (29 %) also had contralateral hippocampus responses with a mean latency of 7.5 ms (range 5-12 ms) and without involvement of the contralateral temporal neocortex or amygdala. This study confirms the existence of connections between bilateral mesial temporal structures in some patients and explains seizure discharge spreading between homotopic mesial temporal structures without neocortical involvement.

  16. Impulsivity and temporal frame: Reducing frequency of snacking by highlighting immediate health benefits.

    PubMed

    Pavey, Louisa; Churchill, Sue

    2017-08-01

    The current study aimed to examine the effect of giving temporally framed health information regarding either the immediate or long-term health consequences of consuming high-calorie snacks, for people with high Negative Urgency (a dimension of impulsivity), and for those primed with impulsivity. We expected that for participants with high Negative Urgency, and those primed with impulsivity, information which detailed the immediate health benefits of avoiding snack consumption would be more effective than information which detailed long-term health benefits. Participants (N=110) completed a measure of Negative Urgency, reported their snacking frequency over the previous seven days, and completed either an impulsivity or neutral prime task. Following this, they read information detailing either the immediate or long-term health benefits of avoiding high-calorie snacks. High-calorie snack consumption was reported 7days later. The results showed a significant three-way interaction between Negative Urgency, prime task, and temporal frame. Participants who were primed with impulsivity and those high in Negative Urgency showed a greater reduction in snacking frequency after being given information about the immediate vs. long-term health benefits of snacking. The results suggest that the immediacy of health consequences should be considered when designing health information to reduce impulsive snacking behaviour. Copyright © 2017. Published by Elsevier Ltd.

  17. Increases in the autistic trait of attention to detail are associated with decreased multisensory temporal adaptation.

    PubMed

    Stevenson, Ryan A; Toulmin, Jennifer K; Youm, Ariana; Besney, Richard M A; Schulz, Samantha E; Barense, Morgan D; Ferber, Susanne

    2017-10-30

    Recent empirical evidence suggests that autistic individuals perceive the world differently than their typically-developed peers. One theoretical account, the predictive coding hypothesis, posits that autistic individuals show a decreased reliance on previous perceptual experiences, which may relate to autism symptomatology. We tested this through a well-characterized, audiovisual statistical-learning paradigm in which typically-developed participants were first adapted to consistent temporal relationships between audiovisual stimulus pairs (audio-leading, synchronous, visual-leading) and then performed a simultaneity judgement task with audiovisual stimulus pairs varying in temporal offset from auditory-leading to visual-leading. Following exposure to the visual-leading adaptation phase, participants' perception of synchrony was biased towards visual-leading presentations, reflecting the statistical regularities of their previously experienced environment. Importantly, the strength of adaptation was significantly related to the level of autistic traits that the participant exhibited, measured by the Autism Quotient (AQ). This was specific to the Attention to Detail subscale of the AQ that assesses the perceptual propensity to focus on fine-grain aspects of sensory input at the expense of more integrative perceptions. More severe Attention to Detail was related to weaker adaptation. These results support the predictive coding framework, and suggest that changes in sensory perception commonly reported in autism may contribute to autistic symptomatology.

  18. Ramgarh Crater, Rajasthan, India - Study of multispectral images obtained by Indian remote sensing satellite (IRS-IA)

    NASA Technical Reports Server (NTRS)

    Murali, A. V.; Lulla, Kamlesh P.

    1992-01-01

    Ramgarh Crater, Rajasthan, India is a potential impact crater that has not been studied so far. The proximity of Ramgarh Crater to the Deccan flood basalt terrain makes it important to examine the spatial and temporal relationship of this crater to Deccan Volcanism because recent studies propose a strong link between impact cratering and major flood basalt eruptions. A detailed multidisciplinary study is necessary to evaluate the structure and lithology of Ramgarh Crater and its temporal relationship to the emplacement of Deccan eruptions in India. Application of the IRS-IA data to study the lithologic/surface characteristics of Ramgarh Crater (attempted for the first time) indicates the potential application of remote sensing data in these studies. The IRS-IA data are of good quality and resolution. Our preliminary assessment has shown that these data are helpful in generating lithology soil vegetation profiles of Ramgarh Crater region. These 'profile maps' would be useful for targeting the specific areas in the region for a closer look and ground truth verification during the field work and sample collection in the region.

  19. Extreme events in a vortex gas simulation of a turbulent half-jet

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Pathikonda, Gokul; Narasimha, Roddam

    2012-11-01

    Extensive simulations [arXiv:1008.2876v1 [physics.flu-dyn], BAPS.2010.DFD.LE.4] have shown that the temporally evolving vortex gas mixing layer has 3 regimes, including one which has a universal spreading rate. The present study explores the development of spatially evolving mixing layers, using a vortex gas model based on Basu et al. (1995 Appl. Math. Modelling). The effects of the velocity ratio (r) are analyzed via the most extensive simulations of this kind till date, involving up to 10000 vortices and averaging over up to 1000 convective times. While the temporal limit is approached as r approaches unity, striking features such as extreme events involving coherent structures, bending, deviation of the convection velocity from mean velocity, spatial feedback and greater sensitivity to downstream and free stream boundary conditions are observed in the half-jet (r = 0) limit. A detailed statistical analysis reveals possible causes for the large scatter across experiments, as opposed to the commonly adopted explanation of asymptotic dependence on initial conditions. Supported in part by contract no. Intel/RN/4288.

  20. a Geometrical Chart of Altered Temporality (and Spatiality)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod

    2005-10-01

    The paper presents, to our knowledge, a first fairly comprehensive and mathematically well-underpinned classification of the psychopathology of time (and space). After reviewing the most illustrative first-person accounts of "anomalous/peculiar" experiences of time (and, to a lesser degree, space) we introduce and describe in detail their algebraic geometrical model. The model features six qualitatively different types of the internal structure of time dimension and four types of that of space. As for time, the most pronounced are the ordinary "past-present-future," "present-only" ("eternal/everlasting now") and "no-present" (time "standing still") patterns. Concerning space, the most elementary are the ordinary, i.e., "here-and-there," mode and the "here-only" one ("omnipresence"). We then show what the admissible combinations of temporal and spatial psycho-patterns are and give a rigorous algebraic geometrical classification of them. The predictive power of the model is illustrated by the phenomenon of psychological time-reversal and the experiential difference between time and space. The paper ends with a brief account of some epistemological/ontological questions stemming from the approach.

  1. Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during Speech Perception

    PubMed Central

    Davis, Matthew H.

    2016-01-01

    Successful perception depends on combining sensory input with prior knowledge. However, the underlying mechanism by which these two sources of information are combined is unknown. In speech perception, as in other domains, two functionally distinct coding schemes have been proposed for how expectations influence representation of sensory evidence. Traditional models suggest that expected features of the speech input are enhanced or sharpened via interactive activation (Sharpened Signals). Conversely, Predictive Coding suggests that expected features are suppressed so that unexpected features of the speech input (Prediction Errors) are processed further. The present work is aimed at distinguishing between these two accounts of how prior knowledge influences speech perception. By combining behavioural, univariate, and multivariate fMRI measures of how sensory detail and prior expectations influence speech perception with computational modelling, we provide evidence in favour of Prediction Error computations. Increased sensory detail and informative expectations have additive behavioural and univariate neural effects because they both improve the accuracy of word report and reduce the BOLD signal in lateral temporal lobe regions. However, sensory detail and informative expectations have interacting effects on speech representations shown by multivariate fMRI in the posterior superior temporal sulcus. When prior knowledge was absent, increased sensory detail enhanced the amount of speech information measured in superior temporal multivoxel patterns, but with informative expectations, increased sensory detail reduced the amount of measured information. Computational simulations of Sharpened Signals and Prediction Errors during speech perception could both explain these behavioural and univariate fMRI observations. However, the multivariate fMRI observations were uniquely simulated by a Prediction Error and not a Sharpened Signal model. The interaction between prior expectation and sensory detail provides evidence for a Predictive Coding account of speech perception. Our work establishes methods that can be used to distinguish representations of Prediction Error and Sharpened Signals in other perceptual domains. PMID:27846209

  2. Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Khan, Muhammad Asif

    2010-10-01

    Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.

  3. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults.

    PubMed

    Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J

    2018-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development.

  4. Reprint of: Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences.

    PubMed

    Heideman, Simone G; van Ede, Freek; Nobre, Anna C

    2018-05-24

    In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation

    PubMed Central

    Kauppi, Jukka-Pekka; Hahne, Janne; Müller, Klaus-Robert; Hyvärinen, Aapo

    2015-01-01

    Classifying multivariate electromyography (EMG) data is an important problem in prosthesis control as well as in neurophysiological studies and diagnosis. With modern high-density EMG sensor technology, it is possible to capture the rich spectrospatial structure of the myoelectric activity. We hypothesize that multi-way machine learning methods can efficiently utilize this structure in classification as well as reveal interesting patterns in it. To this end, we investigate the suitability of existing three-way classification methods to EMG-based hand movement classification in spectrospatial domain, as well as extend these methods by sparsification and regularization. We propose to use Fourier-domain independent component analysis as preprocessing to improve classification and interpretability of the results. In high-density EMG experiments on hand movements across 10 subjects, three-way classification yielded higher average performance compared with state-of-the art classification based on temporal features, suggesting that the three-way analysis approach can efficiently utilize detailed spectrospatial information of high-density EMG. Phase and amplitude patterns of features selected by the classifier in finger-movement data were found to be consistent with known physiology. Thus, our approach can accurately resolve hand and finger movements on the basis of detailed spectrospatial information, and at the same time allows for physiological interpretation of the results. PMID:26039100

  6. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sensitivity of temporal heart rate variability in Poincaré plot to changes in parasympathetic nervous system activity.

    PubMed

    Karmakar, Chandan K; Khandoker, Ahsan H; Voss, Andreas; Palaniswami, Marimuthu

    2011-03-03

    A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.

  8. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  9. Inverse methods for estimating primary input signals from time-averaged isotope profiles

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Cerling, Thure E.; Schuster, Gerard T.; Robinson, Todd F.; Roeder, Beverly L.; Krueger, Stephen K.

    2005-08-01

    Mammalian teeth are invaluable archives of ancient seasonality because they record along their growth axes an isotopic record of temporal change in environment, plant diet, and animal behavior. A major problem with the intra-tooth method is that intra-tooth isotope profiles can be extremely time-averaged compared to the actual pattern of isotopic variation experienced by the animal during tooth formation. This time-averaging is a result of the temporal and spatial characteristics of amelogenesis (tooth enamel formation), and also results from laboratory sampling. This paper develops and evaluates an inverse method for reconstructing original input signals from time-averaged intra-tooth isotope profiles. The method requires that the temporal and spatial patterns of amelogenesis are known for the specific tooth and uses a minimum length solution of the linear system Am = d, where d is the measured isotopic profile, A is a matrix describing temporal and spatial averaging during amelogenesis and sampling, and m is the input vector that is sought. Accuracy is dependent on several factors, including the total measurement error and the isotopic structure of the measured profile. The method is shown to accurately reconstruct known input signals for synthetic tooth enamel profiles and the known input signal for a rabbit that underwent controlled dietary changes. Application to carbon isotope profiles of modern hippopotamus canines reveals detailed dietary histories that are not apparent from the measured data alone. Inverse methods show promise as an effective means of dealing with the time-averaging problem in studies of intra-tooth isotopic variation.

  10. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  11. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry.

    PubMed

    Naghizadeh, Farzaneh; Garas, Anita; Vargha, Péter; Holló, Gábor

    2014-01-01

    To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P<0.0001) coefficients of determination (R) were found for all 16 RNFLT sectors. The R values were highest for the temporal, superotemporal, and inferotemporal RNFLT sectors (0.4483 to 0.5186). For GDx-VCC/ECC, significant (P<0.01) parabolic relationship was seen for all but the temporal and nasal RNFLT sectors. The overall highest R value (0.6943) was found for a superotemporal RNFLT sector with GDx-ECC. For some RNFLT sectors, the goodness of fit differed significantly between the imaging methods. Structure-function relationship was similar for the total population and the glaucoma subgroup, whereas no relationship (P>0.05) was found for the control eyes. Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.

  12. Physical modeling of the formation and evolution of seismically active fault zones

    USGS Publications Warehouse

    Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A.

    1997-01-01

    Acoustic emission (AE) in rocks is studied as a model of natural seismicity. A special technique for rock loading has been used to help study the processes that control the development of AE during brittle deformation. This technique allows us to extend to hours fault growth which would normally occur very rapidly. In this way, the period of most intense interaction of acoustic events can be studied in detail. Characteristics of the acoustic regime (AR) include the Gutenberg-Richter b-value, spatial distribution of hypocenters with characteristic fractal (correlation) dimension d, Hurst exponent H, and crack concentration parameter Pc. The fractal structure of AR changes with the onset of the drop in differential stress during sample deformation. The change results from the active interaction of microcracks. This transition of the spatial distribution of AE hypocenters is accompanied by a corresponding change in the temporal correlation of events and in the distribution of event amplitudes as signified by a decrease of b-value. The characteristic structure that develops in the low-energy background AE is similar to the sequence of the strongest microfracture events. When the AR fractal structure develops, the variations of d and b are synchronous and d = 3b. This relation which occurs once the fractal structure is formed only holds for average values of d and b. Time variations of d and b are anticorrelated. The degree of temporal correlation of AR has time variations that are similar to d and b variations. The observed variations in laboratory AE experiments are compared with natural seismicity parameters. The close correspondence between laboratory-scale observations and naturally occurring seismicity suggests a possible new approach for understanding the evolution of complex seismicity patterns in nature. ?? 1997 Elsevier Science B.V. All rights reserved.

  13. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  14. Hierarchical organization in the temporal structure of infant-direct speech and song.

    PubMed

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Temporal Dependency and the Structure of Early Looking.

    PubMed

    Messinger, Daniel S; Mattson, Whitney I; Todd, James Torrence; Gangi, Devon N; Myers, Nicholas D; Bahrick, Lorraine E

    2017-01-01

    Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking.

  16. Temporal Dependency and the Structure of Early Looking

    PubMed Central

    Messinger, Daniel S.; Mattson, Whitney I.; Todd, James Torrence; Gangi, Devon N.; Myers, Nicholas D.; Bahrick, Lorraine E.

    2017-01-01

    Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking. PMID:28076362

  17. Modeling of Transient Flow Mixing of Streams Injected into a Mixing Chamber

    NASA Technical Reports Server (NTRS)

    Voytovych, Dmytro M.; Merkle, Charles L.; Lucht, Robert P.; Hulka, James R.; Jones, Gregg W.

    2006-01-01

    Ignition is recognized as one the critical drivers in the reliability of multiple-start rocket engines. Residual combustion products from previous engine operation can condense on valves and related structures thereby creating difficulties for subsequent starting procedures. Alternative ignition methods that require fewer valves can mitigate the valve reliability problem, but require improved understanding of the spatial and temporal propellant distribution in the pre-ignition chamber. Current design tools based mainly on one-dimensional analysis and empirical models cannot predict local details of the injection and ignition processes. The goal of this work is to evaluate the capability of the modern computational fluid dynamics (CFD) tools in predicting the transient flow mixing in pre-ignition environment by comparing the results with the experimental data. This study is a part of a program to improve analytical methods and methodologies to analyze reliability and durability of combustion devices. In the present paper we describe a series of detailed computational simulations of the unsteady mixing events as the cold propellants are first introduced into the chamber as a first step in providing this necessary environmental description. The present computational modeling represents a complement to parallel experimental simulations' and includes comparisons with experimental results from that effort. A large number of rocket engine ignition studies has been previously reported. Here we limit our discussion to the work discussed in Refs. 2, 3 and 4 which is both similar to and different from the present approach. The similarities arise from the fact that both efforts involve detailed experimental/computational simulations of the ignition problem. The differences arise from the underlying philosophy of the two endeavors. The approach in Refs. 2 to 4 is a classical ignition study in which the focus is on the response of a propellant mixture to an ignition source, with emphasis on the level of energy needed for ignition and the ensuing flame propagation issues. Our focus in the present paper is on identifying the unsteady mixing processes that provide the propellant mixture in which the ignition source is to be placed. In particular, we wish to characterize the spatial and temporal mixture distribution with a view toward identifying preferred spatial and temporal locations for the ignition source. As such, the present work is limited to cold flow (pre-ignition) conditions

  18. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  19. A Critical Role for the Hippocampus in the Valuation of Imagined Outcomes

    PubMed Central

    Lebreton, Maël; Bertoux, Maxime; Boutet, Claire; Lehericy, Stéphane; Dubois, Bruno; Fossati, Philippe; Pessiglione, Mathias

    2013-01-01

    Many choice situations require imagining potential outcomes, a capacity that was shown to involve memory brain regions such as the hippocampus. We reasoned that the quality of hippocampus-mediated simulation might therefore condition the subjective value assigned to imagined outcomes. We developed a novel paradigm to assess the impact of hippocampus structure and function on the propensity to favor imagined outcomes in the context of intertemporal choices. The ecological condition opposed immediate options presented as pictures (hence directly observable) to delayed options presented as texts (hence requiring mental stimulation). To avoid confounding simulation process with delay discounting, we compared this ecological condition to control conditions using the same temporal labels while keeping constant the presentation mode. Behavioral data showed that participants who imagined future options with greater details rated them as more likeable. Functional MRI data confirmed that hippocampus activity could account for subjects assigning higher values to simulated options. Structural MRI data suggested that grey matter density was a significant predictor of hippocampus activation, and therefore of the propensity to favor simulated options. Conversely, patients with hippocampus atrophy due to Alzheimer's disease, but not patients with Fronto-Temporal Dementia, were less inclined to favor options that required mental simulation. We conclude that hippocampus-mediated simulation plays a critical role in providing the motivation to pursue goals that are not present to our senses. PMID:24167442

  20. Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan

    2014-02-28

    We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5 ns, continuous shifts in PL lifetime distributions with respectmore » to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.« less

  1. Injection tube differentiation in gun cells of a haptoglossa species which infects nematodes

    PubMed

    Beakes; Glockling

    1998-06-01

    The gun cells which develop from germinating cysts in Haptoglossa produce a specialized infection apparatus, the injection tube. Upon eversion this tube fires a missile-like projectile which penetrates the host cuticle and then forms an infective sporidium within the body cavity of the nematode host. The temporal assembly of this complex cell organelle has been determined by serial-section reconstructions of maturing gun cells in a previously undescribed Haptoglossa species. The differentiation of the partially walled inverted injection tube is an unusual example of internal tube growth, in which membrane and wall assembly are temporally separated. There is no evidence that the shape of this inverted tube, which coils around the nucleus until it doubles back on itself, is dictated by the disposition of cytoplasmic microtubules. However, actin-like material was associated with the delimiting membrane of the differentiating tube, particularly in the regions of extension. From these studies it seems likely that the "head and buttress" structures previously depicted as the barbed tip of the "harpoon-like" penetration missile are part of a separate, structurally complex system which we suggest locks the "missile" into position in the invaginated injection tube. From this detailed account of cell architecture, models for the likely mechanism of infection cell firing are discussed, and unresolved questions relating to the cell biology and biochemistry of these complex organelles are highlighted. Copyright 1998 Academic Press.

  2. High resolution MRI anatomy of the cat brain at 3 Tesla

    PubMed Central

    Gray-Edwards, Heather L.; Salibi, Nouha; Josephson, Eleanor M.; Hudson, Judith A.; Cox, Nancy R.; Randle, Ashley N.; McCurdy, Victoria J.; Bradbury, Allison M.; Wilson, Diane U.; Beyers, Ronald J.; Denney, Thomas S.; Martin, Douglas R.

    2014-01-01

    Background Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson’s disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. New Method 3 Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3×0.3×1 mm3 resolution). Anatomic structures were identified based on feline and canine histology. Results T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. Comparison with Existing Methods Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in 3 dimensions for the first time. Conclusions These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models. PMID:24525327

  3. Beyond the Shadow of a Trait: Understanding Discounting through Item-Level Analysis of Personality Scales

    ERIC Educational Resources Information Center

    Charlton, Shawn R.; Gossett, Bradley D.; Charlton, Veda A.

