DOT National Transportation Integrated Search
2003-09-16
The objective of this Hazardous Material (HazMat) Transportation Safety and Security Field Operational Test (FOT) Final Detailed Test Plans evaluation is to measure the impact of technology solutions on the safety, security, and operational efficienc...
The Seductive Details Effect in Technology-Delivered Instruction
ERIC Educational Resources Information Center
Towler, Annette; Kraiger, Kurt; Sitzmann, Traci; Van Overberghe, Courtney; Cruz, Jaime; Ronen, Eyal; Stewart, David
2008-01-01
Seductive details are highly interesting information tangential to course objectives. The inclusion of seductive details generally harms performance on recall tests, but few studies have used multimedia training or investigated effects on performance on recognition tests or transfer tasks. We conducted two studies using computer-based training,…
Development and Validation of a Translation Test.
ERIC Educational Resources Information Center
Ghonsooly, Behzad
1993-01-01
Translation testing methodology has been criticized for its subjective character. No real strides have so far been made in developing an objective translation test. In this paper, certain detailed procedures including various phases of pretesting have been performed to achieve objectivity and scorability in translation testing methodology. In…
The case of the missing visual details: Occlusion and long-term visual memory.
Williams, Carrick C; Burkle, Kyle A
2017-10-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Detailed test objectives for the extended long tank delta launch vehicle, spacecraft: AE-C
NASA Technical Reports Server (NTRS)
1973-01-01
The test objectives for the extended long tank Delta Launch Vehicle are presented. The subjects discussed are: (1) mission and vehicle objectives, (2) nominal flight plan, (3) trajectory analysis, (4) weight summary and inflight mass properties, and (5) instrumentation channel assignments and ground monitoring assignments.
Aquarius Reflector Surface Temperature Monitoring Test and Analysis
NASA Technical Reports Server (NTRS)
Abbott, Jamie; Lee, Siu-Chun; Becker, Ray
2008-01-01
The presentation addresses how to infer the front side temperatures for the Aquarius L-band reflector based upon backside measurement sites. Slides discussing the mission objectives and design details are at the same level found on typical project outreach websites and in conference papers respectively. The test discussion provides modest detail of an ordinary thermal balance test using mockup hardware. The photographs show an off-Lab vacuum chamber facility with no compromising details.
NASA Astrophysics Data System (ADS)
Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.; Shutov, I. V.
2002-11-01
An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 — 3 min) image reconstruction of the details of objects with a complicated inner structure.
Progeny testing: proceedings of servicewide genetics workshop
Dick Miller
1984-01-01
The primary objective of this workshop was to discuss in detail the state- of-the-art of progeny testing. All aspects, from setting objectives through data collection and analysis, was be covered. We all know progeny testing is a highly technical phase of our tree improvement programs. Each task is critical and must be performed accurately and within a prescribed time...
National Testing of Pupils in Europe: Objectives, Organisation and Use of Results
ERIC Educational Resources Information Center
Parveva, Teodora; De Coster, Isabelle; Noorani, Sogol
2009-01-01
This study produced by the Eurydice network gives a detailed picture of the context and organisation of national tests in 30 European countries and the use made of test results in informing education policy and practice and in guiding the school career of pupils. It presents the diverse choices made by European countries regarding the objectives,…
Contextual consistency facilitates long-term memory of perceptual detail in barely seen images.
Gronau, Nurit; Shachar, Meytal
2015-08-01
It is long known that contextual information affects memory for an object's identity (e.g., its basic level category), yet it is unclear whether schematic knowledge additionally enhances memory for the precise visual appearance of an item. Here we investigated memory for visual detail of merely glimpsed objects. Participants viewed pairs of contextually related and unrelated stimuli, presented for an extremely brief duration (24 ms, masked). They then performed a forced-choice memory-recognition test for the precise perceptual appearance of 1 of 2 objects within each pair (i.e., the "memory-target" item). In 3 experiments, we show that memory-target stimuli originally appearing within contextually related pairs are remembered better than targets appearing within unrelated pairs. These effects are obtained whether the target is presented at test with its counterpart pair object (i.e., when reiterating the original context at encoding) or whether the target is presented alone, implying that the contextual consistency effects are mediated predominantly by processes occurring during stimulus encoding, rather than during stimulus retrieval. Furthermore, visual detail encoding is improved whether object relations involve implied action or not, suggesting that, contrary to some prior suggestions, action is not a necessary component for object-to-object associative "grouping" processes. Our findings suggest that during a brief glimpse, but not under long viewing conditions, contextual associations may play a critical role in reducing stimulus competition for attention selection and in facilitating rapid encoding of sensory details. Theoretical implications with respect to classic frame theories are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Aging memories: differential decay of episodic memory components.
Talamini, Lucia M; Gorree, Eva
2012-05-17
Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2011 CFR
2011-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2010 CFR
2010-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2014 CFR
2014-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2013 CFR
2013-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
DOT National Transportation Integrated Search
2003-10-01
The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment". This document defines the objective, approach,...
ERIC Educational Resources Information Center
Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.
2015-01-01
Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…
Kensinger, Elizabeth A; Addis, Donna Rose; Atapattu, Ranga K
2011-03-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object's presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Girls in detail, boys in shape: gender differences when drawing cubes in depth.
Lange-Küttner, C; Ebersbach, M
2013-08-01
The current study tested gender differences in the developmental transition from drawing cubes in two- versus three dimensions (3D), and investigated the underlying spatial abilities. Six- to nine-year-old children (N = 97) drew two occluding model cubes and solved several other spatial tasks. Girls more often unfolded the various sides of the cubes into a layout, also called diagrammatic cube drawing (object design detail). In girls, the best predictor for drawing the cubes was Mental Rotation Test (MRT) accuracy. In contrast, boys were more likely to preserve the optical appearance of the cube array. Their drawing in 3D was best predicted by MRT reaction time and the Embedded Figures Test (EFT). This confirmed boys' stronger focus on the contours of an object silhouette (object shape). It is discussed whether the two gender-specific approaches to drawing in three dimensions reflect two sides of the appearance-reality distinction in drawing, that is graphic syntax of object design features versus visual perception of projective space. © 2012 The British Psychological Society.
Mission requirements: Second Skylab mission SL-3
NASA Technical Reports Server (NTRS)
1972-01-01
Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.
Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data
NASA Astrophysics Data System (ADS)
Brew, Julian; Holzinger, Marcus J.
2018-05-01
Recent progress in the detection of small space objects, at geosynchronous altitudes, through ground-based optical and radar measurements is demonstrated as a viable method. However, in general, these methods are limited to detection of objects greater than 10 cm. This paper examines the use of magnetometers to detect plausible flyby encounters with charged space objects using a matched filter signal existence binary hypothesis test approach. Relevant data-set processing and reduction of archival fluxgate magnetometer data from the NASA THEMIS mission is discussed in detail. Using the proposed methodology and a false alarm rate of 10%, 285 plausible detections with probability of detection greater than 80% are claimed and several are reviewed in detail.
Infants Recognize Similar Goals across Dissimilar Actions Involving Object Manipulation
ERIC Educational Resources Information Center
Olofson, Eric L.; Baldwin, Dare
2011-01-01
We investigated infants' ability to recognize the similarity between observed and implied goals when actions differed in surface-level motion details. In two experiments, 10- to 12-month-olds were habituated to an actor manipulating an object and then shown test actions in which the actor contacted the object with a novel hand configuration that…
Experimental field test of proposed pedestrian safety messages. Volume 3
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) Messages. These messages were then produced and field tested. The objective...
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Harvey, J. M.; Katz, I.
1977-01-01
The NASCAP (NASA Charging Analyzer Program) code simulates the charging process for a complex object in either tenuous plasma or ground test environment. Detailed specifications needed to run the code are presented. The object definition section, OBJDEF, allows the test object to be easily defined in the cubic mesh. The test object is composed of conducting sections which may be wholly or partially covered with thin dielectric coatings. The potential section, POTENT, obtains the electrostatic potential in the space surrounding the object. It uses the conjugate gradient method to solve the finite element formulation of Poisson's equation. The CHARGE section of NASCAP treats charge redistribution among the surface cells of the object as well as charging through radiation bombardment. NASCAP has facilities for extensive graphical output, including several types of object display plots, potential contour plots, space charge density contour plots, current density plots, and particle trajectory plots.
Kensinger, Elizabeth A.; Addis, Donna Rose; Atapattu, Ranga K.
2011-01-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object’s presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. PMID:21262244
Rimmele, Ulrike; Davachi, Lila; Petrov, Radoslav; Dougal, Sonya; Phelps, Elizabeth A.
2013-01-01
Emotion strengthens the subjective experience of recollection. However, these vivid and confidently remembered emotional memories may not necessarily be more accurate. We investigated whether the subjective sense of recollection for negative stimuli is coupled with enhanced memory accuracy for contextual details using the remember/know paradigm. Our results indicate a double-dissociation between the subjective feeling of remembering, and the objective memory accuracy for details of negative and neutral scenes. “Remember” judgments were boosted for negative relative to neutral scenes. In contrast, memory for contextual details and associative binding was worse for negative compared to neutral scenes given a “remember” response. These findings show that the enhanced subjective recollective experience for negative stimuli does not reliably indicate greater objective recollection, at least of the details tested, and thus may be driven by a different mechanism than the subjective recollective experience for neutral stimuli. PMID:21668106
Screening Tools to Estimate Mold Burdens in Homes
Objective: The objective of this study was to develop screening tools that could be used to estimate the mold burden in a home which would indicate whether more detailed testing might be useful. Methods: Previously, in the American Healthy Home Survey, a DNA-based method of an...
Experimental field test of proposed pedestrian safety messages. Volume 2, Child messages
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) messages. These messages were then produced and field tested. The objective...
High Stability Engine Control (HISTEC) Flight Test Results
NASA Technical Reports Server (NTRS)
Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.
1998-01-01
The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) messages. These messages were then produced and field tested. The objective...
Development and Evaluation of Integrating Details: A Complex Spatial Problem Solving Test
1989-02-01
such facts as that space is locally Euclidean and three-dimensional and that significant objects, including our own bodies : (1) are bound by two...Historically, claims have been made that spatial tests favor males, although the data have been inconsistent. More recently, a growing body of evidence suggests...INTEGRATING DETAILS INTEGRATL "IME AqC7IIRAr _( PROPOTION ) LU C 4 -DFCIStO IIMI -1 TE " t -’- 4, R ET(SaTLOCp,% li’ 8) r, ---- -- -i BLOCK SEQUENCE Figure 6
Estimation of sample size and testing power (Part 3).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2011-12-01
This article introduces the definition and sample size estimation of three special tests (namely, non-inferiority test, equivalence test and superiority test) for qualitative data with the design of one factor with two levels having a binary response variable. Non-inferiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is not clinically inferior to that of the positive control drug. Equivalence test refers to the research design of which the objective is to verify that the experimental drug and the control drug have clinically equivalent efficacy. Superiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is clinically superior to that of the control drug. By specific examples, this article introduces formulas of sample size estimation for the three special tests, and their SAS realization in detail.
Crewmembers in the middeck with the Retinal Photography experiment.
NASA Technical Reports Server (NTRS)
1992-01-01
Mission Pilot Robert Cabana conducting the Retinal Photography life sciences experiment on test subject Mission Specialist Michael Clifford. The Retinal Photography experiment is Detailed Supplementary Objective # 474.
HAL/S-360 compiler test activity report
NASA Technical Reports Server (NTRS)
Helmers, C. T.
1974-01-01
The levels of testing employed in verifying the HAL/S-360 compiler were as follows: (1) typical applications program case testing; (2) functional testing of the compiler system and its generated code; and (3) machine oriented testing of compiler implementation on operational computers. Details of the initial test plan and subsequent adaptation are reported, along with complete test results for each phase which examined the production of object codes for every possible source statement.
Test devices for aeronautical research and technology
NASA Technical Reports Server (NTRS)
1985-01-01
The objectives of the DFVLR in six areas are described: (1) transportation and communication systems; (2) aircraft, space technology, (4) remote sensing, (5) energy and propulsion technology; and (6) research and development. A detailed description of testing devices and other facilities required to carry out the research program is given.
DOT National Transportation Integrated Search
2013-07-01
Many highway bridges are skewed and their behavior and corresponding design analysis need to be furthered to fully accomplish design objectives. This project used physical-test and detailed finite element analysis to better understand the behavior of...
Influences on physicians' adoption of electronic detailing (e-detailing).
Alkhateeb, Fadi M; Doucette, William R
2009-01-01
E-detailing means using digital technology: internet, video conferencing and interactive voice response. There are two types of e-detailing: interactive (virtual) and video. Currently, little is known about what factors influence physicians' adoption of e-detailing. The objectives of this study were to test a model of physicians' adoption of e-detailing and to describe physicians using e-detailing. A mail survey was sent to a random sample of 2000 physicians practicing in Iowa. Binomial logistic regression was used to test the model of influences on physician adoption of e-detailing. On the basis of Rogers' model of adoption, the independent variables included relative advantage, compatibility, complexity, peer influence, attitudes, years in practice, presence of restrictive access to traditional detailing, type of specialty, academic affiliation, type of practice setting and control variables. A total of 671 responses were received giving a response rate of 34.7%. A total of 141 physicians (21.0%) reported using of e-detailing. The overall adoption model for using either type of e-detailing was found to be significant. Relative advantage, peer influence, attitudes, type of specialty, presence of restrictive access and years of practice had significant influences on physician adoption of e-detailing. The model of adoption of innovation is useful to explain physicians' adoption of e-detailing.
The traverse planning process for D-RATS 2010
NASA Astrophysics Data System (ADS)
Hörz, Friedrich; Lofgren, Gary E.; Gruener, John E.; Eppler, Dean B.; Skinner, James A.; Fortezzo, Corey M.; Graf, Jodi S.; Bluethmann, William J.; Seibert, Marc A.; Bell, Ernest R.
2013-10-01
This report describes the traverse planning process for the Desert Research and Technology Studies (D-RATS) 2010 field simulation of a conceptual 14-day planetary mission. This activity took place between August 23 and September 17, 2010 in the San Francisco Volcanic Field, Arizona. It focused on the utilization of two pressurized rovers and a ground-based communication system, as well as on the development of mission operation concepts for long duration, dual-rover missions. The early planning process began some 12 months prior to the actual field tests and defined the first order engineering-, flight operations, and science objectives. The detailed implementation and refinement of these objectives took place over the ensuing 10 months, resulting in a large number of technical and operational constraints that affected the actual traverse route or the cumulative Extravehicular Activity (EVA) time available for detailed field observations. The science planning proceeded from the generation of photogeologic maps of the test area, to the establishment of prioritized science objectives and associated candidate sites for detailed field exploration. The combination of operational constraints and science objectives resulted in the final design of traverse routes and time lines for each of the 24 traverses needed to support 12 field days by two rovers. Examples of daily traverses will be given that will hopefully illustrate that the design of long duration, long distance planetary traverses is a highly interdisciplinary and time-consuming collaboration between diverse engineers, flight operations personnel, human factors interests, and planetary scientists.
Koshy, John; Hall, Martha L.; Erol, Ozan; Cao, Huantian; Buckley, Jenner M.; Galloway, James C.; Higginson, Jill
2016-01-01
Background A person's ability to move his or her arms against gravity is important for independent performance of critical activities of daily living and for exploration that facilitates early cognitive, language, social, and perceptual-motor development. Children with a variety of diagnoses have difficulty moving their arms against gravity. Objective The purpose of this technical report is to detail the design process and initial testing of a novel exoskeletal garment, the Playskin Lift, that assists and encourages children to lift their arms against gravity. Design This report details the design theory and process, the device, and the results of field testing with a toddler with impaired upper extremity function due to arthrogryposis multiplex congenita. Results The Playskin Lift is an inexpensive (<$30 material costs), easy to use (5/5 rating), comfortable (5/5 rating), and attractive (4/5 rating) device. While wearing the device, the child was able to contact objects more often throughout an increased play space, to look at toys more while contacting them, and to perform more complex interactions with toys. Limitations This report details initial testing with one child. Future testing with more participants is recommended. Conclusions These results suggest that by considering the broad needs of users, including cost, accessibility, comfort, aesthetics, and function, we can design inexpensive devices that families and clinicians can potentially fabricate in their own communities to improve function, participation, exploration, and learning for children with disabilities. PMID:26316534
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2012-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899
Hanford spent nuclear fuel hot conditioning system test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, K.J.
1997-09-16
This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.
Development of Temporary Rumble Strip Specifications
DOT National Transportation Integrated Search
2016-02-01
The objective of this study was to develop specifications for portable reusable temporary rumble strips for their applications in different work zone settings in Kansas. A detailed literature review, a survey of practice, and a closed-course test wer...
ERIC Educational Resources Information Center
Trelle, Alexandra N.; Henson, Richard N.; Green, Deborah A. E.; Simons, Jon S.
2017-01-01
In a Yes/No object recognition memory test with similar lures, older adults typically exhibit elevated rates of false recognition. However, the contributions of impaired retrieval, relative to reduced availability of target details, are difficult to disentangle using such a test. The present investigation sought to decouple these factors by…
NASA Technical Reports Server (NTRS)
Medelius, Pedro J.; Steinrock, T. (Technical Monitor)
2001-01-01
The objective of this project is to design a sensor than can accurately determine the presence of a hydrogen fire within its field of view and to eliminate the main cause of false alarms: reflections from the flare stack. Details are given in viewgraph presentation form on the technical approach, initial testing, sensor testing, intellectual property, patented technology, and licensing.
Integrated model development for liquid fueled rocket propulsion systems
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1993-01-01
As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.
Search for Cross-Correlations of Ultrahigh-Energy Cosmic Rays with BL Lacertae Objects
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Blake, S. A.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2006-01-01
Data taken in stereo mode by the High Resolution Fly's Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultrahigh-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lac objects and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lac objects from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.
Eye Movements and Visual Memory for Scenes
2005-01-01
Scene memory research has demonstrated that the memory representation of a semantically inconsistent object in a scene is more detailed and/or complete... memory during scene viewing, then changes to semantically inconsistent objects (which should be represented more com- pletely) should be detected more... semantic description. Due to the surprise nature of the visual memory test, any learning that occurred during the search portion of the experiment was
Development of Temporary Rumble Strip Specifications : [Technical Summary
DOT National Transportation Integrated Search
2016-02-01
The objective of this study was to develop specifications for portable reusable temporary rumble strips for their applications in different work zone settings in Kansas. A detailed literature review, a survey of practice, and a closed-course test wer...
1988-06-01
Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal
High Pressure Reverse Flow APS Engine
NASA Technical Reports Server (NTRS)
Senneff, J. M.
1972-01-01
A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.
Cool-Down and Current Test Results of the KSTAR Prototype TF Coil
NASA Astrophysics Data System (ADS)
Oh, Y. K.; Lee, S.; Chu, Y.; Park, K. R.; Yonekawa, H.; Baek, S. H.; Cho, K. W.; Park, Y. M.; Kim, M. K.; Chang, H. S.; Kim, Y. S.; Chang, Y. B.; Lee, Y. J.; Kim, W. C.; Kim, K.; Kwag, S. W.; Lee, S. H.; Yang, S. H.; Lee, S. J.; Bak, J. S.; Lee, G. S.
2004-06-01
A prototype toroidal field (TF) coil, TF00 coil, of the Korea Superconducting Tokamak Advanced Research (KSTAR) project has been assembled and tested at the coil test facility in Korea Basic Science Institute (KBSI). The TF00 coil is a real-sized TF coil made of Nb3Sn superconducting cable-in-conduit conductor (CICC). The coil test was conducted by several campaigns according to the objectives. The first campaign, which was carried out by Jan. 2003, has objectives of cooling the coil into operating temperature and finding any defect in the coil such as cold leaks. From the results of the first campaign experiment, any defect in the coil was not found. The second campaign, which was carried out by Aug. 2003, has objectives to get the operating characteristics according to the current ramp up and discharge operations. In this paper, the coil test results are introduced as well as the details of the coil test system setup.
Salience of the lambs: a test of the saliency map hypothesis with pictures of emotive objects.
Humphrey, Katherine; Underwood, Geoffrey; Lambert, Tony
2012-01-25
Humans have an ability to rapidly detect emotive stimuli. However, many emotional objects in a scene are also highly visually salient, which raises the question of how dependent the effects of emotionality are on visual saliency and whether the presence of an emotional object changes the power of a more visually salient object in attracting attention. Participants were shown a set of positive, negative, and neutral pictures and completed recall and recognition memory tests. Eye movement data revealed that visual saliency does influence eye movements, but the effect is reliably reduced when an emotional object is present. Pictures containing negative objects were recognized more accurately and recalled in greater detail, and participants fixated more on negative objects than positive or neutral ones. Initial fixations were more likely to be on emotional objects than more visually salient neutral ones, suggesting that the processing of emotional features occurs at a very early stage of perception.
Gallo, David A.; Korthauer, Laura E.; McDonough, Ian M.; Teshale, Salom; Johnson, Elizabeth L.
2013-01-01
This study investigated whether the age-related positivity effect strengthens specific event details in autobiographical memory. Participants retrieved past events or imagined future events in response to neutral or emotional cue words. Older adults rated each kind of event more positively than younger adults, demonstrating an age-related positivity effect. We next administered a source memory test. Participants were given the same cue words and tried to retrieve the previously generated event and its source (past or future). Accuracy on this source test should depend on the recollection of specific details about the earlier generated events, providing a more objective measure of those details than subjective ratings. We found that source accuracy was greater for positive than negative future events in both age groups, suggesting that positive future events were more detailed. In contrast, valence did not affect source accuracy for past events in either age group, suggesting that positive and negative past events were equally detailed. Although aging can bias people to focus on positive aspects of experience, this bias does not appear to strengthen the availability of details for positive relative to negative past events. PMID:21919591
STS-40 DTO 647 prototype filter documented under OV-102's middeck subfloor
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Detailed Test Objective (DTO) 647, Water Separator Filter Performance Evaluation, prototype filter installed at the inlet of the water separator is documented under middeck subfloor aboard Columbia, Orbiter Vehicle (OV) 102. The proposed filter is being tested for its ability to remove debris from the air/water stream coming from the cabin heat exchanger.
The objective of this research is to test the utility of simple functions of spatially integrated and temporally averaged ground water residence times in shallow "groundwatersheds" with field observations and more detailed computer simulations. The residence time of water in the...
Adlington, Rebecca L; Laws, Keith R; Gale, Tim M
2009-10-01
It has been suggested that object recognition in patients with Alzheimer's disease (AD) may be strongly influenced both by image format (e.g. colour vs. line-drawn) and by low-level visual impairments. To examine these notions, we tested basic visual functioning and picture naming in 41 AD patients and 40 healthy elderly controls. Picture naming was examined using 105 images representing a wide range of living and nonliving subcategories (from the Hatfield image test [HIT]: [Adlington, R. A., Laws, K. R., & Gale, T. M. (in press). The Hatfield image test (HIT): A new picture test and norms for experimental and clinical use. Journal of Clinical and Experimental Neuropsychology]), with each item presented in colour, greyscale, or line-drawn formats. Whilst naming for elderly controls improved linearly with the addition of surface detail and colour, AD patients showed no benefit from the addition of either surface information or colour. Additionally, controls showed a significant category by format interaction; however, the same profile did not emerge for AD patients. Finally, AD patients showed widespread and significant impairment on tasks of visual functioning, and low-level visual impairment was predictive of patient naming.
Small, high pressure ratio compressor: Aerodynamic and mechanical design
NASA Technical Reports Server (NTRS)
Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.
1973-01-01
The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.
Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, Brian Thomas
This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the referencesmore » titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.« less
Desert Research and Technology Studies 2008 Report
NASA Technical Reports Server (NTRS)
Romig, Barbara; Kosmo, Joseph; Gernhardt, Michael; Abercromby, Andrew
2009-01-01
During the last two weeks of October 2008, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2008 Desert Research and Technology Studies (D-RATS) near Flagstaff, AZ. The Desert RATS field test activity is the year-long culmination of various individual science and advanced engineering discipline areas technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The 2008 Desert RATS was the eleventh RATS field test and was the most focused and successful test to date with participants from six NASA field centers, three research organizations, one university, and one other government agency. The main test objective was to collect Unpressurized Rover (UPR) and Lunar Electric Rover (LER) engineering performance and human factors metrics while under extended periods of representative mission-based scenario test operations involving long drive distances, night-time driving, Extravehicular Activity (EVA) operations, and overnight campover periods. The test was extremely successful with all teams meeting the primary test objective. This paper summarizes Desert RATS 2008 test hardware, detailed test objectives, test operations, and test results.
Detailed test plans : Evaluation of Utah Transit Authority Connection Protection system
DOT National Transportation Integrated Search
2003-10-31
The purpose of this evaluation is to assess the effectiveness of the Connection Protection (CP) system implemented by the Utah Transit Authority (UTA). The objective of the CP system is to improve the reliability of transfers from the higher frequenc...
High-Fidelity Visual Long-Term Memory within an Unattended Blink of an Eye.
Kuhbandner, Christof; Rosas-Corona, Elizabeth A; Spachtholz, Philipp
2017-01-01
What is stored in long-term memory from current sensations is a question that has attracted considerable interest. Over time, several prominent theories have consistently proposed that only attended sensory information leaves a durable memory trace whereas unattended information is not stored beyond the current moment, an assumption that seems to be supported by abundant empirical evidence. Here we show, by using a more sensitive memory test than in previous studies, that this is actually not true. Observers viewed a rapid stream of real-world object pictures overlapped by words (presentation duration per stimulus: 500 ms, interstimulus interval: 200 ms), with the instruction to attend to the words and detect word repetitions, without knowing that their memory would be tested later. In a surprise two-alternative forced-choice recognition test, memory for the unattended object pictures was tested. Memory performance was substantially above chance, even when detailed feature knowledge was necessary for correct recognition, even when tested 24 h later, and even although participants reported that they do not have any memories. These findings suggests that humans have the ability to store at high speed detailed copies of current visual stimulations in long-term memory independently of current intentions and the current attentional focus.
Coarse-to-fine construction for high-resolution representation in visual working memory.
Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende
2013-01-01
This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.
Structural Element Testing in Support of the Design of the NASA Composite Crew Module
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.
Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program
NASA Technical Reports Server (NTRS)
Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.
1998-01-01
Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.
Language comprehenders retain implied shape and orientation of objects.
Pecher, Diane; van Dantzig, Saskia; Zwaan, Rolf A; Zeelenberg, René
2009-06-01
According to theories of embodied cognition, language comprehenders simulate sensorimotor experiences to represent the meaning of what they read. Previous studies have shown that picture recognition is better if the object in the picture matches the orientation or shape implied by a preceding sentence. In order to test whether strategic imagery may explain previous findings, language comprehenders first read a list of sentences in which objects were mentioned. Only once the complete list had been read was recognition memory tested with pictures. Recognition performance was better if the orientation or shape of the object matched that implied by the sentence, both immediately after reading the complete list of sentences and after a 45-min delay. These results suggest that previously found match effects were not due to strategic imagery and show that details of sensorimotor simulations are retained over longer periods.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this work were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
The structure of the distant Kuiper belt in a Nice model scenario
NASA Astrophysics Data System (ADS)
Pike, Rosemary E.; Lawler, Samantha; Brasser, Ramon; Shankman, Cory; Alexandersen, Mike; Kavelaars, J. J.
2016-10-01
By utilizing a well-sampled migration model and characterized survey detections, we demonstrate that the Nice-model scenario results in consistent populations of scattering trans-Neptunian objects (TNOs) and several resonant TNO populations, but fails to reproduce the large population of 5:1 resonators discovered in surveys. We examine in detail the TNO populations implanted by the Nice model simulation from Brasser and Morbidelli (2013, B&M). This analysis focuses on the region from 25-155 AU, probing the classical, scattering, detached, and major resonant populations. Additional integrations were necessary to classify the test particles and determine population sizes and characteristics. The classified simulation objects are compared to the real TNOs from the Canada-France Ecliptic Plane Survey (CFEPS), CFEPS high latitude fields, and the Alexandersen (2016) survey. These surveys all include a detailed characterization of survey depth, pointing, and tracking efficiency, which allows detailed testing of this independently produced model of TNO populations. In the B&M model, the regions of the outer Solar System populated via capture of scattering objects are consistent with survey constraints. The scattering TNOs and most n:1 resonant populations have consistent orbital distributions and population sizes with the real detections, as well as a starting disk mass consistent with expectations. The B&M 5:1 resonators have a consistent orbital distribution with the real detections and previous models. However, the B&M 5:1 Neptune resonance is underpopulated by a factor of ~100 and would require a starting proto-planetesimal disk with a mass of ~100 Earth masses. The large population in the 5:1 Neptune resonance is unexplained by scattering capture in a Nice-model scenario, however this model accurately produces the TNO subpopulations that result from scattering object capture and provides additional insight into sub-population orbital distributions.
Efficient Use of Video for 3d Modelling of Cultural Heritage Objects
NASA Astrophysics Data System (ADS)
Alsadik, B.; Gerke, M.; Vosselman, G.
2015-03-01
Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.
STS-44 crewmembers conduct DSO 472, Intraocular Pressure, on OV-104's middeck
1991-12-01
STS044-04-001 (24 Nov-1 Dec 1991) --- Astronauts F. Story Musgrave (right) and Mario Runco, Jr., mission specialists, team up for one of the biomedical Detailed Supplementary Objective (DSO) test on the eight-day flight, this one involving intraocular pressure.
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2011 CFR
2011-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2012 CFR
2012-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2014 CFR
2014-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2010 CFR
2010-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...
Proposed acceptance, qualification, and characterization tests for thin-film PV modules
NASA Technical Reports Server (NTRS)
Waddington, D.; Mrig, L.; Deblasio, R.; Ross, R.
1988-01-01
Details of a proposed test program for PV thin-film modules which the Department of Energy has directed the Solar Energy Research Institute (SERI) to prepare are presented. Results of one of the characterization tests that SERI has performed are also presented. The objective is to establish a common approach to testing modules that will be acceptable to both users and manufacturers. The tests include acceptance, qualification, and characterization tests. Acceptance tests verify that randomly selected modules have similar characteristics. Qualification tests are based on accelerated test methods designed to simulate adverse conditions. Characterization tests provide data on performance in a predefined environment.
Capturing Fine Details Involving Low-Cost Sensors -a Comparative Study
NASA Astrophysics Data System (ADS)
Rehany, N.; Barsi, A.; Lovas, T.
2017-11-01
Capturing the fine details on the surface of small objects is a real challenge to many conventional surveying methods. Our paper discusses the investigation of several data acquisition technologies, such as arm scanner, structured light scanner, terrestrial laser scanner, object line-scanner, DSLR camera, and mobile phone camera. A palm-sized embossed sculpture reproduction was used as a test object; it has been surveyed by all the instruments. The result point clouds and meshes were then analyzed, using the arm scanner's dataset as reference. In addition to general statistics, the results have been evaluated based both on 3D deviation maps and 2D deviation graphs; the latter allows even more accurate analysis of the characteristics of the different data acquisition approaches. Additionally, own-developed local minimum maps were created that nicely visualize the potential level of detail provided by the applied technologies. Besides the usual geometric assessment, the paper discusses the different resource needs (cost, time, expertise) of the discussed techniques. Our results proved that even amateur sensors operated by amateur users can provide high quality datasets that enable engineering analysis. Based on the results, the paper contains an outlook to potential future investigations in this field.
NASA Technical Reports Server (NTRS)
Thacher, E. F.
1972-01-01
Six subscale Intermold cylinder assemblies with a total of twelve different concepts for transition to AGCarb were fabricated. Three of the cylinder assemblies were made by helically winding the hoop fibers and three were of orthogonal configuration. The fabrication process is summarized and details of each manufacturing method are given. The objectives of the test program were to: (1) demonstrate the fabricability of the Intermold 3 subscale flanges, (2) produce an integral transition from Intermold 3 to AGCarb material, (3) define a workable manufacturing process, and (4) identify a best suited inspection method. The objectives were met and the results are described.
NASA Technical Reports Server (NTRS)
Henne, P. A.; Dahlin, J. A.; Peavey, C. C.; Gerren, D. S.
1982-01-01
The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded.
Application of ideal pressure distribution in development process of automobile seats.
