Visualization of chorioretinal vasculature in mice in vivo using a combined OCT/SLO imaging system
NASA Astrophysics Data System (ADS)
Goswami, Mayank; Zhang, Pengfei; Pugh, Edward N.; Zawadzki, Robert J.
2016-03-01
Chorioretinal blood vessel morphology in mice is of great interest to researchers studying eye disease mechanisms in animal models. Two leading retinal imaging modalities -- Optical Coherence Tomography (OCT) and Scanning Laser Ophthalmoscopy (SLO) -- have offered much insight into vascular morphology and blood flow. OCT "flow-contrast" methods have provided detailed mapping of vascular morphology with micrometer depth resolution, while OCT Doppler methods have enabled the measurement of local flow velocities. SLO remains indispensable in studying blood leakage, microaneurysms, and the clearance time of contrast agents of different sizes. In this manuscript we present results obtained with a custom OCT/SLO system applied to visualize the chorioretinal vascular morphology of pigmented C57Bl/6J and albino nude (Nu/Nu) mice. Blood perfusion maps of choroidal vessels and choricapillaris created by OCT and SLO are presented, along with detailed evaluation of different OCT imaging parameters, including the use of the scattering contrast agent Intralipid. Future applications are discussed.
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Aureobasidium pullulans morphology: two adapted polysaccharide stains.
Oller, Anna R
2005-12-01
Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.
Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin.
Sullivan-Brown, Jessica; Bisher, Margaret E; Burdine, Rebecca D
2011-01-01
Histological techniques are critical for observing tissue and cellular morphology. In this paper, we outline our protocol for embedding, serial sectioning, staining and visualizing zebrafish embryos embedded in JB-4 plastic resin-a glycol methacrylate-based medium that results in excellent preservation of tissue morphology. In addition, we describe our procedures for staining plastic sections with toluidine blue or hematoxylin and eosin, and show how to couple these stains with whole-mount RNA in situ hybridization. We also describe how to maintain and visualize immunofluorescence and EGFP signals in JB-4 resin. The protocol we outline-from embryo preparation, embedding, sectioning and staining to visualization-can be accomplished in 3 d. Overall, we reinforce that plastic embedding can provide higher resolution of cellular details and is a valuable tool for cellular and morphological studies in zebrafish.
Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie
2016-09-01
One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Optical biopsy of lymph node morphology using optical coherence tomography.
Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A
2005-10-01
Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.
Infrared image enhancement based on the edge detection and mathematical morphology
NASA Astrophysics Data System (ADS)
Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng
2010-11-01
The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.
CANDELS Visual Classifications: Scheme, Data Release, and First Results
NASA Technical Reports Server (NTRS)
Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Henry; Koo, David; Bassett, Robert;
2014-01-01
We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.
Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales
2017-01-01
Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.
Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris Simulation
NASA Astrophysics Data System (ADS)
Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.
2018-02-01
Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies, even when limited to reasonably massive systems, may be misleading.
Hard X-ray Microscopic Images of the Human Hair
NASA Astrophysics Data System (ADS)
Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo
2007-01-01
The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.
CANDELS Visual Classifications: Scheme, Data Release, and First Results
NASA Astrophysics Data System (ADS)
Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Harry; Koo, David; Bassett, Robert; Bernyk, Maksym; Blancato, Kirsten; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Cheung, Edmond; Conselice, Christopher J.; Croton, Darren; Dahlen, Tomas; de Mello, Duilia F.; DeGroot, Laura; Donley, Jennifer; Guedes, Javiera; Grogin, Norman; Hathi, Nimish; Hilton, Matt; Hollon, Brett; Koekemoer, Anton; Liu, Nick; Lucas, Ray A.; Martig, Marie; McGrath, Elizabeth; McPartland, Conor; Mobasher, Bahram; Morlock, Alice; O'Leary, Erin; Peth, Mike; Pforr, Janine; Pillepich, Annalisa; Rosario, David; Soto, Emmaris; Straughn, Amber; Telford, Olivia; Sunnquist, Ben; Trump, Jonathan; Weiner, Benjamin; Wuyts, Stijn; Inami, Hanae; Kassin, Susan; Lani, Caterina; Poole, Gregory B.; Rizer, Zachary
2015-11-01
We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed—GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sérsic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sérsic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
Reljin, Branimir; Milosević, Zorica; Stojić, Tomislav; Reljin, Irini
2009-01-01
Two methods for segmentation and visualization of microcalcifications in digital or digitized mammograms are described. First method is based on modern mathematical morphology, while the second one uses the multifractal approach. In the first method, by using an appropriate combination of some morphological operations, high local contrast enhancement, followed by significant suppression of background tissue, irrespective of its radiology density, is obtained. By iterative procedure, this method highly emphasizes only small bright details, possible microcalcifications. In a multifractal approach, from initial mammogram image, a corresponding multifractal "images" are created, from which a radiologist has a freedom to change the level of segmentation. An appropriate user friendly computer aided visualization (CAV) system with embedded two methods is realized. The interactive approach enables the physician to control the level and the quality of segmentation. Suggested methods were tested through mammograms from MIAS database as a gold standard, and from clinical praxis, using digitized films and digital images from full field digital mammograph.
VizieR Online Data Catalog: Double-component model fitting of elliptical gal. (Oh+, 2017)
NASA Astrophysics Data System (ADS)
Oh, S.; Greene, J. E.; Lackner, C. N.
2017-09-01
We use the detailed visual morphology classification catalog of Nair & Abraham (2010, J/ApJS/186/427) to construct a sample of nearby elliptical galaxies in a range of mass and environment. The catalog is based on the SDSS DR4 main spectroscopic sample, and extends to z=0.1. (1 data file).
NASA Astrophysics Data System (ADS)
Beck, Melanie; Scarlata, Claudia; Fortson, Lucy; Willett, Kyle; Galloway, Melanie
2016-01-01
It is well known that the mass-size distribution evolves as a function of cosmic time and that this evolution is different between passive and star-forming galaxy populations. However, the devil is in the details and the precise evolution is still a matter of debate since this requires careful comparison between similar galaxy populations over cosmic time while simultaneously taking into account changes in image resolution, rest-frame wavelength, and surface brightness dimming in addition to properly selecting representative morphological samples.Here we present the first step in an ambitious undertaking to calculate the bivariate mass-size distribution as a function of time and morphology. We begin with a large sample (~3 x 105) of SDSS galaxies at z ~ 0.1. Morphologies for this sample have been determined by Galaxy Zoo crowdsourced visual classifications and we split the sample not only by disk- and bulge-dominated galaxies but also in finer morphology bins such as bulge strength. Bivariate distribution functions are the only way to properly account for biases and selection effects. In particular, we quantify the mass-size distribution with a version of the parametric Maximum Likelihood estimator which has been modified to account for measurement errors as well as upper limits on galaxy sizes.
Experimental Detection and Visualization of the Extracellular Matrix in Macrocolony Biofilms.
Serra, Diego O; Hengge, Regine
2017-01-01
By adopting elaborate three-dimensional morphologies that vary according to their extracellular matrix composition, macrocolony biofilms offer a unique opportunity to interrogate about the roles of specific matrix components in shaping biofilm architecture. Here, we describe two methods optimized for Escherichia coli that profit from morphology and the high level of structural organization of macrocolonies to gain insight into the production and assembly of amyloid curli and cellulose-the two major biofilm matrix elements of E. coli-in biofilms. The first method, the macrocolony morphology assay, is based on the ability of curli and cellulose-either alone or in combination-to generate specific morphological and Congo Red-staining patterns in E. coli macrocolonies, which can then be used as a direct visual readout for the production of these matrix components. The second method involves thin sectioning of macrocolonies, which along with in situ staining of amyloid curli and cellulose and microscopic imaging allows gaining fine details of the spatial arrangement of both matrix elements inside macrocolonies. Beyond their current use with E. coli and related curli and cellulose-producing Enterobacteriaceae, both the methods offer the potential to be adapted to other bacterial species.
Kanowski, M; Voges, J; Buentjen, L; Stadler, J; Heinze, H-J; Tempelmann, C
2014-09-01
The morphology of the human thalamus shows high interindividual variability. Therefore, direct visualization of landmarks within the thalamus is essential for an improved definition of electrode positions for deep brain stimulation. The aim of this study was to provide anatomic detail in the thalamus by using inversion recovery TSE imaging at 7T. The MR imaging protocol was optimized on 1 healthy subject to segment thalamic nuclei from one another. Final images, acquired with 0.5(2)-mm2 in-plane resolution and 3-mm section thickness, were compared with stereotactic brain atlases to assign visualized details to known anatomy. The robustness of the visualization of thalamic nuclei was assessed with 4 healthy subjects at lower image resolution. Thalamic subfields were successfully delineated in the dorsal aspect of the lateral thalamus. T1-weighting was essential. MR images had an appearance very similar to that of myelin-stained sections seen in brain atlases. Visualized intrathalamic structures were, among others, the lamella medialis, the external medullary lamina, the reticulatum thalami, the nucleus centre médian, the boundary between the nuclei dorso-oralis internus and externus, and the boundary between the nuclei dorso-oralis internus and zentrolateralis intermedius internus. Inversion recovery-prepared TSE imaging at 7T has a high potential to reveal fine anatomic detail in the thalamus, which may be helpful in enhancing the planning of stereotactic neurosurgery in the future. © 2014 by American Journal of Neuroradiology.
AFM Structural Characterization of Drinking Water Biofilm ...
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo
Akeo, Keiichiro; Kameya, Shuhei; Gocho, Kiyoko; Kubota, Daiki; Yamaki, Kunihiko; Takahashi, Hiroshi
2015-01-01
Purpose. To report the morphological and functional changes associated with a regression of foveoschisis in a patient with X-linked retinoschisis (XLRS). Methods. A 42-year-old man with XLRS underwent genetic analysis and detailed ophthalmic examinations. Functional assessments included best-corrected visual acuity (BCVA), full-field electroretinograms (ERGs), and multifocal ERGs (mfERGs). Morphological assessments included fundus photography, spectral-domain optical coherence tomography (SD-OCT), and adaptive optics (AO) fundus imaging. After the baseline clinical data were obtained, topical dorzolamide was applied to the patient. The patient was followed for 24 months. Results. A reported RS1 gene mutation was found (P203L) in the patient. At the baseline, his decimal BCVA was 0.15 in the right and 0.3 in the left eye. Fundus photographs showed bilateral spoke wheel-appearing maculopathy. SD-OCT confirmed the foveoschisis in the left eye. The AO images of the left eye showed spoke wheel retinal folds, and the folds were thinner than those in fundus photographs. During the follow-up period, the foveal thickness in the SD-OCT images and the number of retinal folds in the AO images were reduced. Conclusions. We have presented the detailed morphological changes of foveoschisis in a patient with XLRS detected by SD-OCT and AO fundus camera. However, the findings do not indicate whether the changes were influenced by topical dorzolamide or the natural history.
Morphology of the utricular otolith organ in the toadfish, Opsanus tau.
Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza; Popova, Yekaterina; Varelas, Joseph
2018-06-15
The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents. © 2018 Wiley Periodicals, Inc.
Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging
NASA Astrophysics Data System (ADS)
Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.; Lintott, Chris J.; Masters, Karen L.; Scarlata, Claudia; Simmons, B. D.; Beck, Melanie; Cardamone, Carolin N.; Cheung, Edmond; Edmondson, Edward M.; Fortson, Lucy F.; Griffith, Roger L.; Häußler, Boris; Han, Anna; Hart, Ross; Melvin, Thomas; Parrish, Michael; Schawinski, Kevin; Smethurst, R. J.; Smith, Arfon M.
2017-02-01
We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour-composite images. Images in GZH were selected from various publicly released Hubble Space Telescope legacy programmes conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to z ˜ 1. The bulk of the sample is selected to have mI814W < 23.5, but goes as faint as mI814W < 26.8 for deep images combined over five epochs. The median redshift of the combined samples is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.
Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less
Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.; ...
2015-10-14
Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less
Kuze, Noko; Malim, Titol Peter; Kohshima, Shiro
2005-04-01
Orangutans display remarkable developmental changes and sexual differences in facial morphology, such as the flanges or cheek-pads that develop only on the face of dominant adult males. These changes suggest that facial morphology is an important factor in visual communication. However, developmental changes in facial morphology have not been examined in detail. We studied developmental changes in the facial morphology of the Borneo orangutan (Pongo pygmaeus) by observing 79 individuals of various ages living in the Sepilok Orangutan Rehabilitation Centre (SORC) in Malaysia and in Japanese zoos. We also analyzed photographs of one captive male that were taken over a period of more than 16 years. There were clear morphological changes that occurred with growth, and we identified previously unreported sexual and developmental differences in facial morphology. Light-colored skin around the eyes and mouth is most prominent in animals younger than 3 years, and rapidly decreases in area through the age of approximately 7 years. At the same time, the scattered, erect hairs on the head (infant hair) become thick, dense hairs lying on the head (adult hair) in both sexes. The results suggest that these features are infant signals, and that adult signals may include darkened face color, adult hair, whiskers, and a beard, which begin to develop after the age of approximately 7 years in both sexes. In females, the eyelids remain white even after 10 years, and turn black at around the age of 20; in males, the eyelids turn black before the age of 10. The whiskers and beards of adults are thicker in males than in females, and are fully developed before the age of 10 in males, while they begin to develop in females only after approximately 20 years. White eyelids and undeveloped whiskers and beards may be visual signals that are indicative of young adult females. Our results also show that the facial morphology of the unflanged male is similar to that of the adult female, although it has also been pointed out that unflanged males resemble younger individuals. Copyright 2005 Wiley-Liss, Inc
High-resolution fluorescence microscopy of myelin without exogenous probes.
Christensen, Pia Crone; Brideau, Craig; Poon, Kelvin W C; Döring, Axinia; Yong, V Wee; Stys, Peter K
2014-02-15
Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required. © 2013.
Corfield, Jeremy R.; Gsell, Anna C.; Brunton, Dianne; Heesy, Christopher P.; Hall, Margaret I.; Acosta, Monica L.; Iwaniuk, Andrew N.
2011-01-01
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds. PMID:21860663
Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS
NASA Astrophysics Data System (ADS)
Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy
2017-02-01
We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.
NASA Astrophysics Data System (ADS)
Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn
2017-11-01
Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon
2014-03-01
Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
[Three-dimensional morphological modeling and visualization of wheat root system].
Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan
2011-01-01
Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.
CTViz: A tool for the visualization of transport in nanocomposites.
Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A
2016-05-01
A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.
Detailed Quantitative Classifications of Galaxy Morphology
NASA Astrophysics Data System (ADS)
Nair, Preethi
2018-01-01
Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.
Galaxy Zoo: Infrared and Optical Morphology
NASA Astrophysics Data System (ADS)
Carla Shanahan, Jesse; Lintott, Chris; Zoo, Galaxy
2018-01-01
We present the detailed, visual morphologies of approximately 60,000 galaxies observed by the UKIRT Infrared Deep Sky Survey and then classified by participants in the Galaxy Zoo project. Our sample is composed entirely of nearby objects with redshifts of z ≤ 0.3, which enables us to robustly analyze their morphological characteristics including smoothness, bulge properties, spiral structure, and evidence of bars or rings. The determination of these features is made via a consensus-based analysis of the Galaxy Zoo project data in which inconsistent and outlying classifications are statistically down-weighted. We then compare these classifications of infrared morphology to the objects’ optical classifications in the Galaxy Zoo 2 release (Willett et al. 2013). It is already known that morphology is an effective tool for uncovering a galaxy’s dynamical past, and previous studies have shown significant correlations with physical characteristics such as stellar mass distribution and star formation history. We show that majority of the sample has agreement or expected differences between the optical and infrared classifications, but also present a preliminary analysis of a subsample of objects with striking discrepancies.
Marchi, S; Bonora, M; Patergnani, S; Giorgi, C; Pinton, P
2017-01-01
It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy. © 2017 Elsevier Inc. All rights reserved.
Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows
Matsui, Hiroshi; Hunt, Gavin R.; Oberhofer, Katja; Ogihara, Naomichi; McGowan, Kevin J.; Mithraratne, Kumar; Yamasaki, Takeshi; Gray, Russell D.; Izawa, Ei-Ichi
2016-01-01
Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow’s bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow’s innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills. PMID:26955788
Munchausen Syndrome as Dermatitis Simulata
Hariharasubramony, Ambika; Chankramath, Sujatha; Srinivasa, Seema
2012-01-01
Psychiatric comorbidity is associated with many dermatological disorders. It may be the cause for skin problem or may be the effect of a skin problem as skin being a visual organ. A 28-year-old female presented with multiple red lesions on the skin with unusual morphology and was diagnosed as dermatitis simulata. She gave history of multiple episodes of similar illnesses with admissions in various hospitals and being evaluated and dropping off in between treatments. After detailed psychological evaluation, patient was diagnosed as case of Munchausen syndrome. PMID:22661819
Turlure, Camille; Schtickzelle, Nicolas; Van Dyck, Hans; Seymoure, Brett; Rutowski, Ronald
2016-01-01
Understanding dispersal is of prime importance in conservation and population biology. Individual traits related to motion and navigation during dispersal may differ: (1) among species differing in habitat distribution, which in turn, may lead to interspecific differences in the potential for and costs of dispersal, (2) among populations of a species that experiences different levels of habitat fragmentation; (3) among individuals differing in their dispersal strategy and (4) between the sexes due to sexual differences in behaviour and dispersal tendencies. In butterflies, the visual system plays a central role in dispersal, but exactly how the visual system is related to dispersal has received far less attention than flight morphology. We studied two butterfly species to explore the relationships between flight and eye morphology, and dispersal. We predicted interspecific, intraspecific and intersexual differences for both flight and eye morphology relative to i) species-specific habitat distribution, ii) variation in dispersal strategy within each species and iii) behavioural differences between sexes. However, we did not investigate for potential population differences. We found: (1) sexual differences that presumably reflect different demands on both male and female visual and flight systems, (2) a higher wing loading (i.e. a proxy for flight performance), larger eyes and larger facet sizes in the frontal and lateral region of the eye (i.e. better navigation capacities) in the species inhabiting naturally fragmented habitat compared to the species inhabiting rather continuous habitat, and (3) larger facets in the frontal region in dispersers compared to residents within a species. Hence, dispersers may have similar locomotory capacity but potentially better navigation capacity. Dispersal ecology and evolution have attracted much attention, but there are still significant gaps in our understanding of the mechanisms of dispersal. Unfortunately, for many species we lack detailed information on the role of behavioural, morphological and physiological traits for dispersal. Our novel study supports the existence of inter- and intra-specific evolutionary responses in both motion and navigation capacities (i.e. flight and eye morphology) linked to dispersal.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianzhong; Cao, Yong; Wu, Tianding
2014-10-15
Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord wasmore » clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.« less
Magnetic resonance imaging differential diagnosis of brainstem lesions in children
Quattrocchi, Carlo Cosimo; Errante, Yuri; Rossi Espagnet, Maria Camilla; Galassi, Stefania; Della Sala, Sabino Walter; Bernardi, Bruno; Fariello, Giuseppe; Longo, Daniela
2016-01-01
Differential diagnosis of brainstem lesions, either isolated or in association with cerebellar and supra-tentorial lesions, can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential, especially in the pediatric population. Magnetic resonance imaging (MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and, particularly, the brainstem. High magnetic static field MRI allows detailed visualization of the morphology, signal intensity and metabolic content of the brainstem nuclei, together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular, toxico-metabolic, infective-inflammatory, degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions, the brainstem vascularization territories, gray and white matter distribution and tissue selective vulnerability. PMID:26834941
Visualizing the geology of lake trout spawning sites; northern Lake Michigan
Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen
2006-01-01
Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island Shoal, Gull Island Reef, and Dahlia Shoal are shown on sheet 2. Additional information, bathymetric data, imagery, and metadata are available online at http://geopubs.wr.usgs.gov/open-file/of03-120/.