    2011-01-01

    Temporal discounting, the loss in perceived value associated with delayed outcomes, correlates with a number of personality measures, suggesting that an item-level analysis of trait measures might provide a more detailed understanding of discounting. The current report details two studies that investigate the utility of such an item-level…

  4. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    PubMed Central

    Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe

    2018-01-01

    With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588

  5. Computational dynamic approaches for temporal omics data with applications to systems medicine.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2017-01-01

    Modeling and predicting biological dynamic systems and simultaneously estimating the kinetic structural and functional parameters are extremely important in systems and computational biology. This is key for understanding the complexity of the human health, drug response, disease susceptibility and pathogenesis for systems medicine. Temporal omics data used to measure the dynamic biological systems are essentials to discover complex biological interactions and clinical mechanism and causations. However, the delineation of the possible associations and causalities of genes, proteins, metabolites, cells and other biological entities from high throughput time course omics data is challenging for which conventional experimental techniques are not suited in the big omics era. In this paper, we present various recently developed dynamic trajectory and causal network approaches for temporal omics data, which are extremely useful for those researchers who want to start working in this challenging research area. Moreover, applications to various biological systems, health conditions and disease status, and examples that summarize the state-of-the art performances depending on different specific mining tasks are presented. We critically discuss the merits, drawbacks and limitations of the approaches, and the associated main challenges for the years ahead. The most recent computing tools and software to analyze specific problem type, associated platform resources, and other potentials for the dynamic trajectory and interaction methods are also presented and discussed in detail.

  6. Information filtering in evolving online networks

    NASA Astrophysics Data System (ADS)

    Chen, Bo-Lun; Li, Fen-Fen; Zhang, Yong-Jun; Ma, Jia-Lin

    2018-02-01

    Recommender systems use the records of users' activities and profiles of both users and products to predict users' preferences in the future. Considerable works towards recommendation algorithms have been published to solve the problems such as accuracy, diversity, congestion, cold-start, novelty, coverage and so on. However, most of these research did not consider the temporal effects of the information included in the users' historical data. For example, the segmentation of the training set and test set was completely random, which was entirely different from the real scenario in recommender systems. More seriously, all the objects are treated as the same, regardless of the new, the popular or obsoleted products, so do the users. These data processing methods always lose useful information and mislead the understanding of the system's state. In this paper, we detailed analyzed the difference of the network structure between the traditional random division method and the temporal division method on two benchmark data sets, Netflix and MovieLens. Then three classical recommendation algorithms, Global Ranking method, Collaborative Filtering and Mass Diffusion method, were employed. The results show that all these algorithms became worse in all four key indicators, ranking score, precision, popularity and diversity, in the temporal scenario. Finally, we design a new recommendation algorithm based on both users' and objects' first appearance time in the system. Experimental results showed that the new algorithm can greatly improve the accuracy and other metrics.

  7. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental variable subsets that were significantly correlated with temporal change in the macroinvertebrate and fish community structure. Other important environmental variables related to temporal change in the biological community structure included those describing channel form (streambank height) and streamflow (normalized annual mean daily flow, high flood-pulse count). Site-specific results from this study were derived from a relatively small number of observations (6 or 8 years of data); therefore, additional years of data may reveal other sites with temporal change in biological community structure, or could define stronger and more consistent linkages between environmental variables and observed temporal change. Likewise current variable subsets could become weaker. Nonetheless, there were several sites where temporal change was detected in this study that could not be explained by the available environmental variables studied herein. Modification of current data-collection activities may be necessary to better understand site-specific temporal relations between biological communities and environmental variables.

  8. A robust measure of HIV-1 population turnover within chronically infected individuals.

    PubMed

    Achaz, G; Palmer, S; Kearney, M; Maldarelli, F; Mellors, J W; Coffin, J M; Wakeley, J

    2004-10-01

    A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be detected for samples separated by about 22 months or more. The performance of the method, which was originally proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations. Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be between 10(3) and 10(4) viruses, which is in agreement with some previous estimates. Using this estimate and a simple measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 x 10(-6) per site per generation in the gag-pol region. The definition and interpretation of estimates of such "effective" population parameters are discussed.

  9. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    PubMed

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  10. Topological Behavior of Plasmid DNA

    PubMed Central

    Higgins, N. Patrick; Vologodskii, Alexander V.

    2015-01-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells. PMID:26104708

  11. Sex-dependent correlations between the personality dimension of harm avoidance and the resting-state functional connectivity of amygdala subregions.

    PubMed

    Li, Ying; Qin, Wen; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2012-01-01

    Harm avoidance (HA) is a personality dimension involving the tendency to respond intensely to signals of aversive stimuli. Many previous neuroimaging studies have associated HA scores with the structural and functional organization of the amygdala, but none of these studies have evaluated the correlation between HA score and amygdala resting-state functional connectivity (rsFC). Moreover, the amygdala is not a homogeneous structure, and it has been divided into several structurally and functionally distinct subregions. Investigating the associations between HA score and properties of subregions of the amygdala could greatly improve our understanding of HA. In the present study, using a large sample of 291 healthy young adults, we aimed to uncover correlations between HA scores and the rsFCs of each amygdala subregion and to uncover possible sex-based differences in these correlations. We found that subregions of the amygdala showed different rsFC patterns, which contributed differently to individual HA scores. More specifically, HA scores were correlated with rsFCs between the laterobasal amygdala subregion and temporal and occipital cortices related to emotional information input, between the centromedial subregion and the frontal cortices associated with emotional output control, and between the superficial subregion and the frontal and temporal areas involved in both functions. Moreover, significant gender-based differences were uncovered in these correlations. Our findings provide a more detailed model of association between HA scores and amygdala rsFC, extend our understanding of the connectivity of subregions of the amygdala, and confirm sex-based differences in HA associations.

  12. Quantifying Biomass and Bare Earth Changes from the Hayman Fire Using Multi-temporal Lidar

    NASA Astrophysics Data System (ADS)

    Stoker, J. M.; Kaufmann, M. R.; Greenlee, S. K.

    2007-12-01

    Small-footprint multiple-return lidar data collected in the Cheesman Lake property prior to the 2002 Hayman fire in Colorado provided an excellent opportunity to evaluate Lidar as a tool to predict and analyze fire effects on both soil erosion and overstory structure. Re-measuring this area and applying change detection techniques allowed for analyses at a high level of detail. Our primary objectives focused on the use of change detection techniques using multi-temporal lidar data to: (1) evaluate the effectiveness of change detection to identify and quantify areas of erosion or deposition caused by post-fire rain events and rehab activities; (2) identify and quantify areas of biomass loss or forest structure change due to the Hayman fire; and (3) examine effects of pre-fire fuels and vegetation structure derived from lidar data on patterns of burn severity. While we were successful in identifying areas where changes occurred, the original error bounds on the variation in actual elevations made it difficult, if not misleading to quantify volumes of material changed on a per pixel basis. In order to minimize these variations in the two datasets, we investigated several correction and co-registration methodologies. The lessons learned from this project highlight the need for a high level of flight planning and understanding of errors in a lidar dataset in order to correctly estimate and report quantities of vertical change. Directly measuring vertical change using only lidar without ancillary information can provide errors that could make quantifications confusing, especially in areas with steep slopes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Chris, E-mail: cyuan@uwm.edu; Wang, Endong; Zhai, Qiang

    Temporal homogeneity of inventory data is one of the major problems in life cycle assessment (LCA). Addressing temporal homogeneity of life cycle inventory data is important in reducing the uncertainties and improving the reliability of LCA results. This paper attempts to present a critical review and discussion on the fundamental issues of temporal homogeneity in conventional LCA and propose a theoretical framework for temporal discounting in LCA. Theoretical perspectives for temporal discounting in life cycle inventory analysis are discussed first based on the key elements of a scientific mechanism for temporal discounting. Then generic procedures for performing temporal discounting inmore » LCA is derived and proposed based on the nature of the LCA method and the identified key elements of a scientific temporal discounting method. A five-step framework is proposed and reported in details based on the technical methods and procedures needed to perform a temporal discounting in life cycle inventory analysis. Challenges and possible solutions are also identified and discussed for the technical procedure and scientific accomplishment of each step within the framework. - Highlights: • A critical review for temporal homogeneity problem of life cycle inventory data • A theoretical framework for performing temporal discounting on inventory data • Methods provided to accomplish each step of the temporal discounting framework.« less

  14. 4-D Imaging and Modeling of Eta Carinae's Inner Fossil Wind Structures

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.; Gull, Theodore; Teodoro, Mairan; Clementel, Nicola; Corcoran, Michael; Damineli, Augusto; Groh, Jose; Hamaguchi, Kenji; Hillier, D. John; Moffat, Anthony; Richardson, Noel; Weigelt, Gerd; Lindler, Don; Feggans, Keith

    2017-11-01

    Eta Carinae is the most massive active binary within 10,000 light-years and is famous for the largest non-terminal stellar explosion ever recorded. Observations reveal that the supermassive (~120 M⊙) binary, consisting of an LBV and either a WR or extreme O star, undergoes dramatic changes every 5.54 years due to the stars' very eccentric orbits (e ~ 0.9). Many of these changes are caused by a dynamic wind-wind collision region (WWCR) between the stars, plus expanding fossil WWCRs formed one, two, and three 5.54-year cycles ago. The fossil WWCRs can be spatially and spectrally resolved by the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). Starting in June 2009, we used the HST/STIS to spatially map Eta Carinae's fossil WWCRs across one full orbit, following temporal changes in several forbidden emission lines (e.g. [Feiii] 4659 Å, [Feii] 4815 Å), creating detailed data cubes at multiple epochs. Multiple wind structures were imaged, revealing details about the binary's orbital motion, photoionization properties, and recent (~5 - 15 year) mass-loss history. These observations allow us to test 3-D hydrodynamical and radiative-transfer models of the interacting winds. Our observations and models strongly suggest that the wind and photoionization properties of Eta Carinae's binary have not changed substantially over the past several orbital cycles. They also provide a baseline for following future changes in Eta Carinae, essential for understanding the late-stage evolution of this nearby supernova progenitor. For more details, see Gull et al. (2016) and references therein.

  15. The organisation of spatial and temporal relations in memory.

    PubMed

    Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D

    2017-04-01

    Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.

  16. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  17. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.

    PubMed

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-07

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.

  18. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives

    PubMed Central

    Bonizzoni, Mariangela; Gasperi, Giuliano; Chen, Xioaguang; James, Anthony A.

    2013-01-01

    One of the most dynamic events in public health is being mediated by the global spread of the invasive mosquito Aedes albopictus. Its rapid expansion and vectorial capacity for various arboviruses affect an increasingly larger proportion of the world population. Responses to the challenges of controlling this vector are expected to be enhanced by an increased knowledge of its biology, ecology, and vector competence. Details of population genetics and structure will allow following, and possibly predicting, the geographical and temporal dynamics of its expansion, and will inform the practical operations of control programs. Experts are coming together now to describe the history, characterize the present circumstances, and collaborate on future efforts to understand and mitigate this emerging public health threat. PMID:23916878

  19. Ossicular fusion and cholesteatoma in auriculo-condylar syndrome: in vivo evidence of arrest of embryogenesis.

    PubMed

    Propst, Evan J; Ngan, Bo Y; Mount, Richard J; Martin-Munoz, Daniel; Blaser, Susan; Harrison, Robert V; Cushing, Sharon L; Papsin, Blake C

    2013-02-01

    Auriculo-condylar syndrome (ACS) is a rare condition affecting first branchial arch structures. The types of hearing loss and temporal bone findings in ACS have not been reported. We describe a 14-year-old male with constricted pinnae, mandibular dysostosis, glossoptosis, a high-arched palate, hearing loss, and cholesteatoma. Computed tomography imaging demonstrated malleoincudal joint ankylosis. The fused malleoincudal complex was removed during mastoidectomy for cholesteatoma. Electron microscopy and histopathology of the joint suggested the fusion was congenital. This is the first report of ossicular fusion and cholesteatoma in ACS and the most detailed in vivo evidence of disruption of embryogenesis during malleoincudal joint formation. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  20. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics.

  1. Uncovering Neuronal Networks Defined by Consistent Between-Neuron Spike Timing from Neuronal Spike Recordings

    PubMed Central

    2018-01-01

    Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811

  2. Seeking Temporal Predictability in Speech: Comparing Statistical Approaches on 18 World Languages

    PubMed Central

    Jadoul, Yannick; Ravignani, Andrea; Thompson, Bill; Filippi, Piera; de Boer, Bart

    2016-01-01

    Temporal regularities in speech, such as interdependencies in the timing of speech events, are thought to scaffold early acquisition of the building blocks in speech. By providing on-line clues to the location and duration of upcoming syllables, temporal structure may aid segmentation and clustering of continuous speech into separable units. This hypothesis tacitly assumes that learners exploit predictability in the temporal structure of speech. Existing measures of speech timing tend to focus on first-order regularities among adjacent units, and are overly sensitive to idiosyncrasies in the data they describe. Here, we compare several statistical methods on a sample of 18 languages, testing whether syllable occurrence is predictable over time. Rather than looking for differences between languages, we aim to find across languages (using clearly defined acoustic, rather than orthographic, measures), temporal predictability in the speech signal which could be exploited by a language learner. First, we analyse distributional regularities using two novel techniques: a Bayesian ideal learner analysis, and a simple distributional measure. Second, we model higher-order temporal structure—regularities arising in an ordered series of syllable timings—testing the hypothesis that non-adjacent temporal structures may explain the gap between subjectively-perceived temporal regularities, and the absence of universally-accepted lower-order objective measures. Together, our analyses provide limited evidence for predictability at different time scales, though higher-order predictability is difficult to reliably infer. We conclude that temporal predictability in speech may well arise from a combination of individually weak perceptual cues at multiple structural levels, but is challenging to pinpoint. PMID:27994544

  3. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    PubMed Central

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314

  4. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    NASA Astrophysics Data System (ADS)

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-09-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.

  5. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS).

    PubMed

    Velarde, Luis; Wang, Hong-Fei

    2013-12-14

    The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.

  6. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  7. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    NASA Astrophysics Data System (ADS)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  8. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability

    PubMed Central

    Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852

  9. Correlations of External Landmarks With Internal Structures of the Temporal Bone.

    PubMed

    Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen

    2015-09-01

    The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical variants encountered in temporal bone dissection can be inferred from the distance between external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.

  10. Syntactic structure building in the anterior temporal lobe during natural story listening.

    PubMed

    Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J; Pylkkänen, Liina

    2012-02-01

    The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to reconcile because they rely on different laboratory tasks which tap into distinct computations, and may only indirectly relate to natural sentence processing. Here we assessed neural correlates of syntactic structure building in natural language comprehension, free from artificial task demands. Subjects passively listened to Alice in Wonderland during functional magnetic resonance imaging and we correlated brain activity with a word-by-word measure of the amount syntactic structure analyzed. Syntactic structure building correlated with activity in the left anterior temporal lobe, but there was no evidence for a correlation between syntactic structure building and activity in inferior frontal areas. Our results suggest that the anterior temporal lobe computes syntactic structure under natural conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.

    PubMed

    Eddins, Ann Clock; Eddins, David A

    This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000-Hz dichotic conditions, consistent with similar use of binaural temporal envelope cues across age in these conditions. For all groups, thresholds and derived BMLD values obtained using the behavioral and CAEP methods were strongly correlated, supporting the notion that CAEP measures may be useful as an objective index of age-related changes in binaural temporal processing. These results demonstrate an age-related decline in the processing of binaural temporal fine-structure cues with preserved temporal envelope coding that was similar with and without mild-to-moderate peripheral hearing loss. Such age-related changes can be reliably indexed by both behavioral and CAEP measures in young and older adults.

  12. Coverage centralities for temporal networks*

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Yano, Yosuke; Yoshida, Yuichi

    2016-02-01

    Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-60498-7

  13. High-resolution structure, interactions, and dynamics of self-assembled virus-like partilces

    NASA Astrophysics Data System (ADS)

    Raviv, Uri; Asor, R.; Ben-Shaul, O.; Oppenheim, A.; Schlicksup, L. C.; Seltzer, L.; Jarrold, M. F.; Zlotnick, A.

    Using SAXS, in combination with Monte Carlo simulations, and our unique solution x-ray scattering data analysis program, we resolved at high spatial resolution, the manner by which wtSV40 packages its 5.2kb circular DNA about 20 histone octamers in the virus capsid (Figure 1). This structure, known as a mini-chromosome, is highly dynamic and could not be resolved by microscopy methods. Using time-resolved solution SAXS, stopped-flow, and flow-through setups the assembly process of VP1, the major caspid protein of the SV40 virus, with RNA or DNA to form virus-like particles (VLPs) was studied in msec temporal resolution. By mixing the nucleotides and the capsid protein, virus-like particles formed within 35 msec, in the case of RNA that formed T =1 particles, and within 15 seconds in the case of DNA that formed T =7 particles, similar to wt SV40. The structural changes leading to the particle formation were followed in detail. More recently, we have extended this work to study the assembly of HBV virus-like particles.

  14. Review of combined isotopic and optical nanoscopy

    PubMed Central

    Richter, Katharina N.; Rizzoli, Silvio O.; Jähne, Sebastian; Vogts, Angela; Lovric, Jelena

    2017-01-01

    Abstract. Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the “history” of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology. PMID:28466025

  15. Temporal distance and person memory: thinking about the future changes memory for the past.

    PubMed

    Wyer, Natalie A; Perfect, Timothy J; Pahl, Sabine

    2010-06-01

    Psychological distance has been shown to influence how people construe an event such that greater distance produces high-level construal (characterized by global or holistic processing) and lesser distance produces low-level construal (characterized by detailed or feature-based processing). The present research tested the hypothesis that construal level has carryover effects on how information about an event is retrieved from memory. Two experiments manipulated temporal distance and found that greater distance (high-level construal) improves face recognition and increases retrieval of the abstract features of an event, whereas lesser distance (low-level construal) impairs face recognition and increases retrieval of the concrete details of an event. The findings have implications for transfer-inappropriate processing accounts of face recognition and event memory, and suggest potential applications in forensic settings.

  16. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity

    PubMed Central

    2014-01-01

    Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386

  17. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity.

    PubMed

    Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily

    2014-01-22

    Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.

  18. Temporally flexible feedback signal to foveal cortex for peripheral object recognition

    PubMed Central

    Fan, Xiaoxu; Wang, Lan; Shao, Hanyu; Kersten, Daniel; He, Sheng

    2016-01-01

    Recent studies have shown that information from peripherally presented images is present in the human foveal retinotopic cortex, presumably because of feedback signals. We investigated this potential feedback signal by presenting noise in fovea at different object–noise stimulus onset asynchronies (SOAs), whereas subjects performed a discrimination task on peripheral objects. Results revealed a selective impairment of performance when foveal noise was presented at 250-ms SOA, but only for tasks that required comparing objects’ spatial details, suggesting a task- and stimulus-dependent foveal processing mechanism. Critically, the temporal window of foveal processing was shifted when mental rotation was required for the peripheral objects, indicating that the foveal retinotopic processing is not automatically engaged at a fixed time following peripheral stimulation; rather, it occurs at a stage when detailed information is required. Moreover, fMRI measurements using multivoxel pattern analysis showed that both image and object category-relevant information of peripheral objects was represented in the foveal cortex. Taken together, our results support the hypothesis of a temporally flexible feedback signal to the foveal retinotopic cortex when discriminating objects in the visual periphery. PMID:27671651

  19. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    PubMed Central

    2011-01-01

    Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141

  20. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence.

    PubMed

    Freedman, Zachary; Zak, Donald R

    2015-09-01

    Soil microbial communities are abundant, hyper-diverse and mediate global biogeochemical cycles, but we do not yet understand the processes mediating their assembly. Current hypothetical frameworks suggest temporal (e.g. dispersal limitation) and environmental (e.g. soil pH) filters shape microbial community composition; however, there is limited empirical evidence supporting this framework in the hyper-diverse soil environment, particularly at large spatial (i.e. regional to continental) and temporal (i.e. 100 to 1000 years) scales. Here, we present evidence from a long-term chronosequence (4000 years) that temporal and environmental filters do indeed shape soil bacterial community composition. Furthermore, nearly 20 years of environmental monitoring allowed us to control for potentially confounding environmental variation. Soil bacterial communities were phylogenetically distinct across the chronosequence. We determined that temporal and environmental factors accounted for significant portions of bacterial phylogenetic structure using distance-based linear models. Environmental factors together accounted for the majority of phylogenetic structure, namely, soil temperature (19%), pH (17%) and litter carbon:nitrogen (C:N; 17%). However, of all individual factors, time since deglaciation accounted for the greatest proportion of bacterial phylogenetic structure (20%). Taken together, our results provide empirical evidence that temporal and environmental filters act together to structure soil bacterial communities across large spatial and long-term temporal scales. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  2. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE PAGES

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  3. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A research program was undertaken to develop a new experimental technique commonly known as particle image displacement velocity (PIVD) to measure an instantaneous two dimensional velocity field in a selected plane of flow field. This technique was successfully developed and applied to the study of several aerodynamic problems. A detailed description of the technique and a broad review of all the research activity carried out in this field are reported. A list of technical publications is also provided. The application of PIDV to unsteady flows with large scale structures is demonstrated in a study of the temporal evolution of the flow past an impulsively started circular cylinder. The instantaneous two dimensional flow in the transition region of a rectangular air jet was measured using PIDV and the details are presented. This experiment clearly demonstrates the PIDV capability in the measurement of turbulent flows. Preliminary experiments were also conducted to measure the instantaneous flow over a circular bump in a transonic flow. Several other experiments now routinely use PIDV as a non-intrustive measurement technique to obtain instantaneous two dimensional velocity fields.