Kilincsoy, U; Wagner, A; Vink, P; Bubb, H
2016-07-19
In designing a car seat the ideal pressure distribution is important as it is the largest contact surface between the human and the car. Because of obstacles hindering a more general application of the ideal pressure distribution in seating design, multidimensional measuring techniques are necessary with extensive user tests. The objective of this study is to apply and integrate the knowledge about the ideal pressure distribution in the seat design process for a car manufacturer in an efficient way. Ideal pressure distribution was combined with pressure measurement, in this case pressure mats. In order to integrate this theoretical knowledge of seating comfort in the seat development process for a car manufacturer a special user interface was defined and developed. The mapping of the measured pressure distribution in real-time and accurately scaled to actual seats during test setups directly lead to design implications for seat design even during the test situation. Detailed analysis of the subject's feedback was correlated with objective measurements of the subject's pressure distribution in real time. Therefore existing seating characteristics were taken into account as well. A user interface can incorporate theoretical and validated 'state of the art' models of comfort. Consequently, this information can reduce extensive testing and lead to more detailed results in a shorter time period.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
STS-32 crewmembers test DSO 0478 lower body negative pressure (LBNP) device
1989-11-29
STS-32 crewmembers test the inflight lower body negative pressure (LBNP) device. Mission Specialist (MS) Bonnie J. Dunbar (lying down) inside the cylindrical LBNP device prepares for testing as principal investigator Dr. John Charles, a cardiovascular scientist in JSC's Space Biomedical Research Institute, and Michele Jones, a KRUG International biomedical engineer, review procedures with MS G. David Low. The inflight LBNP will be part of detailed supplementary objective (DSO) 0478. Photo taken by JSC photographer Jack Jacob.
NASA Technical Reports Server (NTRS)
McNamara, Luke W.; Braun, Robert D.
2014-01-01
One of the key design objectives of NASA's Orion Exploration Mission 1 (EM- 1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is defining the flyable entry corridor for EM-1 taking into account multiple subsystem constraints such as complex aerothermal heating constraints, aerothermal heating objectives, landing accuracy constraints, structural load limits, Human-System-Integration-Requirements, Service Module debris disposal limits and other flight test objectives. During the EM-1 Design Analysis Cycle 1 design challenges came up that made defining the flyable entry corridor for the EM-1 mission critical to mission success. This document details the optimization techniques that were explored to use with the 6-DOF ANTARES simulation to assist in defining the design entry interface state and entry corridor with respect to key flight test constraints and objectives.
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2013 CFR
2013-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... funds; (ii) Studies, analyses, test data, or similar data produced for this contract, when the study...
Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi
2018-04-24
Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.
Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite
NASA Astrophysics Data System (ADS)
Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Strangeway, R. J.; Runov, A.; Turner, D.; Caron, R.; Cruce, P.; Leneman, D.; Michaelis, I.; Petrov, V.; Panasyuk, M.; Yashin, I.; Drozdov, A.; Russell, C. L.; Kalegaev, V.; Nazarkov, I.; Clemmons, J. H.
2018-02-01
The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite (ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF- and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2010-01-01
This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.
Perception, memory and aesthetics of indeterminate art.
Ishai, Alumit; Fairhall, Scott L; Pepperell, Robert
2007-07-12
Indeterminate art, in which familiar objects are only suggestive, invokes a perceptual conundrum as apparently detailed and vivid images resist identification. We hypothesized that compared with paintings that depict meaningful content, object recognition in indeterminate images would be delayed, and tested whether aesthetic affect depends on meaningful content. Subjects performed object recognition and judgment of aesthetic affect tasks. Response latencies were significantly longer for indeterminate images and subjects perceived recognizable objects in 24% of these paintings. Although the aesthetic affect rating of all paintings was similar, judgement latencies for the indeterminate paintings were significantly longer. A surprise memory test revealed that more representational than indeterminate paintings were remembered and that affective strength increased the probability of subsequent recall. Our results suggest that perception and memory of art depend on semantic aspects, whereas, aesthetic affect depends on formal visual features. The longer latencies associated with indeterminate paintings reflect the underlying cognitive processes that mediate object resolution. Indeterminate art works therefore comprise a rich set of stimuli with which the neural correlates of visual perception can be investigated.
Associative memory in aging: the effect of unitization on source memory.
Bastin, Christine; Diana, Rachel A; Simon, Jessica; Collette, Fabienne; Yonelinas, Andrew P; Salmon, Eric
2013-03-01
In normal aging, memory for associations declines more than memory for individual items. Unitization is an encoding process defined by creation of a new single entity to represent a new arbitrary association. The current study tested the hypothesis that age-related differences in associative memory can be reduced by encoding instructions that promote unitization. In two experiments, groups of 20 young and 20 older participants learned new associations between a word and a background color under two conditions. In the item detail condition, they had to imagine that the item is the same color as the background-an instruction promoting unitization of the associations. In the context detail condition, which did not promote unitization, they had to imagine that the item interacted with another colored object. At test, they had to retrieve the color that was associated with each word (source memory). In both experiments, the results showed an age-related decrement in source memory performance in the context detail but not in the item detail condition. Moreover, Experiment 2 examined receiver operating characteristics in older participants and indicated that familiarity contributed more to source memory performance in the item detail than in the context detail condition. These findings suggest that unitization of new associations can overcome the associative memory deficit observed in aging, at least for item-color associations.
STS-41 Commander Richards uses DTO 1206 portable computer onboard OV-103
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Commander Richard N. Richards, at pilots station, uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Richards tests the roller ball cursor control device. Surrounding Richards are checklists, forward flight deck windows, his lightweight communications kit assembly headset, a beverage container (orange-mango drink), and the pilots seat back and headrest.
Integrated Resistance and Aerobic Training Study - Sprint
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Moore, Alan; Ryder, Jeffrey; Everett, Meg; Bloomberg, Jacob; Sibonga, Jean; Shackelford, Linda; Platts, Steven; Martin, David; Ploutz-Snyder, Robert;
2010-01-01
Space flight causes reductions in fitness/health: (1) Cardiovascular -- reduced VO2max, cardiac output (2) Bone -- reduced bone mineral density (3) Muscle -- reduced mass, strength and endurance. Exercise is the primary countermeasure to protect against these changes and was made operational before completely mature. Research continues to identify most effective/efficient exercise programs. Crew medical tests (cardio, muscle, bone) do not yield sufficient information to fine tune the effectiveness of exercise programs, thus there is a need for more detailed testing aimed at identifying the most effective training program. The objective of this program was to obtain detailed information about crew physical fitness pre-and post-flight and evaluate new evidence based exercise prescription with higher intensity, lower duration and frequency.
Drawing skill is related to the efficiency of encoding object structure.
Perdreau, Florian; Cavanagh, Patrick
2014-01-01
Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details.
Drawing skill is related to the efficiency of encoding object structure
Perdreau, Florian; Cavanagh, Patrick
2014-01-01
Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details. PMID:25469216
Hsu, Nina S; Kraemer, David J M; Oliver, Robyn T; Schlichting, Margaret L; Thompson-Schill, Sharon L
2011-09-01
Neuroimaging tests of sensorimotor theories of semantic memory hinge on the extent to which similar activation patterns are observed during perception and retrieval of objects or object properties. The present study was motivated by the hypothesis that some of the seeming discrepancies across studies reflect flexibility in the systems responsible for conceptual and perceptual processing of color. Specifically, we test the hypothesis that retrieval of color knowledge can be influenced by both context (a task variable) and individual differences in cognitive style (a subject variable). In Experiment 1, we provide fMRI evidence for differential activity during color knowledge retrieval by having subjects perform a verbal task, in which context encouraged subjects to retrieve more- or less-detailed information about the colors of named common objects in a blocked experimental design. In the left fusiform, we found more activity during retrieval of more- versus less-detailed color knowledge. We also assessed preference for verbal or visual cognitive style, finding that brain activity in the left lingual gyrus significantly correlated with preference for a visual cognitive style. We replicated many of these effects in Experiment 2, in which stimuli were presented more quickly, in a random order, and in the auditory modality. This illustration of some of the factors that can influence color knowledge retrieval leads to the conclusion that tests of conceptual and perceptual overlap must consider variation in both of these processes.
A Survey of Health Management User Objectives Related to Diagnostic and Prognostic Metrics
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Kurtoglu, Tolga; Poll, Scott D.
2010-01-01
One of the most prominent technical challenges to effective deployment of health management systems is the vast difference in user objectives with respect to engineering development. In this paper, a detailed survey on the objectives of different users of health management systems is presented. These user objectives are then mapped to the metrics typically encountered in the development and testing of two main systems health management functions: diagnosis and prognosis. Using this mapping, the gaps between user goals and the metrics associated with diagnostics and prognostics are identified and presented with a collection of lessons learned from previous studies that include both industrial and military aerospace applications.
Orbital construction demonstration study. Volume 3: Requirements document
NASA Technical Reports Server (NTRS)
1977-01-01
A comprehensive set of requirements that defines the objective, scope and configuration of the orbital test facility needed to demonstrate the necessary automated fabrication, construction and assembly technology is provided. In addition to the requirements for the orbital demonstration facility, a detailed list of experiment requirements is included for various areas of technology.
Automated biowaste sampling system urine subsystem operating model, part 1
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Rosen, F.
1973-01-01
The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.
Tensile and shear strength of adhesives
NASA Technical Reports Server (NTRS)
Stibolt, Kenneth A.
1990-01-01
This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.
NASA Technical Reports Server (NTRS)
Adolf, Jurine A.; Beberness, Benjamin J.; Holden, Kritina L.
1991-01-01
Since 1983, the Space Transportation System (STS) had routinely flown the GRiD 1139 (80286) laptop computer as a portable onboard computing resource. In the spring of 1988, the GRiD 1530, an 80386 based machine, was chosen to replace the GRiD 1139. Human factors ground evaluations and detailed test objectives (DTO) examined the usability of the available display types under different lighting conditions and various angle deviations. All proved unsuitable due to either flight qualification of usability problems. In 1990, an Electroluminescent (EL) display for the GRiD 1530 became flight qualified and another DTO was undertaken to examine this display on-orbit. Under conditions of indirect sunlight and low ambient light, the readability of the text and graphics was only limited by the observer's distance from the display. Although a problem of direct sunlight viewing still existed, there were no problems with large angular deviations nor dark adaptation. No further evaluations were deemed necessary. The GRiD 1530 with the EL display was accepted by the STS program as the new standard for the PGSC.
Alternative mathematical programming formulations for FSS synthesis
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.
1986-01-01
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.
Earth Observing Scanning Polarimeter (EOSP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.
Maui Space Surveillance System Satellite Categorization Laboratory
NASA Astrophysics Data System (ADS)
Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.
The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.
Detailed sensory memory, sloppy working memory.
Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F
2010-01-01
Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.
Benning, Tim M; Dellaert, Benedict G C; Severens, Johan L; Dirksen, Carmen D
2014-07-01
Many national colorectal cancer screening campaigns have a similar structure. First, individuals are invited to take a noninvasive screening test, and, second, in the case of a positive screening test result, they are advised to undergo a more invasive follow-up test. The objective of this study was to investigate how much individuals' participation decision in noninvasive screening is affected by the presence or absence of detailed information about invasive follow-up testing and how this effect varies over screening tests. We used a labeled discrete choice experiment of three noninvasive colorectal cancer screening types with two versions that did or did not present respondents with detailed information about the possible invasive follow-up test (i.e., colonoscopy) and its procedure. We used data from 631 Dutch respondents aged 55 to 75 years. Each respondent received only one of the two versions (N = 310 for the invasive follow-up test information specification version, and N = 321 for the no-information specification version). Mixed logit model results show that detailed information about the invasive follow-up test negatively affects screening participation decisions. This effect can be explained mainly by a decrease in choice shares for the most preferred screening test (a combined stool and blood sample test). Choice share simulations based on the discrete choice experiment indicated that presenting invasive follow-up test information decreases screening participation by 4.79%. Detailed information about the invasive follow-up test has a negative effect on individuals' screening participation decisions in noninvasive colorectal cancer screening campaigns. This result poses new challenges for policymakers who aim not only to increase uptake but also to provide full disclosure to potential screening participants. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Description and Operation of the A3 Subscale Facility
NASA Technical Reports Server (NTRS)
Saunders, G. P.; Varner, D. G.; Grover, J. B.
2010-01-01
The purpose of this paper is to give an overview of the general design and operation of the A3 Subscale test facility. The goal is to provide the reader with a general understanding of what the major facility systems are, where they are located, and how they are used to meet the objectives supporting the design of the A3 altitude rocket test facility. This paper also provides the reader with the background information prior to reading the subsequent papers detailing the design and test results of the various systems described herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, Jason H.; Ford, Eric B.; Rowe, Jason F.
2012-09-10
We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through quarter six of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, Jason H.; /Fermilab; Ford, Eric B.
2012-01-01
We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.
Adams, Robert; Zboray, Robert; Prasser, Horst-Michael
2016-01-01
Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion of the capabilities of the system and its outlook. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details
NASA Astrophysics Data System (ADS)
Kuula, Jaana; Pölönen, Ilkka; Puupponen, Hannu-Heikki; Selander, Tuomas; Reinikainen, Tapani; Kalenius, Tapani; Saari, Heikki
2012-06-01
Detecting invisible details and separating mixed evidence is critical for forensic inspection. If this can be done reliably and fast at the crime scene, irrelevant objects do not require further examination at the laboratory. This will speed up the inspection process and release resources for other critical tasks. This article reports on tests which have been carried out at the University of Jyväskylä in Finland together with the Central Finland Police Department and the National Bureau of Investigation for detecting and separating forensic details with hyperspectral technology. In the tests evidence was sought after at an assumed violent burglary scene with the use of VTT's 500-900 nm wavelength VNIR camera, Specim's 400- 1000 nm VNIR camera, and Specim's 1000-2500 nm SWIR camera. The tested details were dried blood on a ceramic plate, a stain of four types of mixed and absorbed blood, and blood which had been washed off a table. Other examined details included untreated latent fingerprints, gunshot residue, primer residue, and layered paint on small pieces of wood. All cameras could detect visible details and separate mixed paint. The SWIR camera could also separate four types of human and animal blood which were mixed in the same stain and absorbed into a fabric. None of the cameras could however detect primer residue, untreated latent fingerprints, or blood that had been washed off. The results are encouraging and indicate the need for further studies. The results also emphasize the importance of creating optimal imaging conditions into the crime scene for each kind of subjects and backgrounds.
The role of objective cognitive dysfunction in subjective cognitive complaints after stroke.
van Rijsbergen, M W A; Mark, R E; Kop, W J; de Kort, P L M; Sitskoorn, M M
2017-03-01
Objective cognitive performance (OCP) is often impaired in patients post-stroke but the consequences of OCP for patient-reported subjective cognitive complaints (SCC) are poorly understood. We performed a detailed analysis on the association between post-stroke OCP and SCC. Assessments of OCP and SCC were obtained in 208 patients 3 months after stroke. OCP was evaluated using conventional and ecologically valid neuropsychological tests. Levels of SCC were measured using the CheckList for Cognitive and Emotional (CLCE) consequences following stroke inventory. Multivariate hierarchical regression analyses were used to evaluate the association of OCP with CLCE scores adjusting for age, sex and intelligence quotient. Analyses were performed to examine the global extent of OCP dysfunction (based on the total number of impaired neuropsychological tests, i.e. objective cognitive impairment index) and for each OCP test separately using the raw neuropsychological (sub)test scores. The objective cognitive impairment index for global OCP was positively correlated with the CLCE score (Spearman's rho = 0.22, P = 0.003), which remained significant in multivariate adjusted models (β = 0.25, P = 0.01). Results for the separate neuropsychological tests indicated that only one task (the ecologically valid Rivermead Behavioural Memory Test) was independently associated with the CLCE in multivariate adjusted models (β = -0.34, P < 0.001). Objective neuropsychological test performance, as measured by the global dysfunction index or an ecologically valid memory task, was associated with SCC. These data suggest that cumulative deficits in multiple cognitive domains contribute to subjectively experienced poor cognitive abilities in daily life in patients post-stroke. © 2016 EAN.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin
2010-01-01
In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was flown and deployed as a Station Development Test Objective (SDTO) experiment on the ISS. The goal of the SDTO experiment is to evaluate the acceptability of CSPE technology for routine water quality monitoring on the ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on the ISS. The initial results obtained from the SDTO experiment are also reported and discussed in detail
Tuuli, Methodius G; Odibo, Anthony O
2011-08-01
The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.
Loss of Word-Meaning with Spared Object Semantics in a Case of Mixed Primary Progressive Aphasia
ERIC Educational Resources Information Center
Knels, Christina; Danek, Adrian
2010-01-01
This article provides a detailed assessment of patient HT with a history of progressive language deterioration of approximately 6 years presenting now as a fluent jargon aphasic with severe impairment of both speech production and comprehension. Neuropsychological testing of non-verbal cognitive functions showed no impairment, leading to the…
Flexible Retrieval: When True Inferences Produce False Memories
Carpenter, Alexis C.; Schacter, Daniel L.
2016-01-01
Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave memory prone to error or distortion, such as source misattributions in which details of one event are mistakenly attributed to another related event. To determine whether the same recombination-related retrieval mechanism supports both successful inference and source memory errors, we developed a modified version of an associative inference paradigm in which participants encoded everyday scenes comprised of people, objects, and other contextual details. These scenes contained overlapping elements (AB, BC) that could later be linked to support novel inferential retrieval regarding elements that had not appeared together previously (AC). Our critical experimental manipulation concerned whether contextual details were probed before or after the associative inference test, thereby allowing us to assess whether a) false memories increased for successful versus unsuccessful inferences, and b) any such effects were specific to after as compared to before participants received the inference test. In each of four experiments that used variants of this paradigm, participants were more susceptible to false memories for contextual details after successful than unsuccessful inferential retrieval, but only when contextual details were probed after the associative inference test. These results suggest that the retrieval-mediated recombination mechanism that underlies associative inference also contributes to source misattributions that result from combining elements of distinct episodes. PMID:27918169
NASCAP programmer's reference manual
NASA Astrophysics Data System (ADS)
Mandell, M. J.; Stannard, P. R.; Katz, I.
1993-05-01
The NASA Charging Analyzer Program (NASCAP) is a computer program designed to model the electrostatic charging of complicated three-dimensional objects, both in a test tank and at geosynchronous altitudes. This document is a programmer's reference manual and user's guide. It is designed as a reference to experienced users of the code, as well as an introduction to its use for beginners. All of the many capabilities of NASCAP are covered in detail, together with examples of their use. These include the definition of objects, plasma environments, potential calculations, particle emission and detection simulations, and charging analysis.
A micro-CL system and its applications
NASA Astrophysics Data System (ADS)
Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long
2017-11-01
The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.
A micro-CL system and its applications.
Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long
2017-11-01
The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.
NASCAP programmer's reference manual
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Stannard, P. R.; Katz, I.
1993-01-01
The NASA Charging Analyzer Program (NASCAP) is a computer program designed to model the electrostatic charging of complicated three-dimensional objects, both in a test tank and at geosynchronous altitudes. This document is a programmer's reference manual and user's guide. It is designed as a reference to experienced users of the code, as well as an introduction to its use for beginners. All of the many capabilities of NASCAP are covered in detail, together with examples of their use. These include the definition of objects, plasma environments, potential calculations, particle emission and detection simulations, and charging analysis.
NASA Astrophysics Data System (ADS)
Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.
2008-07-01
A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.
Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel M. Wachs; Richard G. Ambrosek; Gray Chang
2006-10-01
Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progressmore » toward element testing will be reviewed.« less
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Ohlhorst, C. W.
1977-01-01
Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.
Multiple IMU system test plan, volume 4. [subroutines for space shuttle requirements
NASA Technical Reports Server (NTRS)
Landey, M.; Vincent, K. T., Jr.; Whittredge, R. S.
1974-01-01
Operating procedures for this redundant system are described. A test plan is developed with two objectives. First, performance of the hardware and software delivered is demonstrated. Second, applicability of multiple IMU systems to the space shuttle mission is shown through detailed experiments with FDI algorithms and other multiple IMU software: gyrocompassing, calibration, and navigation. Gimbal flip is examined in light of its possible detrimental effects on FDI and navigation. For Vol. 3, see N74-10296.
WiiPD--an approach for the objective home assessment of Parkinson's disease.
Synnott, J; Chen, L; Nugent, C D; Moore, G
2011-01-01
This paper introduces WiiPD, an approach to home-based objective assessment of Parkinson's disease. WiiPD aims to make use of the many capabilities of the Nintendo Wii Remote in combination with a number of bespoke data gathering methods to provide a rich and engaging user experience that can capture a wide range of motor and non-motor metrics. In this paper we discuss the architecture of the approach, and provide details of the implementation and testing of the motor-assessment component of the system. Initial results of testing on 6 users indicate that the system is able to differentiate between normal and abnormal motor performance, suggesting that the system has the potential to monitor the motor fluctuations associated with Parkinson's disease.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin
2009-01-01
Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.
NASA Astrophysics Data System (ADS)
Baumgart, M.; Druml, N.; Consani, M.
2018-05-01
This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.
Detailed Test Objectives (DTOs) and Detailed Supplementary Objectives (DSOs)
NASA Technical Reports Server (NTRS)
2002-01-01
The purpose of this experiment is to demonstrate the performance and operations of the GPS during orbiter ascent, entry and landing phases utilizing a modified military GPS receiver processor and the existing orbiter GPS antennas. The purpose of this experiment is to demonstrate the capability to perform a manually controlled landing in the presence of a crosswind. Changes in gastrointestinal function and physiology as a result of spaceflight affect drug absorption and the bioavailability of oral medications, which can compromise therapeutic effectiveness. This DSO will lead to the design and development of effective pharmocological countermeasures and therapeutic adjustments for spaceflight. A previous observation suggested that discordant sensory stimuli caused by an unusual motion environment disrupted spatial orientation and balance control in a returning crewmember by triggering a state change in central vestibular processing. The findings of the current investigation are expected to demonstrate the degree to which challenging motion environments may affect post-flight (re)adaptation to gravity.
Eksborg, Staffan; Rajs, Jovan
2008-01-01
A 12-year medicolegal investigation of deceased illegal drug users (ILDU) in Stockholm, Sweden, classified on the basis of postmortem chemical tests, showed noticeable variations in causes and manners of death as well as in the distribution of suicide methods. This study offers objective information about connection between the postmortem findings of illegal drugs and the causes and manners of death of their users. However, further studies, comparing prevalence of drug use in general population and at the postmortem tests, are needed for more detailed elucidation of this connection.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2001-01-01
A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III
2005-01-01
Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.
ERIC Educational Resources Information Center
Espy, John; Selleck, Ben
This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details eddy current examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…
Quality assessment of the TLS data in conservation of monuments
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub S.; Zawieska, Dorota
2015-06-01
Laser scanning has been recently confirming its high potential in the field of acquiring 3D data for architectural and engineering objects. The objective of this paper is to analyse the quality of the TLS data acquired for different surfaces of monumental objects, with consideration of distances and the scanning angles. Tests concerning the quality of the survey data and shapes of architectural objects, characterised by diversified curvature, structure and the uniformity of the surface, were performed. The obtained results proved that utilisation of terrestrial laser scanning techniques does not allow to achieve expected accuracy for some historical surfaces and it should be substituted by alternative, photogrammetric techniques. Therefore, the typology of constructions of historical objects is important not only for selection of the optimum technique of surveys, but also for its appropriate utilisation. The test objects were architectural details of the Main Hall of the Warsaw University of Technology. Scans were acquired using the 5006h scanner. Diversified geometry of scans was tested, and the relations between the distance and obtained accuracy were specified. In the case of numerous conservational works the precise surface reconstruction is often important, in order to specify damages. Therefore, the repeatability of obtained TLS results for selected surfaces was also tested. Different surfaces were analysed, which are composed of different materials having glittery elements and inhomogeneous structure. The obtained results and performed analyses revealed the high imperfections of the TLS technique applied for measuring surfaces of historical objects. The presented accuracy of measurements of projection of historical surfaces, obtained using the TLS technique may be applied by art conservators, museum professionals, archaeologists and other specialists, to perform wide analyses of historical heritage objects.
Space station ECLSS simplified integrated test
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.
1989-01-01
A discussion of the Space Station Simplified Integrated Test (SIT) was conducted. The first in a series of three integrated Environmental Control and Life Support (ECLS) system tests, the primary objectives of the SIT were to verify proper operation of ECLS subsystems functioning in an integrated fashion as well as to gather preliminary performance data for the partial ECLS system used in the test. A description of the SIT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements and water and gas samples taken during the test are included. The preprototype ECLS hardware used in the test is reported providing an overall process description and theory of operation for each hardware item.
NASA Team Begins Testing of a New-Fangled Optic
2017-12-08
It’s an age-old astronomical truth: To resolve smaller and smaller physical details of distant celestial objects, scientists need larger and larger light-collecting mirrors. This challenge is not easily overcome given the high cost and impracticality of building and — in the case of space observatories — launching large-aperture telescopes. However, a team of scientists and engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has begun testing a potentially more affordable alternative called the photon sieve. This new-fangled telescope optic could give scientists the resolution they need to see finer details still invisible with current observing tools – a jump in resolution that could help answer a 50-year-old question about the physical processes heating the sun's million-degree corona. Read more: go.nasa.gov/2abhanr Credit: NASA/Goddard/W. Hrybyk
Tidd hot gas clean up program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This Final Report on the Tidd Hot Gas Clean Up Program covers the period from initial Proof-of-Concept testing in August, 1990, through final equipment inspections in May, 1995. The Tidd Hot Gas Clean Up (HGCU) system was installed in the Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant, which is the first utility-scale PFBC plant in the United States. Detailed design work on the project began in July, 1990, and site construction began in December, 1991. Initial operation of the system occurred in May, 1992, and the hot gas filter was commissioned in October, 1992. The test program ended inmore » March, 1995, when the Tidd Plant was shut down following its four-year test program. Section 1.0 of this report is an executive summary of the project covering the project background, system description, test results and conclusions. Section 2.0 is an introduction covering the program objectives and schedule. Section 3.0 provides detailed descriptions of the system and its major components. Section 4.0 provides detailed results of all testing including observations and posttest inspection results. Sections 5.0 and 6.0 list the program conclusions and recommendations, respectively. Appendix I is a report prepared by Southern Research Institute on the properties of Tidd PFBC ash sampled during the test program. Appendix II is a report prepared by Westinghouse STC on the performance of candle filter fail-safe regenerator devices.« less
A stand-alone compact EUV microscope based on gas-puff target source.
Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk
2017-02-01
We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Advanced information processing system: Fault injection study and results
NASA Technical Reports Server (NTRS)
Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.
1992-01-01
The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.
Flexible retrieval: When true inferences produce false memories.
Carpenter, Alexis C; Schacter, Daniel L
2017-03-01
Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave memory prone to error or distortion, such as source misattributions in which details of one event are mistakenly attributed to another related event. To determine whether the same recombination-related retrieval mechanism supports both successful inference and source memory errors, we developed a modified version of an associative inference paradigm in which participants encoded everyday scenes comprised of people, objects, and other contextual details. These scenes contained overlapping elements (AB, BC) that could later be linked to support novel inferential retrieval regarding elements that had not appeared together previously (AC). Our critical experimental manipulation concerned whether contextual details were probed before or after the associative inference test, thereby allowing us to assess whether (a) false memories increased for successful versus unsuccessful inferences, and (b) any such effects were specific to after compared with before participants received the inference test. In each of 4 experiments that used variants of this paradigm, participants were more susceptible to false memories for contextual details after successful than unsuccessful inferential retrieval, but only when contextual details were probed after the associative inference test. These results suggest that the retrieval-mediated recombination mechanism that underlies associative inference also contributes to source misattributions that result from combining elements of distinct episodes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L
2007-06-01
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.
Dunne, Laura; Patel, Pallavi; Maschauer, Emily L; Morrison, Ian; Riha, Renata L
2016-12-01
Narcolepsy is a chronic primary sleep disorder, characterized by excessive daytime sleepiness and sleep dysfunction with or without cataplexy. Narcolepsy is uncommon, with a low prevalence rate which makes it difficult to diagnose definitively without a complex series of tests and a detailed history. The aim of this study was to review patients referred to a tertiary sleep centre who had been labelled with a diagnosis of narcolepsy prior to referral in order to assess if the diagnosis was accurate, and if not, to determine the cause of diagnostic misattribution. All patients seen at a sleep centre from 2007-2013 (n = 551) who underwent detailed objective testing including an MSLT PSG, as well as wearing an actigraphy watch and completing a sleep diary for 2 weeks, were assessed for a pre-referral and final diagnosis of narcolepsy. Of the 41 directly referred patients with a diagnostic label of narcolepsy, 19 (46 %) were subsequently confirmed to have narcolepsy on objective testing and assessment by a sleep physician using ICSD-2 criteria. The diagnosis of narcolepsy was incorrectly attributed to almost 50 % of patients labelled with a diagnosis of narcolepsy who were referred for further opinion by a variety of specialists and generalists. Accurate diagnosis of narcolepsy is critical for many reasons, such as the impact it has on quality of life, driving, employment, insurance and pregnancy in women as well as medication management.
NASA Technical Reports Server (NTRS)
McDougal, Kristopher J.
2008-01-01
More and more test programs are requiring high frequency measurements. Marshall Space Flight Center s Cold Flow Test Facility has an interest in acquiring such data. The acquisition of this data requires special hardware and capabilities. This document provides a structured trade study approach for determining which additional capabilities of a VXI-based data acquisition system should be utilized to meet the test facility objectives. The paper is focused on the trade study approach detailing and demonstrating the methodology. A case is presented in which a trade study was initially performed to provide a recommendation for the data system capabilities. Implementation details of the recommended alternative are briefly provided as well as the system s performance during a subsequent test program. The paper then addresses revisiting the trade study with modified alternatives and attributes to address issues that arose during the subsequent test program. Although the model does not identify a single best alternative for all sensitivities, the trade study process does provide a much better understanding. This better understanding makes it possible to confidently recommend Alternative 3 as the preferred alternative.
Detailed 3D representations for object recognition and modeling.
Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad
2013-11-01
Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.
NASA experiments on the B-720 structure and seats
NASA Astrophysics Data System (ADS)
Alfaro-Bou, E.
1986-01-01
Two experiments onboard a remotely piloted transport aircraft that was crashed on landing are discussed. The structural experiment deals with the location and distribution of the instrumentation throughout the airplane structure. In the seat experiment, the development and testing of an energy absorbing seat are discussed. The objective of the structural experiment was to obtain a data base of structural crash loads for use in the advancement of crashworthy technology of materials (such as composites) in structural design and for use in the comparison between computer and experimental results. The objective of the seat experiment was to compare the performance of an energy absorbing transport seat and a standard seat when subjected to similar crash pulses. Details are given on the location of instrumentation, on the dynamic seat test pulse and headward acceleration limits.
Manned remote work station development article
NASA Technical Reports Server (NTRS)
1978-01-01
The two prime objectives of the Manned Remote Work Station (MRWS) Development Article Study are to first, evaluate the MRWS flight article roles and associated design concepts for fundamental requirements and embody key technology developments into a simulation program; and to provide detail manufacturing drawings and schedules for a simulator development test article. An approach is outlined which establishes flight article requirements based on past studies of Solar Power Satellite, orbital construction support equipments, construction bases and near term shuttle operations. Simulation objectives are established for those technology issues that can best be addressed on a simulator. Concepts for full-scale and sub-scale simulators are then studied to establish an overall approach to studying MRWS requirements. Emphasis then shifts to design and specification of a full-scale development test article.
Fire safety evaluation of aircraft lavatory and cargo compartments
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. E.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.
1975-01-01
Large-scale aircraft lavatory and cargo compartment fire tests are described. Tests were conducted to evaluate the effectiveness of these compartments to contain fire and smoke. Two tests were conducted and are detailed. Test 1 involved a production Boeing 747 lavatory of the latest design installed in an enclosure outside the aircraft, to collect gases and expose animals to these gases. Results indicate that the interior of the lavatory was completely burned, evolving smoke and combustion products in the enclosure. Test 2 involved a simulated Douglas DC-10 cargo compartment retro-fitted with standard fiberglass liner. The fire caused excessive damage to the liner and burned through the ceiling in two areas. Test objectives, methods, materials, and results are presented and discussed.
Crew interface definition study, phase 1
NASA Technical Reports Server (NTRS)
Callihan, J. C.; Kraemer, J. W.; Alles, J. A.
1971-01-01
The timeline analysis of the Shuttle orbiter missions which was conducted in the Phase I Crew Interface Definition Study and the requirements for the man-in-the-loop simulation study are presented. Mission definitions and objectives are presented as they relate to various Shuttle Orbiter missions. The requirements for crew participation and the information required by the crew are discussed, and finally the rationale behind the display concept and calling procedures is given. The simulation objectives, the simulation mechanization, including a detailed presentation of the display and control concept, the simulator test plan and the results are discussed.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.