Visualizing the geology of lake trout spawning sites, northern Lake Michigan
Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen
2004-01-01
Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island Shoal, Gull Island Reef, and Dahlia Shoal are shown on sheet 2. Additional information, bathymetric data, imagery, and metadata are available online at http://geopubs.wr.usgs.gov/open-file/of03-120/.
Early Decomposition in Visual Word Recognition: Dissociating Morphology, Form, and Meaning
ERIC Educational Resources Information Center
Marslen-Wilson, William D.; Bozic, Mirjana; Randall, Billi
2008-01-01
The role of morphological, semantic, and form-based factors in the early stages of visual word recognition was investigated across different SOAs in a masked priming paradigm, focusing on English derivational morphology. In a first set of experiments, stimulus pairs co-varying in morphological decomposability and in semantic and orthographic…
Campbell, Julia; Sharma, Anu
2016-01-01
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.
Campbell, Julia; Sharma, Anu
2016-01-01
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738
Parekh, Ruchi; Armañanzas, Rubén; Ascoli, Giorgio A
2015-04-01
Digital reconstructions of axonal and dendritic arbors provide a powerful representation of neuronal morphology in formats amenable to quantitative analysis, computational modeling, and data mining. Reconstructed files, however, require adequate metadata to identify the appropriate animal species, developmental stage, brain region, and neuron type. Moreover, experimental details about tissue processing, neurite visualization and microscopic imaging are essential to assess the information content of digital morphologies. Typical morphological reconstructions only partially capture the underlying biological reality. Tracings are often limited to certain domains (e.g., dendrites and not axons), may be incomplete due to tissue sectioning, imperfect staining, and limited imaging resolution, or can disregard aspects irrelevant to their specific scientific focus (such as branch thickness or depth). Gauging these factors is critical in subsequent data reuse and comparison. NeuroMorpho.Org is a central repository of reconstructions from many laboratories and experimental conditions. Here, we introduce substantial additions to the existing metadata annotation aimed to describe the completeness of the reconstructed neurons in NeuroMorpho.Org. These expanded metadata form a suitable basis for effective description of neuromorphological data.
Image Analysis of DNA Fiber and Nucleus in Plants.
Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi
2016-01-01
Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.
Porro, Laura B; Witmer, Lawrence M; Barrett, Paul M
2015-01-01
Several skulls of the ornithischian dinosaur Lesothosaurus diagnosticus (Lower Jurassic, southern Africa) are known, but all are either incomplete, deformed, or incompletely prepared. This has hampered attempts to provide a comprehensive description of skull osteology in this crucial early dinosaurian taxon. Using visualization software, computed tomographic scans of the Lesothosaurus syntypes were digitally segmented to remove matrix, and identify and separate individual cranial and mandibular bones, revealing new anatomical details such as sutural morphology and the presence of several previously undescribed elements. Together with visual inspection of exposed skull bones, these CT data enable a complete description of skull anatomy in this taxon. Comparisons with our new data suggest that two specimens previously identified as Lesothosaurus sp. (MNHN LES 17 and MNHN LES 18) probably represent additional individuals of Lesothosaurus diagnosticus.
Morphological Processing during Visual Word Recognition in Hebrew as a First and a Second Language
ERIC Educational Resources Information Center
Norman, Tal; Degani, Tamar; Peleg, Orna
2017-01-01
The present study examined whether sublexical morphological processing takes place during visual word-recognition in Hebrew, and whether morphological decomposition of written words depends on lexical activation of the complete word. Furthermore, it examined whether morphological processing is similar when reading Hebrew as a first language (L1)…
Zhu, Ying
2016-01-01
Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157
Comparing the Organs and Vasculature of the Head and Neck in Five Murine Species
JAE KIM, MIN; YEON KIM, YOO; REN CHAO, JANET; SANG PARK, HAE; CHANG, JIWON; OH, DAWOON; JUN LEE, JAE; CHUN KANG, TAE; SUH, JUN-GYO; HO LEE, JUN
2017-01-01
Background/Aim: The purpose of the present study was to delineate the cervical and facial vascular and associated anatomy in five murine species, and compare them for optimal use in research studies focused on understanding the pathology and treatment of diseases in humans. Materials and Methods: The specific adult male animals examined were mice (C57BL/6J), rats (F344), mongolian gerbils (Merionesunguiculatus), hamsters (Syrian), and guinea pigs (Hartley). To stain the vasculature and organs, of the face and neck, each animal was systemically perfused using the vital stain, Trypan Blue. Following this step, the detailed anatomy of the head and neck could be easily visualized in all species. Results: Unique morphological characteristics were demonstrated by comparing the five species, including symmetry of the common carotid origin bilaterally in the Mongolian Gerbil, a large submandibular gland in the hamster and an enlarged buccal branch in the Guinea Pig. In reviewing the anatomical details, this staining technique proves superior for direct surgical visualization and identification. Conclusion: The anatomical details provided through these five species atlas will help experimental researchers in the future to select the most appropriate animal model for specific laboratory studies aimed to improve our understanding and treatment of diseases in patients. PMID:28882952
NASA Astrophysics Data System (ADS)
Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert
2008-08-01
Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.
NASA Astrophysics Data System (ADS)
Pires, H.; Martínez Rubio, J.; Elorza Arana, A.
2015-02-01
The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM calculations. By this, we wish to benefit from the rendering capabilities of RTI-viewer and from its intuitive graphic interface. At the same time, virtual PTM is a way of applying this to areas barred to conventional PTM, like in the case presented of an entire roman city occupying a plateau of several sq. km. The results of this research project are presented and discussed using the two case-studies aforementioned, a Latin inscription from a Roman sanctuary in the north of Portugal and a engraved panel with zoomorphic motifs from a rock art site in the north border of Portugal.
NASA Astrophysics Data System (ADS)
Hu, Z. W.; Winarski, R. P.
2016-09-01
Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
NASA Astrophysics Data System (ADS)
Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei
2017-07-01
Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.
Neural Correlates of Morphological Decomposition in a Morphologically Rich Language: An fMRI Study
ERIC Educational Resources Information Center
Lehtonen, Minna; Vorobyev, Victor A.; Hugdahl, Kenneth; Tuokkola, Terhi; Laine, Matti
2006-01-01
By employing visual lexical decision and functional MRI, we studied the neural correlates of morphological decomposition in a highly inflected language (Finnish) where most inflected noun forms elicit a consistent processing cost during word recognition. This behavioral effect could reflect suffix stripping at the visual word form level and/or…
A Visual Galaxy Classification Interface and its Classroom Application
NASA Astrophysics Data System (ADS)
Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H
2014-06-01
Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.
The Impact History of Vesta: New Views from the Dawn Mission
NASA Technical Reports Server (NTRS)
OBrien, D. P.; Marchi, S.; Schenk, P.; Mittlefehldt, D. W.; Jaumann, R.; Ammannito, E.; Buczkowski, D. L.; DeSanctis, M. C.; Filacchione, G.; Gaskell, R.;
2011-01-01
The Dawn mission has completed its Survey and High-Altitude Mapping Orbit (HAMO) phases at Vesta, resulting in 60-70 meter per pixel imaging, high-resolution image-derived topography, and visual and infrared spectral data covering up to approx.50 degrees north latitude (the north pole was in shadow during these mission phases). These data have provided unprecedented views of the south polar impact structure first detected in HST imaging [1], now named Rheasilvia, and in addition hint at the existence of a population of ancient basins. Smaller craters are seen at all stages from fresh to highly-eroded, with some exposing atypically bright or dark material. The morphology of some craters has been strongly influenced by regional slope. Detailed studies of crater morphology are underway. We have begun making crater counts to constrain the relative ages of different regions of the surface, and are working towards developing an absolute cratering chronology for Vesta's surface.
ERIC Educational Resources Information Center
Kensinger, Elizabeth A.; Schacter, Daniel L.
2007-01-01
Memories can be retrieved with varied amounts of visual detail, and the emotional content of information can influence the likelihood that visual detail is remembered. In the present fMRI experiment (conducted with 19 adults scanned using a 3T magnet), we examined the neural processes that correspond with recognition of the visual details of…
Changes in Intraocular Straylight and Visual Acuity with Age in Cataracts of Different Morphologies
Reus, Nicolaas J.; van den Berg, Thomas J. T. P.
2017-01-01
Purpose To investigate the significance of difference in straylight of cataract eyes with different morphologies, as a function of age and visual acuity. Methods A literature review to collect relevant papers on straylight, age, and visual acuity of three common cataract morphologies leads to including five eligible papers for the analysis. The effect of morphology was incorporated to categorize straylight dependency on the two variables. We also determined the amount of progression in a cataract group using a control group. Results The mean straylight was 1.22 log units ± 0.20 (SD) in nuclear (592 eyes), 1.26 log units ± 0.23 in cortical (776 eyes), and 1.48 log units ± 0.34 in posterior subcapsular (75 eyes) groups. The slope of straylight-age relationship was 0.009 (R 2 = 0.20) in nuclear, 0.012 (R 2 = 0.22) in cortical, and 0.014 (R 2 = 0.11) in posterior subcapsular groups. The slope of straylight-visual acuity relationship was 0.62 (R 2 = 0.25) in nuclear, 0.33 (R 2 = 0.13) in cortical, and 1.03 (R 2 = 0.34) in posterior subcapsular groups. Conclusion Considering morphology of cataract provides a better insight in assessing visual functions of cataract eyes, in posterior subcapsular cataract, particularly, in spite of notable elevated straylight, visual acuity might not manifest severe loss. PMID:28831307
Porro, Laura B.; Rayfield, Emily J.; Clack, Jennifer A.
2015-01-01
The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals. PMID:25760343
Falk, Torsten; Strazdas, Lori A.; Borders, Rebecca S.; Kilani, Ramsey K.; Yool, Andrea J.
2010-01-01
High-density cultures of mammalian neurons offer a model system for studies of brain development, but the morphological features of individual neurons is difficult to ascertain. We show that a herpes virus vector expressing a bioluminescent protein allows detailed morphometric analyses of living neurons in complex culture environments. Expression of enhanced green fluorescent protein (eGFP) was constitutively driven in neurons using the herpes simplex virus amplicon system. This system allowed us to make novel observations regarding development in high-density cultures from rat hippocampus and cerebellum. After the phase of initial neurite outgrowth, maturing neurons continue to show rapid remodeling of the neurite branches (0.79 ± 0.11 μm/h per neurite; mean ± SEM, n=8), and displacement of the soma within the neurite arbor (1.35 ± 0.74 μm/h). These results demonstrate that a substantial capacity for morphological plasticity persists in maturing mammalian CNS neurons after cessation of net neurite outgrowth in early development. PMID:20811504
NASA Astrophysics Data System (ADS)
Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.
2016-03-01
Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.
Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.
2005-01-01
Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722
Hezel, Marcus; Ebrahimi, Fahim; Koch, Marco; Dehghani, Faramarz
2012-10-01
Immunohistochemical visualization of antigens in specimen has evolved to an indispensable technique in biomedical research for investigations of cell morphology and pathology both in bright field and fluorescence microscopy. While there are couple of staining methods that reveal entire cytoarchitecture in bright field microscopy such as Nissl or hemalaun-eosin, there are still limitations in visualizations of cytoarchitecture in fluorescence microscopy. The present study reports a simple staining method that provides the required illustration of cell allocations and cellular composition in fluorescence microscopy in adult and in developing rodent central nervous system using the fluorophore propidium iodide (PI, 5μg/mL). PI is a well-accepted marker for degenerating cells when applied prior to fixation (pre-fixation PI staining). Here, PI was added to the sections after the fixation (post-fixation PI staining). This revised labeling procedure led to similar cytoarchitectural staining patterns in fluorescence microscopy as observed with hemalaun in bright field microscopy. This finding was proven in organotypic hippocampal slice cultures (OHSC) and brain sections obtained from different postnatal developmental stages. Excitotoxically lesioned OHSC subjected to pre-fixation PI staining merely showed brightly labeled condensed nuclei of degenerating neurons. In contrast, post-fixation PI staining additionally revealed extensive labeling of neuronal cell bodies and glial cells within the OHSC, thus allowing visualization of stratification of neuronal layers and cell morphology. Furthermore, post-fixation PI staining was combined with NeuN, calbindin, calretinin, glial fibrillary acidic protein or Griffonia simplicifolia isolectin B4 (IB(4)) in post natal (p1 and p9) and adult rats. In early post-natal brain sections almost all mentioned cellular markers led to an incomplete staining of the native cell organization and resulted in an inaccurate estimation of cell morphology when compared to adult brains. In contrast, post-fixation PI staining allowed investigation of the whole cytoarchitecture independent of the developmental stage. Taken together, post-fixation PI staining provides a detailed insight in the morphology of both developing and adult brain tissues in fluorescence microscopy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mychasiuk, Richelle; Gibb, Robbin; Kolb, Bryan
2013-01-01
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity. PMID:24121525
Akiyama, Yoshihiro B; Iseri, Erina; Kataoka, Tomoya; Tanaka, Makiko; Katsukoshi, Kiyonori; Moki, Hirotada; Naito, Ryoji; Hem, Ramrav; Okada, Tomonari
2017-02-15
In the present study, we determined the common morphological characteristics of the feces of Mytilus galloprovincialis to develop a method for visually discriminating the feces of this mussel in deposited materials. This method can be used to assess the effect of mussel feces on benthic environments. The accuracy of visual morphology-based discrimination of mussel feces in deposited materials was confirmed by DNA analysis. Eighty-nine percent of mussel feces shared five common morphological characteristics. Of the 372 animal species investigated, only four species shared all five of these characteristics. More than 96% of the samples were visually identified as M. galloprovincialis feces on the basis of morphology of the particles containing the appropriate mitochondrial DNA. These results suggest that mussel feces can be discriminated with high accuracy on the basis of their morphological characteristics. Thus, our method can be used to quantitatively assess the effect of mussel feces on local benthic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.
2016-03-01
In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.
A topological coordinate system for the diamond cubic grid.
Čomić, Lidija; Nagy, Benedek
2016-09-01
Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.
Quantification of transendothelial migration using three-dimensional confocal microscopy.
Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J
2011-01-01
Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.
Reznick, Julia; Friedmann, Naama
2015-01-01
This study examined whether and how the morphological structure of written words affects reading in word-based neglect dyslexia (neglexia), and what can be learned about morphological decomposition in reading from the effect of morphology on neglexia. The oral reading of 7 Hebrew-speaking participants with acquired neglexia at the word level—6 with left neglexia and 1 with right neglexia—was evaluated. The main finding was that the morphological role of the letters on the neglected side of the word affected neglect errors: When an affix appeared on the neglected side, it was neglected significantly more often than when the neglected side was part of the root; root letters on the neglected side were never omitted, whereas affixes were. Perceptual effects of length and final letter form were found for words with an affix on the neglected side, but not for words in which a root letter appeared in the neglected side. Semantic and lexical factors did not affect the participants' reading and error pattern, and neglect errors did not preserve the morpho-lexical characteristics of the target words. These findings indicate that an early morphological decomposition of words to their root and affixes occurs before access to the lexicon and to semantics, at the orthographic-visual analysis stage, and that the effects did not result from lexical feedback. The same effects of morphological structure on reading were manifested by the participants with left- and right-sided neglexia. Since neglexia is a deficit at the orthographic-visual analysis level, the effect of morphology on reading patterns in neglexia further supports that morphological decomposition occurs in the orthographic-visual analysis stage, prelexically, and that the search for the three letters of the root in Hebrew is a trigger for attention shift in neglexia. PMID:26528159
NASA Astrophysics Data System (ADS)
Verhoeven, G. J.
2017-08-01
Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.
Butterfly scale form birefringence related to photonics.