  4. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  5. Damped-driven granular chains: An ideal playground for dark breathers and multibreathers

    NASA Astrophysics Data System (ADS)

    Chong, C.; Li, F.; Yang, J.; Williams, M. O.; Kevrekidis, I. G.; Kevrekidis, P. G.; Daraio, C.

    2014-03-01

    By applying an out-of-phase actuation at the boundaries of a uniform chain of granular particles, we demonstrate experimentally that time-periodic and spatially localized structures with a nonzero background (so-called dark breathers) emerge for a wide range of parameter values and initial conditions. We demonstrate a remarkable control over the number of breathers within the multibreather pattern that can be "dialed in" by varying the frequency or amplitude of the actuation. The values of the frequency (or amplitude) where the transition between different multibreather states occurs are predicted accurately by the proposed theoretical model, which is numerically shown to support exact dark breather and multibreather solutions. Moreover, we visualize detailed temporal and spatial profiles of breathers and, especially, of multibreathers using a full-field probing technology and enable a systematic favorable comparison among theory, computation, and experiments. A detailed bifurcation analysis reveals that the dark and multibreather families are connected in a "snaking" pattern, providing a roadmap for the identification of such fundamental states and their bistability in the laboratory.

  6. Fine flow structures in the transition region small-scale loops

    NASA Astrophysics Data System (ADS)

    Yan, L.; Peter, H.; He, J.; Wei, Y.

    2016-12-01

    The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale loops which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale loops. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of loop to help us understand the loop heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale loops and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the loop, which is independent of time. This feature appears as the loop appear and disappear as the loop un-visible. This is probably the signature of helical flow along the loop. The result suggests that the brightening of this kind of loop is probably due to the current dissipation heating in the twisted magnetic field flux tube.

  7. Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.

    2002-01-01

    In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.

  8. Temporal lobe volume predicts Wada memory test performance in patients with mesial temporal sclerosis.

    PubMed

    Ding, Kan; Gong, Yunhua; Modur, Pradeep N; Diaz-Arrastia, Ramon; Agostini, Mark; Gupta, Puneet; McColl, Roderick; Hays, Ryan; Van Ness, Paul

    2016-02-01

    The Wada test is widely used in the presurgical evaluation of potential temporal lobectomy patients to predict postoperative memory function. Expected asymmetry (EA), defined as Wada memory lateralized to the nonsurgical hemisphere, or a higher score after injection of the surgical hemisphere would be considered favorable in terms of postoperative memory outcome. However, in some cases, nonlateralized memory (NM) results, with no appreciable asymmetry, may occur because of impaired scores after both injections, often leading to denial of surgery. The reason for such nonlateralized Wada memory in patients with intractable temporal lobe epilepsy (TLE) remains unclear. Given that quantitative morphometric magnetic resonance imaging studies in TLE patients have shown bilateral regional atrophy in temporal and extratemporal structures, we hypothesized that the volume loss in contralateral temporal structures could contribute to nonlateralized Wada memory performance. To investigate this, we examined the relationship between the volume changes of temporal structures and Wada memory scores in patients with intractable TLE with mesial temporal sclerosis (MTS) using an age- and gender-matched control group. Memory was considered nonlateralized if the absolute difference in the total correct recall scores between ipsilateral and contralateral injections was <11%. Among 21 patients, Wada memory was lateralized in 15 and nonlateralized in 6 patients, with all the nonlateralized scores being observed in left TLE. The recall scores after ipsilateral injection were significantly lower in patients with an NM profile than an EA profile (23 ± 14% vs. 59 ± 18% correct recall, p ≤ 0.001). However, the recall scores after contralateral injection were low but similar between the two groups (25 ± 17% vs. 25 ± 15% correct recall, p=0.97). Compared to controls, all the patients showed greater volume loss in the temporal regions. However, patients with a NM profile showed significantly more volume loss than those with a lateralized memory profile in both contralateral and ipsilateral temporal regions (p<0.05). Left hemispheric Wada memory performance correlated positively with the size of the left mesial and neocortical temporal structures (r=0.49-0.63, p=0.005-0.04). Our study suggests that volume loss in the nonsurgical temporal structures is associated with nonlateralized Wada memory results in patients with intractable TLE. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Temporal relationship between high-energy proton acceleration and magnetic field changes during solar flares

    NASA Astrophysics Data System (ADS)

    Kurt, Victoria; Yushkov, Boris

    Understanding of the association of the magnetic field evolution in the corona and the temporal evolution of electromagnetic emissions produced by the accelerated particles during a solar flare can provide information about the nature of the energy-release process and its location. Recent high-spatial-resolution observations in HXR, UV and radio emissions allow one to study in detail a structure of two-ribbon flare site. According to these observations, the flare process can be divided into two different intervals with different temporal evolution of morphological structure: loop contraction during impulsive phase and subsequent loop expansion. On the other hand, the appearance of high-energy protons (with energy >300 MeV - an energy threshold of the pion production) in the solar atmosphere can be revealed from an emerging pion-decay component of high-energy gamma-ray emission. The present work is based on comparison of measurements of high-energy gamma-rays performed with the SONG detector onboard the CORONAS-F mission and reported observations of magnetic field evolution, such as HXR foot points (FP) separation and flare shear temporal behavior, or motion of UV/radio loops. We reliably identified the pion-decay component of gamma-ray emission in the course of five events attended with suitable spatial observations, namely, 2001 August 25, 2002 August 24, 2003 October 28, 2003 October 29, and 2005 January 20, and determined its onset time. We found that in these events the pion-decay emission occurred when the distance between conjugated foot-points of flare loops ceased to decrease and began to increase, i.e. changed from shrinkage to expansion. This result leads to the conclusion that the most efficient proton acceleration up to >300 MeV coincided in time with the radical reconfiguration of the magnetic field in the flare site. Earlier we found that the pion-decay emission onset in the 2003 October 28 flare was close to the time of maximum change rate of the magnetic flux calculated by Miklenic et al. (2009).

  10. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  11. Fractal structure enables temporal prediction in music.

    PubMed

    Rankin, Summer K; Fink, Philip W; Large, Edward W

    2014-10-01

    1/f serial correlations and statistical self-similarity (fractal structure) have been measured in various dimensions of musical compositions. Musical performances also display 1/f properties in expressive tempo fluctuations, and listeners predict tempo changes when synchronizing. Here the authors show that the 1/f structure is sufficient for listeners to predict the onset times of upcoming musical events. These results reveal what information listeners use to anticipate events in complex, non-isochronous acoustic rhythms, and this will entail innovative models of temporal synchronization. This finding could improve therapies for Parkinson's and related disorders and inform deeper understanding of how endogenous neural rhythms anticipate events in complex, temporally structured communication signals.

  12. A class of cellular automata modeling winnerless competition

    NASA Astrophysics Data System (ADS)

    Afraimovich, V.; Ordaz, F. C.; Urías, J.

    2002-06-01

    Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.

  13. Cerebellum, temporal predictability and the updating of a mental model.

    PubMed

    Kotz, Sonja A; Stockert, Anika; Schwartze, Michael

    2014-12-19

    We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form ('what') and stimulus occurrence ('when'). Consequently, behaviour is optimal when we can anticipate both the 'what' and 'when' dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Cerebellum, temporal predictability and the updating of a mental model

    PubMed Central

    Kotz, Sonja A.; Stockert, Anika; Schwartze, Michael

    2014-01-01

    We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form (‘what’) and stimulus occurrence (‘when’). Consequently, behaviour is optimal when we can anticipate both the ‘what’ and ‘when’ dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. PMID:25385781

  15. Repeated aeromagnetic surveys in Shinmoe-dake volcano, Japan by using unmanned helicopter

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Kaneko, T.; Ohminato, T.; Watanabe, A.; Takeo, M.; Yanagisawa, T.; Honda, Y.

    2016-12-01

    We repeatedly conducted aeromagnetic surveys at Shinmoe-dake volcano, Japan by using unmanned helicopter, and elucidated magnetization structure and its temporal change. At the beginning of 2011, Shinmoe-dake volcano has done magmatic eruptions. After ceasing activities of volcanic eruptions, the first aeromagnetic survey by an unmanned helicopter was performed in the western part of Shinmoe-dake volcano in May 2011. The advantage to use unmanned vehicle for volcanic survey is ability of the safe flight in lower altitude with precise tracks. It enable us forthcoming repeated survey on the same tracks and elucidate the temporal changes of the magnetic fields. The geomagnetic total intensity measurement flight was conducted by installing cesium optical pumping magnetometer on the helicopter, in which the measurement line intervals were almost 100 m and the altitudes were also fixed at almost 100 m above the ground except above the crater. Total measurement length was about 85 km. The data analysis revealed that the averaged magnetization is about 1.5 A/m, typical value of andesite rock, and some horizontal anomalies can be shown.After that, we conducted four repeated surveys so far, and notable temporal changes are detected just around the crater of Shinmoe-dake volcano due to gaining magnetization by cooling of lava which has accumulated in the crater at the 2011 eruptions. The cooling rate just follows square root of elapsed time from the eruptive events, and thus the cooling is being simply done by thermal diffusion. Magnetizing, however, goes on too fast to be done by thermal diffusion only at the surface of lava, and so the cooling may be very effectively done also inside the lava by evaporating water.In this paper, we'll show the detailed results of measurements and discuss the temporal changes of magnetization.

  16. Picosecond temporal contrast of Ti:Sapphire lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Mikhail P.; Khodakovskiy, Nikita

    2017-05-01

    The temporal shape of recompressed Ti:sapphire CPA pulses typically contains relatively long pre- and post- pedestals appearing on a picosecond time scale. Despite playing a key role in laser-matter interactions, these artifacts - especially the shape of the leading front of the recompressed pulses - are poorly investigated and understood. The related publications consider picosecond pedestals appearing at both fronts of the main pulse to be related to scattering of the stretched pulse off diffraction gratings inside the stretcher or due to clipping of the pulse spectrum at dielectric coatings. In our experiments we analyzed different types of stretcher-compressor combinations used in Ti:Sapphire laser systems. These include a prism-based stretcher and a bulk compressor, transmission and reflection diffraction gratings - based combinations. We identified pedestals that are typical for the particular stretcher-compressor combination. Especially investigated are those which are coherent with the major recompressed pulse, since with self-phase modulation in power amplifiers they will grow nonlinearly and finally appear symmetric around the major pulse, generating the pre-pedestal from the post-pedestal. Thus, a previously unreported influence of the trailing pedestal has been identified. It is commonly known that recompressed pulses from Ti:sapphire chirped-pulse amplifier systems are accompanied by a slowly decaying ragged post-pedestal. The detailed investigation shows that it consists of numerous pulses with temporal separation in the picosecond range. These are coherent with the main pulse. Moreover, the temporal structure of the trailing pedestal is independent of the particular realization of the Ti:sapphire system and it is present in radiation of any Ti:Sapphire CPA system including Kerr- mode locked master oscillators. Our investigations show that the coherent ragged post-pedestal is the post-radiation of inverted Ti:sapphire medium resulting from phonon-photon interactions.

  17. High-cadence observations of spicular-type events and their wave-signatures

    NASA Astrophysics Data System (ADS)

    Shetye, Juie

    2016-05-01

    We present, a statistical study of spectral images, taken from the CRISP instrument at the Swedish 1-m Solar Telescope in H-alpha 656.28 nm of fast spicules with Doppler velocities in the range of -41km/s to +41 km/s. Remarkably, many of these spicules display apparent velocities above 500 km/s, very short lifetimes of up to 20 s combined with width or thickness of 100 km and apparent lengths of around 3500 km. Here we present, the other spectral properties of these events in the H-alpha line scan. Most features showed signature in multiple line position as we scan along the line scan. In around 89 % of the cases, there is temporal offset by 3.7 s to 5 s between the red-wing and blue-wing signatures. Another result is that 25% of cases are repetitive i.e. appear at the same location but they are not co-temporal or necessarily periodic in nature. Putting all the evidence together, we interpret the observations as mass motions (of flux tubes) that appear in the field-of-view of CRISP’s 0.0060 nm filters in the line of sight, along their projection as we scan. Further we observed transverse motion associated with these structures, which in some cases could be related to high-frequency kink-waves. We describe some cases showing this motion and the energies associated with them. The current work presented already tests the limits of current telescopes in terms of the temporal and spatial resolution. DKIST VTF instrument, having 3 times more spatial resolution than CRISP and much higher temporal resolution, we can being to understand the nature of such fine-scale transient phenomena in greater details.

  18. Graph distance for complex networks

    NASA Astrophysics Data System (ADS)

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-10-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.

  19. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Jun; Yan, Yi-Hua; Liu, Yu-Ying; Wang, Min; Wang, Shu-Juan

    2004-04-01

    The 2.6--3.8 GHz, 4.5--7.5 GHz, 5.2--7.6 GHz and 0.7--1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolutionand high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type III bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave ``patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS, type U), consisting of microwave millisecond spike emission (MMS), was also found.

  20. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  1. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  2. Distinct Roles for Medial Temporal Lobe Structures in Memory for Objects and Their Locations

    ERIC Educational Resources Information Center

    Buffalo, Elizabeth A.; Bellgowan, Patrick S. F.; Martin, Alex

    2006-01-01

    The ability to learn and retain novel information depends on a system of structures in the medial temporal lobe (MTL) including the hippocampus and the surrounding entorhinal, perirhinal, and parahippocampal cortices. Damage to these structures produces profound memory deficits; however, the unique contribution to memory of each of these…

  3. Contrasting Effects of Vocabulary Knowledge on Temporal and Parietal Brain Structure across Lifespan

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Thomas, Michael S. C.; Filippi, Roberto; Harth, Helen; Price, Cathy J.

    2010-01-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in…

  4. [Study of radiation dose to the eye lens by multi-detector row computed tomography of the temporal bone].

    PubMed

    Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi

    2012-01-01

    The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.

  5. High visibility temporal ghost imaging with classical light

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  6. Quantifying the transmission potential of pandemic influenza

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Nishiura, Hiroshi

    2008-03-01

    This article reviews quantitative methods to estimate the basic reproduction number of pandemic influenza, a key threshold quantity to help determine the intensity of interventions required to control the disease. Although it is difficult to assess the transmission potential of a probable future pandemic, historical epidemiologic data is readily available from previous pandemics, and as a reference quantity for future pandemic planning, mathematical and statistical analyses of historical data are crucial. In particular, because many historical records tend to document only the temporal distribution of cases or deaths (i.e. epidemic curve), our review focuses on methods to maximize the utility of time-evolution data and to clarify the detailed mechanisms of the spread of influenza. First, we highlight structured epidemic models and their parameter estimation method which can quantify the detailed disease dynamics including those we cannot observe directly. Duration-structured epidemic systems are subsequently presented, offering firm understanding of the definition of the basic and effective reproduction numbers. When the initial growth phase of an epidemic is investigated, the distribution of the generation time is key statistical information to appropriately estimate the transmission potential using the intrinsic growth rate. Applications of stochastic processes are also highlighted to estimate the transmission potential using similar data. Critically important characteristics of influenza data are subsequently summarized, followed by our conclusions to suggest potential future methodological improvements.

  7. Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Santosa, Hendrik; Aarabi, Ardalan; Perlman, Susan B.; Huppert, Theodore J.

    2017-05-01

    Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of red to near-infrared light to measure changes in cerebral blood oxygenation. Spontaneous (resting state) functional connectivity (sFC) has become a critical tool for cognitive neuroscience for understanding task-independent neural networks, revealing pertinent details differentiating healthy from disordered brain function, and discovering fluctuations in the synchronization of interacting individuals during hyperscanning paradigms. Two of the main challenges to sFC-NIRS analysis are (i) the slow temporal structure of both systemic physiology and the response of blood vessels, which introduces false spurious correlations, and (ii) motion-related artifacts that result from movement of the fNIRS sensors on the participants' head and can introduce non-normal and heavy-tailed noise structures. In this work, we systematically examine the false-discovery rates of several time- and frequency-domain metrics of functional connectivity for characterizing sFC-NIRS. Specifically, we detail the modifications to the statistical models of these methods needed to avoid high levels of false-discovery related to these two sources of noise in fNIRS. We compare these analysis procedures using both simulated and experimental resting-state fNIRS data. Our proposed robust correlation method has better performance in terms of being more reliable to the noise outliers due to the motion artifacts.

  8. Pacing Visual Attention: Temporal Structure Effects

    DTIC Science & Technology

    1993-06-01

    of perception and motor action: Ideomotor compatibility and interference in divided attention . Journal of Motor Behavior, 2, (3), 155-162. Kwak, H...1993 Dissertation, Jun 89 - Jun 93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Pacing Visual Attention : Temporal Structure Effects PE - 62202F 6. AUTHOR(S...that persisting temporal relationships may be an important factor in the external (exogenous) control of visual attention , at least to some extent, was

  9. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    PubMed Central

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2018-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544

  10. Identifying Cu( ii )–amyloid peptide binding intermediates in the early stages of aggregation by resonance Raman spectroscopy: a simulation study

    DOE PAGES

    Ren, Hao; Zhang, Yu; Guo, Sibei; ...

    2017-10-31

    The aggregation of amyloid beta (Aβ) peptides plays a crucial role in the pathology and etiology of Alzheimer's disease. Experimental evidence shows that copper ion is an aggregation-prone species with the ability to coordinately bind to Aβ and further induce the formation of neurotoxic Aβ oligomers. However, the detailed structures of Cu(II)–Aβ complexes have not been illustrated, and the kinetics and dynamics of the Cu(II) binding are not well understood. Two Cu(II)–Aβ complexes have been proposed to exist under physiological conditions, and another two might exist at higher pH values. By using ab initio simulations for the spontaneous resonance Ramanmore » and time domain stimulated resonance Raman spectroscopy signals, we obtained the characteristic Raman vibronic features of each complex. Finally, these signals contain rich structural information with high temporal resolution, enabling the characterization of transient states during the fast Cu–Aβ binding and interconversion processes.« less

  11. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation

    NASA Astrophysics Data System (ADS)

    Mereuta, Loredana; Roy, Mahua; Asandei, Alina; Lee, Jong Kook; Park, Yoonkyung; Andricioaei, Ioan; Luchian, Tudor

    2014-01-01

    The microscopic details of how peptides translocate one at a time through nanopores are crucial determinants for transport through membrane pores and important in developing nano-technologies. To date, the translocation process has been too fast relative to the resolution of the single molecule techniques that sought to detect its milestones. Using pH-tuned single-molecule electrophysiology and molecular dynamics simulations, we demonstrate how peptide passage through the α-hemolysin protein can be sufficiently slowed down to observe intermediate single-peptide sub-states associated to distinct structural milestones along the pore, and how to control residence time, direction and the sequence of spatio-temporal state-to-state dynamics of a single peptide. Molecular dynamics simulations of peptide translocation reveal the time- dependent ordering of intermediate structures of the translocating peptide inside the pore at atomic resolution. Calculations of the expected current ratios of the different pore-blocking microstates and their time sequencing are in accord with the recorded current traces.