1988-01-01
The objectives are: measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; tests to measure sound transmission paths in the HP137 Jetstream 3; and formulation of a finite element energy model. In addition, the effort to develop a numerical/empirical noise source identification technique was completed. The investigation of a design optimization technique for active noise control was also completed. Monthly progress reports which detail the progress made toward each of the objectives are summarized.
Infants Encode Phonetic Detail during Cross-Situational Word Learning
Escudero, Paola; Mulak, Karen E.; Vlach, Haley A.
2016-01-01
Infants often hear new words in the context of more than one candidate referent. In cross-situational word learning (XSWL), word-object mappings are determined by tracking co-occurrences of words and candidate referents across multiple learning events. Research demonstrates that infants can learn words in XSWL paradigms, suggesting that it is a viable model of real-world word learning. However, these studies have all presented infants with words that have no or minimal phonological overlap (e.g., BLICKET and GAX). Words often contain some degree of phonological overlap, and it is unknown whether infants can simultaneously encode fine phonological detail while learning words via XSWL. We tested 12-, 15-, 17-, and 20-month-olds’ XSWL of eight words that, when paired, formed non-minimal pairs (MPs; e.g., BON–DEET) or MPs (e.g., BON–TON, DEET–DIT). The results demonstrated that infants are able to learn word-object mappings and encode them with sufficient phonetic detail as to identify words in both non-minimal and MP contexts. Thus, this work suggests that infants are able to simultaneously discriminate phonetic differences between words and map words to referents in an implicit learning paradigm such as XSWL. PMID:27708605
Be/X-Ray Pulsar Binary Science with LOFT
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2011-01-01
Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.
Energy Efficient Engine combustor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.
Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Gee, Glendon W.
2000-06-23
This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptualmore » models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.« less
STS-41 MS Shepherd uses DTO 1206 portable computer on OV-103's middeck
1990-10-10
STS-41 Mission Specialist (MS) William M. Shepherd uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the middeck of Discovery, Orbiter Vehicle (OV) 103. The computer is velcroed to forward lockers MF71C and MF71E. Surrounding Shepherd are checklists, the field sequential (FS) crew cabin camera, and a lighting fixture.
NASA Technical Reports Server (NTRS)
1989-01-01
The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.
Astronaut Andrew Allen looks over procedure book in middeck
1994-03-05
STS062-12-015 (4-18 March 1994) --- On Coumbia's middeck, astronaut Andrew M. Allen, pilot, looks over a procedures book in the midst of a 14-day mission. Allen is attired in a new thermally controlled undergarment. As part of a detailed test objective, both Allen and John H. Casper, mission commander, wore the undergarments during the launch and entry phases of the flight.
Galileo and Ulysses missions safety analysis and launch readiness status
NASA Technical Reports Server (NTRS)
Cork, M. Joseph; Turi, James A.
1989-01-01
The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.
JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr
NASA Technical Reports Server (NTRS)
1991-01-01
JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.
3D printing of preclinical X-ray computed tomographic data sets.
Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew
2013-03-22
Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.
Lobo, Michele A; Koshy, John; Hall, Martha L; Erol, Ozan; Cao, Huantian; Buckley, Jenner M; Galloway, James C; Higginson, Jill
2016-03-01
A person's ability to move his or her arms against gravity is important for independent performance of critical activities of daily living and for exploration that facilitates early cognitive, language, social, and perceptual-motor development. Children with a variety of diagnoses have difficulty moving their arms against gravity. The purpose of this technical report is to detail the design process and initial testing of a novel exoskeletal garment, the Playskin Lift, that assists and encourages children to lift their arms against gravity. This report details the design theory and process, the device, and the results of field testing with a toddler with impaired upper extremity function due to arthrogryposis multiplex congenita. The Playskin Lift is an inexpensive (<$30 material costs), easy to use (5/5 rating), comfortable (5/5 rating), and attractive (4/5 rating) device. While wearing the device, the child was able to contact objects more often throughout an increased play space, to look at toys more while contacting them, and to perform more complex interactions with toys. This report details initial testing with one child. Future testing with more participants is recommended. These results suggest that by considering the broad needs of users, including cost, accessibility, comfort, aesthetics, and function, we can design inexpensive devices that families and clinicians can potentially fabricate in their own communities to improve function, participation, exploration, and learning for children with disabilities. © 2016 American Physical Therapy Association.
A mixture gatekeeping procedure based on the Hommel test for clinical trial applications.
Brechenmacher, Thomas; Xu, Jane; Dmitrienko, Alex; Tamhane, Ajit C
2011-07-01
When conducting clinical trials with hierarchically ordered objectives, it is essential to use multiplicity adjustment methods that control the familywise error rate in the strong sense while taking into account the logical relations among the null hypotheses. This paper proposes a gatekeeping procedure based on the Hommel (1988) test, which offers power advantages compared to other p value-based tests proposed in the literature. A general description of the procedure is given and details are presented on how it can be applied to complex clinical trial designs. Two clinical trial examples are given to illustrate the methodology developed in the paper.
Pentalum SpiDAR Deployment at SWiFT FY17.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westergaard, Carsten; Pol, Suhas; Pereira, Tassia
2016-12-01
The Texas Tech University ( TTU ) research group is actively studying the wake development of wind turbines, as part of developing innovative wake control strategies to improve the performance of wind farms. Recently, the team received a set of five new gro und lidars to perform field measurements at the Sandia National Laboratories SWiFT site. This document describes tests details including configurations, timeframe, hardware, and the required collaboration from the Sandia team. This test plan will facili tate the coordination between both TTU and the Sandia team in terms of site accessibility, staff training, and data sharing to meetmore » the specific objectives of the tests.« less
STS-44 DS0 316, Bioreactor/Flow and Particle Trajectory in Microgravity, hdwr
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Detailed Supplementary Objective (DSO) 316, Bioreactor/Flow and Particle Trajectory in Microgravity, rotating wall vessels are stored in an incubator in JSC's Life Sciences Laboratory Bldg 37 Biotechnology Laboratories. The rotating wall vessel hardware will receive its first test and equipment checkout on the middeck of Atlantis, Orbiter Vehicle (OV) 104, during the STS-44 mission. The vessel hardware will be used in a test that researchers hope will confirm their theories and calculations about how the flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.
Test Series 2. 2: Detailed Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Test Series 2.2 comprises the third sub-series of tests to be scheduled as a part of Test Series 2, the second stage of the combustion research program to be carried out at the Grimethorpe Experimental Pressurized Fluidized Bed Combustion Facility. Test Series 2.1, the first sub-series of tests, was completed in February 1983, and the first half of the second sub-series, Test Series 2.3, in October 1983. Test Series 2.2 is to consist of 350 data gathering hours, which it is hoped to complete within 560 coal burning hours. This document provides a brief description of the Facility and modificationsmore » which have been made following the completion of Test Series 2.1. No further modifications were made following the completion of the first half of Test Series 2.3. The operating requirements are specified. The tests will be performed using a UK coal (Kiveton Park), and a UK limestone (Middleton) both nominated by the FRG. Nine objectives are proposed which are to be fulfilled by thirteen test conditions. Six part load tests are included, as defined by Kraftwerk Union AG. The cascade is expected to be on line for each test condition and total cascade exposure is expected to be in excess of 450 hours. Details of sampling and special measurements are given. A test plan schedule envisages the test series being completed within a two month calendar period. Finally, a number of contingency strategies are proposed.« less
Qualitative evaluations and comparisons of six night-vision colorization methods
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Reese, Kristopher; Blasch, Erik; McManamon, Paul
2013-05-01
Current multispectral night vision (NV) colorization techniques can manipulate images to produce colorized images that closely resemble natural scenes. The colorized NV images can enhance human perception by improving observer object classification and reaction times especially for low light conditions. This paper focuses on the qualitative (subjective) evaluations and comparisons of six NV colorization methods. The multispectral images include visible (Red-Green- Blue), near infrared (NIR), and long wave infrared (LWIR) images. The six colorization methods are channel-based color fusion (CBCF), statistic matching (SM), histogram matching (HM), joint-histogram matching (JHM), statistic matching then joint-histogram matching (SM-JHM), and the lookup table (LUT). Four categries of quality measurements are used for the qualitative evaluations, which are contrast, detail, colorfulness, and overall quality. The score of each measurement is rated from 1 to 3 scale to represent low, average, and high quality, respectively. Specifically, high contrast (of rated score 3) means an adequate level of brightness and contrast. The high detail represents high clarity of detailed contents while maintaining low artifacts. The high colorfulness preserves more natural colors (i.e., closely resembles the daylight image). Overall quality is determined from the NV image compared to the reference image. Nine sets of multispectral NV images were used in our experiments. For each set, the six colorized NV images (produced from NIR and LWIR images) are concurrently presented to users along with the reference color (RGB) image (taken at daytime). A total of 67 subjects passed a screening test ("Ishihara Color Blindness Test") and were asked to evaluate the 9-set colorized images. The experimental results showed the quality order of colorization methods from the best to the worst: CBCF < SM < SM-JHM < LUT < JHM < HM. It is anticipated that this work will provide a benchmark for NV colorization and for quantitative evaluation using an objective metric such as objective evaluation index (OEI).
The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038
NASA Astrophysics Data System (ADS)
Archibald, Anne
2015-04-01
Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.
NASA Environmentally Responsible Aviation's Highly-Loaded Front Block Compressor Demonstration
NASA Technical Reports Server (NTRS)
Celestina, Mark
2016-01-01
This presentation will detail the work done to improve thermal efficiency in the compression process of a gas turbine engine for aircraft applications under NASAs Environmentally Responsible Aviation Project. The talk will present the goals and objectives of the work and show the activity of both Phase 1 and Phase 2 tests and analysis. The summary shows the projected fuel burn savings achieved through system studies.
Gravitational Radiation - a New Window Onto the Universe. (Karl Schwarzschild Lecture 1996)
NASA Astrophysics Data System (ADS)
Thorne, K. S.
A summary is given of the current status and plans for gravitational-wave searches at all plausible wavelengths, from the size of the observable universe to a few kilometers. The anticipated scientific payoff from these searches is described, including expectations for detailed studies of black holes and neutron stars, high-accuracy tests of general relativity, and hopes for the discovery of exotic new kinds of objects.
Development of microcomputer-based mental acuity tests for repeated-measures studies
NASA Technical Reports Server (NTRS)
Kennedy, R. S.; Wilkes, R. L.; Baltzley, D. R.; Fowlkes, J. E.
1990-01-01
The purpose of this report is to detail the development of the Automated Performance Test System (APTS), a computer battery of mental acuity tests that can be used to assess human performance in the presence of toxic elements and environmental stressors. There were four objectives in the development of APTS. First, the technical requirements for developing APTS followed the tenets of the classical theory of mental tests which requires that tests meet set criteria like stability and reliability (the lack of which constitutes insensitivity). To be employed in the study of the exotic conditions of protracted space flight, a battery with multiple parallel forms is required. The second criteria was for the battery to have factorial multidimensionality and the third was for the battery to be sensitive to factors known to compromise performance. A fourth objective was for the tests to converge on the abilities entailed in mission specialist tasks. A series of studies is reported in which candidate APTS tests were subjected to an examination of their psychometric properties for repeated-measures testing. From this work, tests were selected that possessed the requisite metric properties of stability, reliability, and factor richness. In addition, studies are reported which demonstrate the predictive validity of the tests to holistic measures of intelligence.
Pathfinder autonomous rendezvous and docking project
NASA Technical Reports Server (NTRS)
Lamkin, Stephen (Editor); Mccandless, Wayne (Editor)
1990-01-01
Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkewicz, Nicholas; Kirksey, Jim; Finley, Robert
2015-05-01
Executive Summary The Illinois Basin – Decatur Project (IBDP) is managed by the Midwest Geological Sequestration Consortium (MGSC) and is led by the Illinois State Geological Survey (ISGS) at the University of Illinois. The project site is located on the Archer Daniels Midland Company (ADM) property in Decatur, Illinois, and is a fully integrated carbon capture and storage (CCS) project that uses CO₂ captured from the ethanol-producing fermentation process at the ADM corn-processing plant (Finley et. al., 2013). IBDP has a goal of injecting one million tonnes of CO₂ into the basal sands of the Mt. Simon Sandstone over amore » three-year period. This is a multifaceted project, and this report details the planning and results of the drilling, completions, well testing, log data acquisition, and the Health, Safety, and Environment (HSE) aspects of the project. Three deep wells were planned for the IBDP: • The injection well: Injection Well #1 (CCS1); • The monitoring well (both in-zone and above seal): Verification Well #1 (VW1); and • The geophone monitoring well: Geophysical Monitoring Well #1 (GM1). The detailed plans for these wells are attached to the appendices of this document. The wells were drilled successfully with little deviation from the original plans. The biggest change from the plan to execution was the need to adjust for larger-than-expected loss of circulation in the Potosi section of the Knox Formation. The completions reports also attached to this document detail the well constructions as they were actually built. Injectivity testing was carried out, and the perforating plans were adjusted based on the results. Additional perforations and acidizing were performed as a result of the injectivity testing. The testing plans are detailed in this report along with the actual testing results. The injectivity testing results were used in the modeling and simulation efforts. Detailed HSE plans were developed and implemented during the planning and execution phases of the project. The implementation included an HSE Bridging Document, which served to unify the HSE policies of the project partners and key subcontractors. The HSE plan and actual HSE results are presented in this document. There were no recordable HSE incidents during the project. A detailed logging program was developed based on project needs. The log data were acquired in accordance with the plan, and both the plan and log results are presented in this report. Log data were heavily utilized by the research staff, modelers, reservoir engineers, and for technical and permitting efforts. 5 Several key lessons were learned during the project: • Safety in operations and execution is paramount and is only achieved through proper planning and behavior control. The certainty of this was reinforced through implementation of this lesson and the resultant flawless HSE performance during the project. • Losses of drilling fluid circulation were larger than anticipated within the Potosi Formation. Circulation was only recovered through cementing the loss zones. • When possible, minimizing complexity in permit requirements and well designs is preferable. • The size of the wells were outside of the standard experience and expertise typical within the basin, and therefore required substantial planning and ramp-up of contractors and partners to meet project objectives. • With multiple stakeholders and research partners, establishing objectives and requirements early and adhering to change request procedures throughout the project are critical to manage competing data and sampling objectives that may be detrimental to overall progress. The well construction and completion operations were successfully executed, with all wells built in a manner that achieved excellent wellbore integrity. Log planning involved a number of stakeholders and technical specialists. Data collection from logging, coring, and testing was excellent. Time and effort spent with the associated contractors and suppliers to develop a well plan beyond normal scope proved highly successful, resulting in a well-construction and completion project that surpassed expectations. The world-class HSE results also demonstrate the commitment of all stakeholders in the project. The details follow in the body of this document« less
Vadose zone transport field study: Detailed test plan for simulated leak tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL Ward; GW Gee
2000-06-23
The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from thesemore » uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.« less
Adly, Amr A.; Abd-El-Hafiz, Salwa K.
2014-01-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.
Testing stellar evolution models with detached eclipsing binaries
NASA Astrophysics Data System (ADS)
Higl, J.; Weiss, A.
2017-12-01
Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.
Use of piezoelectric dampers for improving the feel of golf clubs
NASA Astrophysics Data System (ADS)
Bianchini, Emanuele; Spangler, Ronald L., Jr.; Pandell, Tracy
1999-06-01
Several sports are based upon a tool (club, bat, stick) striking an object (ball, puck) across a field of play. Anytime two structures collide, vibration is created by the impact of the two. The impact of the objects excites the structural modes of the tool, creating a vibration that can be felt by the player, especially if the hit is not at a `sweet spot'. Vibration adversely affects both feel and performance. This paper explains how piezoelectric dampers were developed to reduce vibration and improve the feel of ball-impact sporting goods such as golf clubs. The paper describes how the dynamic characteristics of a golf club were calculated, at first in the free-free condition, and then during its operation conditions (the swing of the club, and the impact with the ball). The dynamic characteristics were used to develop a damper that addressed a specific, or multiple, modes of interest. The damper development and testing are detailed in this paper. Both objective laboratory tests and subjective player tests were performed to evaluate the effectiveness of the piezoelectric dampers. The results of the tests, along with published medical data on the sensitivity of the human body, were used to draw a correlation between human feel and vibration reduction.
Progress in reflectance confocal microscopy for imaging oral tissues in vivo
NASA Astrophysics Data System (ADS)
Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal
2016-02-01
We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.
In Pursuit of LSST Science Requirements: A Comparison of Photometry Algorithms
NASA Astrophysics Data System (ADS)
Becker, Andrew C.; Silvestri, Nicole M.; Owen, Russell E.; Ivezić, Željko; Lupton, Robert H.
2007-12-01
We have developed an end-to-end photometric data-processing pipeline to compare current photometric algorithms commonly used on ground-based imaging data. This test bed is exceedingly adaptable and enables us to perform many research and development tasks, including image subtraction and co-addition, object detection and measurements, the production of photometric catalogs, and the creation and stocking of database tables with time-series information. This testing has been undertaken to evaluate existing photometry algorithms for consideration by a next-generation image-processing pipeline for the Large Synoptic Survey Telescope (LSST). We outline the results of our tests for four packages: the Sloan Digital Sky Survey's Photo package, DAOPHOT and ALLFRAME, DOPHOT, and two versions of Source Extractor (SExtractor). The ability of these algorithms to perform point-source photometry, astrometry, shape measurements, and star-galaxy separation and to measure objects at low signal-to-noise ratio is quantified. We also perform a detailed crowded-field comparison of DAOPHOT and ALLFRAME, and profile the speed and memory requirements in detail for SExtractor. We find that both DAOPHOT and Photo are able to perform aperture photometry to high enough precision to meet LSST's science requirements, and less adequately at PSF-fitting photometry. Photo performs the best at simultaneous point- and extended-source shape and brightness measurements. SExtractor is the fastest algorithm, and recent upgrades in the software yield high-quality centroid and shape measurements with little bias toward faint magnitudes. ALLFRAME yields the best photometric results in crowded fields.
Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M
2015-01-01
The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464
Evaluation of EIT system performance.
Yasin, Mamatjan; Böhm, Stephan; Gaggero, Pascal O; Adler, Andy
2011-07-01
An electrical impedance tomography (EIT) system images internal conductivity from surface electrical stimulation and measurement. Such systems necessarily comprise multiple design choices from cables and hardware design to calibration and image reconstruction. In order to compare EIT systems and study the consequences of changes in system performance, this paper describes a systematic approach to evaluate the performance of the EIT systems. The system to be tested is connected to a saline phantom in which calibrated contrasting test objects are systematically positioned using a position controller. A set of evaluation parameters are proposed which characterize (i) data and image noise, (ii) data accuracy, (iii) detectability of single contrasts and distinguishability of multiple contrasts, and (iv) accuracy of reconstructed image (amplitude, resolution, position and ringing). Using this approach, we evaluate three different EIT systems and illustrate the use of these tools to evaluate and compare performance. In order to facilitate the use of this approach, all details of the phantom, test objects and position controller design are made publicly available including the source code of the evaluation and reporting software.
2017-01-01
This technical report details the results of an uncontrolled study of EyeGuide Focus, a 10-second concussion management tool which relies on eye tracking to determine the potential impairment of visual attention, an indicator often of mild traumatic brain injury (mTBI). Essentially, people who can visually keep steady and accurate attention on a moving object in their environment likely suffer from no impairment. However, if after a potential mTBI event, subjects cannot keep attention on a moving object in a normal way as demonstrated on their previous healthy baseline tests. This may indicate possible neurological impairment. Now deployed at multiple locations across the United States, Focus (EyeGuide, Lubbock, Texas, United States) to date, has recorded more than 4,000 test scores. Our data analysis of these results shows the promise of Focus as a low-cost, ocular-based impairment test for assessing potential neurological impairment caused by mTBI in subjects ages eight and older. PMID:28630809
Kelly, Michael
2017-05-15
This technical report details the results of an uncontrolled study of EyeGuide Focus, a 10-second concussion management tool which relies on eye tracking to determine the potential impairment of visual attention, an indicator often of mild traumatic brain injury (mTBI). Essentially, people who can visually keep steady and accurate attention on a moving object in their environment likely suffer from no impairment. However, if after a potential mTBI event, subjects cannot keep attention on a moving object in a normal way as demonstrated on their previous healthy baseline tests. This may indicate possible neurological impairment. Now deployed at multiple locations across the United States, Focus (EyeGuide, Lubbock, Texas, United States) to date, has recorded more than 4,000 test scores. Our data analysis of these results shows the promise of Focus as a low-cost, ocular-based impairment test for assessing potential neurological impairment caused by mTBI in subjects ages eight and older.
Testing and injury potential analysis of rollovers with narrow object impacts.
Meyer, Steven E; Forrest, Stephen; Herbst, Brian; Hayden, Joshua; Orton, Tia; Sances, Anthony; Kumaresan, Srirangam
2004-01-01
Recent statistics highlight the significant risk of serious and fatal injuries to occupants involved in rollover collisions due to excessive roof crush. The government has reported that in 2002. Sports Utility Vehicle rollover related fatalities increased by 14% to more than 2400 annually. 61% of all SUV fatalities included rollovers [1]. Rollover crashes rely primarily upon the roof structures to maintain occupant survival space. Frequently these crashes occur off the travel lanes of the roadway and, therefore, can include impacts with various types of narrow objects such as light poles, utility poles and/or trees. A test device and methodology is presented which facilitates dynamic, repeatable rollover impact evaluation of complete vehicle roof structures with such narrow objects. These tests allow for the incorporation of Anthropomorphic Test Dummies (ATDs) which can be instrumented to measure accelerations, forces and moments to evaluate injury potential. High-speed video permits for detailed analysis of occupant kinematics and evaluation of injury causation. Criteria such as restraint performance, injury potential, survival space and the effect of roof crush associated with various types of design alternatives, countermeasures and impact circumstances can also be evaluated. In addition to presentation of the methodology, two representative vehicle crash tests are also reported. Results indicated that the reinforced roof structure significantly reduced the roof deformation compared to the production roof structure.
NASA Technical Reports Server (NTRS)
Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.
Performance and rotor loads measurements of the Lynx XZ170 helicopter with rectangular blades
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Louie, Alexander W.; Griffiths, Nicholas; Sotiriou, Costantinos P.
1993-01-01
This report presents the results of a series of flight tests on the Lynx XZ170 helicopter with rectangular blades. The test objectives were to explore the flight envelope and to measure the performance and structural loads of the Lynx main-rotor system. The tests were conducted as part of the British Experimental Rotor Program (BERP) under a contract with the Ministry of Defense in England. Data were acquired for steady-level flights at five weight coefficients. Some flight conditions were tested at beyond the retreating-blade stall boundary, which was defined by a predetermined limit on the pitchlink vibratory load. In addition to documenting the flight conditions and data, this report describes the aircraft, particularly the rotor system, in detail.
Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
2009-01-01
This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.
JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr
1991-06-27
S91-40049 (27 June 1991) --- JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.
NASA Technical Reports Server (NTRS)
Shapiro, I. I.; Counselman, C. C., III
1975-01-01
The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.
Analysis of rolling contact spall life in 440 C steel bearing rims
NASA Technical Reports Server (NTRS)
Bastias, P. C.; Bhargava, V.; Bower, A. P.; Du, J.; Gupta, V.; Hahn, G. T.; Kulkarni, S. M.; Kumar, A. M.; Leng, X.; Rubin, C. A.
1991-01-01
The results of a two year study of the mechanisms of spall failure in the HPOTP bearings are described. The objective was to build a foundation for detailed analyses of the contact life in terms of: cyclic plasticity, contact mechanics, spall nucleation, and spall growth. Since the laboratory rolling contact testing is carried out in the 3 ball/rod contact fatigue testing machine, the analysis of the contacts and contact lives produced in this machine received attention. The results from the experimentally observed growth lives are compared with calculated predictions derived from the fracture mechanics calculations.
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
Galaxies and cosmology with ALMA
NASA Astrophysics Data System (ADS)
Planesas, P.
2011-12-01
Intensive work is being carried out at the Joint ALMA Observatory in order to bring four bands of a 16-antenna mm/submm interferometer into scientific operation. Specific tests of the advertised capabilities for Early Science are being carried out as well as further tests in order to bring ALMA into full operation as planned. Some of the measurements were taken towards extragalactic objects. In fact, the high sensitivity, high angular resolution, high image fidelity, and high mapping speed, together with a large frequency coverage, will make ALMA the right instrument for high redshift studies, and detailed dynamical and chemical studies of nearby galaxies.
Object extraction in photogrammetric computer vision
NASA Astrophysics Data System (ADS)
Mayer, Helmut
This paper discusses state and promising directions of automated object extraction in photogrammetric computer vision considering also practical aspects arising for digital photogrammetric workstations (DPW). A review of the state of the art shows that there are only few practically successful systems on the market. Therefore, important issues for a practical success of automated object extraction are identified. A sound and most important powerful theoretical background is the basis. Here, we particularly point to statistical modeling. Testing makes clear which of the approaches are suited best and how useful they are for praxis. A key for commercial success of a practical system is efficient user interaction. As the means for data acquisition are changing, new promising application areas such as extremely detailed three-dimensional (3D) urban models for virtual television or mission rehearsal evolve.
Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic
2005-01-01
The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.
Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.
1976-01-01
A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.
Subramanian, Ramanathan; Shankar, Divya; Sebe, Nicu; Melcher, David
2014-03-26
A basic question in vision research regards where people look in complex scenes and how this influences their performance in various tasks. Previous studies with static images have demonstrated a close link between where people look and what they remember. Here, we examined the pattern of eye movements when participants watched neutral and emotional clips from Hollywood-style movies. Participants answered multiple-choice memory questions concerning visual and auditory scene details immediately upon viewing 1-min-long neutral or emotional movie clips. Fixations were more narrowly focused for emotional clips, and immediate memory for object details was worse compared to matched neutral scenes, implying preferential attention to emotional events. Although we found the expected correlation between where people looked and what they remembered for neutral clips, this relationship broke down for emotional clips. When participants were subsequently presented with key frames (static images) extracted from the movie clips such that presentation duration of the target objects (TOs) corresponding to the multiple-choice questions was matched and the earlier questions were repeated, more fixations were observed on the TOs, and memory performance also improved significantly, confirming that emotion modulates the relationship between gaze position and memory performance. Finally, in a long-term memory test, old/new recognition performance was significantly better for emotional scenes as compared to neutral scenes. Overall, these results are consistent with the hypothesis that emotional content draws eye fixations and strengthens memory for the scene gist while weakening encoding of peripheral scene details.
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
ERIC Educational Resources Information Center
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2010-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…
Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up
NASA Astrophysics Data System (ADS)
Abramowicz, H.; Abusleme, A.; Afanaciev, K.; Benhammou, Y.; Bortko, L.; Borysov, O.; Borysova, M.; Bozovic-Jelisavcic, I.; Chelkov, G.; Daniluk, W.; Dannheim, D.; Elsener, K.; Firlej, M.; Firu, E.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Hempel, M.; Henschel, H.; Idzik, M.; Ignatenko, A.; Ishikawa, A.; Kananov, S.; Karacheban, O.; Klempt, W.; Kotov, S.; Kotula, J.; Kozhevnikov, D.; Kruchonok, V.; Krupa, B.; Kulis, Sz.; Lange, W.; Leonard, J.; Lesiak, T.; Levy, A.; Levy, I.; Lohmann, W.; Lukic, S.; Moron, J.; Moszczynski, A.; Neagu, A. T.; Nuiry, F.-X.; Pandurovic, M.; Pawlik, B.; Preda, T.; Rosenblat, O.; Sailer, A.; Schumm, B.; Schuwalow, S.; Smiljanic, I.; Smolyanskiy, P.; Swientek, K.; Terlecki, P.; Uggerhoj, U. I.; Wistisen, T. N.; Wojton, T.; Yamamoto, H.; Zawiejski, L.; Zgura, I. S.; Zhemchugov, A.
2018-02-01
A prototype of a luminometer, designed for a future e^+e^- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Molière radius has been determined to be 24.0 ± 0.6 (stat.) ± 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.
Objective Analysis and Prediction Techniques.
1986-11-30
contract work performance period extended from November 25, 1981 to November 24, 1986. This report consists of two parts: Part One details the results and...be added to the ELAN to make it a truly effective research tool. Also, muach more testing and streamlining should be performed to insure that Its...before performing some kind of matching. Classification of Lhe data in this manner reduces the number of data points with which we need to work from
DSO 484C, Robinson spits into a sample container
1997-08-29
STS085-338-016 (7 - 19 August 1997) --- On the Space Shuttle Discovery's flight deck, astronaut Stephen K. Robinson conducts one phase of the mission's Detailed Supplementary Objectives (DSO). He uses a cotton swab to collect a saliva sample. The wrist band on his left arm is associated with the same DSO. The ongoing test, dealing with circadian rhythm and other biological systems, is in preparation for the International Space Station (ISS).
DTO-675: Voice Control of the Closed Circuit Television System
NASA Technical Reports Server (NTRS)
Salazar, George; Gaston, Darilyn M.; Haynes, Dena S.
1996-01-01
This report presents the results of the Detail Test Object (DTO)-675 "Voice Control of the Closed Circuit Television (CCTV)" system. The DTO is a follow-on flight of the Voice Command System (VCS) that flew as a secondary payload on STS-41. Several design changes were made to the VCS for the STS-78 mission. This report discusses those design changes, the data collected during the mission, recognition problems encountered, and findings.
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2005-01-01
Destructive physical analysis of the discharge and neutralizer hollow cathode assemblies from the Deep Space 1 Flight Spare 30,000 Hr life test was performed to characterize physical and chemical evidence of operationally induced effects after 30,372 hours of operation with beam extraction. Post-test inspection of the discharge-cathode assembly was subdivided into detailed analyses at the subcomponent level. Detailed materials analysis and optical inspection of the insert, orifice plate, cathode tube, heater, keeper assembly, insulator, and low-voltage propellant isolator were performed. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEW analyses were used to determine the extent and composition of regions of net deposition and erosion of both the discharge and neutralizer inserts. A comparative approach with an un-operated 4:1:1 insert was used to determine the extent of impregnate material depletion as a function of depth from the ID surface and axial position from the orifice plate. Analysis results are compared and contrasted with those obtained from similar analyses on components from shorter term tests, and provide insight regarding the prospect for successful longer-term operation consistent with SOA ion engine program life objectives at NASA.
NASA Astrophysics Data System (ADS)
Collins, Nathan A.; Hughes, Scott A.
2004-06-01
Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured from an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are in fact the black holes of general relativity.
Color constancy in a scene with bright colors that do not have a fully natural surface appearance.
Fukuda, Kazuho; Uchikawa, Keiji
2014-04-01
Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.
True Memory, False Memory, and Subjective Recollection Deficits after Focal Parietal Lobe Lesions
Drowos, David B.; Berryhill, Marian; André, Jessica M.; Olson, Ingrid R.
2010-01-01
Objective There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Our objective was to assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Method Two patients with bilateral PPC damage and matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. Results The patients exhibited significantly lower levels of false memory to words. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. It is unlikely that a failure of gist processing accounts for these results, as patients accurately remembered thematic elements of short vignettes, but failed to remember details. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection. PMID:20604621
Importing perceived features into false memories.
Lyle, Keith B; Johnson, Marcia K
2006-02-01
False memories sometimes contain specific details, such as location or colour, about events that never occurred. Based on the source-monitoring framework, we investigated one process by which false memories acquire details: the reactivation and misattribution of feature information from memories of similar perceived events. In Experiments 1A and 1B, when imagined objects were falsely remembered as seen, participants often reported that the objects had appeared in locations where visually or conceptually similar objects, respectively, had actually appeared. Experiment 2 indicated that colour and shape features of seen objects were misattributed to false memories of imagined objects. Experiment 3 showed that perceived details were misattributed to false memories of objects that had not been explicitly imagined. False memories that imported perceived features, compared to those that presumably did not, were subjectively more like memories for perceived events. Thus, perception may be even more pernicious than imagination in contributing to false memories.
Protoflight photovoltaic power module system-level tests in the space power facility
NASA Technical Reports Server (NTRS)
Rivera, Juan C.; Kirch, Luke A.
1989-01-01
Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.
Structural Optimization for Reliability Using Nonlinear Goal Programming
NASA Technical Reports Server (NTRS)
El-Sayed, Mohamed E.