Vidal, Benedicto de Campos
2011-12-01
Wings of the butterflies Morpho aega and Eryphanis reevesi were investigated in the present study by fluorescence, polarization and infra-red (IR) spectroscopic microscopy with the aim of identifying the oriented organization of their components and morphological details of their substructures. These wings were found to exhibit a strong iridescent glow depending on the angle of the incident light; their isolated scales exhibited blue fluorescence. Parallel columns or ridges extend from the pad and sockets to the dented apical scale's region, and they are perpendicular to the ribs that connect the columnar ridges. The scales reveal linear dichroism (LD) visually, when attached on the wing matrix or isolated on slides. The LD was inferred to be textural and positive and was also demonstrated with IR microscopy. The scale columns and ribs are birefringent structures. Images obtained before and after birefringence compensation allowed a detailed study of the scale morphology. Form and intrinsic birefringence findings here estimated and discussed in the context of nonlinear optical properties, bring to the level of morphology the state of molecular order and periodicity of the wing structure. FT-IR absorption peaks were found at wavenumbers which correspond to symmetric and asymmetric (-N-H) stretching, symmetric (-C-H) stretching, amide I (-CO) stretching, amide II(-N-H), and β-linking. Based on LD results obtained with polarized IR the molecular vibrations of the wing scales of M. aega and E. reevesi are assumed to be oriented with respect to the long axis of these structures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Schernthaner, Christiana; Danmayr, Franz; Daburger, Apollonia; Eichinger, Jörg; Hammerer, Matthias; Strohmer, Bernhard
2013-04-01
Atrial fibrosis or fatty deposition is known to increase the propensity for the development of atrial fibrillation (AF). Apart from the pulmonic veins, the interatrial septum (IAS) might play a role in the maintenance of AF. In contrast to left atrial anatomy and adjacent veins, the IAS cannot be visualized in detail with computed tomography. Thus, preprocedural transesophageal echocardiography (TEE) may provide important morphologic information beyond exclusion from atrial thrombi. The study comprised 108 consecutive patients (mean age 60 ± 11 years; 98 men). AF was paroxysmal in 91 (84%) and persistent in 17 (16%) patients. We investigated the morphological characteristics of the IAS by TEE in patients who underwent radiofrequency ablation of AF. The IAS was structurally abnormal in 46 (43%) patients, showing the following echocardiograhic findings: atrial septal hypermobility or aneurysm (n = 27) associated with a patent foramen ovale (PFO) (n = 11) or with a small atrial septal defect (ASD) (n = 2), a septal flap associated with a PFO or an ASD (n = 8), and an abnormally thickened IAS (n = 12). A thrombus in the left atrial appendage was discovered in only 2 (2%) patients. A structurally abnormal IAS was diagnosed in nearly half of the patients undergoing ablation therapy for AF. The information obtained by TEE is mandatory to exclude left atrial thrombi prior the ablation procedure. Moreover, detailed knowledge of morphologic characteristics of the IAS facilitates an optimized and safe performance of the transseptal puncture using long sheaths with large diameters. © 2012, Wiley Periodicals, Inc.
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation
Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina
2016-01-01
Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766
Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie Renee
The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
Evidence for Early Morphological Decomposition in Visual Word Recognition
ERIC Educational Resources Information Center
Solomyak, Olla; Marantz, Alec
2010-01-01
We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…
Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging
Sbarbati, Andrea; Pizzini, Francesca; Fabene, Paolo F; Nicolato, Elena; Marzola, Pasquina; Calderan, Laura; Simonati, Alessandro; Longo, Laura; Osculati, Antonio; Beltramello, Alberto
2004-01-01
Seven human fetuses of crown/rump length corresponding to gestational ages ranging from the 12th to the 16th week were studied using a paradigm based on three-dimensional reconstruction of the brain obtained by magnetic resonance imaging (MRI). The aim of the study was to evaluate brain morphology in situ and to describe developmental dynamics during an important period of fetal morphogenesis. Three-dimensional MRI showed the increasing degree of maturation of the brains; fronto-occipital distance, bitemporal distance and occipital angle were examined in all the fetuses. The data were interpreted by correlation with the internal structure as visualized using high-spatial-resolution MRI, acquired using a 4.7-T field intensity magnet with a gradient power of 20 G cm−1. The spatial resolution was sufficient for a detailed detection of five layers, and the contrast was optimized using sequences with different degrees of T1 and T2 weighting. Using the latter, it was possible to visualize the subplate and marginal zones. The cortical thickness was mapped on to the hemispheric surface, describing the thickness gradient from the insular cortex to the periphery of the hemispheres. The study demonstrates the utility of MRI for studying brain development. The method provides a quantitative profiling of the brain, which allows the calculation of important morphological parameters, and it provides informative regarding transient features of the developing brain. PMID:15198688
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.; CANDELS Collaboration
2017-01-01
The premiere HST/WFC3 Treasury program CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) has produced detailed visual classifications for statistically useful samples of bright (H>24.5mag) galaxies during and after z~2, the epoch of peak galaxy development. By averaging multiple classifications per galaxy that encompass spheroid-only, bulge-dominated, disk-dominated, disk-only, and irregular/peculiar appearances at visible rest-frame wavelengths, we find that 90% of massive (>1e10 Msun) galaxies at 0.6
Jacobs, Bob; Harland, Tessa; Kennedy, Deborah; Schall, Matthew; Wicinski, Bridget; Butti, Camilla; Hof, Patrick R; Sherwood, Chet C; Manger, Paul R
2015-09-01
The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.
Morphological effects in children word reading: a priming study in fourth graders.
Casalis, Séverine; Dusautoir, Marion; Colé, Pascale; Ducrot, Stéphanie
2009-09-01
A growing corpus of evidence suggests that morphology could play a role in reading acquisition, and that young readers could be sensitive to the morphemic structure of written words. In the present experiment, we examined whether and when morphological information is activated in word recognition. French fourth graders made visual lexical decisions to derived words preceded by primes sharing either a morphological or an orthographic relationship with the target. Results showed significant and equivalent facilitation priming effects in cases of morphologically and orthographically related primes at the shortest prime duration, and a significant facilitation priming effect in the case of only morphologically related primes at the longer prime duration. Thus, these results strongly suggest that a morphological level is involved in children's visual word recognition, although it is not distinct from the formal one at an early stage of word processing.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw
1990-01-01
Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.
Small maritime target detection through false color fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Wu, Tirui
2008-04-01
We present an algorithm that produces a fused false color representation of a combined multiband IR and visual imaging system for maritime applications. Multispectral IR imaging techniques are increasingly deployed in maritime operations, to detect floating mines or to find small dinghies and swimmers during search and rescue operations. However, maritime backgrounds usually contain a large amount of clutter that severely hampers the detection of small targets. Our new algorithm deploys the correlation between the target signatures in two different IR frequency bands (3-5 and 8-12 μm) to construct a fused IR image with a reduced amount of clutter. The fused IR image is then combined with a visual image in a false color RGB representation for display to a human operator. The algorithm works as follows. First, both individual IR bands are filtered with a morphological opening top-hat transform to extract small details. Second, a common image is extracted from the two filtered IR bands, and assigned to the red channel of an RGB image. Regions of interest that appear in both IR bands remain in this common image, while most uncorrelated noise details are filtered out. Third, the visual band is assigned to the green channel and, after multiplication with a constant (typically 1.6) also to the blue channel. Fourth, the brightness and colors of this intermediate false color image are renormalized by adjusting its first order statistics to those of a representative reference scene. The result of these four steps is a fused color image, with naturalistic colors (bluish sky and grayish water), in which small targets are clearly visible.
Tanaka, Nobuaki K.; Dye, Louis; Stopfer, Mark
2010-01-01
Light and electron microscopy (LM and EM) both offer important advantages for characterizing neuronal circuitry in intact brains: LM can reveal the general patterns neurons trace between brain areas, and EM can confirm synaptic connections between identified neurons within a small area. In a few species, genetic labeling with fluorescent proteins has been used with LM to visualize many kinds of neurons and to analyze their morphologies and projection patterns. However, combining these large-scale patterns with the fine detail available in EM analysis has been a technical challenge. To analyze the synaptic connectivity of neurons expressing fluorescent markers with EM, we developed a dual-labeling method for use with pre-embedded brains. In Drosophila expressing genetic labels and also injected with markers we visualized synaptic connections among two populations of neurons in the AL, one of which has been shown to mediate a specific function, odor evoked neural oscillation. PMID:21074556
A quantitative framework for flower phenotyping in cultivated carnation (Dianthus caryophyllus L.).
Chacón, Borja; Ballester, Roberto; Birlanga, Virginia; Rolland-Lagan, Anne-Gaëlle; Pérez-Pérez, José Manuel
2013-01-01
Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs) accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value.
NASA Astrophysics Data System (ADS)
Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.
2018-02-01
The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.
Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka
2015-01-01
Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.
Unusual Surprises in Glaucoma Filtering Surgeries: Lessons Learned and Review of Literature.
Rao, Aparna; Padhy, Debananda; Roy, Avik Kumar; Senthil, Sirisha
2018-01-01
To describe an unusual series of complications after glaucoma filtering surgeries with their clinical findings and outcome after tailored non-conventional modes of therapy. Eighteen patients who underwent re-interventions (medical or surgical) after glaucoma filtering surgeries during the period at two tertiary centers, excluding those that required conventional modes of treatment (medical control or re-trabeculectomy, simple wound closure for traumatic wound dehiscence, bleb revision or needling, laser iridotomy), were included. Relevant clinical details with intraoperative videos, intraoperative or postoperative problems, and images with course after re-intervention were retrieved from the hospital database. Clinical details which helped in clinching diagnosis and cause for problems and course after intervention with final vision and intraocular pressure were evaluated. Six of 18 eyes required surgical management for an unusual course of events after an uneventful filtering surgery. Bleb morphology and close follow-up of the conjunctiva, in addition to intraocular pressure (IOP) and anterior chamber (AC) configuration, helped diagnose possible aetiology and appropriate tailored management. All patients had good IOP and visual outcome in all except one with macular scar status after retinal detachment surgery. Assessment of the bleb morphology in the postoperative course coupled with monitoring of the conjunctival wound are essential to conventional monitoring of IOP and anterior chamber configuration to arrive at appropriate management for rare unusual events after glaucoma surgery.
Hoffmann, K T; Anders, N; Hosten, N; Holschbach, A; Walkow, T; Sörensen, R; Hartmann, C; Felix, R
1998-08-01
Both dacryocystography and dacryoscintigraphy are well established in the evaluation of stenoses of the lacrimal drainage system. They provide limited information about the ductal anatomy itself and about periductal structures. MR imaging was evaluated for its capability to directly visualize the lacrimal drainage system in detail and simultaneously provide functional characterization of dacryostenosis. Twenty-seven lacrimal drainage systems of 23 patients suffering from epiphora were examined in an MR unit before and after conjunctival and intravenous application of Gd-DTPA using a surface coil. Dacryostenosis was found in 23 of 27 lacrimal systems. Stenoses were localized to the canalicular (n = 3), saccular (n = 8), and ductal (n = 12) level, and were classified as stenosis or occlusion. MR imaging with conjunctival contrast application allows within one examination both detailed morphological and functional assessment of the lacrimal drainage system with depiction of surrounding structures. Limitations arise mainly from demands on technical and patient-related preconditions.
Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS.
Cai, Lesi; Xia, Meng-Chan; Wang, Zhaoying; Zhao, Ya-Bin; Li, Zhanping; Zhang, Sichun; Zhang, Xinrong
2017-08-15
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used in imaging of small molecules (<500 Da) in fingerprints, such as gunshot residues and illicit drugs. However, identifying and mapping relatively high mass molecules are quite difficult owing to insufficient ion yield of their molecular ions. In this report, graphene oxide (GO)-enhanced TOF-SIMS was used to detect and image relatively high mass molecules such as poison, alkaloids (>600 Da) and controlled drugs, and antibiotics (>700 Da) in fingerprints. Detail features of fingerprints such as the number and distribution of sweat pores in a ridge and even the delicate morphology of one pore were clearly revealed in SIMS images of relatively high mass molecules. The detail features combining with identified chemical composition were sufficient to establish a human identity and link the suspect to a crime scene. The wide detectable mass range and high spatial resolution make GO-enhanced TOF-SIMS a promising tool in accurate and fast analysis of fingerprints, especially in fragmental fingerprint analysis.
Zhao, Ming-liang; Liu, Guo-long; Sui, Jian-feng; Ruan, Huai-zhen; Xiong, Ying
2007-05-01
To develop simple but reliable intracellular labelling method for high-resolution visualization of the fine structure of single neurons in brain slice with thickness of 500 microm. Biocytin was introduced into neurons in 500 microm-thickness brain slices while blind whole cell recording. Following processed for histochemistry using the avidin-biotin-complex method, stained slices were mounted in glycerol on special glass slides. Labelled cells were digital photomicrographed every 30 microm and reconstructed with Adobe Photoshop software. After histochemistry, limited background staining was produced. The resolution was so high that fine structure, including branching, termination of individual axons and even spines of neurons could be identified in exquisite detail with optic microscope. With the help of software, the neurons of interest could be reconstructed from a stack of photomicrographs. The modified method provides an easy and reliable approach to revealing the detailed morphological properties of single neurons in 500 microm-thickness brain slice. Without requisition of special equipment, it is suited to be broadly applied.
Large Terrain Continuous Level of Detail 3D Visualization Tool
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan
2012-01-01
This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.
Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan
2017-10-01
This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.
Devil in the details? Developmental dyslexia and visual long-term memory for details.
Huestegge, Lynn; Rohrßen, Julia; van Ermingen-Marbach, Muna; Pape-Neumann, Julia; Heim, Stefan
2014-01-01
Cognitive theories on causes of developmental dyslexia can be divided into language-specific and general accounts. While the former assume that words are special in that associated processing problems are rooted in language-related cognition (e.g., phonology) deficits, the latter propose that dyslexia is rather rooted in a general impairment of cognitive (e.g., visual and/or auditory) processing streams. In the present study, we examined to what extent dyslexia (typically characterized by poor orthographic representations) may be associated with a general deficit in visual long-term memory (LTM) for details. We compared object- and detail-related visual LTM performance (and phonological skills) between dyslexic primary school children and IQ-, age-, and gender-matched controls. The results revealed that while the overall amount of LTM errors was comparable between groups, dyslexic children exhibited a greater portion of detail-related errors. The results suggest that not only phonological, but also general visual resolution deficits in LTM may play an important role in developmental dyslexia.
Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F
2005-01-01
Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.
Klijn, Marieke E; Hubbuch, Jürgen
2018-04-27
Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.
Dissection and Flat-mounting of the Threespine Stickleback Branchial Skeleton
Ellis, Nicholas A.; Miller, Craig T.
2016-01-01
The posterior pharyngeal segments of the vertebrate head give rise to the branchial skeleton, the primary site of food processing in fish. The morphology of the fish branchial skeleton is matched to a species' diet. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a model system to study the genetic and developmental basis of evolved differences in a variety of traits. Marine populations of sticklebacks have repeatedly colonized countless new freshwater lakes and creeks. Adaptation to the new diet in these freshwater environments likely underlies a series of craniofacial changes that have evolved repeatedly in independently derived freshwater populations. These include three major patterning changes to the branchial skeleton: reductions in the number and length of gill raker bones, increases in pharyngeal tooth number, and increased branchial bone lengths. Here we describe a detailed protocol to dissect and flat-mount the internal branchial skeleton in threespine stickleback fish. Dissection of the entire three-dimensional branchial skeleton and mounting it flat into a largely two-dimensional prep allows for the easy visualization and quantification of branchial skeleton morphology. This dissection method is inexpensive, fast, relatively easy, and applicable to a wide variety of fish species. In sticklebacks, this efficient method allows the quantification of skeletal morphology in genetic crosses to map genomic regions controlling craniofacial patterning. PMID:27213248
Dissection and Flat-mounting of the Threespine Stickleback Branchial Skeleton.
Ellis, Nicholas A; Miller, Craig T
2016-05-07
The posterior pharyngeal segments of the vertebrate head give rise to the branchial skeleton, the primary site of food processing in fish. The morphology of the fish branchial skeleton is matched to a species' diet. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a model system to study the genetic and developmental basis of evolved differences in a variety of traits. Marine populations of sticklebacks have repeatedly colonized countless new freshwater lakes and creeks. Adaptation to the new diet in these freshwater environments likely underlies a series of craniofacial changes that have evolved repeatedly in independently derived freshwater populations. These include three major patterning changes to the branchial skeleton: reductions in the number and length of gill raker bones, increases in pharyngeal tooth number, and increased branchial bone lengths. Here we describe a detailed protocol to dissect and flat-mount the internal branchial skeleton in threespine stickleback fish. Dissection of the entire three-dimensional branchial skeleton and mounting it flat into a largely two-dimensional prep allows for the easy visualization and quantification of branchial skeleton morphology. This dissection method is inexpensive, fast, relatively easy, and applicable to a wide variety of fish species. In sticklebacks, this efficient method allows the quantification of skeletal morphology in genetic crosses to map genomic regions controlling craniofacial patterning.
Prothmann, Marcel; von Knobelsdorff-Brenkenhoff, Florian; Töpper, Agnieszka; Dieringer, Matthias A; Shahid, Etham; Graessl, Andreas; Rieger, Jan; Lysiak, Darius; Thalhammer, C; Huelnhagen, Till; Kellman, Peter; Niendorf, Thoralf; Schulz-Menger, Jeanette
2016-01-01
Cardiovascular Magnetic Resonance (CMR) provides valuable information in patients with hypertrophic cardiomyopathy (HCM) based on myocardial tissue differentiation and the detection of small morphological details. CMR at 7.0T improves spatial resolution versus today's clinical protocols. This capability is as yet untapped in HCM patients. We aimed to examine the feasibility of CMR at 7.0T in HCM patients and to demonstrate its capability for the visualization of subtle morphological details. We screened 131 patients with HCM. 13 patients (9 males, 56 ±31 years) and 13 healthy age- and gender-matched subjects (9 males, 55 ±31years) underwent CMR at 7.0T and 3.0T (Siemens, Erlangen, Germany). For the assessment of cardiac function and morphology, 2D CINE imaging was performed (voxel size at 7.0T: (1.4x1.4x2.5) mm3 and (1.4x1.4x4.0) mm3; at 3.0T: (1.8x1.8x6.0) mm3). Late gadolinium enhancement (LGE) was performed at 3.0T for detection of fibrosis. All scans were successful and evaluable. At 3.0T, quantification of the left ventricle (LV) showed similar results in short axis view vs. the biplane approach (LVEDV, LVESV, LVMASS, LVEF) (p = 0.286; p = 0.534; p = 0.155; p = 0.131). The LV-parameters obtained at 7.0T where in accordance with the 3.0T data (pLVEDV = 0.110; pLVESV = 0.091; pLVMASS = 0.131; pLVEF = 0.182). LGE was detectable in 12/13 (92%) of the HCM patients. High spatial resolution CINE imaging at 7.0T revealed hyperintense regions, identifying myocardial crypts in 7/13 (54%) of the HCM patients. All crypts were located in the LGE-positive regions. The crypts were not detectable at 3.0T using a clinical protocol. CMR at 7.0T is feasible in patients with HCM. High spatial resolution gradient echo 2D CINE imaging at 7.0T allowed the detection of subtle morphological details in regions of extended hypertrophy and LGE.