  12. Domain and nanoridge growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    Ultrathin films exhibit stratification due to confinement-induced structuring and layering of small molecules in simple fluids, and of supramolecular structures like micelles, lipid layers and nanoparticles in complex fluids. Stratification proceeds by the formation and growth of thinner domains at the expense of surrounding thicker film, and results in formation of nanoscopic terraces and mesas within a film. The detailed mechanisms underlying stratification are still under debate, and are resolved in this contribution by addressing long-standing experimental and theoretical challenges. Thickness variations in stratifying films are visualized and analyzed using interferometry, digital imaging and optical microscopy (IDIOM) protocols, with unprecedented high spatial (thickness <100 nm, lateral 500 nm) and temporal resolution (<1 ms). Using IDIOM protocols we developed recently, we characterize the shape and the growth dynamics of nanoridges that flank the expanding domains in micellar thin films. We show that topographical changes including nanoridge growth, and the overall stratification dynamics, can be described quantitatively by nonlinear thin film equation, amended with supramolecular oscillatory surface forces.

  13. Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note.

    PubMed

    Mori, Kentaro; Yamamoto, Takuji; Oyama, Kazutaka; Ueno, Hideaki; Nakao, Yasuaki; Honma, Keiichirou

    2008-12-01

    Experience with dissection of the cavernous sinus and the temporal bone is essential for training in skull base surgery, but the opportunities for cadaver dissection are very limited. A modification of a commercially available prototype three-dimensional (3D) skull base model, made by a selective laser sintering method and incorporating surface details and inner bony structures such as the inner ear structures and air cells, is proposed to include artificial dura mater, cranial nerves, venous sinuses, and the internal carotid artery for such surgical training. The transpetrosal approach and epidural cavernous sinus surgery (Dolenc's technique) were performed on this modified model using a high speed drill or ultrasonic bone curette under an operating microscope. The model could be dissected in almost the same way as a real cadaver. The modified 3D skull base model provides a good educational tool for training in skull base surgery.

  14. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.

    PubMed

    Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D

    2017-04-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.

  15. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    NASA Technical Reports Server (NTRS)

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2017-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.

  16. Surface feature-guided mapping of cerebral metabolic changes in cognitively normal and mildly impaired elderly.

    PubMed

    Apostolova, Liana G; Thompson, Paul M; Rogers, Steve A; Dinov, Ivo D; Zoumalan, Charleen; Steiner, Calen A; Siu, Erin; Green, Amity E; Small, Gary W; Toga, Arthur W; Cummings, Jeffrey L; Phelps, Michael E; Silverman, Daniel H

    2010-04-01

    The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4 +/- 0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG)-PET scan (interval 21.7 +/- 3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10-15% decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5-5% similarly distributed decline. ApoE4-positive individuals underwent 5-15% metabolic decline in the posterior association cortices. Using 3-D surface-based MR-guided FDG-PET mapping, significant metabolic changes were seen in five posterior and the left lateral frontal regions. The changes were more pronounced for the declining relative to the cognitively stable group.

  17. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  18. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    PubMed

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple methods to distribute the emissions in time and space need to be replaced by sophisticated emission models in order to improve the CTM results. New methods, e.g. for ammonia emissions, provide grid cell dependent temporal profiles. In the future, large data fields from traffic observations or satellite observations could be used for more detailed emission data.

  19. FRB microstructure revealed by the real-time detection of FRB170827

    NASA Astrophysics Data System (ADS)

    Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bannister, K. W.; Barr, E. D.; Bateman, T.; Bhandari, S.; Caleb, M.; Campbell-Wilson, D.; Chang, S.-W.; Deller, A.; Green, A. J.; Hunstead, R.; Jankowski, F.; Keane, E.; Macquart, J.-P.; Möller, A.; Onken, C. A.; Osłowski, S.; Parthasarathy, A.; Plant, K.; Ravi, V.; Shannon, R. M.; Tucker, B. E.; Venkatraman Krishnan, V.; Wolf, C.

    2018-07-01

    We report a new fast radio burst (FRB) discovered in real-time as part of the UTMOST project at the Molonglo Observatory Synthesis Radio Telescope. FRB170827 was first detected with our low-latency (<24 s) and machine-learning based FRB detection system. The FRB discovery was accompanied by the capture of voltage data at the native time and frequency resolution of the observing system, enabling coherent dedispersion and detailed off-line analysis that have unveiled fine temporal and frequency structure. The dispersion measure (DM) of 176.80 ± 0.04 pc cm-3 is the lowest of the FRB population. The Milky Way contribution along the line of sight is ˜40 pc cm-3, leaving an excess DM of ˜145 pc cm-3. The FRB has a fluence >20 ± 7 Jy ms, and is narrow with a width of ˜400 s at 10 per cent of its maximum amplitude. However, the burst shows three temporal components, the narrowest of which is ˜30 s, and a scattering time-scale of 4.1 ± 2.7 s. The FRB shows spectral modulations on frequency scales of 1.5 MHz and 0.1 MHz. Both are prominent in the dynamic spectrum, which shows a very bright region of emission between 841 and 843 MHz, and weaker and patchy emission across the entire band. We show that the fine spectral structure could arise in the FRB host galaxy, or its immediate vicinity.

  20. FRB microstructure revealed by the real-time detection of FRB170827

    NASA Astrophysics Data System (ADS)

    Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bannister, K. W.; Barr, E. D.; Bateman, T.; Bhandari, S.; Caleb, M.; Campbell-Wilson, D.; Chang, S.-W.; Deller, A.; Green, A. J.; Hunstead, R.; Jankowski, F.; Keane, E.; Macquart, J.-P.; Möller, A.; Onken, C. A.; Osłowski, S.; Parthasarathy, A.; Plant, K.; Ravi, V.; Shannon, R.; Tucker, B. E.; Venkatraman Krishnan, V.; Wolf, C.

    2018-05-01

    We report a new Fast Radio Burst (FRB) discovered in real-time as part of the UTMOST project at the Molonglo Observatory Synthesis Radio Telescope (MOST). FRB170827 is the first detected with our low-latency (<24 s), machine-learning-based FRB detection system. The FRB discovery was accompanied by the capture of voltage data at the native time and frequency resolution of the observing system, enabling coherent dedispersion and detailed off-line analysis, which have unveiled fine temporal and frequency structure. The dispersion measure (DM) of 176.80 ± 0.04 pc cm-3, is the lowest of the FRB population. The Milky Way contribution along the line of sight is ˜ 40 pc cm-3, leaving an excess DM of ˜ 145 pc cm-3. The FRB has a fluence > 20 ± 7 Jy ms, and is narrow, with a width of ˜ 400 μs at 10% of its maximum amplitude. However, the burst shows three temporal components, the narrowest of which is ˜ 30 μs, and a scattering timescale of 4.1 ± 2.7 μs. The FRB shows spectral modulations on frequency scales of 1.5 MHz and 0.1 MHz. Both are prominent in the dynamic spectrum, which shows a very bright region of emission between 841 and 843 MHz, and weaker, patchy emission across the entire band. We show the fine spectral structure could arise in the FRB host galaxy, or its immediate vicinity.

  1. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.

    2014-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  2. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    PubMed

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  3. UML and Model Checking

    NASA Technical Reports Server (NTRS)

    Schneider, F.

    1999-01-01

    UML use cases conceptually identify function points or major requirements that a software system must satisfy. Sequence diagrams expand each use case to show in temporal sequence a more detailed notion of intended system behavior.

  4. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    NASA Astrophysics Data System (ADS)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  5. Morphology and function of Neandertal and modern human ear ossicles

    PubMed Central

    David, Romain; Gunz, Philipp; Schmidt, Tobias; Spoor, Fred; Hublin, Jean-Jacques

    2016-01-01

    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor. PMID:27671643

  6. Cochlear neuropathy and the coding of supra-threshold sound.

    PubMed

    Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G

    2014-01-01

    Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  7. Surgery in temporal lobe epilepsy patients without cranial MRI lateralization.

    PubMed

    Gomceli, Y B; Erdem, A; Bilir, E; Kutlu, G; Kurt, S; Erden, E; Karatas, A; Erbas, C; Serdaroglu, A

    2006-03-01

    High resolution MRI is very important in the evaluations of patients with intractable temporal lobe epilepsy in preoperative investigations. Morphologic abnormalities on cranial MRI usually indicate the epileptogenic focus. Intractable TLE patients who have normal cranial MRI or bilateral hippocampal atrophy may have a chance for surgery if a certain epileptogenic focus is determined. We evaluated the patients who were monitorized in Gazi University Medical Faculty Epilepsy Center from October 1997 to April 2004. Seventy three patients, who had a temporal epileptogenic focus, underwent anterior temporal lobectomy at Ankara University Medical Faculty Department of Neurosurgery. Twelve of them (16, 4%), did not have any localizing structural lesion on cranial MRI. Of the 12 patients examined 6 had normal findings and 6 had bilateral hippocampal atrophy. Of these 12 patients, 6 (50%) were women and 6 (50%) were men. The ages of patients ranged from 7 to 37 (mean: 24.5). Preoperatively long-term scalp video-EEG monitoring, cranial MRI, neuropsychological tests, and Wada test were applied in all patients. Five patients, whose investigations resulted in conflicting data, underwent invasive monitoring by the use of subdural strips. The seizure outcome of patients were classified according to Engel with postsurgical follow-up ranging from 11 to 52 (median: 35.7) months. Nine patients (75%) were classified into Engel's Class I and the other 3 patients (25%) were placed into Engel's Class II. One patient who was classified into Engel's Class II had additional psychiatric problems. The other patient had two different epileptogenic foci independent from each other in her ictal EEG. One of them localized in the right anterior temporal area, the other was in the right frontal lobe. She was classified in Engel's Class II and had no seizure originating from temporal epileptic focus, but few seizures originating from the frontal region continued after the surgery. In conclusion, surgery was successful in all 12 patients. We think that patients with no MRI lateralizing or localizing lesion should undergo epilepsy surgery after detailed presurgical evaluations, including invasive monitoring.

  8. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  9. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    PubMed Central

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  10. Temporal structure of thermal inversions in Łeba (Poland)

    NASA Astrophysics Data System (ADS)

    Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga; Rawicki, Kacper

    2018-03-01

    This study presents the detailed characteristics of thermal inversions based on a 10-year aerological measurement series (2005-2014) conducted in Łeba (Poland). The analyses included surface-based inversions (SBIs) and elevated inversions (ELIs) in the atmospheric layer up to 3000 m. In the case of SBIs, this layer extended directly from the ground level to an altitude above which the air temperature decreases with altitude, whereas for ELIs, which have a base above ground level, only the lowermost inversion layer was taken into consideration. The results of the monthly and seasonal variations in the selected parameters for air temperature inversions (thickness—ΔZ, strength—ΔT, base—ZB) were analysed separately at night-time (00 UTC) and daytime (12 UTC). The thermal structure of the boundary layer up to 3000 m was primarily determined by ELIs, which occurred at a frequency of approximately 70% at both times during the 24-h period. The SBIs showed a pronounced temporal structure that occurred every second night throughout the year and from April to September, with a frequency similar to that of the ELI (approximately 60%). The worst vertical air exchange conditions, which resulted from the simultaneous occurrence of SBIs and ELIs, were found in 30% of nights from April to October. Elevated inversions generally formed in a layer from approximately 820 to 1200 m, which was the lowermost ELI in winter and the highest ELI in summer; however, in all seasons, the lowest base height was characteristic of daytime inversions. Both surface-based and elevated inversion layers were distinguished by comparable thicknesses, particularly for those occurring at night-time (generally within the range of 150-200 m). From November to March, greater thicknesses were identified in ELIs with lower occurrences, whereas SBIs were identified in the remaining months of the year.

  11. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.

    PubMed

    Breyer, Tobias; Wanke, Isabel; Maderwald, Stefan; Woermann, Friedrich G; Kraff, Oliver; Theysohn, Jens M; Ebner, Alois; Forsting, Michael; Ladd, Mark E; Schlamann, Marc

    2010-04-01

    Focal epilepsies potentially can be cured by neurosurgery; other treatment options usually remain symptomatic. High-resolution magnetic resonance (MR) imaging is the central imaging strategy in the evaluation of focal epilepsy. The most common substrate of temporal epilepsies is hippocampal sclerosis (HS), which cannot always be sufficiently characterized with current MR field strengths. Therefore, the purpose of our study was to demonstrate the feasibility of high-resolution MR imaging at 7 Tesla in patients with focal epilepsy resulting from a HS and to improve image resolution at 7 Tesla in patients with HS. Six patients with known HS were investigated with T1-, T2-, T2(*)-, and fluid-attenuated inversion recovery-weighted sequences at 7 Tesla with an eight-channel transmit-receive head coil. Total imaging time did not exceed 90 minutes per patient. High-resolution imaging at 7 Tesla is feasible and reveals high resolution of intrahippocampal structures in vivo. HS was confirmed in all patients. The maximum non-interpolated in-plane resolution reached 0.2 x 0.2 mm(2) in T2(*)-weighted images. The increased susceptibility effects at 7 Tesla revealed identification of intrahippocampal structures in more detail than at 1.5 Tesla, but otherwise led to stronger artifacts. Imaging revealed regional differences in hippocampal atrophy between patients. The scan volume was limited because of specific absorption rate restrictions, scanning time was reasonable. High-resolution imaging at 7 Tesla is promising in presurgical epilepsy imaging. "New" contrasts may further improve detection of even very small intrahippocampal structural changes. Therefore, further investigations will be necessary to demonstrate the potential benefit for presurgical selection of patients with various lesion patterns in mesial temporal epilepsies resulting from a unilateral HS. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  12. Deciphering structural and temporal interplays during the architectural development of mango trees.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Trottier, Catherine; Guédon, Yann; Normand, Frédéric

    2013-05-01

    Plant architecture is commonly defined by the adjacency of organs within the structure and their properties. Few studies consider the effect of endogenous temporal factors, namely phenological factors, on the establishment of plant architecture. This study hypothesized that, in addition to the effect of environmental factors, the observed plant architecture results from both endogenous structural and temporal components, and their interplays. Mango tree, which is characterized by strong phenological asynchronisms within and between trees and by repeated vegetative and reproductive flushes during a growing cycle, was chosen as a plant model. During two consecutive growing cycles, this study described vegetative and reproductive development of 20 trees submitted to the same environmental conditions. Four mango cultivars were considered to assess possible cultivar-specific patterns. Integrative vegetative and reproductive development models incorporating generalized linear models as components were built. These models described the occurrence, intensity, and timing of vegetative and reproductive development at the growth unit scale. This study showed significant interplays between structural and temporal components of plant architectural development at two temporal scales. Within a growing cycle, earliness of bud burst was highly and positively related to earliness of vegetative development and flowering. Between growing cycles, flowering growth units delayed vegetative development compared to growth units that did not flower. These interplays explained how vegetative and reproductive phenological asynchronisms within and between trees were generated and maintained. It is suggested that causation networks involving structural and temporal components may give rise to contrasted tree architectures.

  13. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  14. Therapeutic risk management of the suicidal patient: augmenting clinical suicide risk assessment with structured instruments.

    PubMed

    Homaifar, Beeta; Matarazzo, Bridget; Wortzel, Hal S

    2013-09-01

    This column is the second in a series presenting a model for therapeutic risk management of the suicidal patient. As discussed in the first part of the series, the model involves several elements including augmenting clinical risk assessment with structured instruments, stratifying risk in terms of both severity and temporality, and developing and documenting a safety plan. This column explores in more detail how to augment clinical risk assessment with structured instruments. Unstructured clinical interviews have the potential to miss important aspects of suicide risk assessment. By augmenting the free-form clinical interview with structured instruments that demonstrate reliability and validity, a more nuanced and multifaceted approach to suicide risk assessment is achieved. Incorporating structured instruments into practice also serves a medicolegal function, since these instruments may become a living part of the medical record, establishing baseline levels of suicidal thoughts and behaviors and facilitating future clinical determinations regarding safety needs. We describe several instruments used in a multidisciplinary suicide consultation service, each of which has demonstrated relevance to suicide risk assessment and screening, ease of administration, and strong psychometric properties. In addition, we emphasize the importance of viewing suicide risk assessment as an ongoing process rather than as a singular event. Finally, we discuss special considerations in the evolving practice of risk assessment.

  15. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    NASA Astrophysics Data System (ADS)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  16. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    PubMed Central

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  17. Assessing the autopsy.

    PubMed

    Nemetz, P N; Ludwig, J; Kurland, L T

    1987-08-01

    This study outlines the role of autopsies in medical practice and health policy, details the nature and reason for declining rates, including those in Rochester, Minnesota, and suggests possible remedial measures to halt or reverse this trend. It is concluded that one of the principal impediments to reversing the declining rate of autopsies is what is referred to in Economics as "market failure." In particular, the nature of the spatial and temporal distribution of costs and benefits has precluded the existence of an incentive structure which can lead to a realization of the major net social benefits from the autopsy. Ultimately, it is only the explicit recognition by the medical profession, government agencies, corporate insurers, and the general public of the nature and significance of this market failure and foregone benefits which can lead to remediation.

  18. Assessing the autopsy.

    PubMed Central

    Nemetz, P. N.; Ludwig, J.; Kurland, L. T.

    1987-01-01

    This study outlines the role of autopsies in medical practice and health policy, details the nature and reason for declining rates, including those in Rochester, Minnesota, and suggests possible remedial measures to halt or reverse this trend. It is concluded that one of the principal impediments to reversing the declining rate of autopsies is what is referred to in Economics as "market failure." In particular, the nature of the spatial and temporal distribution of costs and benefits has precluded the existence of an incentive structure which can lead to a realization of the major net social benefits from the autopsy. Ultimately, it is only the explicit recognition by the medical profession, government agencies, corporate insurers, and the general public of the nature and significance of this market failure and foregone benefits which can lead to remediation. PMID:3113257

  19. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  20. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    PubMed Central

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  1. Upper atmospheric gravity wave details revealed in nightglow satellite imagery.

    PubMed

    Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T

    2015-12-08

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.

  2. Capturing structure and function in an embryonic heart with biophotonic tools

    PubMed Central

    Karunamuni, Ganga H.; Gu, Shi; Ford, Matthew R.; Peterson, Lindsy M.; Ma, Pei; Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the challenges of studying the tiny fragile beating heart. In this chapter, we describe and discuss our experience in developing and implementing biophotonic tools to study the role of function in heart development with emphasis on optical coherence tomography (OCT). OCT can be used for detailed structural and functional studies of the tubular and looping embryo heart under physiological conditions. The same heart can be rapidly and quantitatively phenotyped at early and again at later stages using OCT. When combined with other tools such as optical mapping (OM) and optical pacing (OP), OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of morphogenesis and the molecular pathways that have been described to be involved. Future directions for advances in the creation and use of biophotonic tools are discussed. PMID:25309451

  3. Temporal Lobe Epilepsy Surgery Failures: A Review

    PubMed Central

    Harroud, Adil; Bouthillier, Alain; Weil, Alexander G.; Nguyen, Dang Khoa

    2012-01-01

    Patients with temporal lobe epilepsy (TLE) are refractory to antiepileptic drugs in about 30% of cases. Surgical treatment has been shown to be beneficial for the selected patients but fails to provide a seizure-free outcome in 20–30% of TLE patients. Several reasons have been identified to explain these surgical failures. This paper will address the five most common causes of TLE surgery failure (a) insufficient resection of epileptogenic mesial temporal structures, (b) relapse on the contralateral mesial temporal lobe, (c) lateral temporal neocortical epilepsy, (d) coexistence of mesial temporal sclerosis and a neocortical lesion (dual pathology); and (e) extratemporal lobe epilepsy mimicking TLE or temporal plus epilepsy. Persistence of epileptogenic mesial structures in the posterior temporal region and failure to distinguish mesial and lateral temporal epilepsy are possible causes of seizure persistence after TLE surgery. In cases of dual pathology, failure to identify a subtle mesial temporal sclerosis or regions of cortical microdysgenesis is a likely explanation for some surgical failures. Extratemporal epilepsy syndromes masquerading as or coexistent with TLE result in incomplete resection of the epileptogenic zone and seizure relapse after surgery. In particular, the insula may be an important cause of surgical failure in patients with TLE. PMID:22934162

  4. Influence of Game Evolution and the Phase of Competition on Temporal Game Structure in High-Level Table Tennis Tournaments.