1999-01-01
This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.
Greater loss of object than spatial mnemonic discrimination in aged adults.
Reagh, Zachariah M; Ho, Huy D; Leal, Stephanie L; Noche, Jessica A; Chun, Amanda; Murray, Elizabeth A; Yassa, Michael A
2016-04-01
Previous studies across species have established that the aging process adversely affects certain memory-related brain regions earlier than others. Behavioral tasks targeted at the function of vulnerable regions can provide noninvasive methods for assessing the integrity of particular components of memory throughout the lifespan. The present study modified a previous task designed to separately but concurrently test detailed memory for object identity and spatial location. Memory for objects or items is thought to rely on perirhinal and lateral entorhinal cortices, among the first targets of Alzheimer's related neurodegeneration. In line with prior work, we split an aged adult sample into "impaired" and "unimpaired" groups on the basis of a standardized word-learning task. The "impaired" group showed widespread difficulty with memory discrimination, whereas the "unimpaired" group showed difficulty with object, but not spatial memory discrimination. These findings support the hypothesized greater age-related impacts on memory for objects or items in older adults, perhaps even with healthy aging. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A multi-objective programming model for assessment the GHG emissions in MSW management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos
2013-09-15
Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.« less
Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling
NASA Astrophysics Data System (ADS)
Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.
2013-09-01
Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.
Uncued Low SNR Detection with Likelihood from Image Multi Bernoulli Filter
NASA Astrophysics Data System (ADS)
Murphy, T.; Holzinger, M.
2016-09-01
Both SSA and SDA necessitate uncued, partially informed detection and orbit determination efforts for small space objects which often produce only low strength electro-optical signatures. General frame to frame detection and tracking of objects includes methods such as moving target indicator, multiple hypothesis testing, direct track-before-detect methods, and random finite set based multiobject tracking. This paper will apply the multi-Bernoilli filter to low signal-to-noise ratio (SNR), uncued detection of space objects for space domain awareness applications. The primary novel innovation in this paper is a detailed analysis of the existing state-of-the-art likelihood functions and a likelihood function, based on a binary hypothesis, previously proposed by the authors. The algorithm is tested on electro-optical imagery obtained from a variety of sensors at Georgia Tech, including the GT-SORT 0.5m Raven-class telescope, and a twenty degree field of view high frame rate CMOS sensor. In particular, a data set of an extended pass of the Hitomi Astro-H satellite approximately 3 days after loss of communication and potential break up is examined.
NASA Technical Reports Server (NTRS)
Hansen, Jeff L.; Delaney, Robert A.
1997-01-01
This contact had two main objectives involving both numerical and experimental investigations of a small highly loaded two-stage axial compressor designated Advanced Small Turboshaft Compressor (ASTC) winch had a design pressure ratio goal of 5:1 at a flowrate of 10.53 lbm/s. The first objective was to conduct 3-D Navier Stokes multistage analyses of the ASTC using several different flow modelling schemes. The second main objective was to complete a numerical/experimental investigation into stall range enhancement of the ASTC. This compressor was designed wider a cooperative Space Act Agreement and all testing was completed at NASA Lewis Research Center. For the multistage analyses, four different flow model schemes were used, namely: (1) steady-state ADPAC analysis, (2) unsteady ADPAC analysis, (3) steady-state APNASA analysis, and (4) steady state OCOM3D analysis. The results of all the predictions were compared to the experimental data. The steady-state ADPAC and APNASA codes predicted similar overall performance and produced good agreement with data, however the blade row performance and flowfield details were quite different. In general, it can be concluded that the APNASA average-passage code does a better job of predicting the performance and flowfield details of the highly loaded ASTC compressor.
Umbilical Connect Techniques Improvement-Technology Study
NASA Technical Reports Server (NTRS)
Valkema, Donald C.
1972-01-01
The objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the space shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn 5/Apollo to an elapsed time of less than one hour to connect and verify all of the space shuttle ground service umbilicals. The study was conducted in four phases: (1) literature and hardware examination, (2) concept development, (3) concept evaluation and tradeoff analysis, and (4) selected concept design. The final product of this study was a detail design of a rise-off disconnect panel prototype test specimen for a LO2/LH2 booster (or an external oxygen/hydrogen tank for an orbiter), a detail design of a swing-arm mounted preflight umbilical carrier prototype test specimen, and a part 1 specification for the umbilical connect and verification design for the vehicles as defined in the space shuttle program.
Test Series 2. 4: detailed test plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Test Series 2.4 comprises the fourth sub-series of tests to be scheduled as a part of Test Series 2, the second stage of the combustion research program to be carried out at the Grimethorpe Experimental Pressurized Fluidized Bed Combustion Facility. Test Series 2.1, the first sub-series of tests, was completed in February 1983, and the first part of the second sub-series, Test Series 2.3, in October 1983. Test Series 2.2 was completed in February 1984 after which the second part of Test Series 2.3 commenced. The Plan for Test Series 2.4 consists of 350 data gathering hours to be completedmore » within 520 coal burning hours. This document provides a brief description of the Facility and modifications which have been made following the completion of Test Series 2.1. No further modifications were made following the completion of the first part of Test Series 2.3 or Test Series 2.2. The operating requirements for Test Series 2.4 are specified. The tests will be performed using a UK coal (Lady Windsor), and a UK limestone (Middleton) both nominated by the FRG. Seven objectives are proposed which are to be fulfilled by thirteen test conditions. Six part load tests based on input supplied by Kraftwerk Union AG are included. The cascade is expected to be on line for each test condition and total cascade exposure is expected to be in excess of 450 hours. Details of sampling and special measurements are given. A test plan schedule envisages the full test series being completed within a two month calendar period. Finally, a number of contingency strategies are proposed. 3 figures, 14 tables.« less
Crewmembers in the middeck with the Retinal Photography experiment.
1992-12-09
STS053-02-007 (2 - 9 Dec 1992) --- Astronaut Robert D. Cabana, pilot, uses a tonometer to check the intraocular pressure of astronaut Michael R. U. (Rich) Clifford, mission specialist. The two are on the Space Shuttle Discovery's mid-deck. This test is one of the mission's Detailed Supplementary Objectives (DSO) 472. The purpose of this DSO is to establish a data base of changes in intraocular pressures that can be used to evaluate crew health.
Failure mode analysis to predict product reliability.
NASA Technical Reports Server (NTRS)
Zemanick, P. P.
1972-01-01
The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.
STS-49 MS Hieb changes ESC batteries on the middeck of OV-105
1992-05-08
STS049-S-218 (8 May 1992) --- Astronaut Richard J. Hieb, on Endeavour's middeck, changes batteries on the electronic still camera to begin a series of snapshots with the experiment, a detailed test objective. DTO 648 is making its fourth flight into space. At various times during the week-long mission, crewmembers will downlink images from the camera. The scene was recorded at 16:51:15:05 GMT, May 8, 1992.
Astronauts Ashby and Coleman practice with High Definition Video Camera
1999-04-21
S99-05085 (April 1999) --- In preparation for a STS-93 detailed test objective (DTO), astronauts Jeffrey S. Ashby, pilot, and Catherine G. (Cady) Coleman, mission specialist, train with a high-definition television camcorder. The camera will be carried onboard the Space Shuttle Columbia for their scheduled July mission. The rehearsal with the DTO 700-17A hardware took place in the Crew Compartment Trainer (CCT)in the Systems Integration Facility at the Johnson Space Center (JSC).
Photovoltaic module certification and laboratory accreditation criteria development
NASA Astrophysics Data System (ADS)
Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert
1996-01-01
This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.
Evaluation of 2.1μm DFB lasers for space applications
NASA Astrophysics Data System (ADS)
Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.
2017-11-01
This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.
Antiscatter grid use in pediatric digital tomosynthesis imaging†
King, Jenna M.; Reed, Martin
2011-01-01
The objective of this study was to assess the effect of antiscatter grid use on tomosynthesis image quality. We performed an observer study that rated the image quality of digital tomosynthesis scout radiographs and slice images of a Leeds TO.20 contrast‐detail test object embedded in acrylic with and without a grid. We considered 10, 15, 20 and 25 cm of acrylic to represent the wide range of patient thicknesses encountered in pediatric imaging. We also acquired and rated images without a grid at an increased patient dose. The readers counted the total number of visible details in each image as a measure of relative image quality. We observed that the antiscatter grid improves tomosynthesis image quality compared to the grid‐out case, which received image quality scores similar to grid‐in radiography. Our results suggest that, in order to achieve the best image quality in exchange for the increase in patient dose, it may often be appropriate to include an antiscatter grid for pediatric tomosynthesis imaging, particularly if the patient thickness is greater than 10 cm. PACS number: 87.57.‐s PMID:22089021
Selection and application of microbial source tracking tools for water-quality investigations
Stoeckel, Donald M.
2005-01-01
Microbial source tracking (MST) is a complex process that includes many decision-making steps. Once a contamination problem has been defined, the potential user of MST tools must thoroughly consider study objectives before deciding upon a source identifier, a detection method, and an analytical approach to apply to the problem. Regardless of which MST protocol is chosen, underlying assumptions can affect the results and interpretation. It is crucial to incorporate tests of those assumptions in the study quality-control plan to help validate results and facilitate interpretation. Detailed descriptions of MST objectives, protocols, and assumptions are provided in this report to assist in selection and application of MST tools for water-quality investigations. Several case studies illustrate real-world applications of MST protocols over a range of settings, spatial scales, and types of contamination. Technical details of many available source identifiers and detection methods are included as appendixes. By use of this information, researchers should be able to formulate realistic expectations for the information that MST tools can provide and, where possible, successfully execute investigations to characterize sources of fecal contamination to resource waters.
Detail view looking down at mosaics of everyday objects next ...
Detail view looking down at mosaics of everyday objects next to Living Trailer (rear steps seen frame left). "They Last" tile in center surrounded by tiles, irons, glasses, toy guns, license plates, bottle caps, and plastic parts. The mosaic was created in sections as squares and linear strips, as cement was mixed and objects were collected the edges of these sections and variation of objects is noticeable. View looking north. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA
Magnetic bearings for a high-performance optical disk buffer, volume 1
NASA Technical Reports Server (NTRS)
Hockney, Richard; Adler, Karen; Anastas, George, Jr.; Downer, James; Flynn, Frederick; Goldie, James; Gondhalekar, Vijay; Hawkey, Timothy; Johnson, Bruce
1990-01-01
The innovation investigated in this project was the application of magnetic bearing technology to the translator head of an optical-disk data storage device. Both the capability for space-based applications and improved performance are expected to result. The phase 1 effort produced: (1) detailed specifications for both the translator-head and rotary-spindel bearings; (2) candidate hardware configurations for both bearings with detail definition for the translator head; (3) required characteristics for the magnetic bearing control loops; (4) position sensor selection; and (5) definition of the required electronic functions. The principal objective of Phase 2 was the design, fabrication, assembly, and test of the magnetic bearing system for the translator head. The scope of work included: (1) mechanical design of each of the required components; (2) electrical design of the required circuitry; (3) fabrication of the component parts and bread-board electronics; (4) generation of a test plan; and (5) integration of the prototype unit and performance testing. The project has confirmed the applicability of magnetic bearing technology to suspension of the translator head of the optical disk device, and demonstrated the achievement of all performance objectives. The magnetic bearing control loops perform well, achieving 100 Hz nominal bandwidth with phase margins between 37 and 63 degrees. The worst-case position resolution is 0.02 micron in the displacement loops and 1 micron rad in the rotation loops, The system is very robust to shock disturbances, recovering smoothly even when collisions occur between the translator and frame. The unique start-up/shut-down circuit has proven very effective.
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.
Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou
2016-07-07
In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.
Feature-fused SSD: fast detection for small objects
NASA Astrophysics Data System (ADS)
Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian
2018-04-01
Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.
Computer simulation of thermal modeling of primary lithium cells
NASA Technical Reports Server (NTRS)
Young, I. Cho; Frank, Harvey; Halpert, Gersid
1987-01-01
The objective was to gain a better understanding of the safety problem of primary Li-SOCl2 and Li-SO2 cells by carrying out detailed thermal modeling work. In particular, the transient heat generation rates during moderate and extermely high discharge rate tests of Li-SOCl2 cells were predicted and compared with those from the electrochemical heating. The difference between the two may be attributed to the lithium corrosion and other chemical reactions. The present program was also tested for charging of Li-SO2. In addition, the present methodology should be applicable to other primary cylindrical cells as well as rechargeable battery analyses with minor modifications.
Aeronautics Research and Technology Program and specific objectives, fiscal year 1982
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
The Aeronautics Research and Technology program is broken down into two program areas (research and technology base, and systems technology programs) which are further broken down into succeedingly more detailed activities to form a work breakdown structure for the aeronautics program: program area, program/discipline objective, specific objective, and research and technology objective and plan (RTOP). A detailed view of this work breakdown structure down to the specific objective level is provided, and goals or objectives at each of these levels are set forth. What is to be accomplished and why are addressed, but not how. The letter falls within the domain of the RTOP.
Investigation of outside visual cues required for low speed and hover
NASA Technical Reports Server (NTRS)
Hoh, R. H.
1985-01-01
Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.
Cryogenic performance of single polymer polypropylene composites
NASA Astrophysics Data System (ADS)
Atli-Veltin, Bilim
2018-03-01
The main objective of the experimental study detailed in this paper is to investigate the performance of fully recyclable, lightweight, low-cost, thermoplastic Polypropylene (PP) composite tapes at low temperatures. Coupons made of [±45] and [0/90] laminates are subjected to tensile and 3-point bending tests at room temperature as well as at -196 °C. In addition to that, cryogenic low velocity impact tests at 268 J and 777 J impact energies are performed on tubular structures. The results are indicating that the laminates made of PP tapes have sufficient ductility for cryogenic applications. Low velocity impact tests showed that the viscoelastic behavior of the material is preserved, even at such low temperatures and more than 72% of impact energy is absorbed by the material.
NASA Technical Reports Server (NTRS)
Beck, Sherwin M.; Bendura, Richard J.; Mcdougal, David S.; Hoell, James M., Jr.; Gregory, Gerald L.; Sachse, Glen W.; Hill, Gerald F.; Curfman, Howard J., Jr.; Torres, Arnold L.; Condon, Estelle P.
1987-01-01
An overview of the airborne intercomparisons of CO, NO, and OH instrumentation is presented in this first paper of the series on the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 1). This paper provides the reader with background information about several important characteristics of the project. These include the overall objectives and approach, the measurements taken, the intercomparison protocol, aircraft platform, profiles of each aircraft flight, and the participants. A synopsis of the overall results of the CO, NO, and OH instrument intercomparisons is also included. Companion papers discuss the detailed results of the CO and NO intercomparison tests as well as pertinent scientific findings.
An Overview of an Experimental Demonstration Aerotow Program
NASA Technical Reports Server (NTRS)
Murray, James E.; Bowers, Albion H.; Lokos, William A.; Peters, Todd L.; Gera, Joseph
1998-01-01
An overview of an experimental demonstration of aerotowing a delta-wing airplane with low-aspect ratio and relatively high wing loading is presented. Aerotowing of future space launch configurations is a new concept, and the objective of the work described herein is to demonstrate the aerotow operation using an airplane configuration similar to conceptual space launch vehicles. Background information on the use of aerotow for a space launch vehicle is presented, and the aerotow system used in this demonstration is described. The ground tests, analytical studies, and flight planning used to predict system behavior and to enhance flight safety are detailed. The instrumentation suite and flight test maneuvers flown are discussed, preliminary performance is assessed, and flight test results are compared with the preflight predictions.
NREL-Prime Next-Generation Drivetrain Dynamometer Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Erdman, Bill; Blodgett, Douglas
2016-08-01
Advances in wind turbine drivetrain technologies are necessary to improve reliability and reduce the cost of energy for land-based and offshore wind turbines. The NREL-Prime Next-Generation Drivetrain team developed a geared, medium-speed drivetrain that is lighter, more reliable and more efficient than existing designs. One of the objectives of Phase II of the project was to complete the detailed design, fabrication, and dynamometer testing of a 750 kilowatt (kW) drivetrain that includes the key gearbox innovations designed by Romax Technology and power converter innovations designed by DNV Kema Renewables. The purpose of this document is to summarize these tests completedmore » in NREL's National Wind Technology Center 2.5 megawatt (MW) dynamometer.« less
Space Station CMIF extended duration metabolic control test
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.
1989-01-01
The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.
Developing Career Education; K-2 Instructional Units.
ERIC Educational Resources Information Center
Nebraska State Dept. of Education, Lincoln. Div. of Vocational Education.
The guide presents instructional units aimed at developing career education for grades K-2. Each unit provides detailed objectives, activities, resources, and evaluations, and in some units the objectives are further detailed in relationship to the following subjects: mathematics, language arts, social studies, guidance, music, physical education,…
Two mechanisms of constructive recollection: Perceptual recombination and conceptual fluency.
Doss, Manoj K; Bluestone, Maximilian R; Gallo, David A
2016-11-01
Recollection is constructive and prone to distortion, but the mechanisms through which recollections can become embellished with rich yet illusory details are still debated. According to the conceptual fluency hypothesis, abstract semantic or conceptual activation increases the familiarity of a nonstudied event, causing one to falsely attribute imagined features to actual perception. In contrast, according to the perceptual recombination hypothesis, details from actually perceived events are partially recollected and become erroneously bound to a nonstudied event, again causing a detailed yet false recollection. Here, we report the first experiments aimed at disentangling these 2 mechanisms. Participants imagined pictures of common objects, and then they saw an actual picture of some of the imagined objects. We next presented misinformation associated with these studied items, designed to increase conceptual fluency (i.e., semantically related words) or perceptual recombination (i.e., perceptually similar picture fragments). Finally, we tested recollection for the originally seen pictures using verbal labels as retrieval cues. Consistent with conceptual fluency, processing-related words increased false recollection of pictures that were never seen, and consistent with perceptual recombination, processing picture fragments further increased false recollection. We also found that conceptual fluency was more short-lived than perceptual recombination, further dissociating these 2 mechanisms. These experiments provide strong evidence that conceptual fluency and perceptual recombination independently contribute to the constructive aspects of recollection. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Dual-Spool Turbine Facility Design Overview
NASA Technical Reports Server (NTRS)
Giel, Paul; Pachlhofer, Pete
2003-01-01
The next generation of aircraft engines, both commercial and military, will attempt to capitalize on the benefits of close-coupled, vaneless, counter-rotating turbine systems. Experience has shown that significant risks and challenges are present with close-coupled systems in terms of efficiency and durability. The UEET program needs to demonstrate aerodynamic loading and efficiency goals for close-coupled, reduced-stage HP/LP turbine systems as a Level 1 Milestone for FY05. No research facility exists in the U.S. to provide risk reduction for successful development of close-coupled, high and low pressure turbine systems for the next generations of engines. To meet these objectives, the design, construction, and integrated systems testing of a Dual-Spool Turbine Facility (DSTF) facility has been initiated at the NASA Glenn Research Center. The facility will be a warm (-IOOO'F), continuous flow facility for overall aerodynamic performance and detailed flow field measurement acquisition. The facility will have state-of-the-art instrumentation to capture flow physics details. Accurate and reliable speed control will be achieved by utilizing the existing Variable Frequency Drive System. Utilization of this and other existing GRC centralized utilities will reduce the overall construction costs. The design allows for future installation of a turbine inlet combustor profile simulator. This presentation details the objectives of the facility and the concepts used in specifying its capabilities. Some preliminary design results will be presented along with a discussion of plans and schedules.
Test blueprints for psychiatry residency in-training written examinations in Riyadh, Saudi Arabia
Gaffas, Eisha M; Sequeira, Reginald P; Namla, Riyadh A Al; Al-Harbi, Khalid S
2012-01-01
Background The postgraduate training program in psychiatry in Saudi Arabia, which was established in 1997, is a 4-year residency program. Written exams comprising of multiple choice questions (MCQs) are used as a summative assessment of residents in order to determine their eligibility for promotion from one year to the next. Test blueprints are not used in preparing examinations. Objective To develop test blueprints for the written examinations used in the psychiatry residency program. Methods Based on the guidelines of four professional bodies, documentary analysis was used to develop global and detailed test blueprints for each year of the residency program. An expert panel participated during piloting and final modification of the test blueprints. Their opinion about the content, weightage for each content domain, and proportion of test items to be sampled in each cognitive category as defined by modified Bloom’s taxonomy were elicited. Results Eight global and detailed test blueprints, two for each year of the psychiatry residency program, were developed. The global test blueprints were reviewed by experts and piloted. Six experts participated in the final modification of test blueprints. Based on expert consensus, the content, total weightage for each content domain, and proportion of test items to be included in each cognitive category were determined for each global test blueprint. Experts also suggested progressively decreasing the weightage for recall test items and increasing problem solving test items in examinations, from year 1 to year 4 of the psychiatry residence program. Conclusion A systematic approach using a documentary and content analysis technique was used to develop test blueprints with additional input from an expert panel as appropriate. Test blueprinting is an important step to ensure the test validity in all residency programs. PMID:23762000
NASA Technical Reports Server (NTRS)
Willett, Mike
2015-01-01
Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.
Preliminary normative data on the BORB for children aged 3-8.
Brunsdon, Ruth; Joy, Pamela; Patten, Erin; Burton, Karen
2018-05-09
The Birmingham Object Recognition Battery (BORB) is a theoretically based test battery that is used in adult cognitive neuropsychology in research and for clinical assessment. It allows a detailed analysis of underlying impairments in individuals with brain injury who have visual object recognition difficulties. The BORB's usefulness in pediatrics is supported by numerous research studies. However, there is no published normative data for children, making clinical use of the test difficult. The aim of this brief report is to publish some preliminary normative data in 70 children aged between 3 and 8 years to assist both researchers and clinicians with interpretation of test scores. Results indicate that children's performance on individual BORB subtests varies according to task demands and age. For some subtests there is improvement in performance with increasing age. However, very young children (age 3-4 years) perform at adult levels on some subtests, or alternatively on other subtests they perform at the level of chance. The current paper supports the need for pediatric data for the BORB due to large normal individual variation in performance and varying age-related performance on individual BORB subtests.
Dynamic information processing states revealed through neurocognitive models of object semantics
Clarke, Alex
2015-01-01
Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632
The objects of visuospatial short-term memory: Perceptual organization and change detection.
Nikolova, Atanaska; Macken, Bill
2016-01-01
We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.
The objects of visuospatial short-term memory: Perceptual organization and change detection
Nikolova, Atanaska; Macken, Bill
2016-01-01
We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369
Detail view looking down at mosaics of everyday objects next ...
Detail view looking down at mosaics of everyday objects next to Living Trailer. Bottle Village is spelled out in shell casings, there are also keys, tiles, watch faces, and plastic parts. View looking north. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA
Developing Career Education; Grades 3-6 Instructional Units.
ERIC Educational Resources Information Center
Nebraska State Dept. of Education, Lincoln. Div. of Vocational Education.
The guide presents instructional units aimed at developing career education for grades 3-6. Each unit provides detailed objectives, activities, resources, and evaluations, and in some units the objectives are further detailed in relationship to the following subjects: mathematics, language arts, social studies, guidance, music, physical education,…
Modelling crystal growth: Convection in an asymmetrically heated ampoule
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Rosenberger, Franz; Pulicani, J. P.; Krukowski, S.; Ouazzani, Jalil
1990-01-01
The objective was to develop and implement a numerical method capable of solving the nonlinear partial differential equations governing heat, mass, and momentum transfer in a 3-D cylindrical geometry in order to examine the character of convection in an asymmetrically heated cylindrical ampoule. The details of the numerical method, including verification tests involving comparison with results obtained from other methods, are presented. The results of the study of 3-D convection in an asymmetrically heated cylinder are described.
Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary
NASA Technical Reports Server (NTRS)
Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.
1981-01-01
The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.
GRIZZLY/FAVOR Interface Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Terry L; Williams, Paul T; Yin, Shengjun
As part of the Light Water Reactor Sustainability (LWRS) Program, the objective of the GRIZZLY/FAVOR Interface project is to create the capability to apply GRIZZLY 3-D finite element (thermal and stress) analysis results as input to FAVOR probabilistic fracture mechanics (PFM) analyses. The one benefit of FAVOR to Grizzly is the PROBABILISTIC capability. This document describes the implementation of the GRIZZLY/FAVOR Interface, the preliminary verification and tests results and a user guide that provides detailed step-by-step instructions to run the program.
[New intensifying screens in clinical radiology. II. Examinations in clinical practice].
Freyschmidt, J; Saure, D; Hagemann, G
1976-09-01
A clinically applicable procedure for testing new intensifying rare earth screens, as well as the special Siemens' screen is described. The results are related to universal screens. The film-screen combination alpha 4XD (gadolinium oxysulphide with normal, green sensitive film) results in a reduction of radiation dose to half with detail comparable with universal screens. The Siemens' special screen has similar advantages. Screens with a higher intensification factor and reduction of the mAs to one sixth results in loss of detail. This does not necessarily reduce their clinical use if they are used for appropriate purposes. The results of this clinically orientated technique agreed well with physically objective methods using lead grids. The advantages of the new screens are discussed in terms of their practical application.
Characteristics of physicians who frequently see pharmaceutical sales representatives.
Alkhateeb, Fadi M; Khanfar, Nile M; Clauson, Kevin A
2009-01-01
Pharmaceutical sales representatives (PSRs) can impact physician prescribing. The objective of this study was to test a model of physician and practice setting characteristics as influences on decisions by physicians to see PSRs. A survey was sent to a random sample of 2000 physicians. Multiple linear regression analyses were used to test models for predicting influences on decisions to see PSRs frequently, defined as at least monthly. Independent variables included: presence of restrictive policy for pharmaceutical detailing, volume of prescriptions, gender, age, type of specialty, academic affiliation, practice setting size, and urban versus rural. The dependent variable was frequency of PSRs visits to physicians. Six hundred seventy-one responses were received yielding a response rate of 34.7%. Four hundred thirty-two physicians (79.5%) reported seeing PSRs at least monthly. The decision influence model was found to be significant. Primary care physicians and high-volume prescribers showed increased likelihood to see PSRs. Physicians practicing in settings that were small, urban, without restrictive policies for pharmaceutical detailing, and not academically affiliated were more likely to see PSRs frequently. This model of physician and practice characteristics is useful in explaining the variations in physicians' characteristics who see PSRs frequently. These characteristics could be used to guide the development of future academic or counter-detailing initiatives to improve evidence-based prescribing.
in silico Surveillance: evaluating outbreak detection with simulation models
2013-01-01
Background Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. Methods A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. Results Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. Conclusions Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection. PMID:23343523
Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad
2016-01-01
Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions. PMID:27583217
The Effect of Hole Quality on the Fatigue Life of 2024-T3 Aluminum Alloy Sheet
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
2004-01-01
This paper presents the results of a study whose main objective was to determine which type of fabrication process would least affect the fatigue life of an open-hole structural detail. Since the open-hole detail is often the fundamental building block for determining the stress concentration of built-up structural parts, it is important to understand any factor that can affect the fatigue life of an open hole. A test program of constant-amplitude fatigue tests was conducted on five different sets of test specimens each made using a different hole fabrication process. Three of the sets used different mechanical drilling procedures while a fourth and fifth set were mechanically drilled and then chemically polished. Two sets of specimens were also tested under spectrum loading to aid in understanding the effects of residual compressive stresses on fatigue life. Three conclusions were made from this study. One, the residual compressive stresses caused by the hole-drilling process increased the fatigue life by two to three times over specimens that were chemically polished after the holes were drilled. Second, the chemical polishing process does not appear to adversely affect the fatigue life. Third, the chemical polishing process will produce a stress-state adjacent to the hole that has insignificant machining residual stresses.
Full-scale aircraft cabin flammability tests of improved fire-resistant materials
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Surpkis, D. E.; Price, L. J.
1974-01-01
Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.
Planning of reach-and-grasp movements: effects of validity and type of object information
NASA Technical Reports Server (NTRS)
Loukopoulos, L. D.; Engelbrecht, S. F.; Berthier, N. E.
2001-01-01
Individuals are assumed to plan reach-and-grasp movements by using two separate processes. In 1 of the processes, extrinsic (direction, distance) object information is used in planning the movement of the arm that transports the hand to the target location (transport planning); whereas in the other, intrinsic (shape) object information is used in planning the preshaping of the hand and the grasping of the target object (manipulation planning). In 2 experiments, the authors used primes to provide information to participants (N = 5, Experiment 1; N = 6, Experiment 2) about extrinsic and intrinsic object properties. The validity of the prime information was systematically varied. The primes were succeeded by a cue, which always correctly identified the location and shape of the target object. Reaction times were recorded. Four models of transport and manipulation planning were tested. The only model that was consistent with the data was 1 in which arm transport and object manipulation planning were postulated to be independent processes that operate partially in parallel. The authors suggest that the processes involved in motor planning before execution are primarily concerned with the geometric aspects of the upcoming movement but not with the temporal details of its execution.
Evidence for perceptual deficits in associative visual (prosop)agnosia: a single-case study.
Delvenne, Jean François; Seron, Xavier; Coyette, Françoise; Rossion, Bruno
2004-01-01
Associative visual agnosia is classically defined as normal visual perception stripped of its meaning [Archiv für Psychiatrie und Nervenkrankheiten 21 (1890) 22/English translation: Cognitive Neuropsychol. 5 (1988) 155]: these patients cannot access to their stored visual memories to categorize the objects nonetheless perceived correctly. However, according to an influential theory of visual agnosia [Farah, Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision, MIT Press, Cambridge, MA, 1990], visual associative agnosics necessarily present perceptual deficits that are the cause of their impairment at object recognition Here we report a detailed investigation of a patient with bilateral occipito-temporal lesions strongly impaired at object and face recognition. NS presents normal drawing copy, and normal performance at object and face matching tasks as used in classical neuropsychological tests. However, when tested with several computer tasks using carefully controlled visual stimuli and taking both his accuracy rate and response times into account, NS was found to have abnormal performances at high-level visual processing of objects and faces. Albeit presenting a different pattern of deficits than previously described in integrative agnosic patients such as HJA and LH, his deficits were characterized by an inability to integrate individual parts into a whole percept, as suggested by his failure at processing structurally impossible three-dimensional (3D) objects, an absence of face inversion effects and an advantage at detecting and matching single parts. Taken together, these observations question the idea of separate visual representations for object/face perception and object/face knowledge derived from investigations of visual associative (prosop)agnosia, and they raise some methodological issues in the analysis of single-case studies of (prosop)agnosic patients.
NASA Astrophysics Data System (ADS)
Kohn, V. G.; Argunova, T. S.; Je, J. H.
2010-11-01
We show that x-ray phase contrast images of some objects with a small cross-section diameter d satisfy a condition for a far-field approximation d Lt r1 where r1 = (λz)1/2, λ is the x-ray wavelength, z is the distance from the object to the detector. In this case the size of the image does not match the size of the object contrary to the edge detection technique. Moreover, the structure of the central fringes of the image is universal, i.e. it is independent of the object cross-section structure. Therefore, these images have no detailed information on the object.
Application of shift-and-add algorithms for imaging objects within biological media
NASA Astrophysics Data System (ADS)
Aizert, Avishai; Moshe, Tomer; Abookasis, David
2017-01-01
The Shift-and-Add (SAA) technique is a simple mathematical operation developed to reconstruct, at high spatial resolution, atmospherically degraded solar images obtained from stellar speckle interferometry systems. This method shifts and assembles individual degraded short-exposure images into a single average image with significantly improved contrast and detail. Since the inhomogeneous refractive indices of biological tissue causes light scattering similar to that induced by optical turbulence in the atmospheric layers, we assume that SAA methods can be successfully implemented to reconstruct the image of an object within a scattering biological medium. To test this hypothesis, five SAA algorithms were evaluated for reconstructing images acquired from multiple viewpoints. After successfully retrieving the hidden object's shape, quantitative image quality metrics were derived, enabling comparison of imaging error across a spectrum of layer thicknesses, demonstrating the relative efficacy of each SAA algorithm for biological imaging.
Change blindness and visual memory: visual representations get rich and act poor.
Varakin, D Alexander; Levin, Daniel T
2006-02-01
Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.