NASA Astrophysics Data System (ADS)
Galloway, Melanie A.
Galaxy morphology is one of the primary keys to understanding a galaxy's evolutionary history. External mechanisms (environment/clustering, mergers) have a strong impact on the formative evolution of the major galactic components (disk, bulge, Hubble type), while internal instabilities created by bars, spiral arms, or other substructures drive secular evolution via the rearrangement of material within the disk. This thesis will explore several ways in which morphology impacts the dynamics and evolution of a galaxy using visual classifications from several Galaxy Zoo projects. The first half of this work will detail the motivations of using morphology to study galaxy evolution, and describe how morphology is measured, debiased, and interpreted using crowdsourced classification data via Galaxy Zoo. The second half will present scientific studies which make use of these classifications; first by focusing on the morphology of galaxies in the local Universe (z < 0.2) using data from Galaxy Zoo 2 and Galaxy Zoo UKIDSS. Last, the high-redshift Universe will be explored by examining populations of morphologies at various lookback times, from z = 0 out to z = 1 using data from Galaxy Zoo Hubble. The investigation of the physical implications of morphology in the local Universe will first be presented in Chapter 4, in a study of the impact of bars on the fueling of an active galactic nucleus (AGN). Using a sample of 19,756 disk galaxies at 0.01 < z < 0.05 imaged by the Sloan Digital Sky Survey and morphologically classified by Galaxy Zoo 2 (GZ2), the difference in AGN fraction in barred and unbarred disks was measured. A weak, but statistically significant, effect was found in that the population of AGN hosts exhibited a 16.0% increase in bar fraction as compared to their unbarred counterparts at fixed mass and color. These results are consistent with a cosmological model in which bar-driven fueling contributes to the growth of black holes, but other dynamical mechanisms must also play a significant role. Next, the morphological dependence on wavelength is studied in Chapter 5 by comparing the optical morphological classifications from GZ2 to classifications done on infrared images in GZ:UKIDSS. Consistent morphologies were found in both sets and similar bar fractions, which confirms that for most galaxies, both old and young stellar populations follow similar spatial distributions. Last, the morphological changes in galaxy populations are computed as a function of their age using classifications from Galaxy Zoo: Hubble (Chapter 6). The evolution of the passive disc population from z = 1 to z = 0.3 was studied in a sample of 20,000 galaxies from the COSMOS field and morphologically classified by the Galaxy Zoo: Hubble project. It was found that the fraction of disc galaxies that are red, as well as the fraction of red sequence galaxies that are discs, decreases for the most massive galaxies (log(M/M solar masses) > 11) but increases for lower masses. The observations are consistent with a physical scenario in which more massive galaxies are more likely to enter a red disc phase, and more massive red discs are more likely to morphologically transform into ellipticals than their less massive counterparts. Additionally, the challenges of visual classification that are particular to galaxies at high redshift were investigated. To address these biases, a new correction technique is presented using simulated images of nearby SDSS galaxies which were artificially redshifted using the FERENGI code and classified in GZH.
McClelland, A C; Gomes, W A; Shinnar, S; Hesdorffer, D C; Bagiella, E; Lewis, D V; Bello, J A; Chan, S; MacFall, J; Chen, M; Pellock, J M; Nordli, D R; Frank, L M; Moshé, S L; Shinnar, R C; Sun, S
2016-12-01
The pathogenesis of febrile status epilepticus is poorly understood, but prior studies have suggested an association with temporal lobe abnormalities, including hippocampal malrotation. We used a quantitative morphometric method to assess the association between temporal lobe morphology and febrile status epilepticus. Brain MR imaging was performed in children presenting with febrile status epilepticus and control subjects as part of the Consequences of Prolonged Febrile Seizures in Childhood study. Medial temporal lobe morphologic parameters were measured manually, including the distance of the hippocampus from the midline, hippocampal height:width ratio, hippocampal angle, collateral sulcus angle, and width of the temporal horn. Temporal lobe morphologic parameters were correlated with the presence of visual hippocampal malrotation; the strongest association was with left temporal horn width (P < .001; adjusted OR, 10.59). Multiple morphologic parameters correlated with febrile status epilepticus, encompassing both the right and left sides. This association was statistically strongest in the right temporal lobe, whereas hippocampal malrotation was almost exclusively left-sided in this cohort. The association between temporal lobe measurements and febrile status epilepticus persisted when the analysis was restricted to cases with visually normal imaging findings without hippocampal malrotation or other visually apparent abnormalities. Several component morphologic features of hippocampal malrotation are independently associated with febrile status epilepticus, even when complete hippocampal malrotation is absent. Unexpectedly, this association predominantly involves the right temporal lobe. These findings suggest that a spectrum of bilateral temporal lobe anomalies are associated with febrile status epilepticus in children. Hippocampal malrotation may represent a visually apparent subset of this spectrum. © 2016 by American Journal of Neuroradiology.
ERIC Educational Resources Information Center
McCormick, Samantha F.; Rastle, Kathleen; Davis, Matthew H.
2008-01-01
Recent research using masked priming has suggested that there is a form of morphological decomposition that is based solely on the appearance of morphological complexity and that operates independently of semantic information [Longtin, C.M., Segui, J., & Halle, P. A. (2003). Morphological priming without morphological relationship. "Language and…
Berquist, Rachel M.; Gledhill, Kristen M.; Peterson, Matthew W.; Doan, Allyson H.; Baxter, Gregory T.; Yopak, Kara E.; Kang, Ning; Walker, H. J.; Hastings, Philip A.; Frank, Lawrence R.
2012-01-01
Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators. PMID:22493695
A Quantitative Framework for Flower Phenotyping in Cultivated Carnation (Dianthus caryophyllus L.)
Chacón, Borja; Ballester, Roberto; Birlanga, Virginia; Rolland-Lagan, Anne-Gaëlle; Pérez-Pérez, José Manuel
2013-01-01
Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs) accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value. PMID:24349209
Berquist, Rachel M; Gledhill, Kristen M; Peterson, Matthew W; Doan, Allyson H; Baxter, Gregory T; Yopak, Kara E; Kang, Ning; Walker, H J; Hastings, Philip A; Frank, Lawrence R
2012-01-01
Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators.
An Improved Representation of Regional Boundaries on Parcellated Morphological Surfaces
Hao, Xuejun; Xu, Dongrong; Bansal, Ravi; Liu, Jun; Peterson, Bradley S.
2010-01-01
Establishing the correspondences of brain anatomy with function is important for understanding neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks and help to visualize and interpret both functional data and morphological measures mapped onto the cortical surface. We present an efficient algorithm that accurately delineates the morphological surface of the cerebral cortex in real time during generation of the surface using information from parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-preserved simplification and smoothing, as well as procedures for the automated correction of small, misclassified regions to improve the quality of the delineated surface. We demonstrate that our delineation algorithm, together with a new method for double-snapshot visualization of cortical regions, can be used to establish a clear correspondence between brain anatomy and mapped quantities, such as morphological measures, across groups of subjects. PMID:21144708
ERIC Educational Resources Information Center
Li, Hong; Shu, Hua; McBride-Chang, Catherine; Liu, Hongyun; Peng, Hong
2012-01-01
Tasks tapping visual skills, orthographic knowledge, phonological awareness, speeded naming, morphological awareness and Chinese character recognition were administered to 184 kindergarteners and 273 primary school students from Beijing. Regression analyses indicated that only syllable deletion, morphological construction and speeded number naming…
Hierarchical acquisition of visual specificity in spatial contextual cueing.
Lie, Kin-Pou
2015-01-01
Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.
Wanner, Adrian A; Genoud, Christel; Friedrich, Rainer W
2016-11-08
Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm 3 . Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS.
Wanner, Adrian A.; Genoud, Christel; Friedrich, Rainer W.
2016-01-01
Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm3. Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS. PMID:27824337
Rowe, Steven P; Zinreich, S James; Fishman, Elliot K
2018-06-01
Three-dimensional (3D) visualizations of volumetric data from CT have gained widespread clinical acceptance and are an important method for evaluating complex anatomy and pathology. Recently, cinematic rendering (CR), a new 3D visualization methodology, has become available. CR utilizes a lighting model that allows for the production of photorealistic images from isotropic voxel data. Given how new this technique is, studies to evaluate its clinical utility and any potential advantages or disadvantages relative to other 3D methods such as volume rendering have yet to be published. In this pictorial review, we provide examples of normal calvarial, maxillofacial, and skull base anatomy and pathological conditions that highlight the potential for CR images to aid in patient evaluation and treatment planning. The highly detailed images and nuanced shadowing that are intrinsic to CR are well suited to the display of the complex anatomy in this region of the body. We look forward to studies with CR that will ascertain the ultimate value of this methodology to evaluate calvarium, maxillofacial, and skull base morphology as well as other complex anatomic structures.
Imaging Girls: Visual Methodologies and Messages for Girls' Education
ERIC Educational Resources Information Center
Magno, Cathryn; Kirk, Jackie
2008-01-01
This article describes the use of visual methodologies to examine images of girls used by development agencies to portray and promote their work in girls' education, and provides a detailed discussion of three report cover images. It details the processes of methodology and tool development for the visual analysis and presents initial 'readings'…
Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.
2014-01-01
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Treu, Tommaso; Schmidt, Kasper B.; Morishita, Takahiro; Dressler, Alan; Poggianti, Bianca M.; Abramson, Louis; Bradač, Marusa; Brammer, Gabriel B.; Hoag, Austin; Malkan, Matthew; Pentericci, Laura; Trenti, Michele
2016-12-01
Exploiting the slitless spectroscopy taken as part of the Grism Lens-Amplified Survey from Space (GLASS), we present an extended analysis of the spatial distribution of star formation in 76 galaxies in 10 clusters at 0.3\\lt z\\lt 0.7. We use 85 foreground and background galaxies in the same redshift range as a field sample. The samples are well matched in stellar mass (108-1011 {M}⊙ ) and star formation rate (0.5-50 {M}⊙ {{yr}}-1). We visually classify galaxies in terms of broad band morphology, Hα morphology, and likely physical process acting on the galaxy. Most Hα emitters have a spiral morphology (41% ± 8% in clusters, 51% ± 8% in the field), followed by mergers/interactions (28% ± 8%, 31% ± 7%, respectively) and early-type galaxies (remarkably as high as 29% ± 8% in clusters and 15% ± 6% in the field). A diversity of Hα morphologies is detected, suggesting a diversity of physical processes. In clusters, 30% ± 8% of the galaxies present a regular morphology, mostly consistent with star formation diffused uniformly across the stellar population (mostly in the disk component, when present). The second most common morphology (28% ± 8%) is asymmetric/jellyfish, consistent with ram-pressure stripping or other non-gravitational processes in 18% ± 8% of the cases. Ram-pressure stripping appears significantly less prominent in the field (2% ± 2%), where the most common morphology/mechanism appears to be consistent with minor gas-rich mergers or clump accretion. This work demonstrates that while environment-specific mechanisms affect galaxy evolution at this redshift, they are diverse and their effects are subtle. A full understanding of this complexity requires larger samples and detailed and spatially resolved physical models.
Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E
2012-01-01
Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.
Endosonographic examination of thyroid gland among patients with nonthyroid cancers.
Alkhatib, Amer A; Mahayni, Abdulah A; Chawki, Ghaleb R; Yoder, Leon; Elkhatib, Fateh A; Al-Haddad, Mohammad
2016-01-01
There is limited endosonographic literature regarding thyroid gland pathology, which is frequently visualized during upper endoscopic ultrasound (EUS). Our objective was to assess the prevalence of benign and malignant thyroid lesions encountered during routine upper EUS within a cancer center setting. The data were prospectively collected and retrospectively analyzed. All upper EUS procedures performed between October 2012 and July 2014 were reviewed at a large referral cancer center. Data collected included patient demographics, preexisting thyroid conditions, thyroid gland dimensions, the presence or absence of thyroid lesions, and EUS morphology of lesions if present, and interventions performed to characterize thyroid lesions and pathology results when applicable. Two hundred and forty-five EUS procedures were reviewed. Of these, 100 cases reported a detailed endosonographic examination of the thyroid gland. Most of the thyroid glands were endosonographically visualized when the tip of the scope was at 18 cm from the incisors. Twelve cases showed thyroid lesions, out of which three previously undiagnosed thyroid cancers were visualized during EUS (two primary papillary thyroid cancers and one anaplastic thyroid cancer). Transesophageal EUS-guided fine needle aspiration of thyroid lesions was feasible when the lesion was in the inferior portion of the thyroid gland, and the tip of the scope was at 18 cm or more from the incisors. Routine EUS examination may detect unexpected thyroid lesions including malignant ones. We encourage endosonographers to screen the visualized portions of the thyroid gland during routine withdrawal of the echoendoscope.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
Krieger, Jakob; Sombke, Andy; Seefluth, Florian; Kenning, Matthes; Hansson, Bill S; Harzsch, Steffen
2012-04-01
The European shore crab Carcinus maenas and the common hermit crab Pagurus bernhardus are members of the sister taxa Brachyura and Anomura (together forming the taxon Meiura) respectively. Both species share similar coastal marine habitats and thus are confronted with similar environmental conditions. This study sets out to explore variations of general brain architecture of species that live in seemingly similar habitats but belong to different major malacostracan taxa and to understand possible differences of sensory systems and related brain compartments. We examined the brains of Carcinus maenas, Pagurus bernhardus, and three other hermit crab species with immunohistochemistry against tyrosinated tubulin, f-actin, synaptic proteins, RF-amides and allatostatin. Our comparison showed that their optic neuropils within the eyestalks display strong resemblance in gross morphology as well as in detailed organization, suggesting a rather similar potential of processing visual input. Besides the well-developed visual system, the olfactory neuropils are distinct components in the brain of both C. maenas and P. bernhardus as well as the other hermit crabs, suggesting that close integration of olfactory and visual information may be useful in turbid marine environments with low visibility, as is typical for many habitats such as, e.g., the Baltic and the North Sea. Comparing the shape of the olfactory glomeruli in the anomurans showed some variations, ranging from a wedge shape to an elongate morphology. Furthermore, the tritocerebrum and the organization of the second antennae associated with the tritocerebrum seem to differ markedly in C. maenas and P. bernhardus, indicating better mechanosensory abilities in the latter close to those of other Decapoda with long second antennae, such as Astacida, Homarida, or Achelata. This aspect may also represent an adaptation to the "hermit lifestyle" in which competition for shells is a major aspect of their life history. The shore crab C. maenas, on the other hand seems to rely much less on mechanosensory information mediated by the second antennae but in water, the visual and the olfactory senses seem to be the most important modalities.
A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration.
Schmidt-Erfurth, Ursula; Waldstein, Sebastian M
2016-01-01
Neovascular age-related macular degeneration (AMD) has undergone substantial break-throughs in diagnostic as well as therapeutic respect, with optical coherence tomography (OCT) allowing to identify disease morphology in great detail, and intravitreal anti-vascular endothelial growth factor therapy providing unprecedented benefit. However, these two paths have yet not been combined in an optimal way, real-world outcomes are inferior to expectations, and disease management is largely inefficient in the real-world setting. This dilemma can be solved by identification of valid biomarkers relevant for visual function, disease activity and prognosis, which can provide solid guidance for therapeutic management on an individual level as well as on the population base. Qualitative and quantitative morphological features obtained by advanced OCT provide novel insight into exudative and degenerative stages of neovascular AMD. However, conclusions from structure/function correlations evolve differently from previous paradigms. While central retinal thickness was used as biomarker for guiding retreatment management in clinical trials and practice, fluid localization in different compartments offers superior prognostic value: Intraretinal cystoid fluid has a negative impact on visual acuity and is considered as degenerative when persisting through the initial therapeutic interval. Subretinal fluid is associated with superior visual benefit and a lower rate of progression towards geographic atrophy. Detachment of the retinal pigment epithelium was identified as most pathognomonic biomarker, often irresponsive to therapy and responsible for visual decline during a pro-re-nata regimen. Alterations of neurosensory tissue are usually associated with irreversible loss of functional elements and a negative prognosis. Novel OCT technologies offer crucial insight into corresponding changes at the level of the photoreceptor--retinal pigment epithelial--choriocapillary unit, identifying the biological limits of therapeutic interventions. To optimally benefit from high-resolution multi-modal imaging, an integrated analysis of all functional and structural features is required involving reliable automated algorithms and computational data analyses. Using innovative analysis methods, retinal biomarkers can be used to provide efficient personalized therapy for the individual patient, predictive disease- and population-based models for large-scale management and identifying promising targets for the development of novel therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
3D analysis of macrosegregation in twin-roll cast AA3003 alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šlapáková, Michaela, E-mail: slapakova@karlov.mff.
Twin-roll cast aluminium alloys have a high potential for industrial applications. However, one of the drawbacks of such materials is an inhomogeneous structure generated by macrosegregation, which appears under certain conditions in the center of sheets during solidification. Segregations in AA3003 alloy form as manganese, iron and silicon rich channels spread in the rolling direction. Their spatial distribution was successfully detected by X-ray computed tomography. Scanning electron microscopy was used for a detailed observation of microstructure, morphology and chemical analysis of the segregation. - Highlights: •Macrosegregations in twin-roll cast sheets stretch along the rolling direction. •X-ray computed tomography is anmore » effective tool for visualization of the segregation. •The segregations copy the shape of grain boundaries.« less
Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.
Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina
2014-05-01
A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.
Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D
Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina
2014-01-01
A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent. PMID:25834481
Electron-beam generated porous dextran gels: experimental and quantum chemical studies.
Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta
2014-06-01
The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
ERIC Educational Resources Information Center
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2010-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…
Klenowski, Paul M; Wright, Sophie E; Mu, Erica W H; Noakes, Peter G; Lavidis, Nickolas A; Bartlett, Selena E; Bellingham, Mark C; Fogarty, Matthew J
2017-12-19
Quantitative assessments of neuronal subtypes in numerous brain regions show large variations in dendritic arbor size. A critical experimental factor is the method used to visualize neurons. We chose to investigate quantitative differences in basolateral amygdala (BLA) principal neuron morphology using two of the most common visualization methods: Golgi-Cox staining and neurobiotin (NB) filling. We show in 8-week-old Wistar rats that NB-filling reveals significantly larger dendritic arbors and different spine densities, compared to Golgi-Cox-stained BLA neurons. Our results demonstrate important differences and provide methodological insights into quantitative disparities of BLA principal neuron morphology reported in the literature.
NASA Astrophysics Data System (ADS)
Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany
2006-12-01
Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This study explored the efficacy of new haptic (simulated tactile feedback and kinesthetics) instructional technology for teaching cell morphology and function to middle and high school students with visual impairments. The study examined students' prior experiences learning about the cell and cell functions in classroom instruction, as well as how haptic feedback technology impacted students' awareness of the 3-D nature of an animal cell, the morphology and function of cell organelles, and students' interest in the haptic technology as an instructional tool. Twenty-one students with visual impairment participated in the study. Students explored a tactile model of the cell with a haptic point probe that allowed them to feel the cell and its organelles. Results showed that students made significant gains in their ability to identify cell organelles and found the technology to be highly interesting as an instructional tool. The need for additional adaptive technology for students with visual impairments is discussed.
Morphological Effects in Children Word Reading: A Priming Study in Fourth Graders
ERIC Educational Resources Information Center
Casalis, Severine; Dusautoir, Marion; Cole, Pascale; Ducrot, Stephanie
2009-01-01
A growing corpus of evidence suggests that morphology could play a role in reading acquisition, and that young readers could be sensitive to the morphemic structure of written words. In the present experiment, we examined whether and when morphological information is activated in word recognition. French fourth graders made visual lexical…
NASA Astrophysics Data System (ADS)
Matthäus, Christian; Dochow, Sebastian; Egodage, Kokila D.; Schie, Iwan; Romeike, Bernd F.; Brehm, Bernhard R.; Popp, Jürgen
2017-02-01
Visualization and characterization of inner arterial plaque depositions is of vital diagnostic interest. Established intravascular imaging techniques provide valuable morphological information, but cannot deliver information about the chemical composition of individual plaques. Probe based Raman spectroscopy offers the possibility for a biochemical characterization of atherosclerotic plaque formations during an intravascular intervention. From post mortem studies it is well known that the severity of a plaque and its stability are strongly correlated with its biochemical composition. Especially the identification of vulnerable plaques remains one of the most important and challenging aspects in cardiology. Thus, specific information about the composition of a plaque would greatly improve the risk assessment and management. Furthermore, knowledge about the composition can offer new therapeutic and medication strategies. Plaque calcifications as well as major lipid components such as cholesterol, cholesterol esters and triglycerides can be spectroscopically easily differentiated. Intravascular optical coherence tomography (OCT) is currently a prominent catheter based imaging technique for the localization and visualization of atherosclerotic plaque depositions. The high resolution of OCT with 10 to 15 µm allows for very detailed characterization of morphological features such as different plaque formations, thin fibrous caps and accurate measurements of lesion lengths. In combination with OCT imaging the obtained spectral information can provide substantial information supporting on on-site diagnosis of various plaque types and therefor an improved risk assessment. The potential and feasibility of combining OCT with Raman spectroscopy is demonstrated on excised plaque samples, as well as under in vivo conditions. Acknowledgements: Financial support from the Carl Zeiss Foundation is greatly acknowledged.
Kuipers, Jeroen; van Ham, Tjakko J; Kalicharan, Ruby D; Veenstra-Algra, Anneke; Sjollema, Klaas A; Dijk, Freark; Schnell, Ulrike; Giepmans, Ben N G
2015-04-01
Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely difficult. Even when combining light microscopy (LM) with EM (correlated LM and EM: CLEM) to find areas of interest, the labeling of molecules is still a challenge. We present a new genetically encoded probe for CLEM, named "FLIPPER", which facilitates quantitative analysis of ultrastructural features in cells. FLIPPER consists of a fluorescent protein (cyan, green, orange, or red) for LM visualization, fused to a peroxidase allowing visualization of targets at the EM level. The use of FLIPPER is straightforward and because the module is completely genetically encoded, cells can be optimally prepared for EM examination. We use FLIPPER to quantify cellular morphology at the EM level in cells expressing a normal and disease-causing point-mutant cell-surface protein called EpCAM (epithelial cell adhesion molecule). The mutant protein is retained in the endoplasmic reticulum (ER) and could therefore alter ER function and morphology. To reveal possible ER alterations, cells were co-transfected with color-coded full-length or mutant EpCAM and a FLIPPER targeted to the ER. CLEM examination of the mixed cell population allowed color-based cell identification, followed by an unbiased quantitative analysis of the ER ultrastructure by EM. Thus, FLIPPER combines bright fluorescent proteins optimized for live imaging with high sensitivity for EM labeling, thereby representing a promising tool for CLEM.
Syntactic and semantic restrictions on morphological recomposition: MEG evidence from Greek.
Neophytou, K; Manouilidou, C; Stockall, L; Marantz, A
2018-05-16
Complex morphological processing has been extensively studied in the past decades. However, most of this work has either focused on only certain steps involved in this process, or it has been conducted on a few languages, like English. The purpose of the present study is to investigate the spatiotemporal cortical processing profile of the distinct steps previously reported in the literature, from decomposition to re-composition of morphologically complex items, in a relatively understudied language, Greek. Using magnetoencephalography, we confirm the role of the fusiform gyrus in early, form-based morphological decomposition, we relate the syntactic licensing of stem-suffix combinations to the ventral visual processing stream, somewhat independent from lexical access for the stem, and we further elucidate the role of orbitofrontal regions in semantic composition. Thus, the current study offers the most comprehensive test to date of visual morphological processing and additional, crosslinguistic validation of the steps involved in it. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Kemmer, Laura; Coulson, Seana; Kutas, Marta
2014-02-01
Despite indications in the split-brain and lesion literatures that the right hemisphere is capable of some syntactic analysis, few studies have investigated right hemisphere contributions to syntactic processing in people with intact brains. Here we used the visual half-field paradigm in healthy adults to examine each hemisphere's processing of correct and incorrect grammatical number agreement marked either lexically, e.g., antecedent/reflexive pronoun ("The grateful niece asked herself/*themselves…") or morphologically, e.g., subject/verb ("Industrial scientists develop/*develops…"). For reflexives, response times and accuracy of grammaticality decisions suggested similar processing regardless of visual field of presentation. In the subject/verb condition, we observed similar response times and accuracies for central and right visual field (RVF) presentations. For left visual field (LVF) presentation, response times were longer and accuracy rates were reduced relative to RVF presentation. An event-related brain potential (ERP) study using the same materials revealed similar ERP responses to the reflexive pronouns in the two visual fields, but very different ERP effects to the subject/verb violations. For lexically marked violations on reflexives, P600 was elicited by stimuli in both the LVF and RVF; for morphologically marked violations on verbs, P600 was elicited only by RVF stimuli. These data suggest that both hemispheres can process lexically marked pronoun agreement violations, and do so in a similar fashion. Morphologically marked subject/verb agreement errors, however, showed a distinct LH advantage. Copyright © 2013 Elsevier B.V. All rights reserved.
Kemmer, Laura; Coulson, Seana; Kutas, Marta
2014-01-01
Despite indications in the split-brain and lesion literatures that the right hemisphere is capable of some syntactic analysis, few studies have investigated right hemisphere contributions to syntactic processing in people with intact brains. Here we used the visual half-field paradigm in healthy adults to examine each hemisphere’s processing of correct and incorrect grammatical number agreement marked either lexically, e.g., antecedent/reflexive pronoun (“The grateful niece asked herself/*themselves…”) or morphologically, e.g., subject/verb (“Industrial scientists develop/*develops…”). For reflexives, response times and accuracy of grammaticality decisions suggested similar processing regardless of visual field of presentation. In the subject/verb condition, we observed similar response times and accuracies for central and right visual field (RVF) presentations. For left visual field (LVF) presentation, response times were longer and accuracy rates were reduced relative to RVF presentation. An event-related brain potential (ERP) study using the same materials revealed similar ERP responses to the reflexive pronouns in the two visual fields, but very different ERP effects to the subject/verb violations. For lexically marked violations on reflexives, P600 was elicited by stimuli in both the LVF and RVF; for morphologically marked violations on verbs, P600 was elicited only by RVF stimuli. These data suggest that both hemispheres can process lexically marked pronoun agreement violations, and do so in a similar fashion. Morphologically marked subject/verb agreement errors, however, showed a distinct LH advantage. PMID:24326084
Moore, Alan Tonnies; Schwitzgebel, Eric
2018-05-03
What do people consciously experience when they read? There has been almost no rigorous research on this question, and opinions diverge radically among both philosophers and psychologists. We describe three studies of the phenomenology of reading and its relationship to memory of textual detail and general cognitive abilities. We find three main results. First, there is substantial variability in reports about reading experience, both within and between participants. Second, reported reading experience varies with passage type: passages with dialogue prompted increased reports of inner speech, while passages with vivid visual detail prompted increased reports of visual imagery. Third, reports of visual imagery experiences, inner speech experiences, and experiences of conscious visual perception of the words on the page were at best weakly related to general cognitive abilities and memory of visual and auditory details. Copyright © 2018 Elsevier Inc. All rights reserved.
Eventogram: A Visual Representation of Main Events in Biomedical Signals.
Elgendi, Mohamed
2016-09-22
Biomedical signals carry valuable physiological information and many researchers have difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals. Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and wavelet methods. However, these methods do not offer an informative visualization of main events within the processed signal. This paper attempts to provide an event-related framework to overcome the drawbacks of the traditional visualization methods and describe the main events within the biomedical signal in terms of duration and morphology. Electrocardiogram and photoplethysmogram signals are used in the analysis to demonstrate the differences between the traditional visualization methods, and their performance is compared against the proposed method, referred to as the " eventogram " in this paper. The proposed method is based on two event-related moving averages that visualizes the main time-domain events in the processed biomedical signals. The traditional visualization methods were unable to find dominant events in processed signals while the eventogram was able to visualize dominant events in signals in terms of duration and morphology. Moreover, eventogram -based detection algorithms succeeded with detecting main events in different biomedical signals with a sensitivity and positive predictivity >95%. The output of the eventogram captured unique patterns and signatures of physiological events, which could be used to visualize and identify abnormal waveforms in any quasi-periodic signal.
Hou, X R; Qin, J Y; Ren, Z Q
2017-02-11
Objective: To investigate the rationality of visual field morphological stages of glaucoma, its relationship with visual field index and their diagnostic value. Methods: Retrospective series case study. Two hundred and seventy-four glaucoma patients and 100 normal control received visual field examination by Humphrey perimeter using standard automatic perimetry (SAP) program from March 2014 to September 2014. Glaucoma patients were graded into four stages according to characteristic morphological damage of visual field, distribution of mean defect (MD) and visual field index (VFI) of each stage were plotted and receiver operation characteristic curve (ROC) was used to explore its correlation with MD and VFI. The diagnostic value of MD and VFI was also compared. For the comparison of general data of subjects, categorical variables were compared using χ(2) test, numerical variables were compared using F test. MD and VFI were compared using ANOVA among stages according to visual field, followed by multiple comparisons using LSD method. The correlation between MD and VFI and different stages according to visual field defined their diagnostic value, and compared using area under the curve (AUC) of ROC. Results: No characteristic visual field damage was found in normal control group, and MD and VFI was (-0.06±1.24) dB and (99.15±0.76)%, respectively. Glaucomatous visual field damage was graded into early, medium, late and end stage according to morphological characteristic. MD for each stage were (-2.83±2.00) dB, (-9.70±3.68) dB, (-18.46±2.90) dB, and (-27.96±2.76) dB, respectively. VFI for each stage were (93.84±3.61)%, (75.16±10.85)%, (49.36±11.26)% and (17.65±10.59)%, respectively. MD and VFI of each stage of glaucomatous group and normal control group were all significantly different ( F= 1 165.53 and P <0.01 for MD; F= 1 028.04 and P <0.01 for VFI). AUC of ROC was A(MD)=0.91 and Se(MD)=0.01 (95% confident interval was 0.89-0.94) for MD, and A(VFI)=0.97, Se(VFI)=0.01 (95% confident interval was 0.94-0.10) for VFI. So, AUC(VFI)>AUC(MD) ( P< 0.05). Conclusions: It is feasible and rational of glaucomatous visual field damage to be graded into early, medium, late and end stage using Humphrey perimeter. Distribution of MD and VFI for each stage was relatively concentrative. Both MD and VFI were useful for grading glaucomatous visual field damage with preference for VFI. (Chin J Ophthalmol, 2017, 53: 92-97) .
NASA Astrophysics Data System (ADS)
Kelkar, Kshitija; Gray, Meghan E.; Aragón-Salamanca, Alfonso; Rudnick, Gregory; Milvang-Jensen, Bo; Jablonka, Pascale; Schrabback, Tim
2017-08-01
With the aim of understanding the effect of the environment on the star formation history and morphological transformation of galaxies, we present a detailed analysis of the colour, morphology and internal structure of cluster and field galaxies at 0.4 ≤ z ≤ 0.8. We use the Hubble Space Telescope data for over 500 galaxies from the ESO Distant Cluster Survey to quantify how the galaxies' light distribution deviate from symmetric smooth profiles. We visually inspect the galaxies' images to identify the likely causes for such deviations. We find that the residual flux fraction (RFF), which measures the fractional contribution to the galaxy light of the residuals left after subtracting a symmetric and smooth model, is very sensitive to the degree of structural disturbance but not the causes of such disturbance. On the other hand, the asymmetry of these residuals (Ares) is more sensitive to the causes of the disturbance, with merging galaxies having the highest values of Ares. Using these quantitative parameters, we find that, at a fixed morphology, cluster and field galaxies show statistically similar degrees of disturbance. However, there is a higher fraction of symmetric and passive spirals in the cluster than in the field. These galaxies have smoother light distributions than their star-forming counterparts. We also find that while almost all field and cluster S0s appear undisturbed, there is a relatively small population of star-forming S0s in clusters but not in the field. These findings are consistent with relatively gentle environmental processes acting on galaxies infalling on to clusters.
Huang, Zufeng; Miao, Xiaoqing
2015-09-01
To investigate the effect of non-phacoemulsification cataract operation in two different patterns of nucleus delivery on the quantity and morphology of corneal endothelial cells and postoperative visual acuity. Forty patients diagnosed with cataract underwent cataract surgery and were assigned into the direct nuclear delivery and semi-nuclear delivery groups. Lens density was measured and divided into the hard and soft lenses according to Emery-little lens nucleus grading system. Non-phacoemulsification cataract operation was performed. At 3 d after surgery, the quantity and morphology of corneal endothelium were counted and observed under corneal endothelial microscope. During 3-month postoperative follow-up, the endothelial cell loss rate, morphological changes and visual acuity were compared among four groups. Corneal endothelial cell loss rate in the direct delivery of hard nucleus group significantly differed from those in the other three groups before and 3 months after operation (P < 0.01), whereas no statistical significance was found among the direct delivery of soft nucleus, semi-delivery of hard nucleus and semi-delivery soft nucleus groups (all P > 0.05). Preoperative and postoperative 2-d visual acuity did not differ between the semi-delivery of hard nucleus and direct delivery of soft nucleus groups (P = 0.49), significantly differed from those in the semi-delivery of soft nucleus (P = 0.03) and direct delivery of hard nucleus groups (P = 0.14). Visual acuity at postoperative four months did not differ among four groups (P = 0.067). During non-phacoemulsification cataract surgery, direct delivery of hard nucleus caused severe injury to corneal endothelium and semi-delivery of soft nucleus yielded mild corneal endothelial injury. Slight corneal endothelial injury exerted no apparent effect upon visual acuity and corneal endothelial morphology at three months after surgery.
Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M
2017-06-01
Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.