    PubMed

    Leite, Jorge Vieira de Mello; Barbieri, Fabio Augusto; Miyagi, Willian; Malta, Elvis de Souza; Zagatto, Alessandro Moura

    2017-01-01

    The aims of this study were: a) to investigate the game temporal structure in high-level table tennis competitions; b) to verify the influence of game evolution in international competitions from 2009 to 2012 (World Table Tennis Championships and the Olympic Games) on game temporal structure; c) to compare game temporal structure according to the phase of competition. Comparisons between the three international tournaments demonstrated that rally duration decreased significantly (p < 0.05) during the analyzed period (2009-2012), while the rest time increased (p < 0.05) from 2009 to 2011, but decreased (p < 0.05) from 2011 to 2012. In the competition phase analysis, it was found that rally duration decreased (p < 0.05) in the quarterfinals in relation to the semifinals and finals, while the rest time increased (p < 0.05) from the quarterfinals to semifinals and finals. Based on our findings and previous literature, we concluded that the performance level, game evolution and the competition phase influenced the game temporal structure of table tennis, considering longer rest periods adopted by elite athletes in relation to non-elite athletes, the reduction in rally duration and an increase in rest time over the 2009-2012 period and through the competition phases (quarterfinals to finals).

  5. Satellite image time series simulation for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.

  6. Real-Time Extended Interface Automata for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  7. Time-Resolved and Spatio-Temporal Analysis of Complex Cognitive Processes and their Role in Disorders like Developmental Dyscalculia

    PubMed Central

    Mórocz, István Akos; Janoos, Firdaus; van Gelderen, Peter; Manor, David; Karni, Avi; Breznitz, Zvia; von Aster, Michael; Kushnir, Tammar; Shalev, Ruth

    2012-01-01

    The aim of this article is to report on the importance and challenges of a time-resolved and spatio-temporal analysis of fMRI data from complex cognitive processes and associated disorders using a study on developmental dyscalculia (DD). Participants underwent fMRI while judging the incorrectness of multiplication results, and the data were analyzed using a sequence of methods, each of which progressively provided more a detailed picture of the spatio-temporal aspect of this disease. Healthy subjects and subjects with DD performed alike behaviorally though they exhibited parietal disparities using traditional voxel-based group analyses. Further and more detailed differences, however, surfaced with a time-resolved examination of the neural responses during the experiment. While performing inter-group comparisons, a third group of subjects with dyslexia (DL) but with no arithmetic difficulties was included to test the specificity of the analysis and strengthen the statistical base with overall fifty-eight subjects. Surprisingly, the analysis showed a functional dissimilarity during an initial reading phase for the group of dyslexic but otherwise normal subjects, with respect to controls, even though only numerical digits and no alphabetic characters were presented. Thus our results suggest that time-resolved multi-variate analysis of complex experimental paradigms has the ability to yield powerful new clinical insights about abnormal brain function. Similarly, a detailed compilation of aberrations in the functional cascade may have much greater potential to delineate the core processing problems in mental disorders. PMID:22368322

  8. Better models are more effectively connected models

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity can be represented in models: either by allowing it to emerge from model behaviour or by parameterizing it inside model structures; and on the appropriate scale at which processes should be represented explicitly or implicitly. It will also explore how modellers themselves approach connectivity through the results of a community survey. Finally, it will present the outline of an international modelling exercise aimed at assessing how different modelling concepts can capture connectivity in real catchments.

  9. Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric

    2018-03-01

    A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to study sharp temporal variation features, such as geomagnetic jerks.

  10. Anatomical Study of Temporal Fat Compartments and its Clinical Application for Temporal Fat Grafting

    PubMed Central

    Huang, Ru-Lin; Xie, Yun; Wang, Wenjin; Herrler, Tanja; Zhou, Jia; Zhao, Peijuan; Pu, Lee LQ; Li, Qingfeng

    2017-01-01

    Abstract Background Low satisfaction rates and severe complications are two major limitations for temporal hollowing augmentation using autologous fat grafting. Despite fat compartments in temporal region have been reported, its clinical applied anatomy for fat grafting have not been the subject of studies that show its benefits objectively and statistically. Objectives To investigate temporal fat compartments and relative neurovascular structures in cadavers, developing a safe and effective fat grafting technique for temporal hollowing augmentation. Methods The study was conducted on 8 cadavers (16 temples). The tissue layers, fat compartments, ligaments, and neurovascular structures in the temporal region were analysed. The variables were the number and location of sentinel veins, perforator vessels of the middle temporal vein. Measurements were taken with a digital calliper. Results Two separate fat compartments, the lateral temporal-cheek fat compartment and lateral orbital fat compartment, were found in the subcutaneous layer, and two separate septum compartments, the upper and lower temporal compartment, were found in the loose areolar tissue layer. One sentinel vein and 1 to 6 perforator vessels were found to travel through the subcutaneous tissue layer, traverse the overlapping tissue layers in the lower temporal septum region, and finally join in the middle temporal vein. Conclusions The four fat compartments in the temporal region are ideal receipt sites for fat grafting. The medial border of the junction of the hairline and temporal line is a safe and effective cannula entry site for temporal fat grafting. The anterior half of the lower temporal compartment is a “zone of caution” for temporal fat grafting. PMID:28520850

  11. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals

    PubMed Central

    Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.

    2016-01-01

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179

  12. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    PubMed

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.

  13. Sampling of temporal networks: Methods and biases

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Masuda, Naoki; Holme, Petter

    2017-11-01

    Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.

  14. Quantifying the spatio-temporal pattern of the ground impact of space weather events using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    NASA Astrophysics Data System (ADS)

    Dods, Joe; Chapman, Sandra; Gjerloev, Jesper

    2016-04-01

    Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere. We can also investigate the solar wind control of the magnetospheric-ionospheric convection system using dynamical networks. The dynamical networks are first interpolated onto a regular grid. Statistically averaged network responses are then formed for a variety of solar wind conditions, including investigating the network response to southward turnings. [1] Dods, J., S. C. Chapman, and J. W. Gjerloev (2015), Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations, J. Geophys. Res. Space Physics, 120, 7774-7784, doi:10.1002/2015JA021456

  15. Investigating the Influence Relationship Models for Stocks in Indian Equity Market: A Weighted Network Modelling Study

    PubMed Central

    Acharjee, Animesh

    2016-01-01

    The socio-economic systems today possess high levels of both interconnectedness and interdependencies, and such system-level relationships behave very dynamically. In such situations, it is all around perceived that influence is a perplexing power that has an overseeing part in affecting the dynamics and behaviours of involved ones. As a result of the force & direction of influence, the transformative change of one entity has a cogent aftereffect on the other entities in the system. The current study employs directed weighted networks for investigating the influential relationship patterns existent in a typical equity market as an outcome of inter-stock interactions happening at the market level, the sectorial level and the industrial level. The study dataset is derived from 335 constituent stocks of ‘Standard & Poor Bombay Stock Exchange 500 index’ and study period is 1st June 2005 to 30th June 2015. The study identifies the set of most dynamically influential stocks & their respective temporal pattern at three hierarchical levels: the complete equity market, different sectors, and constituting industry segments of those sectors. A detailed influence relationship analysis is performed for the sectorial level network of the construction sector, and it was found that stocks belonging to the cement industry possessed high influence within this sector. Also, the detailed network analysis of construction sector revealed that it follows scale-free characteristics and power law distribution. In the industry specific influence relationship analysis for cement industry, methods based on threshold filtering and minimum spanning tree were employed to derive a set of sub-graphs having temporally stable high-correlation structure over this ten years period. PMID:27846251

  16. Medial temporal lobe reinstatement of content-specific details predicts source memory

    PubMed Central

    Liang, Jackson C.; Preston, Alison R.

    2016-01-01

    Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. PMID:28029355

  17. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    PubMed

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Medial temporal lobe reinstatement of content-specific details predicts source memory.

    PubMed

    Liang, Jackson C; Preston, Alison R

    2017-06-01

    Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Investigating the Influence Relationship Models for Stocks in Indian Equity Market: A Weighted Network Modelling Study.

    PubMed

    Bhattacharjee, Biplab; Shafi, Muhammad; Acharjee, Animesh

    2016-01-01

    The socio-economic systems today possess high levels of both interconnectedness and interdependencies, and such system-level relationships behave very dynamically. In such situations, it is all around perceived that influence is a perplexing power that has an overseeing part in affecting the dynamics and behaviours of involved ones. As a result of the force & direction of influence, the transformative change of one entity has a cogent aftereffect on the other entities in the system. The current study employs directed weighted networks for investigating the influential relationship patterns existent in a typical equity market as an outcome of inter-stock interactions happening at the market level, the sectorial level and the industrial level. The study dataset is derived from 335 constituent stocks of 'Standard & Poor Bombay Stock Exchange 500 index' and study period is 1st June 2005 to 30th June 2015. The study identifies the set of most dynamically influential stocks & their respective temporal pattern at three hierarchical levels: the complete equity market, different sectors, and constituting industry segments of those sectors. A detailed influence relationship analysis is performed for the sectorial level network of the construction sector, and it was found that stocks belonging to the cement industry possessed high influence within this sector. Also, the detailed network analysis of construction sector revealed that it follows scale-free characteristics and power law distribution. In the industry specific influence relationship analysis for cement industry, methods based on threshold filtering and minimum spanning tree were employed to derive a set of sub-graphs having temporally stable high-correlation structure over this ten years period.

  20. Models and observations of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.

  1. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications

    NASA Astrophysics Data System (ADS)

    Fu, Ching-Chou; Yang, Tsanyao Frank; Chen, Cheng-Hong; Lee, Lou-Chuang; Wu, Yih-Min; Liu, Tsung-Kwei; Walia, Vivek; Kumar, Arvind; Lai, Tzu-Hua

    2017-11-01

    In this paper, we study (1) the spatial anomalies and (2) the temporal anomalies of soil gas in northern Taiwan. The spatial anomalies of soil gas are related to tectonic faults, while the temporal anomalies of soil gas are associated with pre-earthquake activities. Detailed soil gas sampling was systematically performed, and the analysis of the collected gas species shows that high helium and nitrogen concentrations appear in samples from specific sites, which coincide with the structural setting of the area studied. This analysis indicates the possibility of using these soil gases to determine fault zones in the studied area. Based on the soil gas data, a station (Tapingti) for automatic soil gas monitoring was constructed on an appropriate site at the fault zone. Some anomalous high radon concentrations at certain times can be identified from the dataset, which was generated by the continuous monitoring of soil gas for over a year. Notably, many of these anomalies were observed several hours to a few days before the earthquakes (ML > 3) that occurred in northern Taiwan. By combining the information of epicenters and fault plane solutions of these earthquakes, we find that the shallow earthquakes (<15 km) were mainly strike-slip and normal-type earthquakes, and concentrated within a distance of 30 km to the monitoring site (Group A). The deep earthquakes (>20 km) were mainly thrust-type earthquakes and distributed in greater distances (>45 km) east of the monitoring site (Group B). Such focal mechanisms of earthquakes suggest an extensional and compressional structural domain in the continental crust for Group A and Group B earthquakes, respectively. It is suggested that the pre-earthquake activities associated with the seismicity of Group B may be transmitted along the major decollement in the region below the Tapingti station, leading to the observed soil gas enhancements.

  2. The contribution of visual information to the perception of speech in noise with and without informative temporal fine structure

    PubMed Central

    Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.

    2017-01-01

    Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797

  3. Sequential detection of temporal communities by estrangement confinement.

    PubMed

    Kawadia, Vikas; Sreenivasan, Sameet

    2012-01-01

    Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.

  4. Visual paired-associate learning: in search of material-specific effects in adult patients who have undergone temporal lobectomy.

    PubMed

    Smith, Mary Lou; Bigel, Marla; Miller, Laurie A

    2011-02-01

    The mesial temporal lobes are important for learning arbitrary associations. It has previously been demonstrated that left mesial temporal structures are involved in learning word pairs, but it is not yet known whether comparable lesions in the right temporal lobe impair visually mediated associative learning. Patients who had undergone left (n=16) or right (n=18) temporal lobectomy for relief of intractable epilepsy and healthy controls (n=13) were administered two paired-associate learning tasks assessing their learning and memory of pairs of abstract designs or pairs of symbols in unique locations. Both patient groups had deficits in learning the designs, but only the right temporal group was impaired in recognition. For the symbol location task, differences were not found in learning, but again a recognition deficit was found for the right temporal group. The findings implicate the mesial temporal structures in relational learning. They support a material-specific effect for recognition but not for learning and recall of arbitrary visual and visual-spatial associative information. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. A Structural Characterization of Temporal Dynamic Controllability

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2006-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. Previous work has presented an O(N5) algorithm for testing this property. Here, we introduce a new analysis of temporal cycles that leads to an O(N4) algorithm.

  6. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  7. Brain networks of temporal preparation: A multiple regression analysis of neuropsychological data.

    PubMed

    Triviño, Mónica; Correa, Ángel; Lupiáñez, Juan; Funes, María Jesús; Catena, Andrés; He, Xun; Humphreys, Glyn W

    2016-11-15

    There are only a few studies on the brain networks involved in the ability to prepare in time, and most of them followed a correlational rather than a neuropsychological approach. The present neuropsychological study performed multiple regression analysis to address the relationship between both grey and white matter (measured by magnetic resonance imaging in patients with brain lesion) and different effects in temporal preparation (Temporal orienting, Foreperiod and Sequential effects). Two versions of a temporal preparation task were administered to a group of 23 patients with acquired brain injury. In one task, the cue presented (a red versus green square) to inform participants about the time of appearance (early versus late) of a target stimulus was blocked, while in the other task the cue was manipulated on a trial-by-trial basis. The duration of the cue-target time intervals (400 versus 1400ms) was always manipulated within blocks in both tasks. Regression analysis were conducted between either the grey matter lesion size or the white matter tracts disconnection and the three temporal preparation effects separately. The main finding was that each temporal preparation effect was predicted by a different network of structures, depending on cue expectancy. Specifically, the Temporal orienting effect was related to both prefrontal and temporal brain areas. The Foreperiod effect was related to right and left prefrontal structures. Sequential effects were predicted by both parietal cortex and left subcortical structures. These findings show a clear dissociation of brain circuits involved in the different ways to prepare in time, showing for the first time the involvement of temporal areas in the Temporal orienting effect, as well as the parietal cortex in the Sequential effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Spatial and Temporal Stability of Airglow Measured in the Meinel Band Window at 1191.3 nm

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien T.; Zemcov, Michael; Battle, John; Bock, James J.; Hristov, Viktor; Korngut, Phillip; Meek, Andrew

    2016-09-01

    We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using a λ/Δλ = 320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. At low airmasses, the absolute sky brightness at this wavelength is found to be 5330 ± 30 nW m-2 sr-1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ˜100 s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-infrared line intensity mapping may be feasible from ground-based sites.

  9. Spatio-temporal networks: reachability, centrality and robustness.

    PubMed

    Williams, Matthew J; Musolesi, Mirco

    2016-06-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks.

  10. The effects of morphine on the temporal structure of Wistar rat behavioral response to pain in hot-plate.

    PubMed

    Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe

    2016-08-01

    The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.

  11. Undecalcified temporal bone morphology: a methodology useful for gross to fine observation and three-dimensional reconstruction.

    PubMed

    Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F

    1992-01-01

    Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.

  12. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  13. [Clinical features in a Japanese patient with autosomal dominant lateral temporal epilepsy having LGI1 mutation].

    PubMed

    Fujita, Youshi; Ikeda, Akio; Kadono, Kentaro; Kawamata, Jun; Tomimoto, Hidekazu; Fukuyama, Hidenao; Takahashi, Ryosuke

    2009-04-01

    We described a clinical feature of autosomal dominant lateral temporal epilepsy (ADLTE) in a Japanese patient having LGI1 mutation. The patient was a 27-year-old woman who had her first seizure at the age of 10 years, a nocturnal generalized seizure. She then had partial seizures manifesting auditory symptoms with or without anxiety, panic attack, déjà vu, sensory aphasia and visual symptoms. Repeated EEGs were normal. Brain MRI showed small left superior temporal gyrus. 18F-deoxyglucose positron emission tomography (PDG-PET) demonstrated glucose hypometabolism in the left lateral temporal lobe. Sequencing of the LGI1 revealed a single base substitution in exon 8 (1642C-->T) causing missense mutation at residue 473 of the LGI1 protein (S473 L). When one demonstrates ictal symptoms arising from the lateral temporal to occipital area with psychotic symptoms, ADLTE should be suspected and a detailed family history is warranted.

  14. Designing for Temporal Awareness: The Role of Temporality in Time-Critical Medical Teamwork

    PubMed Central

    Kusunoki, Diana S.; Sarcevic, Aleksandra

    2016-01-01

    This paper describes the role of temporal information in emergency medical teamwork and how time-based features can be designed to support the temporal awareness of clinicians in this fast-paced and dynamic environment. Engagement in iterative design activities with clinicians over the course of two years revealed a strong need for time-based features and mechanisms, including timestamps for tasks based on absolute time and automatic stopclocks measuring time by counting up since task performance. We describe in detail the aspects of temporal awareness central to clinicians’ awareness needs and then provide examples of how we addressed these needs through the design of a shared information display. As an outcome of this process, we define four types of time representation techniques to facilitate the design of time-based features: (1) timestamps based on absolute time, (2) timestamps relative to the process start time, (3) time since task performance, and (4) time until the next required task. PMID:27478880

  15. Virtual temporal bone dissection system: OSU virtual temporal bone system: development and testing.

    PubMed

    Wiet, Gregory J; Stredney, Don; Kerwin, Thomas; Hittle, Bradley; Fernandez, Soledad A; Abdel-Rasoul, Mahmoud; Welling, D Bradley

    2012-03-01

    The objective of this project was to develop a virtual temporal bone dissection system that would provide an enhanced educational experience for the training of otologic surgeons. A randomized, controlled, multi-institutional, single-blinded validation study. The project encompassed four areas of emphasis: structural data acquisition, integration of the system, dissemination of the system, and validation. Structural acquisition was performed on multiple imaging platforms. Integration achieved a cost-effective system. Dissemination was achieved on different levels including casual interest, downloading of software, and full involvement in development and validation studies. A validation study was performed at eight different training institutions across the country using a two-arm randomized trial where study subjects were randomized to a 2-week practice session using either the virtual temporal bone or standard cadaveric temporal bones. Eighty subjects were enrolled and randomized to one of the two treatment arms; 65 completed the study. There was no difference between the two groups using a blinded rating tool to assess performance after training. A virtual temporal bone dissection system has been developed and compared to cadaveric temporal bones for practice using a multicenter trial. There was no statistical difference between practice on the current simulator compared to practice on human cadaveric temporal bones. Further refinements in structural acquisition and interface design have been identified, which can be implemented prior to full incorporation into training programs and used for objective skills assessment. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  16. Infectious diseases in space and time: noise and nonlinearity in epidemiological dynamics

    NASA Astrophysics Data System (ADS)

    Grenfell, Bryan

    2005-03-01

    I illustrate the impact of noise and nonlinearity on the spatio-temporal dynamics and evolution of epidemics using mathematical models and analyses of detailed epidemiological data from childhood infections, such as measles.

  17. An Iterated Global Mascon Solution with Focus on Land Ice Mass Evolution

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D.; Lemoine, F. G.; Loomis, B. D.; Boy, J. P.

    2012-01-01

    Land ice mass evolution is determined from a new GRACE global mascon solution. The solution is estimated directly from the reduction of the inter-satellite K-band range rate observations taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons are estimated with 10-day and 1-arc-degree equal area sampling, applying anisotropic constraints for enhanced temporal and spatial resolution of the recovered land ice signal. The details of the solution are presented including error and resolution analysis. An Ensemble Empirical Mode Decomposition (EEMD) adaptive filter is applied to the mascon solution time series to compute timing of balance seasons and annual mass balances. The details and causes of the spatial and temporal variability of the land ice regions studied are discussed.

  18. Absolute Spatially- and Temporally-Resolved Optical Emission Measurements of rf Glow Discharges in Argon

    PubMed Central

    Djurović, S.; Roberts, J. R.; Sobolewski, M. A.; Olthoff, J. K.

    1993-01-01

    Spatially- and temporally-resolved measurements of optical emission intensities are presented from rf discharges in argon over a wide range of pressures (6.7 to 133 Pa) and applied rf voltages (75 to 200 V). Results of measurements of emission intensities are presented for both an atomic transition (Ar I, 750.4 nm) and an ionic transition (Ar II, 434.8 nm). The absolute scale of these optical emissions has been determined by comparison with the optical emission from a calibrated standard lamp. All measurements were made in a well-defined rf reactor. They provide detailed characterization of local time-resolved plasma conditions suitable for the comparison with results from other experiments and theoretical models. These measurements represent a new level of detail in diagnostic measurements of rf plasmas, and provide insight into the electron transport properties of rf discharges. PMID:28053464

  19. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    PubMed Central

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  20. Medial perirhinal cortex disambiguates confusable objects

    PubMed Central

    Tyler, Lorraine K.; Monsch, Andreas U.; Taylor, Kirsten I.