Yue, Shigang; Rind, F Claire
2006-05-01
The lobula giant movement detector (LGMD) is an identified neuron in the locust brain that responds most strongly to the images of an approaching object such as a predator. Its computational model can cope with unpredictable environments without using specific object recognition algorithms. In this paper, an LGMD-based neural network is proposed with a new feature enhancement mechanism to enhance the expanded edges of colliding objects via grouped excitation for collision detection with complex backgrounds. The isolated excitation caused by background detail will be filtered out by the new mechanism. Offline tests demonstrated the advantages of the presented LGMD-based neural network in complex backgrounds. Real time robotics experiments using the LGMD-based neural network as the only sensory system showed that the system worked reliably in a wide range of conditions; in particular, the robot was able to navigate in arenas with structured surrounds and complex backgrounds.
Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S
2008-12-08
We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS "obscura telescope" over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms. (c) 2008 Optical Society of America
NASA Technical Reports Server (NTRS)
Fromm, Michael; Pitts, Michael; Alfred, Jerome
2000-01-01
This report summarizes the project team's activity and accomplishments during the period 12 February, 1999 - 12 February, 2000. The primary objective of this project was to create and test a generic algorithm for detecting polar stratospheric clouds (PSC), an algorithm that would permit creation of a unified, long term PSC database from a variety of solar occultation instruments that measure aerosol extinction near 1000 nm The second objective was to make a database of PSC observations and certain relevant related datasets. In this report we describe the algorithm, the data we are making available, and user access options. The remainder of this document provides the details of the algorithm and the database offering.
NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1996-01-01
A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.
Hyper-X: Flight Validation of Hypersonic Airbreathing Technology
NASA Technical Reports Server (NTRS)
Rausch, Vincent L.; McClinton, Charles R.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's focused hypersonic technology program, i.e. the Hyper-X program. This program is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. This paper presents some history leading to the flight test program, research objectives, approach, schedule and status. Substantial experimental data base and concept validation have been completed. The program is concentrating on Mach 7 vehicle development, verification and validation in preparation for wind tunnel testing in 1998 and flight testing in 1999. It is also concentrating on finalization of the Mach 5 and 10 vehicle designs. Detailed evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a data base for validation of design methods once flight test data are available.
Flight Test Results for the HST Orbital Systems Test (HOST) Capillary Pump Loop Cooling System
NASA Technical Reports Server (NTRS)
Buchko, M.; Kaylor, M.; Kroliczek, E.; Ottenstein, L.
1999-01-01
The Near Infrared Camera and Multi Object Spectrometer (NICMOS) was installed in the Hubble Space Telescope (MST) in February 1997. Shortly thereafter, the instrument experienced a thermal short in its solid nitrogen dewar system which will significantly shorten the instrument's useful life. A reverse Brayton cycle mechanical refrigerator will be installed during the Third Servicing Mission (SM3) to provide cooling for the instrument, and thereby extend its operations. A Capillary Pump Loop (CPL) and radiator system was designed, built and tested to remove up to 500 watts of heat from the mechanical cryocooler and its associated electronics. The HST Orbital Systems Test (HOST) platform was flown on the Space Shuttle Discovery (STS-95) as a flight demonstration of the cryocooler system, CPL control electronics, and the CPL/Radiator. This paper will present the flight test results and thermal performance of the CPL system in detail.
NASA Technical Reports Server (NTRS)
Gamble, J. D.; Buhl, M. L., Jr.; Parrell, H.
1975-01-01
The objective of the test was to generate a detailed aerodynamic data base which can be used to substantiate the aerodynamic design data book for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in Mach number, angle of attack, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -4 deg to 20 deg, at angles of sideslip of 0 deg and 2 deg. The test Mach numbers were from 0.35 to 1.20. The Reynolds number for most of the test was held at a constant 3.5 million per foot.
The STEP mission - Satellite test of the equivalence principle
NASA Technical Reports Server (NTRS)
Atzei, A.; Swanson, P.; Anselmi, A.
1992-01-01
The STEP experiment is a joint ESA/NASA mission candidate for selection as the next medium science project in the ESA scientific program. ESA and NASA have undertaken a joint feasibility study of STEP. The principles of STEP and details of the mission are presented and the mission and spacecraft are described. The primary objective of STEP is to measure differences in the rate of fall of test masses of different compositions to one part in 10 exp 17 of the total gravitational acceleration, a factor of 10 exp 8 improvement in sensitivity over previous experiments. STEP constitutes a comparison of gravitational and inertial mass or a test of the weak equivalence principle (WEP). A test of WEP that is six orders of magnitude more accurate than previous tests will reveal whether the underlying structure of the universe is filled with undiscovered small forces, necessitating a fundamental change in our theories of matter on all scales.
Sumner, Walton; Xu, Jin Zhong; Roussel, Guy; Hagen, Michael D
2007-10-11
The American Board of Family Medicine deployed virtual patient simulations in 2004 to evaluate Diplomates' diagnostic and management skills. A previously reported dynamic process generates general symptom histories from time series data representing baseline values and reactions to medications. The simulator also must answer queries about details such as palliation and provocation. These responses often describe some recurring pattern, such as, "this medicine relieves my symptoms in a few minutes." The simulator can provide a detail stored as text, or it can evaluate a reference to a second query object. The second query object can generate details using a single Bayesian network to evaluate the effect of each drug in a virtual patient's medication list. A new medication option may not require redesign of the second query object if its implementation is consistent with related drugs. We expect this mechanism to maintain realistic responses to detail questions in complex simulations.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in coupon tests and in full-scale fuselage panel tests. Both T-stress and fracture toughness orthotropy are found to be essential to predict the observed crack paths. The analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically while insuring continuous airworthiness. Consequently, it will improve the technology to support the safe operation of the current aircraft fleet as well as the design of more damage-tolerant aircraft for the next generation fleet.
49 CFR 386.44 - Request for admissions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the proof. Such a motion shall be granted unless there was a good reason for failure to admit. ... be admitted or denied, the party shall set out in detail the reasons. (4) A party may not issue a.... An objection must explain in detail the reasons the party should not answer. A reply to the objection...
4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN ...
4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN 'B'; PIPE, WOOD, STOVE MATERIALS, AND COLLAPSED ROOT CELLAR IN CENTRAL AREA. VERTICAL, DARK PIPE IS VISIBLE IN CENTER/UPPER THIRD. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID
Leek, E Charles; d'Avossa, Giovanni; Tainturier, Marie-Josèphe; Roberts, Daniel J; Yuen, Sung Lai; Hu, Mo; Rafal, Robert
2012-01-01
This study examines how brain damage can affect the cognitive processes that support the integration of sensory input and prior knowledge during shape perception. It is based on the first detailed study of acquired ventral simultanagnosia, which was found in a patient (M.T.) with posterior occipitotemporal lesions encompassing V4 bilaterally. Despite showing normal object recognition for single items in both accuracy and response times (RTs), and intact low-level vision assessed across an extensive battery of tests, M.T. was impaired in object identification with overlapping figures displays. Task performance was modulated by familiarity: Unlike controls, M.T. was faster with overlapping displays of abstract shapes than with overlapping displays of common objects. His performance with overlapping common object displays was also influenced by both the semantic relatedness and visual similarity of the display items. These findings challenge claims that visual perception is driven solely by feedforward mechanisms and show how brain damage can selectively impair high-level perceptual processes supporting the integration of stored knowledge and visual sensory input.
The effects of perceptual priming on 4-year-olds' haptic-to-visual cross-modal transfer.
Kalagher, Hilary
2013-01-01
Four-year-old children often have difficulty visually recognizing objects that were previously experienced only haptically. This experiment attempts to improve their performance in these haptic-to-visual transfer tasks. Sixty-two 4-year-old children participated in priming trials in which they explored eight unfamiliar objects visually, haptically, or visually and haptically together. Subsequently, all children participated in the same haptic-to-visual cross-modal transfer task. In this task, children haptically explored the objects that were presented in the priming phase and then visually identified a match from among three test objects, each matching the object on only one dimension (shape, texture, or color). Children in all priming conditions predominantly made shape-based matches; however, the most shape-based matches were made in the Visual and Haptic condition. All kinds of priming provided the necessary memory traces upon which subsequent haptic exploration could build a strong enough representation to enable subsequent visual recognition. Haptic exploration patterns during the cross-modal transfer task are discussed and the detailed analyses provide a unique contribution to our understanding of the development of haptic exploratory procedures.
Korber, Katharina; Wolfenstetter, Silke Britta
2017-03-08
It is a desirable medical as well as health economic objective to achieve the best possible health effects with given financial resources. Estimating the costs of intervention programs is complex and not always possible in advance. One possibility to obtain information on costs or cost effectiveness of certain interventions is to assess programs already in existence. The aim of this article was to develop a simple, easy to understand and practical possibility of documenting costs of prevention and health promotion programs. Based on the fundamentals necessary for cost assessment, a questionnaire and a module to document the consumed resources and the resultant costs were developed. These were applied and improved within a pre-test. The developed cost module is as follows: In the left column, 5 key cost categories are listed: personnel, rooms, equipment and process, management, other costs. The cost module is a compromise between different objectives that are difficult to reconcile. On the one hand, the costs should be documented as detailed as possible and on the other, the module must be very simple to implement, as otherwise it will not be used in practice. For this purpose, it might also be useful to develop a module for each stakeholder that is aligned as closely as possible to his or her special activities. All feedback and suggestions from the pre-test were incorporated. However, some of the feedback points were project specific. Here an attempt was made to find a compromise between detail and practicality. This was done by implementing more detailed descriptions and examples in the manual. The presented module is very general. This also is a great advantage because it can be used to document the costs of completely different stakeholders. Thus, the concept presented here for cost assessment provides a first and essential component for a detailed documentation of program costs and provides the potential to check comparability and transferability of those prevention programs. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Hadaway, James B.
1997-01-01
This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.
Adaptive Flight Control Research at NASA
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2008-01-01
A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.
High-pressure LOX/hydrocarbon preburners and gas generators
NASA Technical Reports Server (NTRS)
Huebner, A. W.
1981-01-01
The objective of the program was to conduct a small scale hardware test program to establish the technology base required for LOX/hydrocarbon preburners and gas generators. The program consisted of six major tasks; Task I reviewed and assessed the performance prediction models and defined a subscale test program. Task II designed and fabricated this subscale hardware. Task III tested and analyzed the data from this hardware. Task IV analyzed the hot fire results and formulated a preliminary design for 40K preburner assemblies. Task V took the preliminary design and detailed and fabricated three 40K size preburner assemblies, one each fuel-rich LOX/CH, and LOX/RP-1 and one oxidizer rich LOX/CH4. Task VI delivered these preburner assemblies to MSFC for subsequent evaluation.
An assessment of condemnations of broiler chicken carcasses.
Bisaillon, J R; Meek, A H; Feltmate, T E
1988-01-01
An epidemiological study was conducted to assess the rates of condemnation and the diagnoses made on condemned broiler chicken carcasses in a federally-inspected abattoir. The first objective was to determine the predictive value of a positive test: the proportion of birds that were truly unfit for human consumption among condemned carcasses. The second objective was to assess the degree of agreement between diagnoses made in the abattoir and diagnoses determined by a detailed gross postmortem examination on the same condemned carcasses. A two-stage convenience sampling technique was used to obtain the birds needed. Fifteen lots of birds were selected and within each of these, approximately 45 condemned carcasses were selected for a total of 680. All the diagnoses made on these birds at the abattoir were recorded and the carcasses individually identified. The sampled carcasses were transported to the Ontario Veterinary College where a panel of three federal veterinarians independently judged whether the birds were fit for human consumption. In addition, a detailed gross postmortem examination was conducted on each carcass. An overall predictive value of a positive test of approximately 70% was found. The degree of agreement among members of the panel of examiners was also tested. The overall agreement was good (Kappa = 0.62 between examiners 1 and 2 and 0.51 between examiners 1 and 3). However, carcasses condemned for specific conditions at the abattoir, namely valgus varus deformity, mutilation, cellulitis and hepatitis showed no agreement beyond chance, while other carcasses condemned for conditions such as cyanosis and bruising showed poor agreement concerning their disposition for at least one pair of examiners.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3370562
Congruence analysis of point clouds from unstable stereo image sequences
NASA Astrophysics Data System (ADS)
Jepping, C.; Bethmann, F.; Luhmann, T.
2014-06-01
This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.
A knowledge-based system design/information tool for aircraft flight control systems
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Allen, James G.
1991-01-01
Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.
Trajectory control sensor engineering model detailed test objective
NASA Technical Reports Server (NTRS)
Dekome, Kent; Barr, Joseph Martin
1991-01-01
The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.
Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine
NASA Astrophysics Data System (ADS)
Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.
2018-06-01
Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.
Materials Compatibility Testing in Concentrated Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)
2000-01-01
Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.
Object attributes combine additively in visual search.
Pramod, R T; Arun, S P
2016-01-01
We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.
Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James
2006-01-01
To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.
Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K
2015-12-16
The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD. Copyright © 2015 the authors 0270-6474/15/3516352-10$15.00/0.
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
NASA Technical Reports Server (NTRS)
Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.
2010-01-01
The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.
NASA Astrophysics Data System (ADS)
Wichmann, Andreas; Kada, Martin
2016-06-01
There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.
Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)
NASA Technical Reports Server (NTRS)
Murphy, Gloria A.
2010-01-01
This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test report. This flight test report serves as a complement to the course handbook presented here. This project was extremely ambitious, and achieving all of the design and test objectives was a daunting task. The schedule ran slightly longer than a single academic year with the complete design closure not occurring until early April. Integration and verification testing spilled over into late May and the first flight did not occur until mid to late June. The academic year at Utah State University ended on May 8, 2010. Following the end of the academic year, testing and integration was performed by the faculty advisor, paid research assistants, and volunteer student help
Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Carrizales, Stephanie M.; McCoy, J. Torin
2009-01-01
In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was developed by a team of scientists and engineers from NASA s Habitability and Environmental Factors Division in the Space Life Sciences Directorate at Johnson Space Center, the Wyle Integrated Science and Engineering Group in Houston, Texas, the University of Utah, and Iowa State University. The CWQMK was flown and deployed as a Station Development Test Objective (SDTO) experiment on ISS. The goal of the SDTO experiment was to evaluate the acceptability of CSPE technology for routine water quality monitoring on ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on ISS. The results obtained from the SDTO experiment are also reported and discussed in detail.
The subscale orbital fluid transfer experiment
NASA Technical Reports Server (NTRS)
Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry
1995-01-01
The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, examination of methods for accurately metering the amount of liquid transferred between the two tanks, examination of possible test fluids, and consideration of the materials to use for the elastomeric diaphragm. The objective of the visual observation is to locate the fluid-vapor interfaces and, if possible, quantify the amount of vapor and the area of the interface. It is proposed to use video cameras to view the overall process in each tank and to place borescopes or other devices through the tank walls to obtain detailed, undistorted views inside the tanks of critical portions of the transfer process. Further work will continue to find an economical means for providing this detailed view, which clearly would increase the data obtained from the experiment.
Aging affects the interaction between attentional control and source memory: an fMRI study.
Dulas, Michael R; Duarte, Audrey
2014-12-01
Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.
A magnetic shield/dual purpose mission
NASA Technical Reports Server (NTRS)
Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick
1994-01-01
The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.
Reches, A.; Kutcher, J.; Elbin, R. J.; Or-Ly, H.; Sadeh, B.; Greer, J.; McAllister, D. J.; Geva, A.; Kontos, A. P.
2017-01-01
ABSTRACT Background: The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician’s decision-making process. Objective: The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Methods: Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Results: Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. Conclusion: The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions. PMID:28055228
Gold, Carl A; Marchant, Natalie L; Koutstaal, Wilma; Schacter, Daniel L; Budson, Andrew E
2007-09-20
The presence or absence of conceptual information in pictorial stimuli may explain the mixed findings of previous studies of false recognition in patients with mild Alzheimer's disease (AD). To test this hypothesis, 48 patients with AD were compared to 48 healthy older adults on a recognition task first described by Koutstaal et al. [Koutstaal, W., Reddy, C., Jackson, E. M., Prince, S., Cendan, D. L., & Schacter D. L. (2003). False recognition of abstract versus common objects in older and younger adults: Testing the semantic categorization account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 499-510]. Participants studied and were tested on their memory for categorized ambiguous pictures of common objects. The presence of conceptual information at study and/or test was manipulated by providing or withholding disambiguating semantic labels. Analyses focused on testing two competing theories. The semantic encoding hypothesis, which posits that the inter-item perceptual details are not encoded by AD patients when conceptual information is present in the stimuli, was not supported by the findings. In contrast, the conceptual fluency hypothesis was supported. Enhanced conceptual fluency at test dramatically shifted AD patients to a more liberal response bias, raising their false recognition. These results suggest that patients with AD rely on the fluency of test items in making recognition memory decisions. We speculate that AD patients' over reliance upon fluency may be attributable to (1) dysfunction of the hippocampus, disrupting recollection, and/or (2) dysfunction of prefrontal cortex, disrupting post-retrieval processes.
Generalization between canonical and non-canonical views in object recognition
Ghose, Tandra; Liu, Zili
2013-01-01
Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692
NASA Technical Reports Server (NTRS)
1975-01-01
The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.
(LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing
Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.
2012-01-01
The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.
NASA Technical Reports Server (NTRS)
Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.
2002-01-01
This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.
NASA Technical Reports Server (NTRS)
Lisagor, W. B.
1984-01-01
Since the pioneer work of Brown (1966), precracked specimens and related fracture mechanics analyses have been extensively used to study stress corrosion cracking. Certain questions arose in connection with initial attempts to prepare standardized recommended practices by ASTM Committee G-1 on Corrosion of Metals. These questions were related to adequacy of test control as it pertains to acceptable limits of variability, and to validity of expressions for stress intensity and crack-surface displacements for both specimen configurations. An interlaboratory test program, was, therefore, planned with the objective to examine the validity of KIscc testing for selected specimen configurations, materials,and environmental systems. The results reported in the present paper include details of a single laboratory test program. The program was conducted to determine if the threshold value of stress intensity for onset and arrest of stress corrosion cracking was independent for the two specimen configurations examined.
NASA Technical Reports Server (NTRS)
Martellucci, A.; Maguire, B. L.; Neff, R. S.
1972-01-01
The objective of the study was to provide a detailed post flight evaluation of ballistic vehicle flight test boundary layer transition data. A total of fifty-five vehicles were selected for analysis. These vehicles were chosen from a data sampling of roughly two hundred flights and the criteria for vehicle selection is delineated herein. The results of the analysis indicate that frustum transition of re-entry vehicles appears to be nose tip dominated. Frustum related parameters and materials apparently have a second order effect on transition. This implies that local viscous parameters on the frustum should not correlate flight test transition data, and in fact they do not. Specific parameters relative to the nose tip have been identified as the apparent dominant factors that characterize the transition phenomena and a correlation of flight test data is presented.
A Review of Research and a Meta-Analysis of the Seductive Detail Effect
ERIC Educational Resources Information Center
Rey, Gunter Daniel
2012-01-01
Seductive details constitute interesting but irrelevant information that are not necessary to achieve the instructional objective. The seductive detail effect occurs when people learn more deeply from instructional messages that exclude rather than include these details. This effect is mainly explained by assuming an overloading of the working…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for overmore » 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.« less
Object attributes combine additively in visual search
Pramod, R. T.; Arun, S. P.
2016-01-01
We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes. PMID:26967014
SIMSAT: An object oriented architecture for real-time satellite simulation
NASA Technical Reports Server (NTRS)
Williams, Adam P.
1993-01-01
Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.
Beaulieu, Luc; Radford, Dee-Ann; Eduardo Villarreal-Barajas, J
2018-03-14
The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology. This article contains detailed performance objectives and safety criteria for low-dose-rate (LDR) permanent seed brachytherapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Laser based imaging of time depending microscopic scenes with strong light emission
NASA Astrophysics Data System (ADS)
Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik
2011-10-01
Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.
A global response roadmap to the asteroid impact threat: The NEOShield perspective
NASA Astrophysics Data System (ADS)
Perna, D.; Barucci, M. A.; Drube, L.; Falke, A.; Fulchignoni, M.; Harris, A. W.; Harris, A. W.; Kanuchova, Z.
2015-12-01
Besides being of great scientific interest, near-Earth objects represent a well-founded threat to life on our planet. Nonetheless, up to now there has been no concerted international plan on how to deal with the impact threat, and how to prepare and implement mitigation measures. The NEOShield project is funded by the European Commission to address such issues, to investigate the feasibility of techniques to prevent a potentially catastrophic impact on Earth by an asteroid or a comet, and to develop detailed designs of appropriate space missions to test deflection techniques. In this work we present and discuss the scientific and strategic aspects of the asteroid impact threat, highlighting the necessary steps so as to be ready to react to future hazardous objects.
An introduction to testing parachutes in wind tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.
1991-01-01
This paper reviews some of the technical considerations and current practices for testing parachutes in conventional wind tunnels. Special challenges to the experimentalist caused by the fabric construction, flexible geometry, and buff shape of parachutes are discussed. In particular, the topics of measurement technique, similarity considerations, and wall interference are addressed in a summary manner. Many references are cited which provide detailed coverage of the state of the art in testing methods. From the discussions presented, it is obvious that there are some serious problems with state of the art methods, especially in the area of canopy instrumentation and whenmore » working with reduced-scale models. But if the experimentalist is informed about the relative importance of the various factors for a specific test objective, it is usually possible to design a test that will yield meaningful results. The lower cost and the more favorable measurement environment of wind tunnels make their use an attractive alternative to flight testing whenever possible. 26 refs., 5 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop test beds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC Test Bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in operation and evolution of the SSF are addressed.
Guide for Oxygen Component Qualification Tests
NASA Technical Reports Server (NTRS)
Bamford, Larry J.; Rucker, Michelle A.; Dobbin, Douglas
1996-01-01
Although oxygen is a chemically stable element, it is not shock sensitive, will not decompose, and is not flammable. Oxygen use therefore carries a risk that should never be overlooked, because oxygen is a strong oxidizer that vigorously supports combustion. Safety is of primary concern in oxygen service. To promote safety in oxygen systems, the flammability of materials used in them should be analyzed. At the NASA White Sands Test Facility (WSTF), we have performed configurational tests of components specifically engineered for oxygen service. These tests follow a detailed WSTF oxygen hazards analysis. The stated objective of the tests was to provide performance test data for customer use as part of a qualification plan for a particular component in a particular configuration, and under worst-case conditions. In this document - the 'Guide for Oxygen Component Qualification Tests' - we outline recommended test systems, and cleaning, handling, and test procedures that address worst-case conditions. It should be noted that test results apply specifically to: manual valves, remotely operated valves, check valves, relief valves, filters, regulators, flexible hoses, and intensifiers. Component systems are not covered.
NASA Technical Reports Server (NTRS)
Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela
2012-01-01
The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.
NASA Technical Reports Server (NTRS)
Cramer, J. M.; Pal, S.; Marshall, W. M.; Santoro, R. J.
2003-01-01
Contents include the folloving: 1. Motivation. Support NASA's 3d generation launch vehicle technology program. RBCC is promising candidate for 3d generation propulsion system. 2. Approach. Focus on ejector mode p3erformance (Mach 0-3). Perform testing on established flowpath geometry. Use conventional propulsion measurement techniques. Use advanced optical diagnostic techniques to measure local combustion gas properties. 3. Objectives. Gain physical understanding of detailing mixing and combustion phenomena. Establish an experimental data set for CFD code development and validation.
Skylab thruster attitude control system
NASA Technical Reports Server (NTRS)
Wilmer, G. E., Jr.
1974-01-01
Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.
1992-05-16
STS-49 Orbiter Endeavour landed at Edwards Air Force Base on May 16, 1992 The drogue chute precedes the main chute in NASA’s first exercise of its detailed test objective on the drag chute system. STS-49 ended its successful nine day mission dedicated to the retrieval, repair, and redeployment of the the INTELSAT VI (F-3) satellite. The communication satellite for the International Telecommunication Satellite organization had been stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. The mission marked the first time 3 astronauts worked simultaneously outside the space craft.
An aeronautical mobile satellite experiment
NASA Technical Reports Server (NTRS)
Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.
1990-01-01
The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.
The Nike-Black Brant V development program
NASA Technical Reports Server (NTRS)
Sevier, H.; Payne, B.; Ott, R.; Montag, W.
1976-01-01
The Nike-Black Brant V represents a combined U.S.-Canadian program to achieve a 40 percent increase in apogee performance over that of the unboosted BBV, with minimum component modification and no meaningful increase in flight environment levels. The process of achieving these objectives is described, in particular optimization of sustainer coast period and roll history, and the techniques used to ensure good stage separation. Details of the structural test program and subsequent successful vehicle proving flight are provided. Basic performance data are preented, with an indication of the further potential offered by Terrier boost.
STS-31 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1990-01-01
The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.
Giampietro, Vincent; Van den Eynde, Frederique; Davies, Helen; Lounes, Naima; Andrew, Christopher; Dalton, Jeffrey; Simmons, Andrew; Williams, Steven C.R.; Baron-Cohen, Simon; Tchanturia, Kate
2013-01-01
The behavioural literature in anorexia nervosa and autism spectrum disorders has indicated an overlap in cognitive profiles. One such domain is the enhancement of local processing over global processing. While functional imaging studies of autism spectrum disorder have revealed differential neural patterns compared to controls in response to tests of local versus global processing, no studies have explored such effects in anorexia nervosa. This study uses functional magnetic resonance imaging in conjunction with the embedded figures test, to explore the neural correlates of this enhanced attention to detail in the largest anorexia nervosa cohort to date. On the embedded figures tests participants are required to indicate which of two complex figures contains a simple geometrical shape. The findings indicate that whilst healthy controls showed greater accuracy on the task than people with anorexia nervosa, different brain regions were recruited. Healthy controls showed greater activation in the precuneus whilst people with anorexia nervosa showed greater activation in the fusiform gyrus. This suggests that different cognitive strategies were used to perform the task, i.e. healthy controls demonstrated greater emphasis on visuospatial searching and people with anorexia nervosa employed a more object recognition-based approach. This is in accordance with previous findings in autism spectrum disorder using a similar methodology and has implications for therapies addressing the appropriate adjustment of cognitive strategies in anorexia nervosa. PMID:23691129
Fonville, Leon; Lao-Kaim, Nick P; Giampietro, Vincent; Van den Eynde, Frederique; Davies, Helen; Lounes, Naima; Andrew, Christopher; Dalton, Jeffrey; Simmons, Andrew; Williams, Steven C R; Baron-Cohen, Simon; Tchanturia, Kate
2013-01-01
The behavioural literature in anorexia nervosa and autism spectrum disorders has indicated an overlap in cognitive profiles. One such domain is the enhancement of local processing over global processing. While functional imaging studies of autism spectrum disorder have revealed differential neural patterns compared to controls in response to tests of local versus global processing, no studies have explored such effects in anorexia nervosa. This study uses functional magnetic resonance imaging in conjunction with the embedded figures test, to explore the neural correlates of this enhanced attention to detail in the largest anorexia nervosa cohort to date. On the embedded figures tests participants are required to indicate which of two complex figures contains a simple geometrical shape. The findings indicate that whilst healthy controls showed greater accuracy on the task than people with anorexia nervosa, different brain regions were recruited. Healthy controls showed greater activation in the precuneus whilst people with anorexia nervosa showed greater activation in the fusiform gyrus. This suggests that different cognitive strategies were used to perform the task, i.e. healthy controls demonstrated greater emphasis on visuospatial searching and people with anorexia nervosa employed a more object recognition-based approach. This is in accordance with previous findings in autism spectrum disorder using a similar methodology and has implications for therapies addressing the appropriate adjustment of cognitive strategies in anorexia nervosa.
The widespread misuse of effect sizes.
Dankel, Scott J; Mouser, J Grant; Mattocks, Kevin T; Counts, Brittany R; Jessee, Matthew B; Buckner, Samuel L; Loprinzi, Paul D; Loenneke, Jeremy P
2017-05-01
Studies comparing multiple groups (i.e., experimental and control) often examine the efficacy of an intervention by calculating within group effect sizes using Cohen's d. This method is inappropriate and largely impacted by the pre-test variability as opposed to the variability in the intervention itself. Furthermore, the percentage change is often analyzed, but this is highly impacted by the baseline values and can be potentially misleading. Thus, the objective of this study was to illustrate the common misuse of the effect size and percent change measures. Here we provide a realistic sample data set comparing two resistance training groups with the same pre-test to post-test change. Statistical tests that are commonly performed within the literature were computed. Analyzing the within group effect size favors the control group, while the percent change favors the experimental group. The most appropriate way to present the data would be to plot the individual responses or, for larger samples, provide the mean change and 95% confidence intervals of the mean change. This details the magnitude and variability within the response to the intervention itself in units that are easily interpretable. This manuscript demonstrates the common misuse of the effect size and details the importance for investigators to always report raw values, even when alternative statistics are performed. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
Scale-based fuzzy connectivity: a novel image segmentation methodology and its validation
NASA Astrophysics Data System (ADS)
Saha, Punam K.; Udupa, Jayaram K.
1999-05-01
This paper extends a previously reported theory and algorithms for fuzzy connected object definition. It introduces `object scale' for determining the neighborhood size for defining affinity, the degree of local hanging togetherness between image elements. Object scale allows us to use a varying neighborhood size in different parts of the image. This paper argues that scale-based fuzzy connectivity is natural in object definition and demonstrates that this leads to a more effective object segmentation than without using scale in fuzzy concentrations. Affinity is described as consisting of a homogeneity-based and an object-feature- based component. Families of non scale-based and scale-based affinity relations are constructed. An effective method for giving a rough estimate of scale at different locations in the image is presented. The original theoretical and algorithmic framework remains more-or-less the same but considerably improved segmentations result. A quantitative statistical comparison between the non scale-based and the scale-based methods was made based on phantom images generated from patient MR brain studies by first segmenting the objects, and then by adding noise and blurring, and background component. Both the statistical and the subjective tests clearly indicate the superiority of scale- based method in capturing details and in robustness to noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawloski, G A; Tompson, A F B; Carle, S F
The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahutemore » Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.« less
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.
Review on the EFDA programme on tungsten materials technology and science
NASA Astrophysics Data System (ADS)
Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.
2011-10-01
All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.
Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System
Park, Hyeoun-Ae; Jeon, Eunjoo; Chung, Eunja
2012-01-01
Objectives The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. Methods This study was carried out in five phases: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. Results We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. Conclusions The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system. PMID:22844649
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu
2016-05-01
We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less
Specialized data analysis of SSME and advanced propulsion system vibration measurements
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi
1993-01-01
The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.
Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke
2013-10-21
We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.
Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986
NASA Technical Reports Server (NTRS)
Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.
1987-01-01
Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.
Material Characterization for the Analysis of Skin/Stiffener Separation
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Leone, Frank A.; Song, Kyongchan; Ratcliffe, James G.; Rose, Cheryl A.
2017-01-01
Test results show that separation failure in co-cured skin/stiffener interfaces is characterized by dense networks of interacting cracks and crack path migrations that are not present in standard characterization tests for delamination. These crack networks result in measurable large-scale and sub-ply-scale R curve toughening mechanisms, such as fiber bridging, crack migration, and crack delving. Consequently, a number of unknown issues exist regarding the level of analysis detail that is required for sufficient predictive fidelity. The objective of the present paper is to examine some of the difficulties associated with modeling separation failure in stiffened composite structures. A procedure to characterize the interfacial material properties is proposed and the use of simplified models based on empirical interface properties is evaluated.
Spatial and Temporal Analysis of Bias HAST System Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Kent B.; Furrer, III, Clint T; Sandoval, Paul Anthony
2017-03-01
High-reliability components for high-consequence systems require detailed testing of operation after having undergone highly accelerated stress testing (HAST) under unusual conditions of high-temperature and humidity. This paper describes the design and operation of a system called "Wormwood" that is a highly multiplexed temperature measurement system that is designed to operate under HAST conditions to allow measurement of the temperature as a function of time and position in a HAST chamber. HAST chambers have single-point temperature measurements that can be traceable to NIST standards. The objective of these "Wormwood" measurements is to verify the uniformity and stability of the remaining volumemore » of the HAST chamber with respect to the single traceable standard.« less
Control of Technology Transfer at JPL
NASA Technical Reports Server (NTRS)
Oliver, Ronald
2006-01-01
Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software
A knowledge-based system design/information tool for aircraft flight control systems
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Allen, James G.
1989-01-01
Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.