2015-01-01
Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…
Opportunities and challenges for digital morphology
2010-01-01
Advances in digital data acquisition, analysis, and storage have revolutionized the work in many biological disciplines such as genomics, molecular phylogenetics, and structural biology, but have not yet found satisfactory acceptance in morphology. Improvements in non-invasive imaging and three-dimensional visualization techniques, however, permit high-throughput analyses also of whole biological specimens, including museum material. These developments pave the way towards a digital era in morphology. Using sea urchins (Echinodermata: Echinoidea), we provide examples illustrating the power of these techniques. However, remote visualization, the creation of a specialized database, and the implementation of standardized, world-wide accepted data deposition practices prior to publication are essential to cope with the foreseeable exponential increase in digital morphological data. Reviewers This article was reviewed by Marc D. Sutton (nominated by Stephan Beck), Gonzalo Giribet (nominated by Lutz Walter), and Lennart Olsson (nominated by Purificación López-García). PMID:20604956
Changing Places: A Cross-Language Perspective on Frequency and Family Size in Dutch and Hebrew
ERIC Educational Resources Information Center
Moscoso del Prado Martin, Fermin; Deutsch, Avital; Frost, Ram; Schreuder, Robert; De Jong, Nivja H.; Baayen, R. Harald
2005-01-01
This study uses the morphological family size effect as a tool for exploring the degree of isomorphism in the networks of morphologically related words in the Hebrew and Dutch mental lexicon. Hebrew and Dutch are genetically unrelated, and they structure their morphologically complex words in very different ways. Two visual lexical decision…
Lajus, Dmitry; Sukhikh, Natalia; Alekseev, Victor
2015-01-01
Interest in cryptic species has increased significantly with current progress in genetic methods. The large number of cryptic species suggests that the resolution of traditional morphological techniques may be insufficient for taxonomical research. However, some species now considered to be cryptic may, in fact, be designated pseudocryptic after close morphological examination. Thus the “cryptic or pseudocryptic” dilemma speaks to the resolution of morphological analysis and its utility for identifying species. We address this dilemma first by systematically reviewing data published from 1980 to 2013 on cryptic species of Copepoda and then by performing an in-depth morphological study of the former Eurytemora affinis complex of cryptic species. Analyzing the published data showed that, in 5 of 24 revisions eligible for systematic review, cryptic species assignment was based solely on the genetic variation of forms without detailed morphological analysis to confirm the assignment. Therefore, some newly described cryptic species might be designated pseudocryptic under more detailed morphological analysis as happened with Eurytemora affinis complex. Recent genetic analyses of the complex found high levels of heterogeneity without morphological differences; it is argued to be cryptic. However, next detailed morphological analyses allowed to describe a number of valid species. Our study, using deep statistical analyses usually not applied for new species describing, of this species complex confirmed considerable differences between former cryptic species. In particular, fluctuating asymmetry (FA), the random variation of left and right structures, was significantly different between forms and provided independent information about their status. Our work showed that multivariate statistical approaches, such as principal component analysis, can be powerful techniques for the morphological discrimination of cryptic taxons. Despite increasing cryptic species designations, morphological techniques have great potential in determining copepod taxonomy. PMID:26120427
Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners
Viscosi, Vincenzo; Cardini, Andrea
2011-01-01
Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature. PMID:21991324
Characterization of virus-like particles by atomic force microscopy in ambient conditions
NASA Astrophysics Data System (ADS)
Oropesa, Reinier; Ramos, Jorge R.; Falcón, Viviana; Felipe, Ariel
2013-06-01
Recombinant virus-like particles (VLPs) are attractive candidates for vaccine design since they resemble native viroids in size and morphology, but they are non-infectious due to the absence of a viral genome. The visualization of surface morphologies and structures can be used to deepen the understanding of physical, chemical, and biological phenomena. Atomic force microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In this work we have investigated the morphology of recombinant surface antigens of hepatitis B (rHBsAg) VLPs from Cuban vaccine against hepatitis B. The rHBsAg VLPs sizes estimated by AFM between 15 and 30 nm are similar to those reported on previous transmission electron microscopy (TEM) studies.
NASA Astrophysics Data System (ADS)
McClinton, J. T.; White, S.; Colman, A.; Sinton, J. M.; Bowles, J. A.
2012-12-01
The deep seafloor imposes significant difficulties on data collection that require the integration of multiple data sets and the implementation of unconventional geologic mapping techniques. We combine visual mapping of geological contacts by submersible with lava flow morphology maps and relative and absolute age constraints to create a spatiotemporal framework for examining submarine lava flow emplacement at the intermediate-spreading, hotspot-affected Galápagos Spreading Center (GSC). We mapped 18 lava flow fields, interpreted to be separate eruptive episodes, within two study areas at the GSC using visual observations of superposition, surface preservation and sediment cover from submersible and towed camera surveys, augmented by high-resolution sonar surveys and sample petrology [Colman et al., Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galápagos Spreading Center; 2012 G3]. We also mapped the lava flow morphology within the majority of these eruptive units using an automated, machine-learning classification method [McClinton et al., Neuro-fuzzy classification of submarine lava flow morphology; 2012 PE&RS]. The method combines detailed geometric, acoustic, and textural attributes derived from high-resolution sonar data with visual observations and a machine-learning algorithm to classify submarine lava flow morphology as pillows, lobates, or sheets. The resulting lava morphology maps are a valuable tool for interpreting patterns in the emplacement of submarine lava flows at a mid-ocean ridge (MOR). Within our study area at 92°W, where the GSC has a relatively high magma supply, high effusion rate sheet and lobate lavas are more abundant in the oldest mapped eruptive units, while the most recent eruptions mostly consist of low effusion rate pillow lavas. The older eruptions (roughly 400yrs BP by paleomagnetic intensity) extend up to 1km off axis via prominent channels and tubes, while the most recent eruptions (<100yrs BP by paleomagnetic intensity) are mainly on-axis pillow ridges and domes. These spatial and temporal trends suggest a gradual transition from low-relief, "paving" eruptions to relief-building, "constructional" eruptions. In our second study area at 95°W, where magma supply is lower, eruptions mostly consist of axial seamounts and irregularly shaped clusters of pillow mounds. Many have summit plateaus with inflated, partially collapsed lobate lavas suggesting variable effusion rates and topographic influence on lava flows. In addition, a relatively extensive (~9.5km2) flow field of inflated lobate and sheet lavas erupted from vents ~1km north of the ridge axis and flowed ~1km into the inner axial graben through channels and tubes, ponding against older structures and leaving prominent "bathtub rings" and collapse features. This eruption provides direct evidence that large, high effusion rate eruptions can occur in low magma supply settings at MORs.
High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.
Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A
2015-07-25
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.
Wang, Lei; Tian, Wei; Shi, Yongmin
2017-08-07
The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.
NASA Astrophysics Data System (ADS)
Sriraman, Saravanapriyan; Aydil, Eray S.; Maroudas, Dimitrios
2002-07-01
Growth of hydrogenated amorphous silicon films (a-Si:H) on an initial H-terminated Si(001)(2 x1) substrate at T=500 K was studied through molecular-dynamics (MD) simulations of repeated impingement of SiH radicals to elucidate the effects of reactive minority species on the structural quality of the deposited films. The important reactions contributing to film growth were identified through detailed visualization of radical-surface interaction trajectories. These reactions include (i) insertion of SiH into Si-Si bonds, (ii) adsorption onto surface dangling bonds, (iii) surface H abstraction by impinging SiH radicals through an Eley-Rideal mechanism, (iv) surface adsorption by penetration into subsurface layers or dissociation leading to interstitial atomic hydrogen, (v) desorption of interstitial hydrogen into the gas phase, (vi) formation of higher surface hydrides through the exchange of hydrogen, and (vii) dangling-bond-mediated dissociation of surface hydrides into monohydrides. The MD simulations of a-Si:H film growth predict an overall surface reaction probability of 95% for the SiH radical that is in good agreement with experimental measurements. Structural and chemical characterization of the deposited films was based on the detailed analysis of evolution of the films' structure, surface morphology and roughness, surface reactivity, and surface composition. The analysis revealed that the deposited films exhibit high dangling bond densities and rough surface morphologies. In addition, the films are abundant in voids and columnar structures that are detrimental to producing device-quality a-Si:H thin films.
NASA Astrophysics Data System (ADS)
Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Soares, J.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Barroso, R. C.
2015-10-01
The recent years advancements in microtomography have increased the achievable resolution and contrast, making this relatively inexpensive and a widely available technology, potentially useful for studies of insect's internal morphology. Phase Contrast X-Ray Synchrotron Microtomography (SR-PhC-μCT) is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi, the etiologic agent of Chagas' disease. In Latin America, vector control is the most useful method to prevent Chagas' disease, and a detailed knowledge of R. prolixus' interior structures is crucial for a better understanding of their function and evolution. Traditionally, in both biological morphology and anatomy, the internal structures of whole organisms or parts of them are accessed by dissecting or histological serial sectioning; so studying the internal structures of R. prolixus' head using SR-PhC-μCT is of great importance in researches on vector control. In this work, volume-rendered SR-PhC-μCT images of the heads of selected R. prolixus were obtained using the new set-up available at the SYRMEP beamline of ELETTRA (Trieste, Italy). In this new set-up, the outcoming beam from the ring is restrained before the monochromator and in a devoted end-station, absorption and phase contrast radiography and tomography set-up are available. The images obtained with polychromatic X-ray beam in phase contrast regimen and 2 μm resolution, showed details and organs of R. prolixus never seen before with SR-PhC-μCT.
Ling, Changying; Hendrickson, Michael L.; Kalil, Ronald E.
2012-01-01
Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes. PMID:23144777
Grating-based tomography of human tissues
NASA Astrophysics Data System (ADS)
Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm
2012-07-01
The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.
High visual resolution matters in audiovisual speech perception, but only for some.
Alsius, Agnès; Wayne, Rachel V; Paré, Martin; Munhall, Kevin G
2016-07-01
The basis for individual differences in the degree to which visual speech input enhances comprehension of acoustically degraded speech is largely unknown. Previous research indicates that fine facial detail is not critical for visual enhancement when auditory information is available; however, these studies did not examine individual differences in ability to make use of fine facial detail in relation to audiovisual speech perception ability. Here, we compare participants based on their ability to benefit from visual speech information in the presence of an auditory signal degraded with noise, modulating the resolution of the visual signal through low-pass spatial frequency filtering and monitoring gaze behavior. Participants who benefited most from the addition of visual information (high visual gain) were more adversely affected by the removal of high spatial frequency information, compared to participants with low visual gain, for materials with both poor and rich contextual cues (i.e., words and sentences, respectively). Differences as a function of gaze behavior between participants with the highest and lowest visual gains were observed only for words, with participants with the highest visual gain fixating longer on the mouth region. Our results indicate that the individual variance in audiovisual speech in noise performance can be accounted for, in part, by better use of fine facial detail information extracted from the visual signal and increased fixation on mouth regions for short stimuli. Thus, for some, audiovisual speech perception may suffer when the visual input (in addition to the auditory signal) is less than perfect.
Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold.
Zidek, Jan; Vojtova, Lucy; Abdel-Mohsen, A M; Chmelik, Jiri; Zikmund, Tomas; Brtnikova, Jana; Jakubicek, Roman; Zubal, Lukas; Jan, Jiri; Kaiser, Jozef
2016-06-01
In this work we have used X-ray micro-computed tomography (μCT) as a method to observe the morphology of 3D porous pure collagen and collagen-composite scaffolds useful in tissue engineering. Two aspects of visualizations were taken into consideration: improvement of the scan and investigation of its sensitivity to the scan parameters. Due to the low material density some parts of collagen scaffolds are invisible in a μCT scan. Therefore, here we present different contrast agents, which increase the contrast of the scanned biopolymeric sample for μCT visualization. The increase of contrast of collagenous scaffolds was performed with ceramic hydroxyapatite microparticles (HAp), silver ions (Ag(+)) and silver nanoparticles (Ag-NPs). Since a relatively small change in imaging parameters (e.g. in 3D volume rendering, threshold value and μCT acquisition conditions) leads to a completely different visualized pattern, we have optimized these parameters to obtain the most realistic picture for visual and qualitative evaluation of the biopolymeric scaffold. Moreover, scaffold images were stereoscopically visualized in order to better see the 3D biopolymer composite scaffold morphology. However, the optimized visualization has some discontinuities in zoomed view, which can be problematic for further analysis of interconnected pores by commonly used numerical methods. Therefore, we applied the locally adaptive method to solve discontinuities issue. The combination of contrast agent and imaging techniques presented in this paper help us to better understand the structure and morphology of the biopolymeric scaffold that is crucial in the design of new biomaterials useful in tissue engineering.
ERIC Educational Resources Information Center
Amenta, Simona; Marelli, Marco; Crepaldi, Davide
2015-01-01
In this eye-tracking study, we investigated how semantics inform morphological analysis at the early stages of visual word identification in sentence reading. We exploited a feature of several derived Italian words, that is, that they can be read in a "morphologically transparent" way or in a "morphologically opaque" way…
A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue.
Kassem, Mustafa S; Fok, Sandra Y Y; Smith, Kristie L; Kuligowski, Michael; Balleine, Bernard W
2018-01-15
High resolution neuronal information is extraordinarily useful in understanding the brain's functionality. The development of the Golgi-Cox stain allowed observation of the neuron in its entirety with unrivalled detail. Tissue clearing techniques, e.g., CLARITY and CUBIC, provide the potential to observe entire neuronal circuits intact within tissue and without previous restrictions with regard to section thickness. Here we describe an improved Golgi-Cox stain method, optimised for use with CLARITY and CUBIC that can be used in both fresh and fixed tissue. Using this method, we were able to observe neurons in their entirety within a fraction of the time traditionally taken to clear tissue (48h). We were also able to show for the first-time that Golgi stained tissue is fluorescent when visualized using a multi-photon microscope, allowing us to image synaptic spines with a detail previously unachievable. These novel methods provide cheap and easy to use techniques to investigate the morphology of cellular processes in the brain at a new-found depth, speed, utility and detail, without previous restrictions of time, tissue type and section thickness. This is the first application of a Golgi-Cox stain to cleared brain tissue, it is investigated and discussed in detail, describing different methodologies that may be used, a comparison between the different clearing techniques and lastly the novel interaction of these techniques with this ultra-rapid stain. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jiao; Zhang, Songhe; Chekkoury, Andrei; Glasl, Sarah; Vetschera, Paul; Koberstein-Schwarz, Benno; Omar, Murad; Ntziachristos, Vasilis
2017-03-01
Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D. (Principal Investigator); Breed, C. S.
1973-01-01
The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled the project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery of selected sites, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya and other areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D. (Principal Investigator); Breed, C. S.
1974-01-01
The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled this project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya, and other study areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab 4 mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.
Stach, Thomas; Anselmi, Chiara
2015-12-23
Understanding the evolution of divergent developmental trajectories requires detailed comparisons of embryologies at appropriate levels. Cell lineages, the accurate visualization of cleavage patterns, tissue fate restrictions, and morphogenetic movements that occur during the development of individual embryos are currently available for few disparate animal taxa, encumbering evolutionarily meaningful comparisons. Tunicates, considered to be close relatives of vertebrates, are marine invertebrates whose fossil record dates back to 525 million years ago. Life-history strategies across this subphylum are radically different, and include biphasic ascidians with free swimming larvae and a sessile adult stage, and the holoplanktonic larvaceans. Despite considerable progress, notably on the molecular level, the exact extent of evolutionary conservation and innovation during embryology remain obscure. Here, using the innovative technique of bifocal 4D-microscopy, we demonstrate exactly which characteristics in the cell lineages of the ascidian Phallusia mammillata and the larvacean Oikopleura dioica were conserved and which were altered during evolution. Our accurate cell lineage trees in combination with detailed three-dimensional representations clearly identify conserved correspondence in relative cell position, cell identity, and fate restriction in several lines from all prospective larval tissues. At the same time, we precisely pinpoint differences observable at all levels of development. These differences comprise fate restrictions, tissue types, complex morphogenetic movement patterns, numerous cases of heterochronous acceleration in the larvacean embryo, and differences in bilateral symmetry. Our results demonstrate in extraordinary detail the multitude of developmental levels amenable to evolutionary innovation, including subtle changes in the timing of fate restrictions as well as dramatic alterations in complex morphogenetic movements. We anticipate that the precise spatial and temporal cell lineage data will moreover serve as a high-precision guide to devise experimental investigations of other levels, such as molecular interactions between cells or changes in gene expression underlying the documented structural evolutionary changes. Finally, the quantitative amount of digital high-precision morphological data will enable and necessitate software-based similarity assessments as the basis of homology hypotheses.
LIDAR Investigation Of The 2004 Niigata Ken Chuetsu, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Kayen, R.; Pack, R. T.; Sugimoto, S.; Tanaka, H.
2005-12-01
The 23 October 2004 Niigata Ken Chuetsu, Japan, Mw 6.6 earthquake was the most significant earthquake to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 injured, and numerous landslides destroyed entire upland villages. Landslides and permanent ground deformation caused extensive damage to roads, rail lines and other lifelines, resulting in major economic disruption. The cities and towns most significantly affected by the earthquake were Nagaoka, Ojiya, and the mountainous rural areas of Yamakoshi village and Kawaguchi town. Our EERI team traveled with a tripod mounted LIDAR (Light Detection and Ranging) unit, a scanning-laser that creates ultra high-resolution 3-D digital terrain models of the earthquake damaged surfaces the ground, structures, and life-lines. This new technology allows for rapid and remote sensing of damaged terrain. Ground-based LIDAR has an accuracy range of 0.5-2.5 cm, and can illuminate targets up to 400m away from the sensor. During a single tripod-mounted LIDAR scan of 10 minutes, several million survey points are collected and processed into an ultra-high resolution terrain model of the damaged ground or structure. There are several benefits in acquiring these LIDAR data in the initial reconnaissance effort after the earthquake. First, we record the detailed failure morphologies of damaged ground and structures in order to make measurements that are either impractical or impossible by conventional survey means. The digital terrain models allow us to enlarge, enhance and rotate data in order to visualize damage in orientations and scales not previously possible. This ability to visualize damage allows us to better understand failure modes. Finally, LIDAR allows us to archive 3-D terrain models so that the engineering community can evaluate analytical and numerical models of deformation potential against detailed field measurements. Here, we discuss the findings of this 2004 Niigata Chuetsu Earthquake (M6.6) reconnaissance presented with LIDAR examples for damage-visualization.
Visual fields and eye morphology support color vision in a color-changing crab-spider.
Insausti, Teresita C; Defrize, Jérémy; Lazzari, Claudio R; Casas, Jérôme
2012-03-01
Vision plays a major role in many spiders, being involved in prey hunting, orientation or substrate choice, among others. In Misumena vatia, which experiences morphological color changes, vision has been reported to be involved in substrate color matching. Electrophysiological evidence reveals that at least two types of photoreceptors are present in this species, but these data are not backed up by morphological evidence. This work analyzes the functional structure of the eyes of this spider and relates it to its color-changing abilities. A broad superposition of the visual field of the different eyes was observed, even between binocular regions of principal and secondary eyes. The frontal space is simultaneously analyzed by four eyes. This superposition supports the integration of the visual information provided by the different eye types. The mobile retina of the principal eyes of this spider is organized in three layers of three different types of rhabdoms. The third and deepest layer is composed by just one large rhabdom surrounded by dark screening pigments that limit the light entry. The three pairs of secondary eyes have all a single layer of rhabdoms. Our findings provide strong support for an involvement of the visual system in color matching in this spider. Copyright © 2011 Elsevier Ltd. All rights reserved.