    2012-01-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer’s disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or hippocampus, significantly predicted naming performance on living relative to non-living things. These findings indicate that one specific anteromedial temporal lobe region—the medial perirhinal cortex—is necessary for the disambiguation of perceptually and semantically confusable objects. Taken together, these results support a hierarchical account of object processing, whereby the perirhinal cortex at the apex of the ventral object processing system is required to bind properties of not just perceptually, but also semantically confusable objects together, enabling their disambiguation from other similar objects and thus comprehension. Significantly, this model combining a hierarchical object processing architecture with a semantic feature statistic account explains why category-specific semantic impairments for living things are associated with anteromedial temporal lobe damage, and pinpoints the root of this syndrome to perirhinal cortex damage. PMID:23250887

  1. Drawing skill is related to the efficiency of encoding object structure.

    PubMed

    Perdreau, Florian; Cavanagh, Patrick

    2014-01-01

    Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details.

  2. Drawing skill is related to the efficiency of encoding object structure

    PubMed Central

    Perdreau, Florian; Cavanagh, Patrick

    2014-01-01

    Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details. PMID:25469216

  3. Reduced Orbitofrontal and Temporal Grey Matter in a Community Sample of Maltreated Children

    ERIC Educational Resources Information Center

    De Brito, Stephane A.; Viding, Essi; Sebastian, Catherine L.; Kelly, Philip A.; Mechelli, Andrea; Maris, Helen; McCrory, Eamon J.

    2013-01-01

    Background: Childhood maltreatment is strongly associated with increased risk of psychiatric disorder. Previous neuroimaging studies have reported atypical neural structure in the orbitofrontal cortex, temporal lobe, amygdala, hippocampus and cerebellum in maltreated samples. It has been hypothesised that these structural differences may relate to…

  4. The Temporal Structure of Adult Education: Reflections on a Time-Focussed Theoretical Reconstruction of the System of Further Education.

    ERIC Educational Resources Information Center

    Schaffter, Ortfried

    1993-01-01

    Discusses the time focused theoretical interpretation of adult education in relation to the integrative achievement of postsecondary education. Contends that a systematic temporal analysis of postsecondary presupposes the clarification of categories such as events, personal time structures, and synchronization. (CFR)

  5. The error structure of the SMAP single and dual channel soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the temporal error structure for remotely-sensed surface soil moisture retrievals can improve our ability to exploit them for hydrology and climate studies. This study employs a triple collocation type analysis to investigate both the total variance and temporal auto-correlation of erro...

  6. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  7. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    PubMed

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  8. Disturbed prefrontal and temporal brain function during emotion and cognition interaction in criminal psychopathy.

    PubMed

    Müller, Jürgen L; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-01-01

    Impaired emotional responsiveness has been revealed as a hallmark of psychopathy. In spite of an increasing database on emotion processing, studies on cognitive function and in particular on the impact of emotion on cognition in psychopathy are rare. We used pictures from the International Affective Picture Set (IAPS) and a Simon Paradigm to address emotion-cognition interaction while functional and structural imaging data were obtained in 12 healthy controls and 10 psychopaths. We found an impaired emotion-cognition interaction in psychopaths that correlated with a changed prefrontal and temporal brain activation. With regard to the temporal cortex, it is shown that structure and function of the right superior temporal gyrus is disturbed in psychopathy, supporting a neurobiological approach to psychopathy, in which structure and function of the right STG may be important. (c) 2008 John Wiley & Sons, Ltd.

  9. A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Lijun

    2017-11-01

    Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.

  10. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  11. Mechanical properties of the in vivo adolescent human brain.

    PubMed

    McIlvain, Grace; Schwarb, Hillary; Cohen, Neal J; Telzer, Eva H; Johnson, Curtis L

    2018-06-10

    Viscoelastic mechanical properties of the in vivo human brain, measured noninvasively with magnetic resonance elastography (MRE), have recently been shown to be affected by aging and neurological disease, as well as relate to performance on cognitive tasks in adults. The demonstrated sensitivity of brain mechanical properties to neural tissue integrity make them an attractive target for examining the developing brain; however, to date, MRE studies on children are lacking. In this work, we characterized global and regional brain stiffness and damping ratio in a sample of 40 adolescents aged 12-14 years, including the lobes of the cerebrum and subcortical gray matter structures. We also compared the properties of the adolescent brain to the healthy adult brain. Temporal and parietal cerebral lobes were softer in adolescents compared to adults. We found that of subcortical gray matter structures, the caudate and the putamen were significantly stiffer in adolescents, and that the hippocampus and amygdala were significantly less stiff than all other subcortical structures. This study provides the first detailed characterization of adolescent brain viscoelasticity and provides baseline data to be used in studying development and pathophysiology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Han, Ce; Gan, Guanghui; Deng, Zhenxiang; Zhou, Yongqiang; Yi, Jinling; Zheng, Xiaomin; Xie, Congying; Jin, Xiance

    2017-04-01

    Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as ‘PWLS-ndiSTV’. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.

  13. The role of temporal call structure in species recognition of male Allobates talamancae (Cope, 1875): (Anura: Dendrobatidae).

    PubMed

    Kollarits, Dennis; Wappl, Christian; Ringler, Max

    2017-01-30

    Acoustic species recognition in anurans depends on spectral and temporal characteristics of the advertisement call. The recognition space of a species is shaped by the likelihood of heterospecific acoustic interference. The dendrobatid frogs Allobates talamancae (Cope, 1875) and Silverstoneia flotator (Dunn, 1931) occur syntopically in south-west Costa Rica. A previous study showed that these two species avoid acoustic interference by spectral stratification. In this study, the role of the temporal call structure in the advertisement call of A. talamancae was analyzed, in particular the internote-interval duration in providing species specific temporal cues. In playback trials, artificial advertisement calls with internote-intervals deviating up to ± 90 % from the population mean internote-interval were broadcast to vocally active territorial males. The phonotactic reactions of the males indicated that, unlike in closely related species, internote-interval duration is not a call property essential for species recognition in A. talamancae . However, temporal call structure may be used for species recognition when the likelihood of heterospecific interference is high. Also, the close-encounter courtship call of male A. talamancae is described.

  14. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  15. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  16. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed

    Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.

  17. Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP.

    PubMed

    Rigoglio, Nathia N; Barreto, Rodrigo S N; Favaron, Phelipe O; Jacob, Júlio C F; Smith, Lawrence C; Gastal, Melba O; Gastal, Eduardo L; Miglino, Maria Angélica

    2017-01-01

    The neural system is one of the earliest systems to develop and the last to be fully developed after birth. This study presents a detailed description of organogenesis of the central nervous system (CNS) at equine embryonic/fetal development between 19 and 115 days of pregnancy. The expression of two important biomarkers in the main structure of the nervous system responsible for neurogenesis in the adult individual, and in the choroid plexus, was demonstrated by Nestin and glial fibrillary acid protein (GFAP) co-labeling. In the 29th day of pregnancy in the undifferentiated lateral ventricle wall, the presence of many cells expressing Nestin and few expressing GFAP was observed. After the differentiation of the lateral ventricle wall zones at 60 days of pregnancy, the subventricular zone, which initially had greater number of Nestin + cells, began to show higher numbers of GFAP + cells at 90 days of pregnancy. A similar pattern was observed for Nestin + and GFAP + cells during development of the choroid plexus. This study demonstrates, for the first time, detailed chronological aspects of the equine central nervous system organogenesis associated with downregulation of Nestin and upregulation of GFAP expression.

  18. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  19. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds

    NASA Astrophysics Data System (ADS)

    Ventura, Daniele; Bruno, Michele; Jona Lasinio, Giovanna; Belluscio, Andrea; Ardizzone, Giandomenico

    2016-03-01

    Acquiring seabed, landform or other topographic data in the field of marine ecology has a pivotal role in defining and mapping key marine habitats. However, accessibility for this kind of data with a high level of detail for very shallow and inaccessible marine habitats has been often challenging, time consuming. Spatial and temporal coverage often has to be compromised to make more cost effective the monitoring routine. Nowadays, emerging technologies, can overcome many of these constraints. Here we describe a recent development in remote sensing based on a small unmanned drone (UAVs) that produce very fine scale maps of fish nursery areas. This technology is simple to use, inexpensive, and timely in producing aerial photographs of marine areas. Both technical details regarding aerial photos acquisition (drone and camera settings) and post processing workflow (3D model generation with Structure From Motion algorithm and photo-stitching) are given. Finally by applying modern algorithm of semi-automatic image analysis and classification (Maximum Likelihood, ECHO and Object-based Image Analysis) we compared the results of three thematic maps of nursery area for juvenile sparid fishes, highlighting the potential of this method in mapping and monitoring coastal marine habitats.

  20. The geography of spatial synchrony.

    PubMed

    Walter, Jonathan A; Sheppard, Lawrence W; Anderson, Thomas L; Kastens, Jude H; Bjørnstad, Ottar N; Liebhold, Andrew M; Reuman, Daniel C

    2017-07-01

    Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application. © 2017 John Wiley & Sons Ltd/CNRS.

  1. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    PubMed Central

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  2. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    PubMed

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  3. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  4. Chromospheric umbral dynamics

    NASA Astrophysics Data System (ADS)

    Reardon, Kevin P.; Vecchio, Antonio; Cauzzi, Gianna; Tritschler, Alexandra

    2014-06-01

    The chromosphere above sunspots is seen to undergo dynamical driving from perturbations from lower layers of the atmosphere. Umbral flashes have long been understood to be the result of acoustic shocks due to the drop in density in the sunspot chromosphere. Detailed observations of the umbral waves and flashes may help reveal the nature of the sunspot structure in the upper atmosphere. We report on high-resolution observations of umbral dynamics observed in the Ca II 8542 line by IBIS at the Dunn Solar Telescope. We use a principal component decomposition technique (POD) to isolate different components of the observed oscillations. We are able to explore temporal and spatial evolution of the umbral flashes. We find significant variation in the nature of the flashes over the sunspot, indicating that the chromospheric magnetic topology can strongly modify the nature of the umbral intensity and velocity oscillations.

  5. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  6. Analysis of neuronal cells of dissociated primary culture on high-density CMOS electrode array

    PubMed Central

    Matsuda, Eiko; Mita, Takeshi; Hubert, Julien; Bakkum, Douglas; Frey, Urs; Hierlemann, Andreas; Takahashi, Hirokazu; Ikegami, Takashi

    2017-01-01

    Spontaneous development of neuronal cells was recorded around 4–34 days in vitro (DIV) with high-density CMOS array, which enables detailed study of the spatio-temporal activity of neuronal culture. We used the CMOS array to characterize the evolution of the inter-spike interval (ISI) distribution from putative single neurons, and estimate the network structure based on transfer entropy analysis, where each node corresponds to a single neuron. We observed that the ISI distributions gradually obeyed the power law with maturation of the network. The amount of information transferred between neurons increased at the early stage of development, but decreased as the network matured. These results suggest that both ISI and transfer entropy were very useful for characterizing the dynamic development of cultured neural cells over a few weeks. PMID:24109870

  7. Computer program for analysis of split-Stirling-cycle cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Brown, M. T.; Russo, S. C.

    1983-01-01

    A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.

  8. Human mobility in an emerging epidemic: a key aspect for response planning

    NASA Astrophysics Data System (ADS)

    Poletto, Chiara; Bajardi, Paolo; Colizza, Vittoria; Ramasco, Jose J.; Tizzoni, Michele; Vespignani, Alessandro

    2010-03-01

    Human mobility and interactions represent key ingredients in the spreading dynamics of an infectious disease. The flows of traveling people form a network characterized by complex features, such as strong topological and traffic heterogeneities, that unfolds at different temporal and spatial scales, from short ranges to the global scale. Computational models can be developed that integrate detailed network structures based on demographic and mobility data, in order to simulate the spatial evolution of an epidemic. Focusing on the recent A(H1N1) influenza pandemic as a paradigmatic example, these approaches allow the assessment of the interplay between individual mobility and epidemic dynamics, quantifying the effects of travel restrictions in delaying the epidemic spread and the role of mobility as an additional source of information for the understanding of the early outbreak.

  9. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, S. P.; Brown, G.; Chase, T. F.

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less

  10. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  11. FERMI -large area telescope observations of the exceptional gamma-ray outbursts of 3C 273 in 2009 September

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-05

    Here, we present the light curves and spectral data of two exceptionally luminous gamma-ray outbursts observed by the Large Area Telescope experiment on board the Fermi Gamma-ray Space Telescope from 3C 273 in 2009 September. During these flares, having a duration of a few days, the source reached its highest γ-ray flux ever measured. This allowed us to study, in some details, their spectral and temporal structures. The rise and the decay are asymmetric on timescales of 6 hr, and the spectral index was significantly harder during the flares than during the preceding 11 months. Lastly, we also found thatmore » short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in 2009 August.« less

  12. Application of travel time information for traffic management : technical summary.

    DOT National Transportation Integrated Search

    2012-01-01

    Using conventional methods, it is extremely costly to measure detailed traffic characteristics in high quality spatial or temporal resolution. For analyzing travel characteristics on roadways, the floating car method, developed in the 1920s, has hist...

  13. Spatio-temporal Event Classification using Time-series Kernel based Structured Sparsity

    PubMed Central

    Jeni, László A.; Lőrincz, András; Szabó, Zoltán; Cohn, Jeffrey F.; Kanade, Takeo

    2016-01-01

    In many behavioral domains, such as facial expression and gesture, sparse structure is prevalent. This sparsity would be well suited for event detection but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel Structured Sparsity (KSS) method that can handle both the temporal alignment problem and the structured sparse reconstruction within a common framework, and it can rely on simple features. We characterize spatio-temporal events as time-series of motion patterns and by utilizing time-series kernels we apply standard structured-sparse coding techniques to tackle this important problem. We evaluated the KSS method using both gesture and facial expression datasets that include spontaneous behavior and differ in degree of difficulty and type of ground truth coding. KSS outperformed both sparse and non-sparse methods that utilize complex image features and their temporal extensions. In the case of early facial event classification KSS had 10% higher accuracy as measured by F1 score over kernel SVM methods1. PMID:27830214

  14. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

    NASA Astrophysics Data System (ADS)

    Rußwurm, Marc; Körner, Marco

    2018-03-01

    Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.

  15. Emplacement history of a thrust sheet based on analysis of pressure solution cleavage and deformed fossils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protzman, G.M.; Mitra, G.

    The emplacement history of a thrust sheet is recorded by the strain accumulated in its hanging wall and footwall. Detailed studies of second order structures and analysis of strain due to pressure solution and plastic deformation allow the authors to determine the deformation history of the Meade thrust in the Idaho - Wyoming thrust belt. Emplacement of the Meade thrust was accompanied by the formation of a series of second order in echelon folds in the footwall. Temporal relations based on detailed structural studies show that these folds, which are confined to the Jurassic Twin Creek Formation, formed progressively inmore » front of the advancing Meade thrust and were successively truncated and overridden by footwall imbricates of the Meade thrust. The Twin Creek Formation in both the hanging wall and footwall of the Meade thrust is penetratively deformed, with a well developed pressure solution cleavage. In addition, plastic strain is recorded by deformed Pentacrinus within fossil hash layers in the Twin Creek. Much of this penetrative deformation took place early in the history of the thrust sheet as layer parallel shortening, and the cleavage and deformed fossils behaved passively during subsequent folding and faulting. The later stages of deformation may be sequentially removed through balancing techniques to track successive steps in the deformation. This strain history, which is typical of an internal thrust sheet, is partly controlled by the lithologies involved, timing between successive thrusts, and the amount of interaction between major faults.« less

  16. Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project

    NASA Astrophysics Data System (ADS)

    Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.

    2012-04-01

    Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.

  17. Separating temporal and topological effects in walk-based network centrality.

    PubMed

    Colman, Ewan R; Charlton, Nathaniel

    2016-07-01

    The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.

  18. Separating temporal and topological effects in walk-based network centrality

    NASA Astrophysics Data System (ADS)

    Colman, Ewan R.; Charlton, Nathaniel

    2016-07-01

    The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.

  19. Temporal event structure and timing in schizophrenia: preserved binding in a longer "now".

    PubMed

    Martin, Brice; Giersch, Anne; Huron, Caroline; van Wassenhove, Virginie

    2013-01-01

    Patients with schizophrenia experience a loss of temporal continuity or subjective fragmentation along the temporal dimension. Here, we develop the hypothesis that impaired temporal awareness results from a perturbed structuring of events in time-i.e., canonical neural dynamics. To address this, 26 patients and their matched controls took part in two psychophysical studies using desynchronized audiovisual speech. Two tasks were used and compared: first, an identification task testing for multisensory binding impairments in which participants reported what they heard while looking at a speaker's face; in a second task, we tested the perceived simultaneity of the same audiovisual speech stimuli. In both tasks, we used McGurk fusion and combination that are classic ecologically valid multisensory illusions. First, and contrary to previous reports, our results show that patients do not significantly differ from controls in their rate of illusory reports. Second, the illusory reports of patients in the identification task were more sensitive to audiovisual speech desynchronies than those of controls. Third, and surprisingly, patients considered audiovisual speech to be synchronized for longer delays than controls. As such, the temporal tolerance profile observed in a temporal judgement task was less of a predictor for sensory binding in schizophrenia than for that obtained in controls. We interpret our results as an impairment of temporal event structuring in schizophrenia which does not specifically affect sensory binding operations but rather, the explicit access to timing information associated here with audiovisual speech processing. Our findings are discussed in the context of curent neurophysiological frameworks for the binding and the structuring of sensory events in time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Which catchment characteristics control the temporal dependence structure of daily river flows?

    NASA Astrophysics Data System (ADS)

    Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim

    2014-05-01

    A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete daily river flow record.

  1. What role does the anterior temporal lobe play in sentence-level processing? Neural correlates of syntactic processing in semantic PPA

    PubMed Central

    Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2014-01-01

    Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172

  2. Using the relational event model (REM) to investigate the temporal dynamics of animal social networks.

    PubMed

    Tranmer, Mark; Marcum, Christopher Steven; Morton, F Blake; Croft, Darren P; de Kort, Selvino R

    2015-03-01

    Social dynamics are of fundamental importance in animal societies. Studies on nonhuman animal social systems often aggregate social interaction event data into a single network within a particular time frame. Analysis of the resulting network can provide a useful insight into the overall extent of interaction. However, through aggregation, information is lost about the order in which interactions occurred, and hence the sequences of actions over time. Many research hypotheses relate directly to the sequence of actions, such as the recency or rate of action, rather than to their overall volume or presence. Here, we demonstrate how the temporal structure of social interaction sequences can be quantified from disaggregated event data using the relational event model (REM). We first outline the REM, explaining why it is different from other models for longitudinal data, and how it can be used to model sequences of events unfolding in a network. We then discuss a case study on the European jackdaw, Corvus monedula , in which temporal patterns of persistence and reciprocity of action are of interest, and present and discuss the results of a REM analysis of these data. One of the strengths of a REM analysis is its ability to take into account different ways in which data are collected. Having explained how to take into account the way in which the data were collected for the jackdaw study, we briefly discuss the application of the model to other studies. We provide details of how the models may be fitted in the R statistical software environment and outline some recent extensions to the REM framework.

  3. Investigating membrane nanoporation induced by bipolar pulsed electric fields via second harmonic generation

    NASA Astrophysics Data System (ADS)

    Moen, E. K.; Ibey, B. L.; Beier, H. T.; Armani, A. M.

    2016-09-01

    Electric pulses have become an effective tool for transporting cargo (DNA, drugs, etc.) across cell membranes. This enhanced transport is believed to occur through temporary pores formed in the plasma membrane. Traditionally, millisecond duration, monopolar (MP) pulses are used for electroporation, but bipolar (BP) pulses have proven equally effective as MP pulses with the added advantage of less cytotoxicity. With the goal of further reducing cytotoxic effects and inducing non-thermal, intra-cellular effects, researchers began investigating reduced pulse durations, pushing into the nanosecond regime. Cells exposed to these MP, nanosecond pulsed electric fields (nsPEFs) have shown increased repairable membrane permeability and selective channel activation. However, attempts to improve this further by moving to the BP pulse regime has proven unsuccessful. In the present work, we use second harmonic generation imaging to explore the structural effects of bipolar nsPEFs on the plasma membrane. By varying the temporal spacing between the pulse phases over several orders of magnitude and comparing the response to a single MP case, we systematically examine the disparity in cellular response. Our circuit-based model predicts that, as the temporal spacing increases several orders of magnitude, nanoporation increases and eventually exceeds the MP case. On the whole, our experimental data agree with this assertion; however, a detailed analysis of the data sets demonstrates that biological processes may play a larger role in the observed response than previously thought, dominating the effect for temporal spacing up to 5 μs. These findings could ultimately lead to understanding the biophysical mechanism underlying all electroporation.