Games With Estimation of Non-Damage Objectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
1998-09-14
Games against nature illustrate the role of non-damage objectives in producing conflict with uncertain rewards and the role of probing and estimation in reducing that uncertainty and restoring optimal strategies. This note discusses two essential elements of the analysis of crisis stability omitted from current treatments based on first strike stability: the role of an objective that motivates conflicts sufficiently serious to lead to conflicts, and the process of sequential interactions that could cause those conflicts to deepen. Games against nature illustrate role of objectives and uncertainty that are at the core of detailed treatments of crisis stability. These modelsmore » can also illustrate how these games processes can generate and deepen crises and the optimal strategies that might be used to end them. This note discusses two essential elements of the analysis of crisis stability that are omitted from current treatments based on first strike stability: anon-damage objective that motivates conflicts sufficiently serious to lead to conflicts, and the process of sequential tests that could cause those conflicts to deepen. The model used is a game against nature, simplified sufficiently to make the role of each of those elements obvious.« less
NASA Technical Reports Server (NTRS)
Seeman, J. S.; Macfarlane, T. G.
1972-01-01
The following material presents the results of two temporally remote administrations of an identical projective personality assessment device (Rorschach Inkblot) using crew members aboard the 90-day test. The first administration took place during preselection crew psychodiagnostic testing in the period extending from mid-December 1969 through mid-January 1970. Second administration took place in late May and early June, 1971, approximately one year after termination of the test. During the 90-day program duration, the subjects participated in the crew training program, were selected and served as onboard crew during the 90-day test. The testing was undertaken in order to determine the character and extent of change (if any) in basic personality dynamics accompanying or caused by participation in the 90-day test program. Results indicate that significant personality changes occurred in three of the four onboard crew members. A detailed discussion of the results is provided. Objective scores which served as the basis for the discussion are presented in the Appendix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-26
The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of amore » two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.« less
Cantwell, George; Riesenhuber, Maximilian; Roeder, Jessica L; Ashby, F Gregory
2017-05-01
The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning. Using bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new HMAX/COVIS model provides impressively good fits to human category-learning data from two qualitatively different experiments that used different types of category structures and different types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral account of basal ganglia-mediated learning. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder
Huntjens, Rafaële J. C.; Verschuere, Bruno; McNally, Richard J.
2012-01-01
Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Findings Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. Conclusion The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature. PMID:22815769
Inter-identity autobiographical amnesia in patients with dissociative identity disorder.
Huntjens, Rafaële J C; Verschuere, Bruno; McNally, Richard J
2012-01-01
A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.
NASA Astrophysics Data System (ADS)
Blakley, Sean Michael
Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.
NASA Astrophysics Data System (ADS)
Young, Kenneth C.; Cook, James J. H.; Oduko, Jennifer M.; Bosmans, Hilde
2006-03-01
European Guidelines for quality control in digital mammography specify minimum and achievable standards of image quality in terms of threshold contrast, based on readings of images of the CDMAM test object by human observers. However this is time-consuming and has large inter-observer error. To overcome these problems a software program (CDCOM) is available to automatically read CDMAM images, but the optimal method of interpreting the output is not defined. This study evaluates methods of determining threshold contrast from the program, and compares these to human readings for a variety of mammography systems. The methods considered are (A) simple thresholding (B) psychometric curve fitting (C) smoothing and interpolation and (D) smoothing and psychometric curve fitting. Each method leads to similar threshold contrasts but with different reproducibility. Method (A) had relatively poor reproducibility with a standard error in threshold contrast of 18.1 +/- 0.7%. This was reduced to 8.4% by using a contrast-detail curve fitting procedure. Method (D) had the best reproducibility with an error of 6.7%, reducing to 5.1% with curve fitting. A panel of 3 human observers had an error of 4.4% reduced to 2.9 % by curve fitting. All automatic methods led to threshold contrasts that were lower than for humans. The ratio of human to program threshold contrasts varied with detail diameter and was 1.50 +/- .04 (sem) at 0.1mm and 1.82 +/- .06 at 0.25mm for method (D). There were good correlations between the threshold contrast determined by humans and the automated methods.
Ground test for vibration control demonstrator
NASA Astrophysics Data System (ADS)
Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.
2016-09-01
In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.
Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, D.S.; Harrison, Roger
1978-10-01
Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less
ERIC Educational Resources Information Center
Kensinger, Elizabeth A.; Schacter, Daniel L.
2007-01-01
Memories can be retrieved with varied amounts of visual detail, and the emotional content of information can influence the likelihood that visual detail is remembered. In the present fMRI experiment (conducted with 19 adults scanned using a 3T magnet), we examined the neural processes that correspond with recognition of the visual details of…
The Professional Culture of Community Pharmacy and the Provision of MTM Services.
Rosenthal, Meagen M; Holmes, Erin R
2018-03-21
The integration of advanced pharmacy services into community pharmacy practice is not complete. According to implementation research understanding professional culture, as a part of context, may provide insights for accelerating this process. There are three objectives in this study. The first objective of this study was to validate an adapted version of an organizational culture measure in a sample of United States' (US) community pharmacists. The second objective was to examine potential relationships between the cultural factors identified using the validated instrument and a number of socialization and education variables. The third objective was to examine any relationships between the scores on the identified cultural factors and the provision of MTM services. This study was a cross-sectional online survey for community pharmacists in the southeastern US. The survey contained questions on socialization/education, respondents' self-reported provision of medication therapy management (MTM) services, and the organizational culture profile (OCP). Analyses included descriptive statistics, a principle components analysis (PCA), independent samples t-test, and multivariate ordinal regression. A total of 303 surveys were completed. The PCA revealed a six-factor structure: social responsibility, innovation, people orientation, competitiveness, attention to detail, and reward orientation. Further analysis revealed significant relationships between social responsibility and years in practice, and people orientation and attention to detail and pharmacists' training and practice setting. Significant positive relationships were observed between social responsibility, innovation, and competitiveness and the increased provision of MTM services. The significant relationships identified between the OCP factors and community pharmacist respondents' provision of MTM services provides an important starting point for developing interventions to improve the uptake of practice change opportunities.
[Component and System Level of the FASTRAC Engine
NASA Technical Reports Server (NTRS)
1999-01-01
The primary activities of Lee & Associates during the period 7/20/99 to 12/31/99 as specified in the referenced Purchase Order has been in direct support of the Advanced Space Technology Program OfFice's Core Propulsion Project. An independent review to assess the program readiness to conduct component and system level testing of the FASTRAC Engine and to proceed into Fabrication has been provided. This was accomplished through the identification of program weaknesses and potential failure areas and where applicable recommended solutions were suggested to the Program Office that would mitigate technical and program risk. The approach taken to satisfy the objectives has been for the contractor to provide a team of experts with relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. The team participated in Test Planning, Test Readiness Reviews for system testing at Stennis Space Center, Anomaly Resolution Reviews, an Operations Audit, and data analysis. This approach worked well in satisfying the objectives and providing the Project Office with valuable information in real time and through monthly reports. During the month of December 1999 the primary effort involved the participation in anomaly resolution and the detailed review of the data from the final H3 and H4 test series performed on the FASTRAC engine in the b-2 Horizontal Test Facility at Stennis. The more significant findings and recommendations from this review are presented in this report.
Development and Testing of PRD-66 Hot Gas Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, J.A.; Garnier, J.E.; McMahon, T. J.
1996-12-31
The overall objective of this program is to develop and commercialize PRD-66 hot gas filters for application in pressurized fluidized bed combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power generation systems. The work is being carried out in phases with the following specific objectives: 1. Demonstrate acceptable mechanical, chemical, and filtration properties in exposure tests. 2. Produce and qualify selected prototype design filter elements in high temperature high pressure (HTHP) simulated PFBC exposure tests. 3. (Option) Generate a manufacturing plan to support commercial scale-up. 4. (Option) Recommend process equipment upgrades and produce 50 candle filters. Since the beginning ofmore » this program, a parallel evaluation of DuPont Lanxide Composites Inc. (DLC) PRD-66 hot gas candle filters took place using AEP`s TIDD PFBC facility. Several PRD-66 filters experienced damage during the final testing phase at TIDD, after highly successful testing in earlier runs. During the past year, DLC has undertaken a study under this contract to understand the mechanism of damage sustained in TIDD Test Segment 5. DLC has formulated a hypothesis for the damage mechanism based on the available evidence, and verified that the damage mechanism is possible given the conditions known to exist in TIDD. Improvements to the filter design to eliminate the root cause of the failure have been undertaken. This report details DLC`s conclusions regarding the failure mechanism, the evidence supporting the conclusions, and steps being taken to eliminate the root cause.« less
A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.; Parrott, T. L.
2005-01-01
A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE /NV
This Corrective Action Decision Document has been prepared for Corrective Action Unit 340, the NTS Pesticide Release Sites, in accordance with the Federal Facility Agreement and Consent Order of 1996 (FFACO, 1996). Corrective Action Unit 340 is located at the Nevada Test Site, Nevada, and is comprised of the following Corrective Action Sites: 23-21-01, Area 23 Quonset Hut 800 Pesticide Release Ditch; 23-18-03, Area 23 Skid Huts Pesticide Storage; and 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended correctivemore » action alternative for each Corrective Action Site. The scope of this Corrective Action Decision Document consists of the following tasks: Develop corrective action objectives; Identify corrective action alternative screening criteria; Develop corrective action alternatives; Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and Recommend and justify a preferred corrective action alternative for each Corrective Action Site.« less
Young Stellar Objects from Soft to Hard X-rays
NASA Astrophysics Data System (ADS)
Güdel, Manuel
2009-05-01
Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.
NASA Technical Reports Server (NTRS)
Gamble, J. D.
1975-01-01
A Langley-built 0.015-scale Space Shuttle Orbiter model with remote independently operated left and right elevon surfaces was tested. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -2 deg to 20 deg at angles of sideslip of 0 deg and plus or minus 2 deg. Additional tests were made over an angle of range from -6 deg to 8 deg at selected angles of attack. The test Mach numbers were 1.5 and 2.0 while the Reynolds number held at a constant two million per foot. Photographs of the test configuration are shown.
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
Progress in Flaps Down Flight Reynolds Number Testing Techniques at the NTF
NASA Technical Reports Server (NTRS)
Payne, Frank; Bosetti, Cris; Gatlin, Greg; Tuttle, Dave; Griffiths, Bob
2007-01-01
A series of NASA/Boeing cooperative low speed wind tunnel tests was conducted in the National Transonic Facility (NTF) between 2003 and 2004 using a semi-span high lift model representative of the 777-200 aircraft. The objective of this work was to develop the capability to acquire high quality, low speed (flaps down) wind tunnel data at up to flight Reynolds numbers in a facility originally optimized for high speed full span models. In the course of testing, a number of facility and procedural improvements were identified and implemented. The impact of these improvements on key testing metrics data quality, productivity, and so forth - was significant, and is discussed here, together with the relevance of these metrics as applied to cryogenic wind tunnel testing in general. Details of the improvements at the NTF are discussed in AIAA-2006-0508 (Recent Improvements in Semi-span Testing at the National Transonic Facility). The development work at the NTF culminated with validation testing of a 787-8 semi-span model at full flight Reynolds number in the first quarter of 2006.
4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING ...
4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING EMERGENCY SHOWER, AND EYEWASH, AND OBSERVATION WINDOW. STORAGE TANKS ON ROOF. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL
Intuitive tactile zooming for graphics accessed by individuals who are blind and visually impaired.
Rastogi, Ravi; Pawluk, T V Dianne; Ketchum, Jessica
2013-07-01
One possibility of providing access to visual graphics for those who are visually impaired is to present them tactually: unfortunately, details easily available to vision need to be magnified to be accessible through touch. For this, we propose an "intuitive" zooming algorithm to solve potential problems with directly applying visual zooming techniques to haptic displays that sense the current location of a user on a virtual diagram with a position sensor and, then, provide the appropriate local information either through force or tactile feedback. Our technique works by determining and then traversing the levels of an object tree hierarchy of a diagram. In this manner, the zoom steps adjust to the content to be viewed, avoid clipping and do not zoom when no object is present. The algorithm was tested using a small, "mouse-like" display with tactile feedback on pictures representing houses in a community and boats on a lake. We asked the users to answer questions related to details in the pictures. Comparing our technique to linear and logarithmic step zooming, we found a significant increase in the correctness of the responses (odds ratios of 2.64:1 and 2.31:1, respectively) and usability (differences of 36% and 19%, respectively) using our "intuitive" zooming technique.
Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.
2010-01-01
OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807
Epileptic spasms are a feature of DEPDC5 mTORopathy
Carvill, Gemma L.; Crompton, Douglas E.; Regan, Brigid M.; McMahon, Jacinta M.; Saykally, Julia; Zemel, Matthew; Schneider, Amy L.; Dibbens, Leanne; Howell, Katherine B.; Mandelstam, Simone; Leventer, Richard J.; Harvey, A. Simon; Mullen, Saul A.; Berkovic, Samuel F.; Sullivan, Joseph; Scheffer, Ingrid E.
2015-01-01
Objective: To assess the presence of DEPDC5 mutations in a cohort of patients with epileptic spasms. Methods: We performed DEPDC5 resequencing in 130 patients with spasms, segregation analysis of variants of interest, and detailed clinical assessment of patients with possibly and likely pathogenic variants. Results: We identified 3 patients with variants in DEPDC5 in the cohort of 130 patients with spasms. We also describe 3 additional patients with DEPDC5 alterations and epileptic spasms: 2 from a previously described family and a third ascertained by clinical testing. Overall, we describe 6 patients from 5 families with spasms and DEPDC5 variants; 2 arose de novo and 3 were familial. Two individuals had focal cortical dysplasia. Clinical outcome was highly variable. Conclusions: While recent molecular findings in epileptic spasms emphasize the contribution of de novo mutations, we highlight the relevance of inherited mutations in the setting of a family history of focal epilepsies. We also illustrate the utility of clinical diagnostic testing and detailed phenotypic evaluation in characterizing the constellation of phenotypes associated with DEPDC5 alterations. We expand this phenotypic spectrum to include epileptic spasms, aligning DEPDC5 epilepsies more with the recognized features of other mTORopathies. PMID:27066554
The role of overt attention in emotion-modulated memory.
Riggs, Lily; McQuiggan, Douglas A; Farb, Norman; Anderson, Adam K; Ryan, Jennifer D
2011-08-01
The presence of emotional stimuli results in a central/peripheral tradeoff effect in memory: memory for central details is enhanced at the cost of peripheral items. It has been assumed that emotion-modulated differences in memory are the result of differences in attention, but this has not been tested directly. The present experiment used eye movement monitoring as an index of overt attention allocation and mediation analysis to determine whether differences in attention were related to subsequent memory. Participants viewed negative and neutral scenes surrounded by three neutral objects and were then given a recognition memory test. The results revealed evidence in support of a central/peripheral tradeoff in both attention and memory. However, contrary with previous assumptions, whereas attention partially mediated emotion-enhanced memory for central pictures, it did not explain the entire relationship. Further, although centrally presented emotional stimuli led to decreased number of eye fixations toward the periphery, these differences in viewing did not contribute to emotion-impaired memory for specific details pertaining to the periphery. These findings suggest that the differential influence of negative emotion on central versus peripheral memory may result from other cognitive influences in addition to overt visual attention or on postencoding processes. 2011 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Kaar, M.; Semturs, F.; Hummel, J.; Hoffmann, R.; Figl, M.
2015-03-01
Technical quality assurance (TQA) procedures for mammography systems usually include tests with a contrast-detail phantom. These phantoms contain multiple objects of varying dimensions arranged on a flat body. Exposures of the phantom are then evaluated by an observer, either human or software. One well-known issue of this method is that dose distribution is not uniform across the image area of any mammography system, mainly due to the heel effect. The purpose of this work is to investigate to what extent image quality differs across the detector plane. We analyze a total of 320 homogeneous mammography exposures from 32 radiology institutes. Systems of different models and manufacturers, both computed radiography (CR) and direct radiography (DR) are included. All images were taken from field installations operated within the nationwide Austrian mammography screening program, which includes mandatory continuous TQA. We calculate signal-to-noise ratios (SNR) for 15 regions of interest arranged to cover the area of the phantom. We define the 'signal range' of an image and compare this value categorized by technologies. We found the deviations of SNR greater in anterior-posterior than in lateral direction. SNR ranges are significantly higher for CR systems than for DR systems.
Contrast-detail phantom scoring methodology.
Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander
2005-03-01
Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.
Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand
NASA Technical Reports Server (NTRS)
Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg
1990-01-01
Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper; Durkin, Robert
2012-01-01
As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper; Durkin, Robert
2012-01-01
As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.
Intermediate-Size Inducer Pump design report. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, T.J.
1979-06-15
This report summarizes the mechanical, structural, and hydrodynamic design of the Intermediate-Size Inducer Pump (ISIP). The design was performed under Atomics International's DOE Base Technology Program by the Atomics International and Rocketdyne Divisions of Rockwell International. The pump was designed to utilize the FFTF prototype pump frame as a test vehicle to test the inducer, impeller, and diffuser plus necessary adapter hardware under simulated Large Scale Liquid Metal Fast Breeder Reactor service conditions. The report describes the design requirements including the purpose and objectives, and discusses those design efforts and considerations made to meet the requirements. Included in the reportmore » are appendices showing calculative methods and results. Also included are overall assembly and layout drawings plus some details used as illustrations for discussion of the design results and the results of water tests performed on a model of the inducer.« less
Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review
NASA Astrophysics Data System (ADS)
Siva Srinivas, R.; Tiwari, R.; Kannababu, Ch.
2018-06-01
In this paper a critical review of literature on applications of Active Magnetic Bearings (AMBs) systems in flexible rotordynamic systems have been presented. AMBs find various applications in rotating machinery; however, this paper mainly focuses on works in vibration suppression and associated with the condition monitoring using AMBs. It briefly introduces reader to the AMB working principle, provides details of various hardware components of a typical rotor-AMB test rig, and presents a background of traditional methods of vibration suppression in flexible rotors and the condition monitoring. It then moves on to summarize the basic features of AMB integrated flexible rotor test rigs available in literature with necessary instrumentation and its main objectives. A couple of lookup tables provide summary of important information of test rigs in papers within the scope of this article. Finally, future directions in AMB research within the paper's scope have been suggested.
LANDSAT-4 MSS and Thematic Mapper data quality and information content analysis
NASA Technical Reports Server (NTRS)
Anuta, P.; Bartolucci, L.; Dean, E.; Lozano, F.; Malaret, E.; Mcgillem, C. D.; Valdes, J.; Valenzuela, C.
1984-01-01
LANDSAT-4 thematic mapper (TM) and multispectral scanner (MSS) data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and supervised classifiers on test data. A detailed spectral class analysis (multispectral classification) was carried out to compare the information content of the MSS and TM for a large number of scene classes. A temperature-mapping experiment was carried out for a cooling pond to test the quality of thermal-band calibration. Overall TM data quality is very good. The MSS data are noisier than previous LANDSAT results.
Experiment Design and Analysis Guide - Neutronics & Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misti A Lillo
2014-06-01
The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.
Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga
2010-01-01
Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
Methods for the design and analysis of power optimized finite-state machines using clock gating
NASA Astrophysics Data System (ADS)
Chodorowski, Piotr
2017-11-01
The paper discusses two methods of design of power optimized FSMs. Both methods use clock gating techniques. The main objective of the research was to write a program capable of generating automatic hardware description of finite-state machines in VHDL and testbenches to help power analysis. The creation of relevant output files is detailed step by step. The program was tested using the LGSynth91 FSM benchmark package. An analysis of the generated circuits shows that the second method presented in this paper leads to significant reduction of power consumption.
Structural Tailoring of Advanced Turboprops (STAT)
NASA Technical Reports Server (NTRS)
Brown, Kenneth W.
1988-01-01
This interim report describes the progress achieved in the structural Tailoring of Advanced Turboprops (STAT) program which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. This report provides a detailed description of the input, optimization procedures, approximate analyses and refined analyses, as well as validation test cases for the STAT program. In addition, conclusions and recommendations are summarized.
The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)
NASA Technical Reports Server (NTRS)
Shuttleworth, W. James; Sorooshian, Soroosh
1996-01-01
This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be recognized from space, but also in then applying remotely-sensed land cover data to map aggregate values of BATS parameters for heterogeneous covers and interpreting these parameters in terms of surface-atmosphere exchanges.
An efficient liner cooling scheme for advanced small gas turbine combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.
1993-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.
3D visual mechinism by neural networkings
NASA Astrophysics Data System (ADS)
Sugiyama, Shigeki
2007-04-01
There are some computer vision systems that are available on a market but those are quite far from a real usage of our daily life in a sense of security guard or in a sense of a usage of recognition of a target object behaviour. Because those surroundings' sensing might need to recognize a detail description of an object, like "the distance to an object" and "an object detail figure" and "its figure of edging", which are not possible to have a clear picture of the mechanisms of them with the present recognition system. So for doing this, here studies on mechanisms of how a pair of human eyes can recognize a distance apart, an object edging, and an object in order to get basic essences of vision mechanisms. And those basic mechanisms of object recognition are simplified and are extended logically for applying to a computer vision system. Some of the results of these studies are introduced on this paper.
Abnormalities of Object Visual Processing in Body Dysmorphic Disorder
Feusner, Jamie D.; Hembacher, Emily; Moller, Hayley; Moody, Teena D.
2013-01-01
Background Individuals with body dysmorphic disorder may have perceptual distortions for their appearance. Previous studies suggest imbalances in detailed relative to configural/holistic visual processing when viewing faces. No study has investigated the neural correlates of processing non-symptom-related stimuli. The objective of this study was to determine whether individuals with body dysmorphic disorder have abnormal patterns of brain activation when viewing non-face/non-body object stimuli. Methods Fourteen medication-free participants with DSM-IV body dysmorphic disorder and 14 healthy controls participated. We performed functional magnetic resonance imaging while participants matched photographs of houses that were unaltered, contained only high spatial frequency (high detail) information, or only low spatial frequency (low detail) information. The primary outcome was group differences in blood oxygen level-dependent signal changes. Results The body dysmorphic disorder group showed lesser activity in the parahippocampal gyrus, lingual gyrus, and precuneus for low spatial frequency images. There were greater activations in medial prefrontal regions for high spatial frequency images, although no significant differences when compared to a low-level baseline. Greater symptom severity was associated with lesser activity in dorsal occipital cortex and ventrolateral prefrontal cortex for normal and high spatial frequency images. Conclusions Individuals with body dysmorphic disorder have abnormal brain activation patterns when viewing objects. Hypoactivity in visual association areas for configural and holistic (low detail) elements and abnormal allocation of prefrontal systems for details is consistent with a model of imbalances in global vs. local processing. This may occur not only for appearance but also for general stimuli unrelated to their symptoms. PMID:21557897
Cylinder expansion test and gas gun experiment comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrier, Danielle
This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.;
2015-01-01
The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
NASA Technical Reports Server (NTRS)
O'Brien, James E.
1990-01-01
An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.
A Generic Software Architecture For Prognostics
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason
2017-01-01
Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.
Regulation of object recognition and object placement by ovarian sex steroid hormones
Tuscher, Jennifer J.; Fortress, Ashley M.; Kim, Jaekyoon; Frick, Karyn M.
2014-01-01
The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR 7and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone H3 acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that effects are highly dependent on factors such as dose and timing of administration. In addition to providing more detail on these general conclusions, this review will discuss directions for future avenues of research into the hormonal regulation of object memory. PMID:25131507
Shape Distribution of Fragments from Microsatellite Impact Tests
NASA Technical Reports Server (NTRS)
Liou, J.C.; Hanada, T.
2009-01-01
Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2010-01-01
This technical publication details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. Following an examination of previously developed tests and a recent evaluation of a selection of these methods, a single cantilever beam (SCB) specimen was identified as being a promising candidate for establishing such a standardized test procedure. The objective of the work described here was to begin development of a protocol for conducting a SCB test that will render the procedure suitable for standardization. To this end, a sizing methodology was developed to ensure appropriate SCB specimen dimensions are selected for a given sandwich system. Application of this method to actual sandwich systems yielded SCB specimen dimensions that would be practical for use. This study resulted in the development of a practical SCB specimen sizing method, which should be well-suited for incorporation into a standardized testing protocol.
Diffuse Reflectance Spectroscopy: Getting the Capillary Refill Test Under One's Thumb.
Henricson, Joakim; Toll John, Rani; Anderson, Chris D; Björk Wilhelms, Daniel
2017-12-02
The capillary refill test was introduced in 1947 to help estimate circulatory status in critically ill patients. Guidelines commonly state that refill should occur within 2 s after releasing 5 s of firm pressure (e.g., by the physician's finger) in the normal healthy supine patient. A slower refill time indicates poor skin perfusion, which can be caused by conditions including sepsis, blood loss, hypoperfusion, and hypothermia. Since its introduction, the clinical usefulness of the test has been debated. Advocates point out its feasibility and simplicity and claim that it can indicate changes in vascular status earlier than changes in vital signs such as heart rate. Critics, on the other hand, stress that the lack of standardization in how the test is performed and the highly subjective nature of the naked eye assessment, as well as the test's susceptibility to ambient factors, markedly lowers the clinical value. The aim of the present work is to describe in detail the course of the refill event and to suggest potentially more objective and exact endpoint values for the capillary refill test using diffuse polarization spectroscopy.
NASA Technical Reports Server (NTRS)
Emmons, D. L.; Huxtable, D. D.; Blevins, D. R.
1974-01-01
An investigation was conducted to establish the capability of a monopropellant hydrazine catalytic gas generator to meet the requirements specified for the Space Shuttle APU. Detailed analytical and experimental studies were conducted on potential problem areas including long-term nitriding effects on materials, design variables affecting catalyst life, vehicle vibration effects, and catalyst oxidation/contamination. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The objective of the first test series was to demonstrate the capability of the gas generator to successfully complete 20 simulated Space Shuttle missions in steady-state operation. The gas generator was then refurbished and subjected to a second series of tests to demonstrate the pulse-mode capability of the gas generator during 20 simulated missions. The third series of tests was conducted with a refurbished reactor to further demonstrate pulse-mode capability with a modified catalyst bed.
Design, building, and testing of the post landing systems for the assured crew return vehicle
NASA Technical Reports Server (NTRS)
Anderson, Loren A.
1991-01-01
The design, building, and testing of the post landing support systems for a water landing Assured Crew Return Vehicle (ACRV) are presented. One ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The configuration of the ACRV is based on an Apollo Command Module (ACM) derivative. The 1990 to 91 effort concentrated on the design, building, and testing of a 1/5 scale model of the egress and stabilization systems. The objective was to determine the feasibility of: (1) stabilizing the ACM out of the range of motions which cause sea sickness; and (2) the safe and rapid removal of a sick or injured crewmember from the ACRV. The ACRV model construction is presented along with a discussion of the water test facility. The rapid egress system is also presented along with a discussion of the ACRV stabilization control systems. Results are given and discussed in detail.
Assessing Old and New Diagnostic Tests for Gastroesophageal Reflux Disease.
Vaezi, Michael F; Sifrim, Daniel
2018-01-01
A detailed critique of objective measurements of gastroesophageal reflux disease (GERD) would improve management of patients suspecting of having reflux, leading to rational selection of treatment and better outcomes. Many diagnostic tests for GERD have been developed over the past decades. We analyze their development, positive- and negative-predictive values, and ability to predict response to treatment. These features are important for development of medical, surgical, and endoscopic therapies for GERD. We discuss the value of available diagnostic tests and review their role in management of patients with persistent reflux symptoms despite adequate medical or surgical treatment. This is becoming a significant health economic problem, due to the widespread use of proton pump inhibitors. GERD is believed to cause nonesophageal symptoms, such as those provoked by ear, nose, throat, or respiratory disorders. We analyze the value of GERD diagnostic tests in evaluation of these troublesome, nonesophageal symptoms. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Thorp, Scott A.; Downey, Kevin M.
1992-01-01
One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center.
Eyes On the Ground: Year 2 Assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, Randolph; Little, Charles Q.; McDaniel, Michael
The goal of the Eyes On the Ground project is to develop tools to aid IAEA inspectors. Our original vision was to produce a tool that would take three-dimensional measurements of an unknown piece of equipment, construct a semantic representation of the measured object, and then use the resulting data to infer possible explanations of equipment function. We report our tests of a 3-d laser scanner to obtain 3-d point cloud data, and subsequent tests of software to convert the resulting point clouds into primitive geometric objects such as planes and cylinders. These tests successfully identified pipes of moderate diametermore » and planar surfaces, but also incurred significant noise. We also investigated the IAEA inspector task context, and learned that task constraints may present significant obstacles to using 3-d laser scanners. We further learned that equipment scale and enclosing cases may confound our original goal of equipment diagnosis. Meanwhile, we also surveyed the rapidly evolving field of 3-d measurement technology, and identified alternative sensor modalities that may prove more suitable for inspector use in a safeguards context. We conclude with a detailed discussion of lessons learned and the resulting implications for project goals. Approved for public release; further dissemination unlimited.« less
Development of the DL/H-1 full pressure suit for private spaceflight
NASA Astrophysics Data System (ADS)
León, Pablo de; Harris, Gary L.
2010-06-01
The objective of this paper is to detail the need for full pressure suits to protect spaceflight participants during the experimental phases of flight testing of new space vehicles. It also details the objectives, historical background, basis for design, problems encountered by the designers and final development of the DL/H-1 full pressure suit. It will include justification for its use and results of the initial tests in the high altitude chamber and spacecraft simulator at the J.D. Odegard School of Aerospace Sciences at the University of North Dakota. For the test flights of early commercial space vehicles and tourist suborbital spacecrafts, emergency protection from the rarified air of the upper atmosphere and the vacuum of low Earth orbit almost certainly will be a requirement. Suborbital vehicles could be operating in "space equivalent conditions" for as long as 30 min to as much as several hours. In the case of cabin pressure loss, without personal protection, catastrophic loss of crew and vehicle could result. This paper explains the different steps taken by the authors who designed and built a preflight hardware pressure suit that can meet the physiological and comfort requirements of the tourist suborbital industry and the early commercial private spaceflight community. The suborbital tourist and commercial spaceflight industry have unique problems confronting the pressure suit builder such as unpressurized comfort, reasonable expense, unique sizing of the general population, decompression complications of persons not fitting a past military physiology profile and equipment weight issues. In addition, the lack of a certifying agency or guidance from international or national aviation authorities has created the opportunity for the emerging civilian pressure suit industry to create a new safety standard by which it can regulate itself in the same way the recreational SCUBA diving industry has since the late 1950s.
Evaluation of Safe Kids Week 2004: Age 4 to 9? It's Booster Seat Time!
Howard, A; Beben, N; Rothman, L; Fiissel, D; MacArthur, C
2006-01-01
Objective To assess the effectiveness of a national one week media campaign promoting booster seat use. Design Pre‐test, post‐test design based on nationally representative random digit dialing telephone survey, with control for exposure to campaign. Setting Canada. Subjects Parents of children aged 4–9 years. Interventions During a one week campaign in May 2004, information on booster seat use was distributed via a national media campaign, retail stores, medical clinics, and community events. Information included pamphlets with guidelines for booster seat use, as well as a growth chart (designed by Safe Kids Canada) to assist parents in determining if their child should be using a booster seat. Assessing seat belt fit was described in detail on the growth chart. Main outcome measures Knowledge, attitudes, and self‐reported behaviors regarding booster seat use. Results Respondents in the group exposed to the campaign were twice as likely to report using a booster seat with lap and shoulder belt for their child (47%), compared to those in the pre‐test (24%) and the unexposed (23%) groups (p<0.001). However, only small differences in general knowledge regarding booster seat use were found between the groups. Conclusions A one week national media campaign substantially increased self‐reported use of booster seats. Parents did not remember details of the campaign content, but did remember implications for their own child. PMID:17018673
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNFmore » are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.« less
Design and Analysis of the International X-Ray Observatory Mirror Modules
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Carnahan, Timothy M.; Robinson, David W.; Saha, Timo T.
2009-01-01
The Soft X-Ray Telescope (SXT) modules are the fundamental focusing assemblies on NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO). The preliminary design and analysis of these assemblies has been completed, addressing the major engineering challenges and leading to an understanding of the factors effecting module performance. Each of the 60 modules in the Flight Mirror Assembly (FMA) supports 200-300 densely packed 0.4 mm thick glass mirror segments in order to meet the unprecedented effective area required to achieve the scientific objectives of the mission. Detailed Finite Element Analysis (FEA), materials testing, and environmental testing have been completed to ensure the modules can be successfully launched. Resulting stress margins are positive based on detailed FEA, a large factor of safety, and a design strength determined by robust characterization of the glass properties. FEA correlates well with the results of the successful modal, vibration, and acoustic environmental tests. Deformation of the module due to on-orbit thermal conditions is also a major design driver. A preliminary thermal control system has been designed and the sensitivity of module optical performance to various thermal loads has been determined using optomechanical analysis methods developed for this unique assembly. This design and analysis furthers the goal of building a module that demonstrates the ability to meet IXO requirements, which is the current focus of the IXO FMA technology development team.