Assessing embryo development using swept source optical coherence tomography
NASA Astrophysics Data System (ADS)
Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.
2018-03-01
A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.
Sonic morphology: Aesthetic dimensional auditory spatial awareness
NASA Astrophysics Data System (ADS)
Whitehouse, Martha M.
The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.
The cortical basis of true memory and false memory for motion.
Karanian, Jessica M; Slotnick, Scott D
2014-02-01
Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Schirmeier, Matthias K.; Derwing, Bruce L.; Libben, Gary
2004-01-01
Two types of experiments investigate the visual on-line and off-line processing of German ver-verbs (e.g., verbittern "to embitte"). In Experiments 1 and 2 (morphological priming), latency patterns revealed the existence of facilitation effects for the morphological conditions (BITTER-VERBITTERN and BITTERN-VERBITTERN) as compared to the neutral…
Advancing flexible volatile compound sensors using liquid crystals encapsulated in polymer fibers
NASA Astrophysics Data System (ADS)
Reyes, Catherine G.; Lagerwall, Jan P. F.
2018-02-01
Until recently, organic vapor sensors using liquid crystals (LCs) have employed rigid glass substrates for confining the LC, and bulky equipment for vapor detection. Previously, we demonstrated that coaxially electrospinning nematic LC within the core of polymer fibers provides an alternative and improved form factor for confinement. This enables ppm level sensitivity to harmful industrial organics, such as toluene, while giving the flexibility of textile-like sheets (imparted by polymer encapsulation). Moreover, toluene vapor responses of the LC-core fiber mats were visible macroscopically with the naked eye depending on the morphology of the fibers produced, and whether they were oriented in specific geometries (aligned, or random). We identified two types of responses: one corresponds to the LC transition from nematic to isotropic, and the other we suggest is due to an anchoring change at the LC-polymer interface that influences the alignment. While we need to study the presence that defects can have in more detail, we noted that fiber mat thickness is crucial in attempting to understand how and why we are able to visualize two responses in aligned LC-fiber mats. Ultimately, we noted that the response of the polymer sheath itself (softening) to organic vapor exposure affects the liquid crystal confinement in the core. From the microscopic point of view, this will influence the threshold concentration that fibers in a mat will overall respond to. In this paper we will discuss three findings the morphologies enabling LC-core fiber mat response to vapor seen both micro- and macroscopically, how thickness of the fiber mat can play a role in the visualization of the responses, and the effect that the polymer structure has in the mat's sensitivity threshold.
Fischer-Baum, Simon; Englebretson, Robert
2016-08-01
Reading relies on the recognition of units larger than single letters and smaller than whole words. Previous research has linked sublexical structures in reading to properties of the visual system, specifically on the parallel processing of letters that the visual system enables. But whether the visual system is essential for this to happen, or whether the recognition of sublexical structures may emerge by other means, is an open question. To address this question, we investigate braille, a writing system that relies exclusively on the tactile rather than the visual modality. We provide experimental evidence demonstrating that adult readers of (English) braille are sensitive to sublexical units. Contrary to prior assumptions in the braille research literature, we find strong evidence that braille readers do indeed access sublexical structure, namely the processing of multi-cell contractions as single orthographic units and the recognition of morphemes within morphologically-complex words. Therefore, we conclude that the recognition of sublexical structure is not exclusively tied to the visual system. However, our findings also suggest that there are aspects of morphological processing on which braille and print readers differ, and that these differences may, crucially, be related to reading using the tactile rather than the visual sensory modality. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenomenological reliving and visual imagery during autobiographical recall in Alzheimer’s disease
El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal
2016-01-01
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer’s disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a 5-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail – a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features. PMID:27003216
Phenomenological Reliving and Visual Imagery During Autobiographical Recall in Alzheimer's Disease.
El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal
2016-03-16
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer's disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a five-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail-a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features.
NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.
Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus
2014-12-01
We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.
NASA Technical Reports Server (NTRS)
Velusamy, T.; Langer, William D.; Marsh, Kenneth. A.
2007-01-01
We present new details of the structure and morphology of the jets and outflows in HH 46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the 'HiRes' deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected (1) the sharply delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (2) several very narrow jet features at distances approximately 400 AU to approximately 0.1 pc from the star, and (3) compact emissions at MIPS 24 m with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks. Together the IRAC and MIPS images provide a more complete picture of the bow shocks, tracing both the molecular and atomic/ionic gases, respectively. The narrow width and alignment of all jet-related features indicate a high degree of jet collimation and low divergence (width of approximately 400 AU increasing by only a factor of 2.3 over 0.2 pc). The morphology of this jet, bow shocks, wide-angle outflows, and the fact that the jet is nonprecessing and episodic, constrain the mechanisms for producing the jet's entrained molecular gas, and origins of the fast jet, and slower wide-angle outflow.
Effects of the AMPA Antagonist ZK 200775 on Visual Function: A Randomized Controlled Trial
Bergholz, Richard; Staks, Thomas; Rüther, Klaus
2010-01-01
Background ZK 200775 is an antagonist at the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor and had earned attention as a possible neuroprotective agent in cerebral ischemia. Probands receiving the agent within phase I trials reported on an alteration of visual perception. In this trial, the effects of ZK 200775 on the visual system were analyzed in detail. Methodology In a randomised controlled trial we examined eyes and vision before and after the intravenous administration of two different doses of ZK 200775 and placebo. There were 3 groups of 6 probands each: Group 1 recieved 0.03 mg/kg/h, group 2 0.75 mg/kg/h of ZK 200775, the control group received 0.9% sodium chloride solution. Probands were healthy males aged between 57 and 69 years. The following methods were applied: clinical examination, visual acuity, ophthalmoscopy, colour vision, rod absolute threshold, central visual field, pattern-reversal visual evoked potentials (pVEP), ON-OFF and full-field electroretinogram (ERG). Principal Findings No effect of ZK 200775 was seen on eye position or motility, stereopsis, pupillary function or central visual field testing. Visual acuity and dark vision deteriorated significantly in both treated groups. Color vision was most remarkably impaired. The dark-adapted ERG revealed a reduction of oscillatory potentials (OP) and partly of the a- and b-wave, furthermore an alteration of b-wave morphology and an insignificantly elevated b/a-ratio. Cone-ERG modalities showed decreased amplitudes and delayed implicit times. In the ON-OFF ERG the ON-answer amplitudes increased whereas the peak times of the OFF-answer were reduced. The pattern VEP exhibited lower amplitudes and prolonged peak times. Conclusions The AMPA receptor blockade led to a strong impairment of typical OFF-pathway functions like color vision and the cone ERG. On the other hand the ON-pathway as measured by dark vision and the scotopic ERG was affected as well. This further elucidates the interdependence of both pathways. Trial Registration ClinicalTrials.gov NCT00999284 PMID:20711429
Nakazawa, Toru
2015-03-01
Glaucoma is the leading cause of acquired blindness in Japan. One reason that it often leads to blindness is that it can continue to worsen even after effective medical reduction of intraocular pressure (IOP), the only evidence-based treatment. The limitations of current treatments make it critical to identify IOP-independent factors that can cause glaucoma and develop new drugs to target these factors. This is a challenging task, as the pathology of glaucoma is thought to be very complex, with different combinations of factors underlying its development and progression in different patients. Additionally, there is a deficiency in methods to efficiently perform clinical evaluations and reliably probe the state of the disease over relatively short periods. In addition, newly developed drugs need to be evaluated with clinical trials, for which human and financial resources are limited, before they can be widely used for treatment. Taking all these issues into consideration, it is evident that there are two urgent issues to consider: the development of methods to classify glaucoma in detail based on its pathology, and the improvement of clinical evaluation methods. In this review, we discuss some of our efforts to develop new neuroprotective agents for glaucoma, with a focus on the following three areas: 1. Clinical research and development of methods to classify glaucoma in detail based on IOP-independent factors, and the exploration of possibilities for the improvement of clinical evaluation of glaucoma. 2. Pathology-based research and development of new drugs for glaucoma, focusing on comprehensive gene expression analysis and the development of molecule-targeting drugs, using murine optic nerve crush as a disease model. 3. Development of next generation in vivo imaging modalities and the establishment of infrastructure enabling "big-data" analysis. First, we discuss our clinical research and the development of methods to classify glaucoma in detail based on IOP-independent factors, as well as our investigation of ways to improve the clinical evaluation of the disease. Our research was prompted by the multifactorial nature of glaucoma. There is a high degree of variability in the pattern and speed of the progression of visual field defects in individual patients, presenting a major obstacle for successful clinical trials. To overcome this, we classified the eyes of glaucoma patients into 4 types, corresponding to the 4 patterns of glaucomatous optic nerve head morphology described: by Nicolela et al. and then tested the validity of this method by assessing the uniformity of clinical features in each group. We found that in normal tension glaucoma (NTG) eyes, each disc morphology group had a characteristic location in which the loss of circumpapillary retinal nerve fiber layer thickness (cpRNFLT; measured with optical coherence tomography: OCT) was most likely to occur. Furthermore, the incidence of reductions in visual acuity differed between the groups, as did the speed of visual field loss, the distribution of defective visual field test points, and the location of test points that were most susceptible to progressive damage, measured by Humphrey static perimetry. These results indicate that Nicolela's method of classifying eyes with glaucoma was able to overcome the difficulties caused by the diverse nature of the disease, at least to a certain extent. Building on these findings, we then set out to identify sectors of the visual field that correspond to the distribution of retinal nerve fibers, with the aim of detecting glaucoma progression with improved sensitivity. We first mapped the statistical correlation between visual field test points and cpRNFLT in each temporal clock-hour sector (from 6 to 12 o'clock), using OCT data from NTG patients. The resulting series of maps allowed us to identify areas containing visual field test points that were prone to be affected together as a group. We also used a similar method to identify visual field sectors within a 10 x 10 grid displayed by an OCT map of the macula. By analyzing both the visual field and the macular map sectors, we anticipate that a more accurate and sensitive detection of glaucoma progression can become possible. We also used laser speckle flowgraphy (LSFG) to assess optic nerve blood flow. We found that compared to healthy eyes, eyes with early-stage NTG had decreased blood flow, and the peak of the blood flow wave form of each heartbeat was delayed. Finally, we used a method combining swept source OCT (SS-OCT) and newly developed analysis software to reconstruct the entire lamina cribrosa, a structure situated deep in the optic nerve head. This morphological analysis returned preliminary data suggesting that alterations in the morphology of the lamina cribrosa are already present in the early stages of glaucoma. This result indicates that axonal injury, mediated by morphological abnormalities of the lamina cribrosa, is involved in the pathogenesis of glaucoma. The next topic discussed is the pathology-based drug research and development, focusing on the use of comprehensive gene expression analysis and the development of molecule-targeting drugs in a murine model of optic nerve injury. Learning from clinical data on glaucoma and the lamina cribrosa, we carried out basic research to first determine what factors regulate axonal injury, and then develop drugs targeting these factors. Specifically, we performed a comprehensive gene expression analysis, using a next generation sequencer, and pathway analysis of retinal samples obtained from a murine model of axonal injury. This analysis revealed a characteristic upregulation of genes (such as Chop) that belongs to the endoplasmic reticulum stress pathway. An immunohistological analysis revealed that these changes in gene expression took place in the retinal ganglion cells, suggesting that endoplasmic reticulum stress molecules may be suitable therapeutic targets. Among these molecules, we chose CHOP as our primary target for drug development. Currently, we are in the process of screening a library of 1274 drugs, all of which are already used in human subjects, for CHOP inhibitors. The last topic of our discussion is future possibilities for glaucoma management. First, we discuss the development of next generation in vivo imaging modalities that allow detailed description of pathomechanisms of this multifactorial disease, glaucoma. The purpose of this research was to improve the efficacy of glaucoma diagnosis and to visualize its pathology at a cellular/molecular level and develop molecule-specific therapies. Currently available visual field tests are subjective, since they rely on a determination of the threshold of light perception, and are affected by poor reproducibility. The current dependence on visual field tests to ascertain the progression of glaucoma is thus a serious limitation on an important task of ophthalmologists. We, therefore, turned our focus to the establishment of an in vivo imaging method to detect dying retinal ganglion cells, which would highlight the pathologic state of glaucoma with high sensitivity. To this end, we used confocal scanning ophthalmoscopy to assess the usefulness of SYTOX Orange as a cell death probe. Our results showed that this probe could reveal dying retinal ganglion cells clearly, quickly and with high sensitivity. We, therefore, believe that the clinical application of probes that can sensitively detect dying retinal ganglion cells is a highly promising approach. This also applies to the use of molecular tools that can provide information on the molecular pathology of glaucoma. Finally, we would like to introduce our national collaborative work on the analysis of "big-data". The project aims to collect as wide a range of data as possible at an unprecedented scale. The data to be registered ranges from basic glaucoma data, such as IOP and visual field test results, to data from the most sophisticated comprehensive expression analyses or imaging data. This is an important area of research, since it promises to enable the exploration of targets for drug discovery and the identification of new biomarkers to efficiently detect glaucoma progression by applying new analysis strategies to the complex mass data. The project not only depends on the collaborative efforts of various types of clinical settings including private practices, medical centers and university hospitals, but also contributions of the pharmaceutical and the medical device industries. Thus, uniting a wide range of Japanese interests and resources is the key for success. In summary, in order to aim for ZERO BLINDNESS, a drastic improvement in the quality of our patient care, drug development research for unmet medical demands, and a strategic collaboration of various professionals in the ophthalmic industry are essential. With the deep appreciation we fell towards the selfless support extended during the earthquake disaster, we wish to translate our "gratitude" into "power" from Tohoku. In doing so, we as academicians are determined to keep on contributing to the society by making progress in the medicine.
Bayes Forest: a data-intensive generator of morphological tree clones
Järvenpää, Marko; Åkerblom, Markku; Raumonen, Pasi; Kaasalainen, Mikko
2017-01-01
Abstract Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally, we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a variety of applications for exploration of the morphological potential of the growth models (both theoretical and experimental), arising in all sectors of plant science research. PMID:29020742
Ghonge, Nitin P; Gadanayak, Satyabrat; Rajakumari, Vijaya
2014-01-01
As Laparoscopic Donor Nephrectomy (LDN) offers several advantages for the donor such as lesser post-operative pain, fewer cosmetic concerns and faster recovery time, there is growing global trend towards LDN as compared to open nephrectomy. Comprehensive pre-LDN donor evaluation includes assessment of renal morphology including pelvi-calyceal and vascular system. Apart from donor selection, evaluation of the regional anatomy allows precise surgical planning. Due to limited visualization during laparoscopic renal harvesting, detailed pre-transplant evaluation of regional anatomy, including the renal venous anatomy is of utmost importance. MDCT is the modality of choice for pre-LDN evaluation of potential renal donors. Apart from appropriate scan protocol and post-processing methods, detailed understanding of surgical techniques is essential for the Radiologist for accurate image interpretation during pre-LDN MDCT evaluation of potential renal donors. This review article describes MDCT evaluation of potential living renal donor, prior to LDN with emphasis on scan protocol, post-processing methods and image interpretation. The article laid special emphasis on surgical perspectives of pre-LDN MDCT evaluation and addresses important points which transplant surgeons want to know. PMID:25489130
Integrated biophotonics in endoscopic oncology
NASA Astrophysics Data System (ADS)
Muguruma, Naoki; DaCosta, Ralph S.; Wilson, Brian C.; Marcon, Norman E.
2009-02-01
Gastrointestinal endoscopy has made great progress during last decade. Diagnostic accuracy can be enhanced by better training, improved dye-contrast techniques method, and the development of new image processing technologies. However, diagnosis using conventional endoscopy with white-light optical imaging is essentially limited by being based on morphological changes and/or visual attribution: hue, saturation and intensity, interpretation of which depends on the endoscopist's eye and brain. In microlesions in the gastrointestinal tract, we still rely ultimately on the histopathological diagnosis from biopsy specimens. Autofluorescence imaging system has been applied for lesions which have been difficult to morphologically recognize or are indistinct with conventional endoscope, and this approach has potential application for the diagnosis of dysplastic lesions and early cancers in the gastrointestinal tract, supplementing the information from white light endoscopy. This system has an advantage that it needs no administration of a photosensitive agent, making it suitable as a screening method for the early detection of neoplastic tissues. Narrow band imaging (NBI) is a novel endoscopic technique which can distinguish neoplastic and non-neoplastic lesions without chromoendoscopy. Magnifying endoscopy in combination with NBI has an obvious advantage, namely analysis of the epithelial pit pattern and the vascular network. This new technique allows a detailed visualization in early neoplastic lesions of esophagus, stomach and colon. However, problems remain; how to combine these technologies in an optimum diagnostic strategy, how to apply them into the algorithm for therapeutic decision-making, and how to standardize several classifications surrounding them. 'Molecular imaging' is a concept representing the most novel imaging methods in medicine, although the definition of the word is still controversial. In the field of gastrointestinal endoscopy, the future of endoscopic diagnosis is likely to be impacted by a combination of biomarkers and technology, and 'endoscopic molecular imaging' should be defined as "visualization of molecular characteristics with endoscopy". These innovations will allow us not only to locate a tumor or dysplastic lesion but also to visualize its molecular characteristics (e.g., DNA mutations and polymorphisms, gene and/or protein expression), and the activity of specific molecules and biological processes that affect tumor behavior and/or its response to therapy. In the near future, these methods should be promising technologies that will play a central role in gastrointestinal oncology.
Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal
2010-12-15
A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
David, R.; Stoessel, A.; Berthoz, A.; Spoor, F.; Bennequin, D.