  4. Computational memory architectures for autobiographic agents interacting in a complex virtual environment: a working model

    NASA Astrophysics Data System (ADS)

    Ho, Wan Ching; Dautenhahn, Kerstin; Nehaniv, Chrystopher

    2008-03-01

    In this paper, we discuss the concept of autobiographic agent and how memory may extend an agent's temporal horizon and increase its adaptability. These concepts are applied to an implementation of a scenario where agents are interacting in a complex virtual artificial life environment. We present computational memory architectures for autobiographic virtual agents that enable agents to retrieve meaningful information from their dynamic memories which increases their adaptation and survival in the environment. The design of the memory architectures, the agents, and the virtual environment are described in detail. Next, a series of experimental studies and their results are presented which show the adaptive advantage of autobiographic memory, i.e. from remembering significant experiences. Also, in a multi-agent scenario where agents can communicate via stories based on their autobiographic memory, it is found that new adaptive behaviours can emerge from an individual's reinterpretation of experiences received from other agents whereby higher communication frequency yields better group performance. An interface is described that visualises the memory contents of an agent. From an observer perspective, the agents' behaviours can be understood as individually structured, and temporally grounded, and, with the communication of experience, can be seen to rely on emergent mixed narrative reconstructions combining the experiences of several agents. This research leads to insights into how bottom-up story-telling and autobiographic reconstruction in autonomous, adaptive agents allow temporally grounded behaviour to emerge. The article concludes with a discussion of possible implications of this research direction for future autobiographic, narrative agents.

  5. A high temporal-spatial vehicle emission inventory based on detailed hourly traffic data in a medium-sized city of China.

    PubMed

    Liu, Yong-Hong; Ma, Jin-Ling; Li, Li; Lin, Xiao-Fang; Xu, Wei-Jia; Ding, Hui

    2018-05-01

    To improve the accuracy and temporal-spatial resolution for a vehicle emission inventory in a medium-sized city with a strip road network, this study was conducted based on detailed hourly traffic-flow data for each day of 2014, and covered all road types and regions in the city of Foshan. Detailed hourly emission characteristics and sources in five regions were analysed. The results showed that the total vehicle emissions of CO, NO X , VOCs, and PM 2.5 were 13.10 × 10 4 , 0.23 × 10 4 , 4.46 × 10 4 , and 0.18 × 10 4 tons, respectively. Motorcycles (MCs) and light passenger cars (LPCs) were the dominant contributors of CO emissions, while buses and heavy passenger cars (HPCs) were the dominant contributors for NO X . As a whole, the daytime contributions to total emissions were close to 80%, and emissions during the peak periods accounted for almost 40%. Specifically, the hourly emissions of each pollutant on workdays were higher than on non-workdays (maximum up to 64.2%), and for some roads the early peak periods changed significantly from workdays to non-workdays. At expressways, artery roads, and local roads, the daily emission intensities of CO, NOx, and PM 2.5 in Foshan were close to or even higher than that of Beijing. On a regional scale, the temporal variation of vehicle emissions on workdays at artery roads of different regions were similar. In addition, the higher emission intensities of CO and VOCs were identified in DaLiang-RongGui (DLRG) and that of NO X and PM 2.5 were in Central Region (CR). These results are meaningful for decision-makers to help provide more detailed vehicle pollution control measures in Foshan with a strip road network and only one ring road. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Physics from Time Variability of the VHE Blazar PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses

    2010-10-01

    Blazars are the principal extragalactic sources of very high energy gamma-ray emission in the Universe. These objects constitute a sub-class of Active Galactic Nuclei whose emission is dominated by Doppler boosted non-thermal radiation from plasma outflow- ing at relativistic speeds from the central engine. This plasma outflow happens in the form of large-scale collimated structures called jets, which can extend for Mpc in length and transport energy from the central engine of the galaxy to the larger scale intergalac- tic medium. Over thirty such sources have been discovered to date by ground-based gamma-ray telescopes such as H.E.S.S., and PKS 2155-304 is the prototypical southern- hemisphere representative of this population of objects. In this thesis we have studied in detail some aspects of the temporal variability of the jet emission from PKS 2155-304, combining coordinated observations across the electro- magnetic spectrum, from optical polarimetric measurements to X-ray and ground-based gamma-ray data. The temporal properties of the dataset allowed us to derive important physical information about the structure and emission mechanisms of the source and put constraints to the location of the sites of VHE emission and particle acceleration within the jet. We have also derived a sensitive statistical measure, called Kolmogorov distance, which we applied to the large outburst observed from PKS 2155-304 in July 2006, to de- rive the most stringent constraints to date on limits for the violation of Lorentz invariance induced by quantum-gravity effects from AGN measurements.

  7. Disentangling multidimensional spatio-temporal data into their common and aberrant responses

    DOE PAGES

    Chang, Young Hwan; Korkola, James; Amin, Dhara N.; ...

    2015-04-22

    With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures andmore » how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.« less

  8. Low-Temperature Oxidation Reactions and Cool Flames at Earth and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1999-01-01

    Non-isothermal studies of cool flames and low temperature oxidation reactions in unstirred closed vessels are complicated by the perturbing effects of natural convection at earth gravity. Buoyant convection due to self-heating during the course of slow reaction produces spatio-temporal variations in the thermal and thus specie concentration fields due to the Arrhenius temperature dependence of the reaction rates. Such complexities have never been quantitatively modeled and were the primary impetus for the development of CSTR's (continuously stirred tank reactors) 30 years ago. While CSTR's have been widely adopted since they offer the advantage of spatial uniformity in temperature and concentration, all gradients are necessarily destroyed along with any structure that may otherwise develop. Microgravity offers a unique environment where buoyant convection can be effectively minimized and the need for stirring eliminated. Moreover, eliminating buoyancy and the need for stirring eliminates complications associated with the induced hydrodynamic field whose influence on heat transport and hot spot formation, hence explosion limits, is not fully realized. The objective of this research is to quantitatively determine and understand the fundamental mechanisms that control the onset and evolution of low temperature reactions and cool flames in both static and flow reactors. Microgravity experiments will be conducted to obtain benchmark data on the structure (spatio-temporal temperature, concentration, flow fields), the dynamics of the chemical fronts, and the ignition diagrams (pressure vs. temperature). Ground-based experiments will be conducted to ascertain the role of buoyancy. Numerical simulations including detailed kinetics will be conducted and compared to experiment.

  9. The CORONAS-Photon/TESIS experiment on EUV imaging spectroscopy of the Sun

    NASA Astrophysics Data System (ADS)

    Kuzin, S.; Zhitnik, I.; Bogachev, S.; Bugaenko, O.; Ignat'ev, A.; Mitrofanov, A.; Perzov, A.; Shestov, S.; Slemzin, V.; Suhodrev, N.

    The new experiment TESIS is developent for russian CORONAS-Photon mission launch is planned on the end of 2007 The experiment is aimed on the study of activity of the Sun in the phases of minimum rise and maximum of 24 th cycle of Solar activity by the method of XUV imaging spectroscopy The method is based on the registration full-Sun monochromatic images with high spatial and temporal resolution The scientific tasks of the experiment are i Investigation dynamic processes in corona flares CME etc with high spatial up to 1 and temporal up to 1 second resolution ii determination of the main plasma parameters like plasma electron and ion density and temperature differential emission measure etc iii study of the processes of appearance and development large scale long-life magnetic structures in the solar corona study of the fluency of this structures on the global activity of the corona iv study of the mechanisms of energy accumulation and release in the solar flares and mechanisms of transformation of this energy into the heating of the plasma and kinematics energy To get the information for this studies the TESIS will register full-Sun images in narrow spectral intervals and the monochromatic lines of HeII SiXI FeXXI-FeXXIII MgXII ions The instrument includes 5 independent channels 2 telescopes for 304 and 132 A wide-field 2 5 degrees coronograph 280-330A and 8 42 A spectroheliographs The detailed description of the TESIS experiment and the instrument is presented

  10. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  11. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-01

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  12. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE PAGES

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...

    2018-02-09

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  13. CT findings of the temporal bone in CHARGE syndrome: aspects of importance in cochlear implant surgery.

    PubMed

    Vesseur, A C; Verbist, B M; Westerlaan, H E; Kloostra, F J J; Admiraal, R J C; van Ravenswaaij-Arts, C M A; Free, R H; Mylanus, E A M

    2016-12-01

    To provide an overview of anomalies of the temporal bone in CHARGE syndrome relevant to cochlear implantation (CI), anatomical structures of the temporal bone and the respective genotypes were analysed. In this retrospective study, 42 CTs of the temporal bone of 42 patients with CHARGE syndrome were reviewed in consensus by two head-and-neck radiologists and two otological surgeons. Anatomical structures of the temporal bone were evaluated and correlated with genetic data. Abnormalities that might affect CI surgery were seen, such as a vascular structure, a petrosquamosal sinus (13 %), an underdeveloped mastoid (8 %) and an aberrant course of the facial nerve crossing the round window (9 %) and/or the promontory (18 %). The appearance of the inner ear varied widely: in 77 % of patients all semicircular canals were absent and the cochlea varied from normal to hypoplastic. A stenotic cochlear aperture was observed in 37 %. The middle ear was often affected with a stenotic round (14 %) or oval window (71 %). More anomalies were observed in patients with truncating mutations than with non-truncating mutations. Temporal bone findings in CHARGE syndrome vary widely. Vascular variants, aberrant route of the facial nerve, an underdeveloped mastoid, aplasia of the semicircular canals, and stenotic round window may complicate cochlear implantation.

  14. Parker Lecture - Prominences: the key to understanding solar activity

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.

    2011-05-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for prominence formation and evolution that could answer the two questions posed above.

  15. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for prominence formation and evolution that could answer the two questions posed above.

  16. Medial Temporal Lobe Structures Contribute to On-Line Processing

    ERIC Educational Resources Information Center

    Warren, David

    2009-01-01

    For the last five decades, the medial temporal lobes have been generally understood to facilitate enduring representation of certain kinds of information. In particular, knowledge about the relations among items and concepts appears to rely on that region of the brain. Recent results suggest that those same structures also play a subtle role in…

  17. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  18. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    ERIC Educational Resources Information Center

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  19. Exploring space-time structure of human mobility in urban space

    NASA Astrophysics Data System (ADS)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  20. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  1. City 2020+

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Buttstädt, M.; Merbitz, H.; Sachsen, T.; Ketzler, G.; Michael, S.; Klemme, M.; Dott, W.; Selle, K.; Hofmeister, H.

    2010-09-01

    This research initiative CITY 2020+ assesses the risks and opportunities for residents in urban built environments under projected demographic and climate change for the year 2020 and beyond, using the City of Aachen as a case study. CITY 2020+ develops scenarios, options and tools for planning and developing sustainable future city structures. We investigate how urban environment, political structure and residential behavior can best be adapted, with attention to the interactions among structural, political, and sociological configurations and with their consequences on human health. Demographers project that in the EU-25-States by 2050, approximately 30% of the population will be over age 65. Also by 2050, average tem¬peratures are projected to rise by 1 to 2 K. Combined, Europe can expect enhanced thermal stress and higher levels of particulate matter. CITY 2020+ amongst other sub-projects includes research project dealing with (1) a micro-scale assessment of blockages to low-level cold-air drainage flow into the city centre by vegetation and building structures, (2) a detailed analysis of the change of probability density functions related to the occurrence of heat waves during summer and the spatial and temporal structure of the urban heat island (UHI) (3) a meso-scale analysis of particulate matter (PM) concentrations depending on topography, local meteorological conditions and synoptic-scale weather patterns. First results will be presented specifically from sub-projects related to vegetation barriers within cold air drainage, the assessment of the UHI and the temporal and spatial pattern of PM loadings in the city centre. The analysis of the cold air drainage flow is investigated in two consecutive years with a clearing of vegetation stands in the beginning of the second year early in 2010. The spatial pattern of the UHI and its possible enhancement by climate change is addressed employing a unique setup using GPS devices and temperature probes fixed to several public transport units running all across the city. This is accompanied by an analysis of probability density functions (PDF) for heat waves based on recent climate data and climate projections. A dense net of 40 PM measurement sites is operated in order to obtain the spatial pattern of PM concentration as depending on meteorological condition and location. It is lined out how this climate related sub-projects interact with investigations on social networks, governance issues, buildings structure development and health outcome. Related to the later the chemical composition of PM is analyzed in more detail and related to the spatial patterns of health deficiencies. At a later stage City2020+ will propose new strategies based on cooperation from the fields of medicine, geography, sociology, history, civil engineering, and architecture for adapting the city for future needs. The Project CITY 2020+ is part of the interdisciplinary Project House HumTec (Human Sciences and Technology) at RWTH Aachen University funded by the Excellence Initiative of the German federal and state governments through the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG).

  2. Cross-correlation-based earthquake relocation and ambient noise imaging at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Waldhauser, F.; Tolstoy, M.; Wilcock, W. S. D.

    2016-12-01

    The seismic network that was installed on Axial Seamount as part of the Ocean Observatory Initiative's Cabled Array has been streaming live data since November 2014, encompassing an eruption in April-May of 2015. The network includes two broadband and five short-period seismometers spanning the southern half of the caldera. Almost 200,000 local earthquakes were detected in the first year of operation. Earthquake locations based on phase picks delineate outward dipping ring faults inferred to have accommodated deflation and guided dike propagation during the eruption (Wilcock et al., submitted). We will present results from our current effort of computing cross-correlation-based double-difference hypocenter locations to derive a more detailed image of the structures that provide insight into the active processes leading up to, during, and after the volcano's eruption. The new high-resolution hypocenters will form the base catalog for real-time double-difference monitoring of the seismicity recorded by the Cabled Array, allowing for high-precision evaluation of variation in seismogenic properties. We will also present results of measurements of temporal velocity changes associated with the eruption using seismic noise cross-correlations. This method has the potential to reveal areas of dike injection and magma withdrawal, as well as for real-time monitoring of temporal velocity variations associated with active volcanic processes.

  3. Global precipitation measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.

    2001-12-01

    The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.

  4. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.

    PubMed

    Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon

    2014-11-01

    Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.

  5. Coding tools investigation for next generation video coding based on HEVC

    NASA Astrophysics Data System (ADS)

    Chen, Jianle; Chen, Ying; Karczewicz, Marta; Li, Xiang; Liu, Hongbin; Zhang, Li; Zhao, Xin

    2015-09-01

    The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. This paper provides the evidence that there is still potential for further coding efficiency improvements. A brief overview of HEVC is firstly given in the paper. Then, our improvements on each main module of HEVC are presented. For instance, the recursive quadtree block structure is extended to support larger coding unit and transform unit. The motion information prediction scheme is improved by advanced temporal motion vector prediction, which inherits the motion information of each small block within a large block from a temporal reference picture. Cross component prediction with linear prediction model improves intra prediction and overlapped block motion compensation improves the efficiency of inter prediction. Furthermore, coding of both intra and inter prediction residual is improved by adaptive multiple transform technique. Finally, in addition to deblocking filter and SAO, adaptive loop filter is applied to further enhance the reconstructed picture quality. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. The simulation results show that significant performance improvement over HEVC standard can be achieved, especially for the high resolution video materials.

  6. Sandbox rheometry: Co-evolution of stress and strain in Riedel- and Critical Wedge-experiments

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Santimano, Tasca; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2018-01-01

    Analogue sandbox experiments have been used for a long time to understand tectonic processes, because they facilitate detailed measurements of deformation at a spatio-temporal resolution unachievable from natural data. Despite this long history, force measurements to further characterise the mechanical evolution in analogue sandbox experiments have only emerged recently. Combined continuous measurements of forces and deformation in such experiments, an approach here referred to as "sandbox rheometry", are a new tool that may help to better understand work budgets and force balances for tectonic systems and to derive constitutive laws for regional scale deformation. In this article we present an experimental device that facilitates precise measurements of boundary forces and surface deformation at high temporal and spatial resolution. We demonstrate its capabilities in two classical experiments: one of strike-slip deformation (the Riedel set-up) and one of compressional accretionary deformation (the Critical Wedge set-up). In these we are able to directly observe a correlation between strain weakening and strain localisation that had previously only been inferred, namely the coincidence of the maximum localisation rate with the onset of weakening. Additionally, we observe in the compressional experiment a hysteresis of localisation with respect to the mechanical evolution that reflects the internal structural complexity of an accretionary wedge.

  7. How people make friends in social networking sites—A microscopic perspective

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Wang, Xiaofan

    2012-02-01

    We study the detailed growth of a social networking site with full temporal information by examining the creation process of each friendship relation that can collectively lead to the macroscopic properties of the network. We first study the reciprocal behavior of users, and find that link requests are quickly responded to and that the distribution of reciprocation intervals decays in an exponential form. The degrees of inviters/accepters are slightly negatively correlative with reciprocation time. In addition, the temporal feature of the online community shows that the distributions of intervals of user behaviors, such as sending or accepting link requests, follow a power law with a universal exponent, and peaks emerge for intervals of an integral day. We finally study the preferential selection and linking phenomena of the social networking site and find that, for the former, a linear preference holds for preferential sending and reception, and for the latter, a linear preference also holds for preferential acceptance, creation, and attachment. Based on the linearly preferential linking, we put forward an analyzable network model which can reproduce the degree distribution of the network. The research framework presented in the paper could provide a potential insight into how the micro-motives of users lead to the global structure of online social networks.

  8. A double-cusp type electrostatic analyzer for high-cadence ring current ion measurements

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Allegrini, F.; Burch, J. L.; Desai, M. I.; Ebert, R. W.; Goldstein, J.; John, J. M.; Livi, S. A.; McComas, D. J.

    2015-12-01

    Detailed observations of a variety of ion species at a sufficiently high temporal resolution are essential to understanding the loss and acceleration processes of ring current ions. For example, CRESS/MICS observations indicated that the energy density of suprathermal O+ exceeds that of H+ in large magnetic storms (Daglis et al., 1997), while the H+ energy density dominates under quiet conditions. However, the primary ion loss processes during the storm recovery phase are still incompletely understood. The mechanisms to accelerate upflowing ions, regularly observed with energies of a few keV at ~1000 km altitude, up to the 100s-keV range in the geospace are also not fully understood. Our novel electrostatic analyzer (ESA) employs a toroidal double-shell structure to cover the entire ring current ion range of ~3-250 keV/Q with high temporal resolution (<1 minute with a necessary counting statistics for the quiet time), while saving significant resources in mass and size. In this presentation, we discuss the operation principle and the proof of concept study of the ESA in terms of numerical calculations and ion beam calibration activities. This presentation comprehensively covers the expected sensor performance important for the in-flight capabilities, such as sensor parameters (G-factor, K-factor, and energy resolution), cross-shell contaminations, and UV background counts.

  9. Dynamics of Large-scale Coronal Structures as Imaged during the 2012 and 2013 Total Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Alzate, Nathalia; Habbal, Shadia R.; Druckmüller, Miloslav; Emmanouilidis, Constantinos; Morgan, Huw

    2017-10-01

    White light images acquired at the peak of solar activity cycle 24, during the total solar eclipses of 2012 November 13 and 2013 November 3, serendipitously captured erupting prominences accompanied by CMEs. Application of state-of-the-art image processing techniques revealed the intricate details of two “atypical” large-scale structures, with strikingly sharp boundaries. By complementing the processed white light eclipse images with processed images from co-temporal Solar Dynamics Observatory/AIA and SOHO/LASCO observations, we show how the shape of these atypical structures matches the shape of faint CME shock fronts, which traversed the inner corona a few hours prior to the eclipse observations. The two events were not associated with any prominence eruption but were triggered by sudden brightening events on the solar surface accompanied by sprays and jets. The discovery of the indelible impact that frequent and innocuous transient events in the low corona can have on large-scale coronal structures was enabled by the radial span of the high-resolution white light eclipse images, starting from the solar surface out to several solar radii, currently unmatched by any coronagraphic instrumentation. These findings raise the interesting question as to whether large-scale coronal structures can ever be considered stationary. They also point to the existence of a much larger number of CMEs that goes undetected from the suite of instrumentation currently observing the Sun.