Ertekin, C; Aydoğdu, I; Yüceyar, N
1996-01-01
OBJECTIVE: Before the advanced evaluation of deglutition and selection of a treatment method, objective screening methods are necessary for patients with dysphagia. In this study a new electroclinical test was established to evaluate patients with dysphagia. METHODS: This test is based on determining piecemeal deglutition; which is a physiological phenomenon occurring when a bolus of a large volume is divided into two or more parts which are swallowed successively. The combined electrophysiological and mechanical method used to record laryngeal movements detected by a piezoelectric transducer, and activities of the related submental integrated EMG (SM-EMG)-and sometimes the cricopharyngeal muscle of the upper oesophageal sphincter (CP-EMG)-were performed during swallowing. Thirty normal subjects and 66 patients with overt dysphagia of neurogenic origin were investigated after detailed clinical evaluation. Twenty patients with a potential risk of dysphagia, but who were normal clinically at the time of investigation, were also evaluated to determine the specificity of the test. All subjects were instructed to swallow doses of water, gradually increasing in quantity from 1 ml to 20 ml, and any recurrence of the signals related to swallowing within the eight seconds was accepted as a sign of dysphagia limit. RESULTS: In normal subjects as well as in the patients without dysphagia, piecemeal deglutition was never seen with less than 20 ml water. This volume was therefore accepted as the lower limit of piecemeal deglutition. In patients with dysphagia, dysphagia limits were significantly lower than those of normal subjects. CONCLUSION: The method is a highly specific and sensitive test for the objective evaluation of oropharyngeal dysphagia even in patients with suspected dysphagia of neurogenic origin. It can also be safely and simply applied in any EMG laboratory. PMID:8937344
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.
At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort tomore » collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.« less
Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle
NASA Technical Reports Server (NTRS)
Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving
1988-01-01
Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.
Identification student’s misconception of heat and temperature using three-tier diagnostic test
NASA Astrophysics Data System (ADS)
Suliyanah; Putri, H. N. P. A.; Rohmawati, L.
2018-03-01
The objective of this research is to develop a Three-Tier Diagnostic Test (TTDT) to identify the student's misconception of heat and temperature. Stages of development include: analysis, planning, design, development, evaluation and revise. The results of this study show that (1) the quality of the three-tier type diagnostic test instrument developed has been expressed well with the following details: (a) Internal validity of 88.19% belonging to the valid category. (b) External validity of empirical construct validity test using Pearson Product Moment obtained 0.43 is classified and result of empirical construct validity test obtained false positives 6.1% and false negatives 5.9% then the instrument was valid. (c) Test reliability by using Cronbach’s Alpha of 0.98 which means acceptable. (d) The 80% difficulty level test is quite difficult. (2) Student misconceptions on the temperature of heat and displacement materials based on the II test the highest (84%), the lowest (21%), and the non-misconceptions (7%). (3) The highest cause of misconception among students is associative thinking (22%) and the lowest is caused by incomplete or incomplete reasoning (11%). Three-Tier Diagnostic Test (TTDT) could identify the student's misconception of heat and temperature.
Stellar, remnant, planetary, and dark-object masses from astrometric microlensing
NASA Technical Reports Server (NTRS)
Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.
2002-01-01
With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.
Validity of Walk Score® as a measure of neighborhood walkability in Japan.
Koohsari, Mohammad Javad; Sugiyama, Takemi; Hanibuchi, Tomoya; Shibata, Ai; Ishii, Kaori; Liao, Yung; Oka, Koichiro
2018-03-01
Objective measures of environmental attributes have been used to understand how neighborhood environments relate to physical activity. However, this method relies on detailed spatial data, which are often not easily available. Walk Score® is a free, publicly available web-based tool that shows how walkable a given location is based on objectively-derived proximity to several types of local destinations and street connectivity. To date, several studies have tested the concurrent validity of Walk Score as a measure of neighborhood walkability in the USA and Canada. However, it is unknown whether Walk Score is a valid measure in other regions. The current study examined how Walk Score is correlated with objectively-derived attributes of neighborhood walkability, for residential addresses in Japan. Walk Scores were obtained for 1072 residential addresses in urban and rural areas in Japan. Five environmental attributes (residential density, intersection density, number of local destinations, sidewalk availability, and access to public transportation) were calculated using geographic information systems for each address. Pearson's correlation coefficients between Walk Score and these environmental attributes were calculated (conducted in May 2017). Significant positive correlations were observed between Walk Score and environmental attributes relevant to walking. Walk Score was most closely associated with intersection density ( r = 0.82) and with the number of local destinations ( r = 0.77). Walk Score appears to be a valid measure of neighborhood walkability in Japan. Walk Score will allow urban designers and public health practitioners to identify walkability of local areas without relying on detailed geographic data.
Dulas, Michael R; Duarte, Audrey
2013-03-15
Neuroimaging evidence suggests that older adults exhibit deficits in frontally-mediated strategic retrieval processes, such as post-retrieval monitoring. Behavioral research suggests that explicitly directing attention toward source features during encoding may improve source memory for both young and older adults and alleviate age-related source memory impairments, in part, by reducing demands on post-retrieval monitoring. We investigated this hypothesis in the present event-related potential (ERP) study. Young and older adults attended to either objects and their presented color (source) or to the object alone during study and made color source memory decisions at test. We attempted to match performance between groups by halving the memory load for older adults. Behavioral results showed that, while direction of attention to object and color improved source memory for both groups, older adults benefited less than the young. ERPs revealed that demands on late right frontal effects, indicative of post-retrieval monitoring, were similarly reduced by directed attention at encoding for both groups. However, older adults showed reduced ERP correlates of recollection (parietal old-new effect), as well as a sustained widespread negativity, potentially indicative of memory searches for perceptual details in the face of impaired recollection. These results suggest that older adults, like the young, can engage in post-retrieval monitoring when source details are difficult to recover. However, impaired recollection may underlie persistent age-related source memory deficits, even when encoding is supported via directed attention. Copyright © 2013 Elsevier B.V. All rights reserved.
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2014-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2012-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.
Machine learning in infrared object classification - an all-sky selection of YSO candidates
NASA Astrophysics Data System (ADS)
Marton, Gabor; Zahorecz, Sarolta; Toth, L. Viktor; Magnus McGehee, Peregrine; Kun, Maria
2015-08-01
Object classification is a fundamental and challenging problem in the era of big data. I will discuss up-to-date methods and their application to classify infrared point sources.We analysed the ALLWISE catalogue, the most recent public source catalogue of the Wide-field Infrared Survey Explorer (WISE) to compile a reliable list of Young Stellar Object (YSO) candidates. We tested and compared classical and up-to-date statistical methods as well, to discriminate source types like extragalactic objects, evolved stars, main sequence stars, objects related to the interstellar medium and YSO candidates by using their mid-IR WISE properties and associated near-IR 2MASS data.In the particular classification problem the Support Vector Machines (SVM), a class of supervised learning algorithm turned out to be the best tool. As a result we classify Class I and II YSOs with >90% accuracy while the fraction of contaminating extragalactic objects remains well below 1%, based on the number of known objects listed in the SIMBAD and VizieR databases. We compare our results to other classification schemes from the literature and show that the SVM outperforms methods that apply linear cuts on the colour-colour and colour-magnitude space. Our homogenous YSO candidate catalog can serve as an excellent pathfinder for future detailed observations of individual objects and a starting point of statistical studies that aim to add pieces to the big picture of star formation theory.
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
20. Building 202, detail of stand A, rocket test stand ...
20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Medial temporal lobe reinstatement of content-specific details predicts source memory
Liang, Jackson C.; Preston, Alison R.
2016-01-01
Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. PMID:28029355
A cloud, precipitation and electrification modeling effort for COHMEX
NASA Technical Reports Server (NTRS)
Orville, Harold D.; Helsdon, John H.; Farley, Richard D.
1991-01-01
In mid-1987, the Modeling Group of the Institute of Atmospheric Sciences (IAS) began to simulate and analyze cloud runs that were made during the Cooperative Huntsville Meteorological Experiment (COHMEX) Project and later. The cloud model was run nearly every day during the summer 1986 COHMEX Project. The Modeling Group was then funded to analyze the results, make further modeling tests, and help explain the precipitation processes in the Southeastern United States. The main science objectives of COHMEX were: (1) to observe the prestorm environment and understand the physical mechanisms leading to the formation of small convective systems and processes controlling the production of precipitation; (2) to describe the structure of small convective systems producing precipitation including the large and small scale events in the environment surrounding the developing and mature convective system; (3) to understand the interrelationships between electrical activity within the convective system and the process of precipitation; and (4) to develop and test numerical models describing the boundary layer, tropospheric, and cloud scale thermodynamics and dynamics associated with small convective systems. The latter three of these objectives were addressed by the modeling activities of the IAS. A series of cloud modes were used to simulate the clouds that formed during the operational project. The primary models used to date on the project were a two dimensional bulk water model, a two dimensional electrical model, and to a lesser extent, a two dimensional detailed microphysical cloud model. All of the models are based on fully interacting microphysics, dynamics, thermodynamics, and electrical equations. Only the 20 July 1986 case was analyzed in detail, although all of the cases run during the summer were analyzed as to how well they did in predicting the characteristics of the convection for that day.
Medial temporal lobe reinstatement of content-specific details predicts source memory.
Liang, Jackson C; Preston, Alison R
2017-06-01
Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Marketing research in health service].
Ameri, Cinzia; Fiorini, Fulvio
2015-01-01
Marketing research is the systematic and objective search for, and analysis of, information relevant to the identification and solution of any problem in the field of marketing. The key words in this definition are: systematic, objective and analysis. Marketing research seeks to set about its task in a systematic and objective fashion. This means that a detailed and carefully designed research plan is developed in which each stage of the research is specified. Such a research plan is only considered adequate if it specifies: the research problem in concise and precise terms, the information necessary to address the problem, the methods to be employed in gathering the information and the analytical techniques to be used to interpret it. Maintaining objectivity in marketing research is essential if marketing management is to have sufficient confidence in its results to be prepared to take risky decisions based upon those results. To this end, as far as possible, marketing researchers employ the scientific method. The characteristics of the scientific method are that it translates personal prejudices, notions and opinions into explicit propositions (or hypotheses). These are tested empirically. At the same time alternative explanations of the event or phenomena of interest are given equal consideration.
Item and source memory for emotional associates is mediated by different retrieval processes.
Ventura-Bort, Carlos; Dolcos, Florin; Wendt, Julia; Wirkner, Janine; Hamm, Alfons O; Weymar, Mathias
2017-12-12
Recent event-related potential (ERP) data showed that neutral objects encoded in emotional background pictures were better remembered than objects encoded in neutral contexts, when recognition memory was tested one week later. In the present study, we investigated whether this long-term memory advantage for items is also associated with correct memory for contextual source details. Furthermore, we were interested in the possibly dissociable contribution of familiarity and recollection processes (using a Remember/Know procedure). The results revealed that item memory performance was mainly driven by the subjective experience of familiarity, irrespective of whether the objects were previously encoded in emotional or neutral contexts. Correct source memory for the associated background picture, however, was driven by recollection and enhanced when the content was emotional. In ERPs, correctly recognized old objects evoked frontal ERP Old/New effects (300-500ms), irrespective of context category. As in our previous study (Ventura-Bort et al., 2016b), retrieval for objects from emotional contexts was associated with larger parietal Old/New differences (600-800ms), indicating stronger involvement of recollection. Thus, the results suggest a stronger contribution of recollection-based retrieval to item and contextual background source memory for neutral information associated with an emotional event. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sullivan, Stephen P; Stephenson, Rob B
2017-01-01
Background Gay, bisexual, and other men who have sex with men (GBMSM) in the United States remain disproportionately affected by human immunodeficiency virus (HIV). Yet their testing frequency is suboptimal and condomless anal sex (CAS) is increasing. Behavioral theories posit that information about HIV is a pivotal construct in individual risk reduction. However, measurements of knowledge have traditionally focused on ever hearing about HIV and being aware of the most common routes of spread. Objective Using a national Web-based sample of sexually active GBMSM, we sought to (1) quantify levels of detailed knowledge about HIV epidemiology and transmission dynamics, (2) describe variations in detailed knowledge levels across demographic strata, and (3) evaluate potential associations of increasing levels of detailed knowledge with HIV testing in the past year and engaging in CAS with a male partner in the past 3 months. Methods GBMSM were recruited through a social networking website (Facebook) from August to September 2015 and asked 17 knowledge-based questions pertaining to the following 2 domains using a Web-based survey: HIV epidemiology (9 questions including statistics on incidence, prevalence, and distribution) and HIV transmission dynamics (8 questions including modes of spread and per-act transmission probabilities). Ordinal domain-specific indices of detailed knowledge were created for each respondent by summing their number of correct responses. Separate cumulative logit models were used to identify factors independently associated with each index, and multivariable logistic regression models were used to characterize associations with HIV testing history and recently engaging in CAS. Results Of the 1064 participants in our study, only half (49.62%, 528/1064) had been tested for HIV in the past year, and almost half (47.84%, 509/1064) had engaged in CAS with a male partner in the past 3 months. Majority scored 3 of 9 epidemiology questions correct (26.88%, 286/1064) and 5 of 8 transmission dynamics questions correct (25.00%, 266/1064). Participants younger than 35 years, of non-Hispanic non-white or Hispanic race and ethnicity, with lower educational levels, and who reported a sexual orientation other than homosexual or gay were significantly less knowledgeable about HIV transmission dynamics. Increasing levels of knowledge about this domain were independently associated with testing in the past year (adjusted odds ratio for each additional correct response: 1.10, 95% CI 1.01-1.20) but not with recent CAS. Increasing knowledge about HIV epidemiology was not associated with either outcome. Conclusions Increasing detailed knowledge about HIV epidemiology might not be as important as educating sexually active GBMSM regarding transmission dynamics. Researchers and practitioners designing prevention messages targeting GBMSM should bear in mind that not all knowledge is equal and that some aspects might have a greater positive impact than others. Future research to identify influential content and contemporary modes of delivery is needed. PMID:28264795
Loss to Follow-Up from HIV Screening to ART Initiation in Rural China
Gu, Diane; Mao, Yurong; Tang, Zhenzhu; Montaner, Julio; Shen, Zhiyong; Zhu, Qiuying; Detels, Roger; Jin, Xia; Xiong, Ran; Xu, Juan; Ling, Walter; Erinoff, Lynda; Lindblad, Robert; Liu, David; Van Veldhuisen, Paul; Hasson, Albert; Wu, Zunyou
2016-01-01
Background Patients who are newly screened HIV positive by EIA are lost to follow-up due to complicated HIV testing procedures. Because this is the first step in care, it affects the entire continuum of care. This is a particular concern in rural China. Objective(s) To assess the routine HIV testing completeness and treatment initiation rates at 18 county-level general hospitals in rural Guangxi. Methods We reviewed original hospital HIV screening records. Investigators also engaged with hospital leaders and key personnel involved in HIV prevention activities to characterize in detail the routine care practices in place at each county. Results 699 newly screened HIV-positive patients between January 1 and June 30, 2013 across the 18 hospitals were included in the study. The proportion of confirmatory testing across the 18 hospitals ranged from 14% to 87% (mean of 43%), and the proportion of newly diagnosed individuals successfully initiated antiretroviral treatment across the hospitals ranged from 3% to 67% (mean of 23%). The average interval within hospitals for individuals to receive the Western Blot (WB) and CD4 test results from HIV positive screening (i.e. achieving testing completion) ranged from 14–116 days (mean of 41.7 days) across the hospitals. The shortest interval from receiving a positive EIA screening test result to receiving WB and CD4 testing and counseling was 0 day and the longest was 260 days. Conclusion The proportion of patients newly screened HIV positive that completed the necessary testing procedures for HIV confirmation and received ART was very low. Interventions are urgently needed to remove barriers so that HIV patients can have timely access to HIV/AIDS treatment and care in rural China. PMID:27768710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turkington, T.
This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less
An Analysis of the Second Project High Water Data
NASA Technical Reports Server (NTRS)
Woodbridge, David D.; Lasater, James A.; Fultz, Bennett M.; Clark, Richard E.; Wylie, Nancy
1963-01-01
Early in 1962 NASA established "Project High Water" to investigate the sudden release of large quantities of water into the upper atmosphere. The primary objectives of these experiments were to obtain information on the behavior of liquids released in the ionosphere and the localized effects on the ionosphere produced by the injection of large quantities of water. The data obtained in the two (2) Project High Water experiments have yielded an extensive amount of information concerning the complex phenomena associated with the sudden release of liquids in the Ionosphere. The detailed analysis of data obtained during the second Project High Water experiment (i.e., the third Saturn I vehicle test or SA-3) presented in this report demonstrates that the objectives of the Project High Water were achieved. In addition, the Project High Water has provided essential information relevant to a number of problems vital to manned explorations of space.
A simple Lagrangian forecast system with aviation forecast potential
NASA Technical Reports Server (NTRS)
Petersen, R. A.; Homan, J. H.
1983-01-01
A trajectory forecast procedure is developed which uses geopotential tendency fields obtained from a simple, multiple layer, potential vorticity conservative isentropic model. This model can objectively account for short-term advective changes in the mass field when combined with fine-scale initial analyses. This procedure for producing short-term, upper-tropospheric trajectory forecasts employs a combination of a detailed objective analysis technique, an efficient mass advection model, and a diagnostically proven trajectory algorithm, none of which require extensive computer resources. Results of initial tests are presented, which indicate an exceptionally good agreement for trajectory paths entering the jet stream and passing through an intensifying trough. It is concluded that this technique not only has potential for aiding in route determination, fuel use estimation, and clear air turbulence detection, but also provides an example of the types of short range forecasting procedures which can be applied at local forecast centers using simple algorithms and a minimum of computer resources.
New Details about Interstellar Visitor on This Week @NASA – November 24, 2017
2017-11-24
New data reveal that the interstellar asteroid that recently zipped through our solar system is rocky, cigar-shaped, and has a somewhat reddish hue. It’s the first confirmed object from another star observed in our solar system, and was discovered Oct. 19 by the University of Hawaii’s Pan-STARRS1 telescope team, funded by NASA’s Near-Earth Object Observations Program. The telescope team named it ‘Oumuamua (oh MOO-uh MOO-uh) – Hawaiian for “a messenger from afar arriving first.” The unusually-shaped asteroid, which is up to a quarter mile long and perhaps 10 times as long as it is wide, may provide new clues into how other solar systems formed. Also, Advanced Weather Satellite Launched, James Webb Space Telescope Completes Final Cryogenic Testing, Recurring Martian Streaks: Flowing Sand, Not Water? and Happy Thanksgiving, from Space!
Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao
2016-12-28
Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver's input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice.
Extravehicular activity welding experiment
NASA Technical Reports Server (NTRS)
Watson, J. Kevin
1989-01-01
The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.
Concepts and Categories: A Cognitive Neuropsychological Perspective
Mahon, Bradford Z.; Caramazza, Alfonso
2010-01-01
One of the most provocative and exciting issues in cognitive science is how neural specificity for semantic categories of common objects arises in the functional architecture of the brain. More than two decades of research on the neuropsychological phenomenon of category-specific semantic deficits has generated detailed claims about the organization and representation of conceptual knowledge. More recently, researchers have sought to test hypotheses developed on the basis of neuropsychological evidence with functional imaging. From those two fields, the empirical generalization emerges that object domain and sensory modality jointly constrain the organization of knowledge in the brain. At the same time, research within the embodied cognition framework has highlighted the need to articulate how information is communicated between the sensory and motor systems, and processes that represent and generalize abstract information. Those developments point toward a new approach for understanding category specificity in terms of the coordinated influences of diverse regions and cognitive systems. PMID:18767921
The Remote Sensing of Mineral Aerosols and their Impact on Phytoplankton Productivity
NASA Technical Reports Server (NTRS)
Tindale, Neil W.
1997-01-01
The overall objective of this experiment was to test the iron hypothesis does the addition of iron to nutrient rich surface waters enhance productivity? Our specific objectives in this experiment included sampling and studying the marine aerosol size and type (which are related to chemical reactivity) during the PlumEx cruise to determine the importance of local (Galapagos Islands) versus long-range sources of atmospheric material. Detailed results of single particle analysis of our samples are being prepared for publication in two papers. We collect aerosol samples and they have been analyzed for trace metals and other elements. We are mapped aerosol distribution and the desert source areas around the Arabian Sea region. We did record a clear relationship between the aerosol radiance and synoptic weather patterns with distinct signals over the ocean northwest and southwest of Australia. While the interpretation was limited an aerosol climatology pattern was presented.
Quality of vision in refractive and cataract surgery, indirect measurers: review article.
Parede, Taís Renata Ribeira; Torricelli, André Augusto Miranda; Mukai, Adriana; Vieira Netto, Marcelo; Bechara, Samir Jacob
2013-01-01
Visual acuity is the measurement of an individual's ability to recognize details of an object in a space. Visual function measurements in clinical ophthalmology are limited by factors such as maximum contrast and so it might not adequately reflect the real vision conditions at that moment as well as the subjective aspects of the world perception by the patient. The objective of a successful vision-restoring surgery lies not only in gaining visual acuity lines, but also in vision quality. Therefore, refractive and cataract surgeries have the responsibility of achieving quality results. It is difficult to define quality of vision by a single parameter, and the main functional-vision tests are: contrast sensitivity, disability glare, intraocular stray light and aberrometry. In the current review the different components of the visual function are explained and the several available methods to assess the vision quality are described.
Nod-shuffle 3D spectroscopy with PMAS
NASA Astrophysics Data System (ADS)
Roth, Martin M.; Fechner, Thomas; Becker, Thomas; Kelz, Andreas
2004-09-01
PMAS is a versatile integral field spectrograph based on the principle of a fiber-coupled lens array type of IFU. The instrument was commissioned at the Calar Alto 3.5m Telescope in May 2001. PMAS is offered as a common user instrument at Calar Alto since 2002. However, it has remained flexible enough to be used as a testbed for new observing techniques. Since the instrument is sensitive in the wavelength range from 0.35 to 1 μm, it is being used to experiment with faint object 3D spectroscopy for a variety of objects in stellar and extragalactic astronomy. Among these experiments, we have implemented a nod-shuffle mode of operation, which is a beam switching technique to achieve a high degree of sky subtraction accuracy. We describe the technical details of the special solution found for PMAS and first results obtained in test observations of faint haloes of planetary nebulae.
IRIS: a novel spectral imaging system for the analysis of cultural heritage objects
NASA Astrophysics Data System (ADS)
Papadakis, V. M.; Orphanos, Y.; Kogou, S.; Melessanaki, K.; Pouli, P.; Fotakis, C.
2011-06-01
A new portable spectral imaging system is herein presented capable of acquiring images of high resolution (2MPixels) ranging from 380 nm up to 950 nm. The system consists of a digital color CCD camera, 15 interference filters covering all the sensitivity range of the detector and a robust filter changing system. The acquisition software has been developed in "LabView" programming language allowing easy handling and modification by end-users. The system has been tested and evaluated on a series of objects of Cultural Heritage (CH) value including paintings, encrusted stonework, ceramics etc. This paper aims to present the system, as well as, its application and advantages in the analysis of artworks with emphasis on the detailed compositional and structural information of layered surfaces based on reflection & fluorescence spectroscopy. Specific examples will be presented and discussed on the basis of system improvements.
Development of the instruments for the Gamma Ray Observatory
NASA Technical Reports Server (NTRS)
Madden, J. J.; Kniffen, D. A.
1986-01-01
The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.
Gearbox Reliability Collaborative Phase 3 Gearbox 3 Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Wallen, Robb
Many gearboxes in wind turbines do not achieve their expected design life; they do, however, commonly meet or exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the downtime associated with these failures, increases the cost of wind energy. In 2007, the U.S. Department of Energy established the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC). Its goals are to understand the root causes of premature gearbox failures and to improve their reliability. The GRC ismore » examining a hypothesis that the gap between design-estimated and actual wind turbine gearbox reliability is caused by underestimation of loads, inaccurate design tools, the absence of critical elements in the design process, or insufficient testing. This report describes the recently completed tests of GRC Gearbox 3 in the National Wind Technology Center dynamometer and documents any modifications to the original test plan. In this manner, it serves as a guide for interpreting the publicly released data sets with brief analyses to illustrate the data. The primary test objective was to measure the planetary load-sharing characteristics in the same conditions as the original GRC gearbox design. If the measured load-sharing characteristics are close to the design model, the projected improvement in planetary section fatigue life and the efficacy of preloaded TRBs in mitigating the planetary bearing fatigue failure mode will have been demonstrated. Detailed analysis of that test objective will be presented in subsequent publications.« less
Which Fecal Immunochemical Test Should I Choose?
Daly, Jeanette M.; Xu, Yinghui; Levy, Barcey T.
2017-01-01
Objectives: To summarize the fecal immunochemical tests (FITs) available in the United States, the 2014 pathology proficiency testing (PT) program FIT results, and the literature related to the test characteristics of FITs available in the United States to detect advanced adenomatous polyps (AAP) and/or colorectal cancer (CRC). Methods: Detailed review of the Food and Drug Administration’s Clinical Laboratory Improvement Amendments (CLIA) database of fecal occult blood tests, the 2014 FIT PT program results, and the literature related to FIT accuracy. Results: A search of the CLIA database identified 65 FITs, with 26 FITs available for purchase in the United States. Thirteen of these FITs were evaluated on a regular basis by PT programs, with an overall sensitivity of 99.1% and specificity of 99.2% for samples spiked with hemoglobin. Automated FITs had better sensitivity and specificity than CLIA-waived FITs for detection of AAP and CRC in human studies using colonoscopy as the gold standard. Conclusion: Although many FITs are available in the United States, few have been tested in proficiency testing programs. Even fewer have data in humans on sensitivity and specificity for AAP or CRC. Our review indicates that automated FITs have the best test characteristics for AAP and CRC. PMID:28447866
Weinhardt, L S; Carey, M P; Johnson, B T; Bickham, N L
1999-01-01
OBJECTIVES: This study examined whether HIV counseling and testing leads to reductions in sexual risk behavior. METHODS: The meta-analysis included 27 published studies that provided sexual behavior outcome data, assessed behavior before and after counseling and testing, and provided details sufficient for the calculation of effect sizes. The studies involved 19,597 participants. RESULTS: After counseling and testing, HIV-positive participants and HIV-serodiscordant couples reduced unprotected intercourse and increased condom use more than HIV-negative and untested participants. HIV-negative participants did not modify their behavior more than untested participants. Participants' age, volition for testing, and injection drug use treatment status, as well as the sample seroprevalence and length of the follow-up, explained the variance in results. CONCLUSIONS: HIV counseling and testing appears to provide an effective means of secondary prevention for HIV-positive individuals but, as conducted in the reviewed studies, is not an effective primary prevention strategy for uninfected participants. Theory-driven research with attention given to the context of testing is needed to further explicate the determinants of behavior change resulting from HIV counseling and testing, and the effectiveness of specific counseling approaches. PMID:10474559
Mustafa, Reem A; Wiercioch, Wojtek; Arevalo-Rodriguez, Ingrid; Cheung, Adrienne; Prediger, Barbara; Ivanova, Liudmila; Ventresca, Matthew; Brozek, Jan; Santesso, Nancy; Bossuyt, Patrick; Garg, Amit X; Lloyd, Nancy; Lelgemann, Monika; Bühler, Diedrich; Schünemann, Holger J
2017-12-01
The objective of the study was to describe and compare current practices in developing guidelines about the use of healthcare-related tests and diagnostic strategies (HCTDS). We sampled 37 public health and clinical practice guidelines about HCTDS from various sources without language restrictions. Detailed descriptions of the systems used to assess the quality of evidence and develop recommendations were challenging to find within guidelines. We observed much variability among and within organizations with respect to how they develop recommendations about HCTDS. Twenty-four percent of the guidelines did not consider health benefits and harms but based decisions solely on test accuracy. We did not identify guidelines that described the main potential care pathways involving tests for a healthcare problem. In addition, we did not identify guidelines that systematically assessed, described, and referenced the evidence that linked test accuracy and patient-important outcomes. There is considerable variability among the processes used and factors considered in developing recommendations about the use of tests. This variability may be the cause for the disagreement we observed in recommendations about testing for the same condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Memory for Details with Self-Referencing
Serbun, Sarah J.; Shih, Joanne Y.; Gutchess, Angela H.
2011-01-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgments in reference to the self, a close other (one’s mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). Results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can disproportionately improve memory for specific internal source details as well. PMID:22092106
Memory for details with self-referencing.
Serbun, Sarah J; Shih, Joanne Y; Gutchess, Angela H
2011-11-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or whether they also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgements in reference to the self, a close other (one's mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). The results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can also disproportionately improve memory for specific internal source details.
Examining Object Location and Object Recognition Memory in Mice
Vogel-Ciernia, Annie; Wood, Marcelo A.
2014-01-01
Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location and object identity can be used to evaluate a wide variety of mouse models and treatments. PMID:25297693
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.
2016-01-01
The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.
A topo-graph model for indistinct target boundary definition from anatomical images.
Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael
2018-06-01
It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.
Gerlach, Jay; Sequeira, Magda; Alvarado, Vivian; Cerpas, Christian; Balmaseda, Angel; Gonzalez, Alcides; de Los Santos, Tala; Levin, Carol E; Amador, Juan Jose; Domingo, Gonzalo J
2010-11-05
HIV viral load testing as a component of antiretroviral therapy monitoring is costly. Understanding the full costs and the major sources of inefficiency associated with viral load testing is critical for optimizing the systems and technologies that support the testing process. The objective of our study was to estimate the costs associated with viral load testing performed for antiretroviral therapy monitoring to both patients and the public healthcare system in a low-HIV prevalence, low-resource country. A detailed cost analysis was performed to understand the costs involved in each step of performing a viral load test in Nicaragua, from initial specimen collection to communication of the test results to each patient's healthcare provider. Data were compiled and cross referenced from multiple information sources: laboratory records, regional surveillance centre records, and scheduled interviews with the key healthcare providers responsible for HIV patient care in five regions of the country. The total average cost of performing a viral load test in Nicaragua varied by region, ranging from US$99.01 to US$124.58, the majority of which was at the laboratory level: $88.73 to $97.15 per specimen, depending on batch size. The average cost to clinics at which specimens were collected ranged from $3.31 to $20.92, depending on the region. The average cost per patient for transportation, food, lodging and lost income ranged from $3.70 to $14.93. The quantitative viral load test remains the single most expensive component of the process. For the patient, the distance of his or her residence from the specimen collection site is a large determinant of cost. Importantly, the efficiency of results reporting has a large impact on the cost per result delivered to the clinician and utility of the result for patient monitoring. Detailed cost analysis can identify opportunities for removing barriers to effective antiretroviral therapy monitoring programmes in limited-resource countries with low HIV prevalence.
NASA Astrophysics Data System (ADS)
Salamunićcar, G.; Lončarić, S.
2008-07-01
Crater Detection Algorithms (CDAs) applications range from estimation of lunar/planetary surface age to autonomous landing on planets and asteroids and advanced statistical analyses. A large amount of work on CDAs has already been published. However, problems arise when evaluation results of some new CDA have to be compared with already published evaluation results. The problem is that different authors use different test-fields, different Ground-Truth (GT) catalogues, and even different methodologies for evaluation of their CDAs. Re-implementation of already published CDAs or its evaluation environment is a time-consuming and unpractical solution to this problem. In addition, implementation details are often insufficiently described in publications. As a result, there is a need in research community to develop a framework for objective evaluation of CDAs. A scientific question is how CDAs should be evaluated so that the results are easily and reliably comparable. In attempt to solve this issue we first analyzed previously published work on CDAs. In this paper, we propose a framework for solution of the problem of objective CDA evaluation. The framework includes: (1) a definition of the measure for differences between craters; (2) test-field topography based on the 1/64° MOLA data; (3) the GT catalogue wherein each of 17,582 craters is aligned with MOLA data and confirmed with catalogues by N.G. Barlow et al. and J.F. Rodionova et al.; (4) selection of methodology for training and testing; and (5) a Free-response Receiver Operating Characteristics (F-ROC) curves as a way to measure CDA performance. The handling of possible improvements of the framework in the future is additionally addressed as a part of discussion of results. Possible extensions with additional test-field subsystems based on visual images, data sets for other planets, evaluation methodologies for CDAs developed for different purposes than cataloguing of craters, are proposed as well. The goal of the proposed framework is to contribute to the research community by establishing guidelines for objective evaluation of CDAs.
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE ...
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE FOR ENGINE TEST CELL 4. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie
2016-09-01
One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Gamble, J. D.
1976-01-01
The model tested was a Langley-built 0.015-scale SSV Orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current Shuttle Orbiter Configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments, angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -4 deg to 45 deg, at angles of sideslip of 0 deg, + or - 2 deg, and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 8 deg at selected angles of attack. The test Mach numbers were 2.86, 3.90, and 4.60 with Reynolds number held at a constant two million per foot.
All the Exquisite Details of a Coffee Mug.
ERIC Educational Resources Information Center
Larsen, Dave M., Jr.
1999-01-01
Describes a three-part exercise used in a first semester freshman composition class, intended to show students the world of details in even the most ordinary, everyday objects by having students write about a plastic coffee mug. (SR)
On the Concept of Varying Influence Radii for a Successive Corrections Objective Analysis
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
There has been a long standing concept by those who use successive corrections objective analysis that the way to obtain the most accurate objective analysis is first, to analyze for the long wavelengths and then to build in the details of the shorter wavelengths by successively decreasing the influence of the more distant observations upon the interpolated values. Using the Barnes method, the filter characteristics were compared for families of response curves that pass through a common point at a reference wavelength. It was found that the filter cutoff is a maximum if the filter parameters that determine the influence of observations are unchanged for both the initial and corrections passes. This information was used to define and test the following hypothesis. If accuracy is defined by how well the method retains desired wavelengths and removes undesired wavelengths, then the Barnes method gives the most accurate analyses if the filter parameter on the initial and corrections passes are the same. This hypothesis does not follow the usual conceptual approach to successive corrections analysis.
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND ...
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Temporal effects in trend prediction: identifying the most popular nodes in the future.
Zhou, Yanbo; Zeng, An; Wang, Wei-Hong
2015-01-01
Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail.
Advanced Multigrid Solvers for Fluid Dynamics
NASA Technical Reports Server (NTRS)
Brandt, Achi
1999-01-01
The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.
Temporal Effects in Trend Prediction: Identifying the Most Popular Nodes in the Future
Zhou, Yanbo; Zeng, An; Wang, Wei-Hong
2015-01-01
Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes’ recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail. PMID:25806810
Launders, J H; McArdle, S; Workman, A; Cowen, A R
1995-01-01
The significance of varying the viewing conditions that may affect the perceived threshold contrast of X-ray television fluoroscopy systems has been investigated. Factors investigated include the ambient room lighting and the viewing distance. The purpose of this study is to find the optimum viewing protocol with which to measure the threshold detection index. This is a particular problem when trying to compare the image quality of television fluoroscopy systems in different input field sizes. The results show that the viewing distance makes a significant difference to the perceived threshold contrast, whereas the ambient light conditions make no significant difference. Experienced observers were found to be capable of finding the optimum viewing distance for detecting details of each size, in effect using a flexible viewing distance. This allows the results from different field sizes to be normalized to account for both the magnification and the entrance air kerma rate differences, which in turn allow for a direct comparison of performance in different field sizes.
The HEAO experience - design through operations
NASA Technical Reports Server (NTRS)
Hoffman, D. P.
1983-01-01
The design process and performance of the NASA High Energy Astronomy Observatories (HEAO-1, 2, and 3) are surveyed from the initiation of the program in 1968 through the end of HEAO-3 operation in May, 1981, with a focus on the attitude control and determination subsystem (ACDS). The science objectives, original and revised overall design concepts, final design for each spacecraft, and details of the ACDS designs are discussed, and the stages of the ACDS design process, including redefinition to achieve 50 percent cost reduction, detailed design of common and mission-unique hardware and software, unit qualification, subsystem integration, and observatory-level testing, are described. Overall and ACDS performance is evaluated for each mission and found to meet or exceed design requirements despite some difficulties arising from errors in startracker-ACDS-interface coordination and from gyroscope failures. These difficulties were resolved by using the flexibility of the software design. The implicationns of the HEAO experience for the design process of future spacecraft are suggested.
SSME Key Operations Demonstration
NASA Technical Reports Server (NTRS)
Anderson, Brian; Bradley, Michael; Ives, Janet
1997-01-01
A Space Shuttle Main Engine (SSME) test program was conducted between August 1995 and May 1996 using the Technology Test Bed (TTB) Engine. SSTO vehicle studies have indicated that increases in the propulsion system operating range can save significant weight and cost at the vehicle level. This test program demonstrated the ability of the SSME to accommodate a wide variation in safe operating ranges and therefore its applicability to the SSTO mission. A total of eight tests were completed with four at Marshall Space Flight Center's Advanced Engine Test Facility and four at the Stennis Space Center (SSC) A-2 attitude test stand. Key demonstration objectives were: 1) Mainstage operation at 5.4 to 6.9 mixture ratio; 2) Nominal engine start with significantly reduced engine inlet pressures of 50 psia LOX and 38 psia fuel; and 3) Low power level operation at 17%, 22%, 27%, 40%, 45%, and 50% of Rated Power Level. Use of the highly instrumented TTB engine for this test series has afforded the opportunity to study in great detail engine system operation not possible with a standard SSME and has significantly contributed to a greater understanding of the capabilities of the SSME and liquid rocket engines in general.
USDC based rapid penetrator of packed soil
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea
2006-01-01
Environment protection requires more testing and analysis tools. To detect buried chemical containers or other objects embedded in soil and avoid possible damages of them, a penetrator of packed soil operated using low pushing force was developed. The design was based on a novel driving mechanism of the ultrasonic/sonic driller/corer (USDC) device developed in the NDEAA lab at JPL [Bar-Cohen et al 2001, Bao et al 2003]. In the penetrator, a small free-flying mass is energized by a piezoelectric transducer and impacts a rod probe on its shoulder at frequencies of hundreds times per second. The impacts help the probe to penetrate the packed soil rapidly. A great reduction of the needed pushing force for penetration was achieved. The details of the design of the prototype penetrator and the results of performance tests are presented.
The effects of space radiation on flight film
NASA Technical Reports Server (NTRS)
Holly, Mark H.
1995-01-01
The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.
NASA Technical Reports Server (NTRS)
Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.
1992-01-01
A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.
The Proceedings of the Skylab Life Sciences Symposium, volume 2
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Dietlein, L. F.
1974-01-01
The three manned Skylab missions resulted in biomedical experiment data in the areas of neurophysiology, musculoskeletal physiology, biochemistry, hematology, cytology, cardiovascular and respiratory metabolic functions: as well as detailed test objectives involving crew health and environment procedures. Major emphasis was placed on results from the last mission, Skylab 4, which covered 84 days of in-flight data collection. Many new norms were defined for normal man living and operating in a unique environment. While man is quite adaptable to this unique environment, many of the changes observed in Skylab require additional research for future flights lasting very long periods of time such as a Mars mission requiring 18 months.
Definition of technology development missions for early space stations: Large space structures
NASA Technical Reports Server (NTRS)
Gates, R. M.; Reid, G.
1984-01-01
The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.
Solid-State Lighting Module (SSLM)
NASA Technical Reports Server (NTRS)
2008-01-01
The project's goal was to build a light-emitting-diode (LED)-based light fixture that is identical in fit, form, and function to the existing International Space Station (ISS) General Luminaire Assembly (GLA) light fixture and fly it on the ISS in early FY 2008 as a Station Detailed Test Objective (SDTO). Our design offers the following strengths: proven component hardware: Our design uses components flown in other KSC-developed hardware; heat path thermal pad: LED array heat is transferred from the circuit board by silicon pad, negating the need for a cooling fan; variable colorimetry: The output light color can be changed by inserting different LED combinations.
NASA Technical Reports Server (NTRS)
Draeger, B. G.; Joyner, J. A.
1976-01-01
A detailed performance evaluation of the Abort Region Determinator (ARD) module design was provided in support of OFT-1 ascent and OFT-1 intact launch aborts. The evaluation method used compared ARD results against results obtained using the full-up Space Vehicle Dynamic Simulations program under the same conditions. Results were presented for each of the three major ARD math models: (1) the ascent numerical integrator; (2) the mass model, and (3) the second stage predictor as well as the total ARD module. These results demonstrate that the baselined ARD module meets all design objectives for mission control center orbital flight test launch/abort support.
The Proceedings of the Skylab Life Sciences Symposium, Volume 1
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Dietlein, L. F.
1974-01-01
The three manned Skylab missions resulted in biomedical experiment data in the areas of neurophysiology, musculoskeletal physiology, biochemistry, hematology, cytology, cardiovascular and respiratory metabolic functions: as well as detailed test objectives involving crew health and environment procedures. Major emphasis was placed on results from the last mission, Skylab 4, which covered 84 days of in-flight data collection. Many new norms were defined for normal man living and operating in a unique environment. While man is quite adaptable to this unique environment, many of the changes observed in Skylab require additional research for future flights lasting very long periods of time such as a Mars mission requiring 18 months.
A discrete-element model for viscoelastic deformation and fracture of glacial ice
NASA Astrophysics Data System (ADS)
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.
Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris
2007-04-09
In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.
McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S
2014-03-01
A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo
2016-10-01
Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
46 CFR 61.40-10 - Test procedure details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Test procedure details. 61.40-10 Section 61.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-10 Test procedure...
46 CFR 61.40-10 - Test procedure details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Test procedure details. 61.40-10 Section 61.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-10 Test procedure...
Simoes Loureiro, Isabelle; Lefebvre, Laurent
2016-10-01
Taxonomic and thematic relationships are core elements of lexico-semantic networks. However, the weight of both links differs in semantic memory, with distinct support for natural and manufactured objects: natural objects tend to be more taxonomically identified while manufactured objects benefit more from the underlying thematic relationships. Alzheimer's disease (AD) causes early semantic memory impairment characterized by a category-specific deterioration, where natural objects are more sensitive to the disease than manufactured objects. However, relatively few studies have examined the progressive deterioration of specific thematic versus taxonomic relations in both categories of objects in AD. To better understand semantic memory disorganization in AD and analyze the potential interaction effect between the category (natural/manufactured), the condition (thematic/taxonomic) and AD, we will investigate the lexico-semantic network in 82 AD patients (divided into three groups depending on their global cognitive deterioration and their performance in a preliminary semantic knowledge questionnaire (mild (AD1), moderate (AD2) and advanced (AD3) stages of semantic knowledge alteration). The experimental protocol contains two tasks: an implicit semantic priming paradigm and an explicit card-sorting test that uses the same items, equally divided between natural and manufactured objects. Results show a distinct taxonomic and thematic evolution pattern with early taxonomic deterioration. Natural objects are also more vulnerable to the disease. Lastly, there is an interaction effect between the category and the condition in the priming task indicating that natural objects are more taxonomically organized and manufactured objects benefit more from both thematic and taxonomic organizations, reinforcing the idea of the robustness of this category. The theoretical accounts of these observations will be discussed in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Garcia, Hector D.; Coleman, M.; James, J.; Lam, C.
1999-01-01
Data on chemical and biological materials to be flown in the pressurized volumes of habitable spacecraft, including the International Space Station (ISS), are needed by JSC toxicologists to assess the toxicity and assign hazard levels. This document defines submission schedules and establishes requirements for the types and format of these data. JSC 27472 Rev A is a major revision of JSC 25607, "Requirements for Submission of Test Sample-Materials Data for Shuttle Payload Safety Evaluations", dated October 1994, which was subsequently re-issued (September 1996) with a new document number, JSC 27472, but with the same title and date and no revisions. The revisions in the present document have been necessitated by the recent introduction of a two-step process (described in this document) for verification of data for flight materials and by the anticipated needs of the ISS. The requirements -for data submission apply to items which contain liquids, gases, gels, greases, powders/ particulates, radioisotopes, or biological materials and are located in the habitable pressurized volume of ISS or U.S. operated spacecraft. These include, but are not limited to, science payloads, government furnished equipment (GFE), risk mitigation experiments (RmEs), development test objectives (DTOs), detailed supplementary objectives (DSOs), life science experiments, and medical studies.
NASA Astrophysics Data System (ADS)
Monnier, F.; Vallet, B.; Paparoditis, N.; Papelard, J.-P.; David, N.
2013-10-01
This article presents a generic and efficient method to register terrestrial mobile data with imperfect location on a geographic database with better overall accuracy but less details. The registration method proposed in this paper is based on a semi-rigid point to plane ICP ("Iterative Closest Point"). The main applications of such registration is to improve existing geographic databases, particularly in terms of accuracy, level of detail and diversity of represented objects. Other applications include fine geometric modelling and fine façade texturing, object extraction such as trees, poles, road signs marks, facilities, vehicles, etc. The geopositionning system of mobile mapping systems is affected by GPS masks that are only partially corrected by an Inertial Navigation System (INS) which can cause an important drift. As this drift varies non-linearly, but slowly in time, it will be modelled by a translation defined as a piecewise linear function of time which variation over time will be minimized (rigidity term). For each iteration of the ICP, the drift is estimated in order to minimise the distance between laser points and planar model primitives (data attachment term). The method has been tested on real data (a scan of the city of Paris of 3.6 million laser points registered on a 3D model of approximately 71,400 triangles).
The effects of free recall testing on subsequent source memory.
Brewer, Gene A; Marsh, Richard L; Meeks, Joseph T; Clark-Foos, Arlo; Hicks, Jason L
2010-05-01
The testing effect is the finding that prior retrieval of information from memory will result in better subsequent memory for that material. One explanation for these effects is that initial free recall testing increases the recollective details for tested information, which then becomes more available during a subsequent test phase. In three experiments we explored this hypothesis using a source-monitoring test phase after the initial free recall tests. We discovered that memory is differentially enhanced for certain recollective details depending on the nature of the free recall task. Thus further research needs to be conducted to specify how different kinds of memorial details are enhanced by free recall testing.
Design and Fabrication of Orthotropic Deck Details
DOT National Transportation Integrated Search
2016-02-01
The objectives of the research were to verify the design and fabrication of the orthotropic deck details proposed for the lift bridge, for infinite fatigue life. Multi-level 3D finite element analyses (FEA) of the proposed deck were performed to dete...
Objective biofidelity rating of a numerical human occupant model in frontal to lateral impact.
de Lange, Ronald; van Rooij, Lex; Mooi, Herman; Wismans, Jac
2005-11-01
Both hardware crash dummies and mathematical human models have been developed largely using the same biomechanical data. For both, biofidelity is a main requirement. Since numerical modeling is not bound to hardware crash dummy design constraints, it allows more detailed modeling of the human and offering biofidelity for multiple directions. In this study the multi-directional biofidelity of the MADYMO human occupant model is assessed, to potentially protect occupants under various impact conditions. To evaluate the model's biofidelity, generally accepted requirements were used for frontal and lateral impact: tests proposed by EEVC and NHTSA and tests specified by ISO TR9790, respectively. A subset of the specified experiments was simulated with the human model. For lateral impact, the results were objectively rated according to the ISO protocol. Since no rating protocol was available for frontal impact, the ISO rating scheme for lateral was used for frontal, as far as possible. As a result, two scores show the overall model biofidelity for frontal and lateral impact, while individual ratings provide insight in the quality on body segment level. The results were compared with the results published for the THOR and WorldSID dummies, showing that the mathematical model exhibits a high level of multi-directional biofidelity. In addition, the performance of the human model in the NBDL 11G oblique test indicates a valid behavior of the model in intermediate directions as well. A new aspect of this study is the objective assessment of the multi-directional biofidelity of the mathematical human model according to accepted requirements. Although hardware dummies may always be used in regulations, it is expected that virtual testing with human models will serve in extrapolating outside the hardware test environment. This study was a first step towards simulating a wider range of impact conditions, such as angled impact and rollover.
Freud, Erez; Avidan, Galia; Ganel, Tzvi
2015-02-01
Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information embedded in LSF, whereas HSF information may underlie the visual system's susceptibility to distortions in objects' spatial layouts.
Medical Representatives' Intention to Use Information Technology in Pharmaceutical Marketing
Kwak, Eun-Seon
2016-01-01
Objectives Electronic detailing (e-detailing), the use of electronic devices to facilitate sales presentations to physicians, has been adopted and expanded in the pharmaceutical industry. To maximize the potential outcome of e-detailing, it is important to understand medical representatives (MRs)' behavior and attitude to e-detailing. This study investigates how information technology devices such as laptop computers and tablet PCs are utilized in pharmaceutical marketing, and it analyzes the factors influencing MRs' intention to use devices. Methods This study has adopted and modified the theory of Roger's diffusion of innovation model and the technology acceptance model. To test the model empirically, a questionnaire survey was conducted with 221 MRs who were working in three multinational or eleven domestic pharmaceutical companies in Korea. Results Overall, 28% and 35% of MRs experienced using laptop computers and tablet PCs in pharmaceutical marketing, respectively. However, the rates were different across different groups of MRs, categorized by age, education level, position, and career. The results showed that MRs' intention to use information technology devices was significantly influenced by perceived usefulness in general. Perceived ease of use, organizational and individual innovativeness, and several MR characteristics were also found to have significant impacts. Conclusions This study provides timely information about e-detailing devices to marketing managers and policy makers in the pharmaceutical industry for successful marketing strategy development by understanding the needs of MRs' intention to use information technology. Further in-depth study should be conducted to understand obstacles and limitations and to improve the strategies for better marketing tools. PMID:27895967
The Case of the Missing Visual Details: Occlusion and Long-Term Visual Memory
ERIC Educational Resources Information Center
Williams, Carrick C.; Burkle, Kyle A.
2017-01-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing…
Testing and modelling of the SVOM MXT narrow field lobster-eye telescope
NASA Astrophysics Data System (ADS)
Feldman, Charlotte; Pearson, James; Willingale, Richard; Sykes, John; Drumm, Paul; Houghton, Paul; Bicknell, Chris; Osborne, Julian; Martindale, Adrian; O'Brien, Paul; Fairbend, Ray; Schyns, Emile; Petit, Sylvain; Roudot, Romain; Mercier, Karine; Le Duigou, Jean-Michel; Gotz, Diego
2017-08-01
The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a French-Chinese space mission to be launched in 2021 with the goal of studying gamma-ray bursts, the most powerful stellar explosions in the Universe. The Microchannel X-ray Telescope (MXT) on-board SVOM, is an X-ray focusing telescope with a detector-limited field of view of ˜1 square° , working in the 0.2-10 keV energy band. The MXT is a narrow-field-optimised lobster eye telescope, designed to promptly detect and accurately locate gamma-ray bursts afterglows. The breadboard MXT optic comprises of an array of square pore micro pore optics (MPOs) which are slumped to a spherical radius of 2 m giving a focal length of 1 m and an intrinsic field of view of ˜6° . We present details of the baseline design and results from the ongoing X-ray tests of the breadboard and structural thermal model MPOs performed at the University of Leicester and at Panter. In addition, we present details of modelling and analysis which reveals the factors that limit the angular resolution, characteristics of the point spread function and the efficiency and collecting area of the currently available MPOs.
Development and testing of a new system for assessing wheel-running behaviour in rodents.
Chomiak, Taylor; Block, Edward W; Brown, Andrew R; Teskey, G Campbell; Hu, Bin
2016-05-05
Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols. Here we devise a system that can provide a continuous waveform amenable to real-time integration with a high-speed video ideal for wheel-running experimental protocols. While quantification of wheel running behaviour has typically focused on the number of revolutions per unit time as an end point measure, the approach described here allows for more detailed information like wheel rotation fluidity, directionality, instantaneous velocity, and acceleration, in addition to total number of rotations, and the temporal pattern of wheel-running behaviour to be derived from a single trace. We further tested this system with a running-wheel behavioural paradigm that can be used for investigating the neuronal mechanisms of procedural learning and postural stability, and discuss other potentially useful applications. This system and its ability to evaluate multiple wheel-running parameters may become a useful tool for screening new potentially important therapeutic compounds related to many neurological conditions.
6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. WrightPatterson ...
6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
4. FRONT FACADE OF ENGINE TEST CELL BUILDING. DETAIL OF ...
4. FRONT FACADE OF ENGINE TEST CELL BUILDING. DETAIL OF MAIN ENTRY. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
21. Building 202, underside of test stand A, detail of ...
21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.
2013-01-01
Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.
46. Historic photo of Building 202 test cell interior, detail ...
46. Historic photo of Building 202 test cell interior, detail of test stand A with engine severely damaged during testing, September 7, 1961. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-57837. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Detail view of fourth level platform winch used to lift ...
Detail view of fourth level platform winch used to lift platform segments away from the Shuttle assembly during testing. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Botvinick, Matthew M.; Buxbaum, Laurel J.; Bylsma, Lauren M.; Jax, Steven A.
2014-01-01
The act of reaching for and acting upon an object involves two forms of selection: selection of the object as a target, and selection of the action to be performed. While these two forms of selection are logically dissociable, and are evidently subserved by separable neural pathways, they must also be closely coordinated. We examine the nature of this coordination by developing and analyzing a computational model of object and action selection first proposed by Ward [Ward, R. (1999). Interactions between perception and action systems: a model for selective action. In G. W. Humphreys, J. Duncan, & A. Treisman (Eds.), Attention, Space and Action: Studies in Cognitive Neuroscience. Oxford: Oxford University Press]. An interesting tenet of this account, which we explore in detail, is that the interplay between object and action selection depends critically on top-down inputs representing the current task set or plan of action. A concrete manifestation of this, established through a series of simulations, is that the impact of distractor objects on reaching times can vary depending on the nature of the current action plan. In order to test the model's predictions in this regard, we conducted two experiments, one involving direct object manipulation, the other involving tool-use. In both experiments we observed the specific interaction between task set and distractor type predicted by the model. Our findings provide support for the computational model, and more broadly for an interactive account of object and action selection. PMID:19100758
Community pharmacy and cash reward: a winning combination for chlamydia screening?
Currie, Marian J; Deeks, Louise S; Cooper, Gabrielle M; Martin, Sarah J; Parker, Rhian M; Del Rosario, Rendry; Hocking, Jane S; Bowden, Francis J
2013-05-01
To date, the uptake of chlamydia screening in community pharmacies has been limited. The objective of this cross-sectional study was to determine if a cash reward, offered to both the provider and the consumer of chlamydia screening, increased the uptake of screening in community pharmacies. During 4 weeks in 2011, chlamydia screening and education were offered in four city and two suburban pharmacies to people aged 16-30 years. Those who provided a urine sample for testing, contact details, and completed a brief questionnaire were rewarded with $A10. Positive participants, and their nominated contacts, were offered treatment. Over a period of 751.5 h, 979 testing kits were requested, and 900 (93%) urine samples returned. Using probabilistic linkage methods, we determined that 671/900 (75%) urine samples were from unique individuals. 0.9 unique samples were obtained/hour of screening, 63% of which were provided by men. 19/671 (2.8%; 95% CI 1.7% to 4.4%) people tested positive, 5.2% (95% CI 2.8% to 8.8%) of women, and 1.4% (1.4 0.5 to 3.1) of men. 11/19 (58%) people were contacted and treated-two for suspected pelvic inflammatory disease. Providing a cash reward to encourage chlamydia screening in community pharmacies resulted in greater participation rates than previously reported pharmacy-based studies, particularly among men. Easily implemented mechanisms to reduce inappropriate repeat screening, incorrect contact details and effects on pharmacy work flow may enhance the efficiency of this approach.
d'Isa, Raffaele; Brambilla, Riccardo; Fasano, Stefania
2014-01-01
Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index that we present here for the first time, the recognition index (RI), which quantifies the ability of an animal to recognize a same object at different time points and that, by taking into account the basal individual preferences displayed during the training, can give a more accurate measure of an animal's actual recognition memory.
The application of a 3D laser scanner in contemporary education of civil engineering students
NASA Astrophysics Data System (ADS)
Szafranko, E.; Pawłowicz, J. A.
2017-10-01
The programs of study in field of civil engineering include a number of objects, which concern with details of the planning, design and realization of buildings. These are buildings and structures such as, roads, bridges, tunnels, viaducts. Most of these objects are located far from university and it was difficult to show them on the lessons. Discussing the structure based on the description of the object, photographs or drawings do not always allow to imagine the actual shapes and sizes of buildings, roads, bridges and viaducts. In such a situation, terrestrial photogrammetric technology could be helpful. One of them is 3D laser scanning technology Measurements performed with a laser scanner allows to introduce selected objects in the form of spatial models. They give you the ability to rotate and zoom them in order to know the details of construction of the object. The article presents the possibility of using a 3D laser scanner in teaching.
Reches, A; Kutcher, J; Elbin, R J; Or-Ly, H; Sadeh, B; Greer, J; McAllister, D J; Geva, A; Kontos, A P
2017-01-01
The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician's decision-making process. The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions.
Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.
2015-01-01
Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.
Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.
2014-01-01
Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.
The development of a computer assisted instruction and assessment system in pharmacology.
Madsen, B W; Bell, R C
1977-01-01
We describe the construction of a computer based system for instruction and assessment in pharmacology, utilizing a large bank of multiple choice questions. Items were collected from many sources, edited and coded for student suitability, topic, taxonomy and difficulty and text references. Students reserve a time during the day, specify the type of test desired and questions are presented randomly from the subset satisfying their criteria. Answers are scored after each question and a summary given at the end of every test; details on item performance are recorded automatically. The biggest hurdle in implementation was the assembly, review, classification and editing of items, while the programming was relatively straight-forward. A number of modifications had to be made to the initial plans and changes will undoubtedly continue with further experience. When fully operational the system will possess a number of advantages including: elimination of test preparation, editing and marking; facilitated item review opportunities; increased objectivity, feedback, flexibility and descreased anxiety in students.
Energy Efficient Engine (E3) combustion system component technology performance report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.
Design of a bounded wave EMP (Electromagnetic Pulse) simulator
NASA Astrophysics Data System (ADS)
Sevat, P. A. A.
1989-06-01
Electromagnetic Pulse (EMP) simulators are used to simulate the EMP generated by a nuclear weapon and to harden equipment against the effects of EMP. At present, DREO has a 1 m EMP simulator for testing computer terminal size equipment. To develop the R and D capability for testing larger objects, such as a helicopter, a much bigger threat level facility is required. This report concerns the design of a bounded wave EMP simulator suitable for testing large size equipment. Different types of simulators are described and their pros and cons are discussed. A bounded wave parallel plate type simulator is chosen for it's efficiency and the least environmental impact. Detailed designs are given for 6 m and 10 m parallel plate type wire grid simulators. Electromagnetic fields inside and outside the simulators are computed. Preliminary specifications for a pulse generator required for the simulator are also given. Finally, the electromagnetic fields radiated from the simulator are computed and discussed.
NASA Astrophysics Data System (ADS)
Gubkin, M. K.; Ivanov, D. A.; Ivanova, I. V.; Spivak, V. S.
2017-11-01
The Department of General physics and nuclear fusion, National Research University “Moscow Power Engineering Institute”, developed a set of tests (over 1000 questions) for the current control of knowledge of students in the section “Electricity and magnetism” of the General physics course using the internet distance learning system “Prometheus” (fourth generation). Under this section of the proposed test tasks are divided into sections corresponding to the topics section. These tasks include quality issues, design tasks, tasks with a choice of answers (one of many, many of many), the job with the selection region in the figure, tasks with detailed answer. The variety of tasks allows the teacher not only to objectively assess the student acquired knowledge but also to develop his problem-solving skills, to learn to be fluent in theory. The results of testing conducted for several years, show the high interest of students in the repeated independent execution of tasks and correlate well with the results of intermediate certification (exams).
A method for the dynamic management of genetic variability in dairy cattle
Colleau, Jean-Jacques; Moureaux, Sophie; Briend, Michèle; Bechu, Jérôme
2004-01-01
According to the general approach developed in this paper, dynamic management of genetic variability in selected populations of dairy cattle is carried out for three simultaneous purposes: procreation of young bulls to be further progeny-tested, use of service bulls already selected and approval of recently progeny-tested bulls for use. At each step, the objective is to minimize the average pairwise relationship coefficient in the future population born from programmed matings and the existing population. As a common constraint, the average estimated breeding value of the new population, for a selection goal including many important traits, is set to a desired value. For the procreation of young bulls, breeding costs are additionally constrained. Optimization is fully analytical and directly considers matings. Corresponding algorithms are presented in detail. The efficiency of these procedures was tested on the current Norman population. Comparisons between optimized and real matings, clearly showed that optimization would have saved substantial genetic variability without reducing short-term genetic gains. PMID:15231230
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Farassat, F.
1990-01-01
The results of NASA's Propeller Test Assessment program involving extensive flight tests of a large-scale advanced propeller are presented. This has provided the opportunity to evaluate the current capability of advanced propeller noise prediction utilizing principally the exterior acoustic measurements for the prediction of exterior noise. The principal object of this study was to evaluate the state-of-the-art of noise prediction for advanced propellers utilizing the best available codes of the disciplines involved. The effects of blade deformation on the aerodynamics and noise of advanced propellers were also studied. It is concluded that blade deformation can appreciably influence propeller noise and aerodynamics, and that, in general, centrifugal and blade forces must both be included in the calculation of blade forces. It is noted that the present capability for free-field noise prediction of the first three harmonics for advanced propellers is fairly good. Detailed data and diagrams of the test results are presented.
NASA Astrophysics Data System (ADS)
Pardoen, Thomas; Colla, Marie-Sthéphane; Idrissi, Hosni; Amin-Ahmadi, Behnam; Wang, Binjie; Schryvers, Dominique; Bhaskar, Umesh K.; Raskin, Jean-Pierre
2016-03-01
A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.
ERIC Educational Resources Information Center
Zhang, Xihui
2010-01-01
Java is an object-oriented programming language. From a software engineering perspective, object-oriented design and programming is used at the architectural design, and structured design and programming is used at the detailed design within methods. As such, structured programming skills are fundamental to more advanced object-oriented…
Temporally flexible feedback signal to foveal cortex for peripheral object recognition
Fan, Xiaoxu; Wang, Lan; Shao, Hanyu; Kersten, Daniel; He, Sheng
2016-01-01
Recent studies have shown that information from peripherally presented images is present in the human foveal retinotopic cortex, presumably because of feedback signals. We investigated this potential feedback signal by presenting noise in fovea at different object–noise stimulus onset asynchronies (SOAs), whereas subjects performed a discrimination task on peripheral objects. Results revealed a selective impairment of performance when foveal noise was presented at 250-ms SOA, but only for tasks that required comparing objects’ spatial details, suggesting a task- and stimulus-dependent foveal processing mechanism. Critically, the temporal window of foveal processing was shifted when mental rotation was required for the peripheral objects, indicating that the foveal retinotopic processing is not automatically engaged at a fixed time following peripheral stimulation; rather, it occurs at a stage when detailed information is required. Moreover, fMRI measurements using multivoxel pattern analysis showed that both image and object category-relevant information of peripheral objects was represented in the foveal cortex. Taken together, our results support the hypothesis of a temporally flexible feedback signal to the foveal retinotopic cortex when discriminating objects in the visual periphery. PMID:27671651
Immediate detailed feedback to test-enhanced learning: an effective online educational tool.
Wojcikowski, Ken; Kirk, Leslie
2013-11-01
Test-enhanced learning has gained popularity because it is an effective way to increase retention of knowledge; provided the student receives the correct answer soon after the test is taken. To determine whether detailed feedback provided to test-enhanced learning questions is an effective online educational tool for improving performance on complex biomedical information exams. A series of online multiple choice tests were developed to test knowledge of biomedical information that students were expected to know after each patient-case. Following submission of the student answers, one cohort (n = 52) received answers only while the following year, a second cohort (n = 51) received the answers with detailed feedback explaining why each answer was correct or incorrect. Students in both groups progressed through the series of online tests with little assessor intervention. Students receiving the answers along with the explanations within their feedback performed significantly better in the final biomedical information exam than those students receiving correct answers only. This pilot study found that the detailed feedback to test-enhanced learning questions is an important online learning tool. The increase in student performance in the complex biomedical information exam in this study suggests that detailed feedback should be investigated not only for increasing knowledge, but also be investigated for its effect on retention and application of knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2003-10-01
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less
Evaluation of linking pavement related databases.
DOT National Transportation Integrated Search
2007-03-01
In general, the objectives of this study were to identify and solve various issues in linking pavement performance related database. The detailed objectives were: to evaluate the state-of-the-art in information technology for data integration and dat...
ERIC Educational Resources Information Center
Zimov, Sarah
2004-01-01
Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.