  10. NASA-ISRO synthetic aperture radar (NISAR) for temporal tracking of iceberg calving events in the Antarctica

    NASA Astrophysics Data System (ADS)

    Jawak, S. D.; Luis, A. J.

    2017-12-01

    Estimating mass loss of the Antarctic ice sheet caused by iceberg calving is a challenging job. Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. It is possible to monitor surface structures on the continental ice and the ice shelves as well as calved icebergs using NASA-ISRO synthetic aperture radar (NISAR) satellite images in future. The NISAR, which is planned to be launched in 2020, can be used as an all-weather and all-season system to classify the coastline of Antarctica to map patterns of surface structures close to the calving front. Additionally, classifying patterns and density of surface structures distributed over the ice shelves and ice tongues can be a challenging research where NISAR can be of a great advantage. So this work explores use of NISAR to map surface structures visible on ice shelves which can provide advisories to field teams. The ice shelf fronts has been categorized into various classes based on surface structures relative to the calving front within a 30 km-wide seaward strip. The resulting map of the classified calving fronts around Antarctica and their description would provide a detailed representation of crevasse formation and dominant iceberg in the southern ocean which pose a threat to navigation of Antarctic bound ships.

  11. Periodicity in marine extinction events

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.; Raup, David M.

    1986-01-01

    The periodicity of extinction events is examined in detail. In particular, the temporal distribution of specific, identifiable extinction events is analyzed. The nature and limitations of the data base on the global fossil record is discussed in order to establish limits of resolution in statistical analyses. Peaks in extinction intensity which appear to differ significantly from background levels are considered, and new analyses of the temporal distribution of these peaks are presented. Finally, some possible causes of periodicity and of interdependence among extinction events over the last quarter billion years of earth history are examined.

  12. Memory for time and place contributes to enhanced confidence in memories for emotional events

    PubMed Central

    Rimmele, Ulrike; Davachi, Lila; Phelps, Elizabeth A.

    2012-01-01

    Emotion strengthens the subjective sense of remembering. However, these confidently remembered emotional memories have not been found be more accurate for some types of contextual details. We investigated whether the subjective sense of recollecting negative stimuli is coupled with enhanced memory accuracy for three specific types of central contextual details using the remember/know paradigm and confidence ratings. Our results indicate that the subjective sense of remembering is indeed coupled with better recollection of spatial location and temporal context. In contrast, we found a double-dissociation between the subjective sense of remembering and memory accuracy for colored dots placed in the conceptual center of negative and neutral scenes. These findings show that the enhanced subjective recollective experience for negative stimuli reliably indicates objective recollection for spatial location and temporal context, but not for other types of details, whereas for neutral stimuli, the subjective sense of remembering is coupled with all the types of details assessed. Translating this finding to flashbulb memories, we found that, over time, more participants correctly remembered the location where they learned about the terrorist attacks on 9/11 than any other canonical feature. Likewise participants’ confidence was higher in their memory for location vs. other canonical features. These findings indicate that the strong recollective experience of a negative event corresponds to an accurate memory for some kinds of contextual details, but not other kinds. This discrepancy provides further evidence that the subjective sense of remembering negative events is driven by a different mechanism than the subjective sense of remembering neutral events. PMID:22642353

  13. Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations

    PubMed Central

    Iandiorio, Michelle J.; Fair, Jeanne M.; Chatzipanagiotou, Stylianos; Ioannidis, Anastasios; Trikka-Graphakos, Eleftheria; Charalampaki, Nikoletta; Sereti, Christina; Tegos, George P.; Hoogesteijn, Almira L.; Rivas, Ariel L.

    2016-01-01

    Background Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. Methods Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. Results In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. Conclusions Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both diagnostics and selection or evaluation of anti-microbial therapies. PMID:27411058

  14. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    PubMed

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  15. MISR File Naming and Versioning Conventions

    Atmospheric Science Data Center

    2013-06-26

    ... that generates that product. In addition, product version numbers were incremented if a new ancillary dataset was delivered that ... are applicable to two different temporal ranges. The version numbers 0005 and 0001 bear no relation to each other. For more details, please ...

  16. A dynamic appearance descriptor approach to facial actions temporal modeling.

    PubMed

    Jiang, Bihan; Valstar, Michel; Martinez, Brais; Pantic, Maja

    2014-02-01

    Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial expressions of six basic emotions. Facial dynamics can be explicitly analyzed by detecting the constituent temporal segments in Facial Action Coding System (FACS) Action Units (AUs)-onset, apex, and offset. In this paper, we present a novel approach to explicit analysis of temporal dynamics of facial actions using the dynamic appearance descriptor Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP). Temporal segments are detected by combining a discriminative classifier for detecting the temporal segments on a frame-by-frame basis with Markov Models that enforce temporal consistency over the whole episode. The system is evaluated in detail over the MMI facial expression database, the UNBC-McMaster pain database, the SAL database, the GEMEP-FERA dataset in database-dependent experiments, in cross-database experiments using the Cohn-Kanade, and the SEMAINE databases. The comparison with other state-of-the-art methods shows that the proposed LPQ-TOP method outperforms the other approaches for the problem of AU temporal segment detection, and that overall AU activation detection benefits from dynamic appearance information.

  17. Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.

    PubMed

    Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J

    2017-02-01

    Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Formally grounding spatio-temporal thinking.

    PubMed

    Klippel, Alexander; Wallgrün, Jan Oliver; Yang, Jinlong; Li, Rui; Dylla, Frank

    2012-08-01

    To navigate through daily life, humans use their ability to conceptualize spatio-temporal information, which ultimately leads to a system of categories. Likewise, the spatial sciences rely heavily on conceptualization and categorization as means to create knowledge when they process spatio-temporal data. In the spatial sciences and in related branches of artificial intelligence, an approach has been developed for processing spatio-temporal data on the level of coarse categories: qualitative spatio-temporal representation and reasoning (QSTR). Calculi developed in QSTR allow for the meaningful processing of and reasoning with spatio-temporal information. While qualitative calculi are widely acknowledged in the cognitive sciences, there is little behavioral assessment whether these calculi are indeed cognitively adequate. This is an astonishing conundrum given that these calculi are ubiquitous, are often intended to improve processes at the human-machine interface, and are on several occasions claimed to be cognitively adequate. We have systematically evaluated several approaches to formally characterize spatial relations from a cognitive-behavioral perspective for both static and dynamically changing spatial relations. This contribution will detail our framework, which is addressing the question how formal characterization of space can help us understand how people think with, in, and about space.

  19. Calibration of a Spatial-Temporal Discrimination Model from Forward, Simultaneous, and Backward Masking

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.; Beard, B. L.; Stone, Leland (Technical Monitor)

    1997-01-01

    We have been developing a simplified spatial-temporal discrimination model similar to our simplified spatial model in that masking is assumed to be a function of the local visible contrast energy. The overall spatial-temporal sensitivity of the model is calibrated to predict the detectability of targets on a uniform background. To calibrate the spatial-temporal integration functions that define local visible contrast energy, spatial-temporal masking data are required. Observer thresholds were measured (2IFC) for the detection of a 12 msec target stimulus in the presence of a 700 msec mask. Targets were 1, 3 or 9 c/deg sine wave gratings. Masks were either one of these gratings or two of them combined. The target was presented in 17 temporal positions with respect to the mask, including positions before, during and after the mask. Peak masking was found near mask onset and offset for 1 and 3 c/deg targets, while masking effects were more nearly uniform during the mask for the 9 c/deg target. As in the purely spatial case, the simplified model can not predict all the details of masking as a function of masking component spatial frequencies, but overall the prediction errors are small.

  20. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population.

    PubMed

    Cai, PingGen; Takahashi, Ryosuke; Kuribayashi-Shigetomi, Kaori; Subagyo, Agus; Sueoka, Kazuhisa; Maloney, John M; Van Vliet, Krystyn J; Okajima, Takaharu

    2017-08-08

    Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G ∗ ). Although the ensemble variation in G ∗ of single cells has been elucidated, the detailed temporal variation of G ∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G ∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. [Multi-center study of the Jenaer model of the temporal bone].

    PubMed

    Schneider, G; Müller, A

    2004-06-01

    Preparing exercises at the temporal bone are a prerequisite for the knowledge of the anatomical special features of this region and for learning the fundamentals of the tympanic cavity surgery. Since however fewer human temporal bones are available, the search for back-up models already took place in the last years. Based on the experiences of the handling and visualization of CT data for the 3D-implant construction in the ent department Jena a temporal bone model was developed. The model was sent away to surgeons of different training. On the basis of identification of anatomical structures and evaluation of general parameters by means of a point system the model was evaluated. The Jenaer temporal bone model is suitable as entrance into the preparing exercises. The anatomical structures are good to identify for the beginner. The handling with drill and chisel can be learned.

  2. The AGINAO Self-Programming Engine

    NASA Astrophysics Data System (ADS)

    Skaba, Wojciech

    2013-01-01

    The AGINAO is a project to create a human-level artificial general intelligence system (HL AGI) embodied in the Aldebaran Robotics' NAO humanoid robot. The dynamical and open-ended cognitive engine of the robot is represented by an embedded and multi-threaded control program, that is self-crafted rather than hand-crafted, and is executed on a simulated Universal Turing Machine (UTM). The actual structure of the cognitive engine emerges as a result of placing the robot in a natural preschool-like environment and running a core start-up system that executes self-programming of the cognitive layer on top of the core layer. The data from the robot's sensory devices supplies the training samples for the machine learning methods, while the commands sent to actuators enable testing hypotheses and getting a feedback. The individual self-created subroutines are supposed to reflect the patterns and concepts of the real world, while the overall program structure reflects the spatial and temporal hierarchy of the world dependencies. This paper focuses on the details of the self-programming approach, limiting the discussion of the applied cognitive architecture to a necessary minimum.

  3. An automated procedure for detection of IDP's dwellings using VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Malgorzata; Kemper, Thomas; Soille, Pierre

    2011-11-01

    This paper presents the results for the estimation of dwellings structures in Al Salam IDP Camp, Southern Darfur, based on Very High Resolution multispectral satellite images obtained by implementation of Mathematical Morphology analysis. A series of image processing procedures, feature extraction methods and textural analysis have been applied in order to provide reliable information about dwellings structures. One of the issues in this context is related to similarity of the spectral response of thatched dwellings' roofs and the surroundings in the IDP camps, where the exploitation of multispectral information is crucial. This study shows the advantage of automatic extraction approach and highlights the importance of detailed spatial and spectral information analysis based on multi-temporal dataset. The additional data fusion of high-resolution panchromatic band with lower resolution multispectral bands of WorldView-2 satellite has positive influence on results and thereby can be useful for humanitarian aid agency, providing support of decisions and estimations of population especially in situations when frequent revisits by space imaging system are the only possibility of continued monitoring.

  4. Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach

    NASA Astrophysics Data System (ADS)

    Levy, Peter; van Oijen, Marcel; Buys, Gwen; Tomlinson, Sam

    2018-03-01

    We present a method for estimating land-use change using a Bayesian data assimilation approach. The approach provides a general framework for combining multiple disparate data sources with a simple model. This allows us to constrain estimates of gross land-use change with reliable national-scale census data, whilst retaining the detailed information available from several other sources. Eight different data sources, with three different data structures, were combined in our posterior estimate of land use and land-use change, and other data sources could easily be added in future. The tendency for observations to underestimate gross land-use change is accounted for by allowing for a skewed distribution in the likelihood function. The data structure produced has high temporal and spatial resolution, and is appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately into the output, so we have a full posterior distribution of output and parameters. The data are available in the widely used netCDF file format from http://eidc.ceh.ac.uk/.

  5. The dynamics of information-driven coordination phenomena: A transfer entropy analysis

    PubMed Central

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-01-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875

  6. 3D Study of the Morphology and Dynamics of Zeolite Nucleation.

    PubMed

    Melinte, Georgian; Georgieva, Veselina; Springuel-Huet, Marie-Anne; Nossov, Andreï; Ersen, Ovidiu; Guenneau, Flavien; Gedeon, Antoine; Palčić, Ana; Bozhilov, Krassimir N; Pham-Huu, Cuong; Qiu, Shilun; Mintova, Svetlana; Valtchev, Valentin

    2015-12-07

    The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na-rich aluminosilicate system. A detailed time-series EMT-type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core-shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The dynamics of information-driven coordination phenomena: A transfer entropy analysis.

    PubMed

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-04-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data.

  8. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  9. Incorporation of varying types of temporal data in a neural network

    NASA Technical Reports Server (NTRS)

    Cohen, M. E.; Hudson, D. L.

    1992-01-01

    Most neural network models do not specifically deal with temporal data. Handling of these variables is complicated by the different uses to which temporal data are put, depending on the application. Even within the same application, temporal variables are often used in a number of different ways. In this paper, types of temporal data are discussed, along with their implications for approximate reasoning. Methods for integrating approximate temporal reasoning into existing neural network structures are presented. These methods are illustrated in a medical application for diagnosis of graft-versus-host disease which requires the use of several types of temporal data.

  10. Temporal planning for transportation planning and scheduling

    NASA Technical Reports Server (NTRS)

    Frederking, Robert E.; Muscettola, Nicola

    1992-01-01

    In this paper we describe preliminary work done in the CORTES project, applying the Heuristic Scheduling Testbed System (HSTS) to a transportation planning and scheduling domain. First, we describe in more detail the transportation problems that we are addressing. We then describe the fundamental characteristics of HSTS and we concentrate on the representation of multiple capacity resources. We continue with a more detailed description of the transportation planning problem that we have initially addressed in HSTS and of its solution. Finally we describe future directions for our research.

  11. Falcon: A Temporal Visual Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.

    2016-09-05

    Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.

  12. Temporal Effects of Alignment in Text-Based, Task-Oriented Discourse

    ERIC Educational Resources Information Center

    Foltz, Anouschka; Gaspers, Judith; Meyer, Carolin; Thiele, Kristina; Cimiano, Philipp; Stenneken, Prisca

    2015-01-01

    Communicative alignment refers to adaptation to one's communication partner. Temporal aspects of such alignment have been little explored. This article examines temporal aspects of lexical and syntactic alignment (i.e., tendencies to use the interlocutor's lexical items and syntactic structures) in task-oriented discourse. In particular, we…

  13. Phylogenetic community structure: temporal variation in fish assemblage

    PubMed Central

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-01-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256

  14. Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Protzner, Andrea B.; McAndrews, Mary Pat

    2011-01-01

    Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…

  15. Syntactic Structure Building in the Anterior Temporal Lobe during Natural Story Listening

    ERIC Educational Resources Information Center

    Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J.; Pylkkanen, Liina

    2012-01-01

    The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to…

  16. The course and the anatomo-functional relationships of the optic radiation: a combined study with ‘post mortem’ dissections and ‘in vivo’ direct electrical mapping

    PubMed Central

    Sarubbo, Silvio; De Benedictis, Alessandro; Milani, Paola; Paradiso, Beatrice; Barbareschi, Mattia; Rozzanigo, Umbero; Colarusso, Enzo; Tugnoli, Valeria; Farneti, Marco; Granieri, Enrico; Duffau, Hugues; Chioffi, Franco

    2015-01-01

    Even if different dissection, tractographic and connectivity studies provided pure anatomical evidences about the optic radiations (ORs), descriptions of both the anatomical structure and the anatomo-functional relationships of the ORs with the adjacent bundles were not reported. We propose a detailed anatomical and functional study with ‘post mortem’ dissections and ‘in vivo’ direct electrical stimulation (DES) of the OR, demonstrating also the relationships with the adjacent eloquent bundles in a neurosurgical ‘connectomic’ perspective. Six human hemispheres (three left, three right) were dissected after a modified Klingler's preparation. The anatomy of the white matter was analysed according to systematic and topographical surgical perspectives. The anatomical results were correlated to the functional responses collected during three resections of tumours guided by cortico-subcortical DES during awake procedures. We identified two groups of fibres forming the OR. The superior component runs along the lateral wall of the occipital horn, the trigone and the supero-medial wall of the temporal horn. The inferior component covers inferiorly the occipital horn and the trigone, the lateral wall of the temporal horn and arches antero-medially to form the Meyer's Loop. The inferior fronto-occipital fascicle (IFOF) covers completely the superior OR along its entire course, as confirmed by the subcortical DES. The inferior longitudinal fascicle runs in a postero-anterior and inferior direction, covering the superior OR posteriorly and the inferior OR anteriorly. The IFOF identification allows the preservation of the superior OR in the anterior temporal resection, avoiding post-operative complete hemianopia. The identification of the superior OR during the posterior temporal, inferior parietal and occipital resections leads to the preservation of the IFOF and of the eloquent functions it subserves. The accurate knowledge of the OR course and the relationships with the adjacent bundles is crucial to optimize quality of resection and functional outcome. PMID:25402811

  17. Influence of canopy traits on spatio-temporal variability of throughfall in Mediterranean Downy oak and Scots pine stands

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Gallart, Francesc

    2014-05-01

    The spatio-temporal variability of throughfall is the result of the interaction of biotic factors, related to the canopy traits, and abiotic factors, linked to the meteorological conditions. This variability may lead to significant differences in the volume of water and solutes that reach the ground in each location, and beyond in the hydrological and biogeochemical dynamics of forest soils. Two forest stands in Mediterranean climatic conditions were studied to analyse the role of biotic and abiotic factors in the temporal and spatial redistribution of throughfall. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42º 12'N, 1º 49'E). The study plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consisted of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover were also automatically recorded. Canopy cover as well as biometric characteristics of the plots were also regularly measured. The results indicate a temporal persistence of throughfall in both stands, as observed elsewhere. However, for the oak plot the seasonal evolution of canopy traits added additional variability, with higher variability in summer and different locations of wet and dry spots depending on the season. Furthermore, this work investigates the influence of canopy structure on the spatial variability of throughfall by analysing a large set of forest parameters, from main canopy traits to detailed leaves and wood characteristics. The analysis includes the consideration of the interaction of main abiotic factors with canopy traits.

  18. Spatial-temporal distortion metric for in-service quality monitoring of any digital video system

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen; Pinson, Margaret H.

    1999-11-01

    Many organizations have focused on developing digital video quality metrics which produce results that accurately emulate subjective responses. However, to be widely applicable a metric must also work over a wide range of quality, and be useful for in-service quality monitoring. The Institute for Telecommunication Sciences (ITS) has developed spatial-temporal distortion metrics that meet all of these requirements. These objective metrics are described in detail and have a number of interesting properties, including utilization of (1) spatial activity filters which emphasize long edges on the order of 10 arc min while simultaneously performing large amounts of noise suppression, (2) the angular direction of the spatial gradient, (3) spatial-temporal compression factors of at least 384:1 (spatial compression of at least 64:1 and temporal compression of at least 6:1, and 4) simple perceptibility thresholds and spatial-temporal masking functions. Results are presented that compare the objective metric values with mean opinion scores from a wide range of subjective data bases spanning many different scenes, systems, bit-rates, and applications.

  19. Wisconsin Card Sorting Test performance and impulsivity in patients with temporal lobe epilepsy: suicidal risk and suicide attempts.

    PubMed

    Garcia Espinosa, Arlety; Andrade Machado, René; Borges González, Susana; García González, María Eugenia; Pérez Montoto, Ariadna; Toledo Sotomayor, Guillermo

    2010-01-01

    The goal of the study described here was to determine if executive dysfunction and impulsivity are related to risk for suicide and suicide attempts in patients with temporal lobe epilepsy. Forty-two patients with temporal lobe epilepsy were recruited. A detailed medical history, neurological examination, serial EEGs, Mini-International Neuropsychiatric Interview, executive function, and MRI were assessed. Multiple regression analysis was carried out to examine predictive associations between clinical variables and Wisconsin Card Sorting Test measures. Patients' scores on the Risk for Suicide Scale (n=24) were greater than 7, which means they had the highest relative risk for suicide attempts. Family history of psychiatric disease, current major depressive episode, left temporal lobe epilepsy, and perseverative responses and total errors on the Wisconsin Card Sorting Test increased by 6.3 and 7.5 suicide risk and suicide attempts, respectively. Executive dysfunction (specifically perseverative responses and more total errors) contributed greatly to suicide risk. Executive performance has a major impact on suicide risk and suicide attempts in patients with temporal lobe epilepsy. 2009 Elsevier Inc. All rights reserved.

  20. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557

Top