2016-01-01
The semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies. Ariadne is freely available at http://www.earbank.org. PMID:27604473
ERIC Educational Resources Information Center
Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof
2010-01-01
Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…
Falcon: A Temporal Visual Analysis System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A.
2016-09-05
Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.
Salience in Second Language Acquisition: Physical Form, Learner Attention, and Instructional Focus
Cintrón-Valentín, Myrna C.; Ellis, Nick C.
2016-01-01
We consider the role of physical form, prior experience, and form focused instruction (FFI) in adult language learning. (1) When presented with competing cues to interpretation, learners are more likely to attend to physically more salient cues in the input. (2) Learned attention is an associative learning phenomenon where prior-learned cues block those that are experienced later. (3) The low salience of morphosyntactic cues can be overcome by FFI, which leads learners to attend cues which might otherwise be ignored. Experiment 1 used eye-tracking to investigate how language background influences learners’ attention to morphological cues, as well as the attentional processes whereby different types of FFI overcome low cue salience, learned attention and blocking. Chinese native speakers (no L1 verb-tense morphology) viewed Latin utterances combining lexical and morphological cues to temporality under control conditions (CCs) and three types of explicit FFI: verb grammar instruction (VG), verb salience with textual enhancement (VS), and verb pretraining (VP), and their use of these cues was assessed in a subsequent comprehension test. CC participants were significantly more sensitive to the adverbs than verb morphology. Instructed participants showed greater sensitivity to the verbs. These results reveal attentional processes whereby learners’ prior linguistic experience can shape their attention toward cues in the input, and whereby FFI helps learners overcome the long-term blocking of verb-tense morphology. Experiment 2 examined the role of modality of input presentation – aural or visual – in L1 English learners’ attentional focus on morphological cues and the effectiveness of different FFI manipulations. CC participants showed greater sensitivity toward the adverb cue. FFI was effective in increasing attention to verb-tense morphology, however, the processing of morphological cues was considerably more difficult under aural presentation. From visual exposure, the FFI conditions were broadly equivalent at tuning attention to the morphology, although VP resulted in balanced attention to both cues. The effectiveness of morphological salience-raising varied across modality: VS was effective under visual exposure, but not under aural exposure. From aural exposure, only VG was effective. These results demonstrate how salience in physical form, learner attention, and instructional focus all variously affect the success of L2 acquisition. PMID:27621715
NASA Astrophysics Data System (ADS)
Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua
2017-05-01
The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.
NASA Astrophysics Data System (ADS)
Tsagkrasoulis, Dimosthenis; Hysi, Pirro; Spector, Tim; Montana, Giovanni
2017-04-01
The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).
Quagga and zebra mussels: biology, impacts, and control
Nalepa, Thomas F.; Schloesser, Don W.; Nalepa, Thomas F.; Schloesser, Don W.
2013-01-01
Quagga and Zebra Mussels: Biology, Impacts, and Control, Second Edition provides a broad view of the zebra/quagga mussel issue, offering a historic perspective and up-to-date information on mussel research. Comprising 48 chapters, this second edition includes reviews of mussel morphology, physiology, and behavior. It details mussel distribution and spread in Europe and across North America, and examines policy and regulatory responses, management strategies, and mitigation efforts. In addition, this book provides extensive coverage of the impact of invasive mussel species on freshwater ecosystems, including effects on water clarity, phytoplankton, water quality, food web changes, and consequences to other aquatic fauna. It also reviews and offers new insights on how zebra and quagga mussels respond and adapt to varying environmental conditions. This new edition includes seven video clips that complement chapter text and, through visual documentation, provide a greater understanding of mussel behavior and distribution.
The bering small vehicle asteroid mission concept.
Michelsen, Rene; Andersen, Anja; Haack, Henning; Jørgensen, John L; Betto, Maurizio; Jørgensen, Peter S
2004-05-01
The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target. Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus is on main belt objects, but the mission profile will enable mapping of objects inside the Earth orbit as well.
Lai, Hei Ming; Liu, Alan King Lun; Ng, Wai-Lung; DeFelice, John; Lee, Wing Sang; Li, Heng; Li, Wen; Ng, Ho Man; Chang, Raymond Chuen-Chung; Lin, Bin; Wu, Wutian; Gentleman, Steve M.
2016-01-01
Three-dimensional visualization of intact tissues is now being achieved by turning tissues transparent. CLARITY is a unique tissue clearing technique, which features the use of detergents to remove lipids from fixed tissues to achieve optical transparency. To preserve tissue integrity, an acrylamide-based hydrogel has been proposed to embed the tissue. In this study, we examined the rationale behind the use of acrylamide in CLARITY, and presented evidence to suggest that the omission of acrylamide-hydrogel embedding in CLARITY does not alter the preservation of tissue morphology and molecular information in fixed tissues. We therefore propose a novel and simplified workflow for formaldehyde-fixed tissue clearing, which will facilitate the laboratory implementation of this technique. Furthermore, we have investigated the basic tissue clearing process in detail and have highlighted some areas for targeted improvement of technologies essential for the emerging subject of three-dimensional histology. PMID:27359336
Detailed fetal anatomy assessment in the first trimester at 11, 12 and 13 weeks of gestation.
Luchi, Carlo; Schifano, Martina; Sacchini, Clara; Nanini, Chiara; Sceusa, Francesca; Capriello, Patrizio; Genazzani, Andrea R
2012-06-01
The aim of the present observational study was to evaluate the feasibility of a morphological scan and determine the detection rate of fetal organs, structures and systems in the first trimester of pregnancy. 977 single pregnant women attending our Fetal Medicine Section to undergo first trimester screening for aneuploidies were enrolled and divided into three groups depending on gestational age and crown-rump-length measurement. Scans targeted on a total of 26 fetal anatomical structures were performed by a single operator. The overall detection rate was 96% at 11 weeks and reached 100% at 12 and 13 weeks, with a significant statistical difference between 11 and 12/13 weeks for the majority of the investigated fetal anatomical structures. Evaluation of most part of the fetal anatomical structures is feasible with high accuracy in the first trimester. Visualization of the majority of the targeted fetal organs improves from 11 to 13 weeks.
Skrzat, Janusz; Sioma, Andrzej; Kozerska, Magdalena
2013-01-01
In this paper we present potential usage of the 3D vision system for registering features of the macerated cranial bones. Applied 3D vision system collects height profiles of the object surface and from that data builds a three-dimensional image of the surface. This method appeared to be accurate enough to capture anatomical details of the macerated bones. With the aid of the 3D vision system we generated images of the surface of the human calvaria which was used for testing the system. Performed reconstruction visualized the imprints of the dural vascular system, cranial sutures, and the three-layer structure of the cranial bones observed in the cross-section. We figure out that the 3D vision system may deliver data which can enhance estimation of sex from the osteological material.
Konishi, Takao; Funayama, Naohiro; Yamamoto, Tadashi; Hotta, Daisuke; Kikuchi, Kenjiro; Ohori, Katsumi; Nishihara, Hiroshi; Tanaka, Shinya
2016-11-22
A small mitral valve aneurysm (MVA) presenting as severe mitral regurgitation (MR) is uncommon. A 47-year-old man with a history of hypertension complained of exertional chest discomfort. A transthoracic echocardiogram (TTE) revealed the presence of MR and prolapse of the posterior leaflet. A 6-mm in diameter MVA, not clearly visualized by TTE, was detected on the posterior leaflet on a three-dimensional (3D) transesophageal echocardiography (TEE). The patient underwent uncomplicated triangular resection of P2 and mitral valve annuloplasty, and was discharged from postoperative rehabilitation, 2 weeks after the operation. Histopathology of the excised leaflet showed myxomatous changes without infective vegetation or signs of rheumatic heart disease. A small, isolated MVA is a cause of severe MR, which might be overlooked and, therefore, managed belatedly. 3D TEE was helpful in imaging its morphologic details.
Visualizing blood vessel trees in three dimensions: clinical applications
NASA Astrophysics Data System (ADS)
Bullitt, Elizabeth; Aylward, Stephen
2005-04-01
A connected network of blood vessels surrounds and permeates almost every organ of the human body. The ability to define detailed blood vessel trees enables a variety of clinical applications. This paper discusses four such applications and some of the visualization challenges inherent to each. Guidance of endovascular surgery: 3D vessel trees offer important information unavailable by traditional x-ray projection views. How best to combine the 2- and 3D image information is unknown. Planning/guidance of tumor surgery: During tumor resection it is critical to know which blood vessels can be interrupted safely and which cannot. Providing efficient, clear information to the surgeon together with measures of uncertainty in both segmentation and registration can be a complex problem. Vessel-based registration: Vessel-based registration allows pre-and intraoperative images to be registered rapidly. The approach both provides a potential solution to a difficult clinical dilemma and offers a variety of visualization opportunities. Diagnosis/staging of disease: Almost every disease affects blood vessel morphology. The statistical analysis of vessel shape may thus prove to be an important tool in the noninvasive analysis of disease. A plethora of information is available that must be presented meaningfully to the clinician. As medical image analysis methods increase in sophistication, an increasing amount of useful information of varying types will become available to the clinician. New methods must be developed to present a potentially bewildering amount of complex data to individuals who are often accustomed to viewing only tissue slices or flat projection views.
NASA Astrophysics Data System (ADS)
Doolittle, D. F.; Gharib, J. J.; Mitchell, G. A.
2015-12-01
Detailed photographic imagery and bathymetric maps of the seafloor acquired by deep submergence vehicles such as Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV) are expanding how scientists and the public view and ultimately understand the seafloor and the processes that modify it. Several recently acquired optical and acoustic datasets, collected during ECOGIG (Ecosystem Impacts of Oil and Gas Inputs to the Gulf) and other Gulf of Mexico expeditions using the National Institute for Undersea Science Technology (NIUST) Eagle Ray, and Mola Mola AUVs, have been fused with lower resolution data to create unique three-dimensional geovisualizations. Included in these data are multi-scale and multi-resolution visualizations over hydrocarbon seeps and seep related features. Resolution of the data range from 10s of mm to 10s of m. When multi-resolution data is integrated into a single three-dimensional visual environment, new insights into seafloor and seep processes can be obtained from the intuitive nature of three-dimensional data exploration. We provide examples and demonstrate how integration of multibeam bathymetry, seafloor backscatter data, sub-bottom profiler data, textured photomosaics, and hull-mounted multibeam acoustic midwater imagery are made into a series a three-dimensional geovisualizations of actively seeping sites and associated chemosynthetic communities. From these combined and merged datasets, insights on seep community structure, morphology, ecology, fluid migration dynamics, and process geomorphology can be investigated from new spatial perspectives. Such datasets also promote valuable inter-comparisons of sensor resolution and performance.
Yoshida, M. A.; Ogura, A.; Ikeo, K.; Shigeno, S.; Moritaki, T.; Winters, G. C.; Kohn, A. B.; Moroz, L. L.
2015-01-01
Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called “evolutionary tinkering” or “co-option”, and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the “camera” eye from nautilus’ “pinhole” eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids’ opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. PMID:26002349
Zhang, Xiao; Glennie, Craig L; Bucheli, Sibyl R; Lindgren, Natalie K; Lynne, Aaron M
2014-08-01
Decomposition can be a highly variable process with stages that are difficult to quantify. Using high accuracy terrestrial laser scanning a repeated three-dimensional (3D) documentation of volumetric changes of a human body during early decomposition is recorded. To determine temporal volumetric variations as well as 3D distribution of the changed locations in the body over time, this paper introduces the use of multiple degenerated cylinder models to provide a reasonable approximation of body parts against which 3D change can be measured and visualized. An iterative closest point algorithm is used for 3D registration, and a method for determining volumetric change is presented. Comparison of the laser scanning estimates of volumetric change shows good agreement with repeated in-situ measurements of abdomen and limb circumference that were taken diurnally. The 3D visualizations of volumetric changes demonstrate that bloat is a process with a beginning, middle, and end rather than a state of presence or absence. Additionally, the 3D visualizations show conclusively that cadaver bloat is not isolated to the abdominal cavity, but also occurs in the limbs. Detailed quantification of the bloat stage of decay has the potential to alter how the beginning and end of bloat are determined by researchers and can provide further insight into the effects of the ecosystem on decomposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The "social" and "interpersonal" body in spatial cognition. The role of agency and interagency.
Crivelli, Davide; Balconi, Michela
2015-09-01
In order to interact effectively, we need to represent our action as produced by human beings. According to direct access theories, the first steps of visual information processing offer us an informed direct grasp of the situation, especially when social and interpersonal components are implicated. Biological system detection may be the gateway of such smart processes and then may influence initial stages of perception fostering adaptive social behaviour. To investigate early neural correlates of human agency detection in ecological situations with more high or low social impact, we compared scenes showing a human versus artificial agent interacting with a human agent. Twenty volunteers participated in the study. They were asked to observe dynamic visual stimuli showing realistic interactions. ERP (event-related potentials) were recorded. Each stimulus depicted an arm executing a gesture addressed to a human agent. Visual features of the arm were manipulated: in half of trials, it was real; in other trials, it was deprived of some details and transformed in a statue-like arm. EEG morphological analysis revealed an early negative deflection peaking at about 155 ms. Peak amplitude data have been statistically analysed by repeated-measures ANOVAs. It was found that the peak was ampler in the left inferior posterior region when the gesturing arm was human. The early negative deflection, N150, which we found to be different between the human and artificial conditions, is presumably associated with human agency detection in high interpersonal context.
What Do Graded Effects of Semantic Transparency Reveal about Morphological Processing?
ERIC Educational Resources Information Center
Feldman, Laurie Beth; Soltano, Emily G.; Pastizzo, Matthew J.; Francis, Sarah E.
2004-01-01
We examined the influence of semantic transparency on morphological facilitation in English in three lexical decision experiments. Decision latencies to visual targets (e.g., CASUALNESS) were faster after semantically transparent (e.g., CASUALLY) than semantically opaque (e.g., CASUALTY) primes whether primes were auditory and presented…
Tracking Hierarchical Processing in Morphological Decomposition with Brain Potentials
ERIC Educational Resources Information Center
Lavric, Aureliu; Elchlepp, Heike; Rastle, Kathleen
2012-01-01
One important debate in psycholinguistics concerns the nature of morphological decomposition processes in visual word recognition (e.g., darkness = {dark} + {-ness}). One theory claims that these processes arise during orthographic analysis and prior to accessing meaning (Rastle & Davis, 2008), and another argues that these processes arise through…
Early, Equivalent ERP Masked Priming Effects for Regular and Irregular Morphology
ERIC Educational Resources Information Center
Morris, Joanna; Stockall, Linnaea
2012-01-01
Converging evidence from behavioral masked priming (Rastle & Davis, 2008), EEG masked priming (Morris, Frank, Grainger, & Holcomb, 2007) and single word MEG (Zweig & Pylkkanen, 2008) experiments has provided robust support for a model of lexical processing which includes an early, automatic, visual word form based stage of morphological parsing…
How Word Frequency Affects Morphological Processing in Monolinguals and Bilinguals
ERIC Educational Resources Information Center
Lehtonen, Minna; Laine, Matti
2003-01-01
The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and…
Determining the Effectiveness of Visual Input Enhancement across Multiple Linguistic Cues
ERIC Educational Resources Information Center
Comeaux, Ian; McDonald, Janet L.
2018-01-01
Visual input enhancement (VIE) increases the salience of grammatical forms, potentially facilitating acquisition through attention mechanisms. Native English speakers were exposed to an artificial language containing four linguistic cues (verb agreement, case marking, animacy, word order), with morphological cues either unmarked, marked in the…
A Closer Look at Visual Manuals.
ERIC Educational Resources Information Center
van der Meij, Hans
1996-01-01
Examines the visual manual genre, discussing main forms and functions of step-by-step and guided tour manuals in detail. Examines whether a visual manual helps computer users realize tasks faster and more accurately than a non-visual manual. Finds no effects on accuracy, but speedier task execution by 35% for visual manuals. Concludes there is no…
Cell structure and function in the visual cortex of the cat
Kelly, J. P.; Van Essen, D. C.
1974-01-01
1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579
NASA Astrophysics Data System (ADS)
Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra
2012-10-01
A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g
NASA Astrophysics Data System (ADS)
Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco
2007-05-01
This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.
Reduced Change Blindness Suggests Enhanced Attention to Detail in Individuals with Autism
ERIC Educational Resources Information Center
Smith, Hayley; Milne, Elizabeth
2009-01-01
Background: The phenomenon of change blindness illustrates that a limited number of items within the visual scene are attended to at any one time. It has been suggested that individuals with autism focus attention on less contextually relevant aspects of the visual scene, show superior perceptual discrimination and notice details which are often…
Memory for Specific Visual Details can be Enhanced by Negative Arousing Content
ERIC Educational Resources Information Center
Kensinger, Elizabeth A.; Garoff-Eaton, Rachel J.; Schacter, Daniel L.
2006-01-01
Individuals often claim that they vividly remember information with negative emotional content. At least two types of information could lead to this sense of enhanced vividness: Information about the emotional item itself (e.g., the exact visual details of a snake) and information about the context in which the emotional item was encountered…
Souza, Joyce; Garcia, Juberlan; Neves, Renata H; Machado-Silva, José Roberto; Maldonado, Arnaldo
2013-12-01
Trypsin and bile salts have been identified as important triggers for excystation of Echinostoma metacercariae. Although excystation in trematodes is a well-known phenomenon, some morphological developmental changes remain to be elucidated. In order to gain further insight into the in vitro development of metacercariae, we assayed different cultivating conditions: 0.5% trypsin and 0.5% bile salts; 1% trypsin and 1% bile salts; 1% trypsin and 0.5% bile salts; 0.5% bile salts; or 0.5% trypsin. By means of light microscopy and confocal microscopy, we characterized each encysted, activated, breached and excysted stage based on the morphological features. However, breached and excysted stages were not revealed in both bile salts and trypsin-free medium. Excretory concretions (25 ± 3.9) were visualized within excretory tubules, close to the ventral sucker and genital anlage. The oral sucker armed with spines and digestive system was similar to those of adult worms. The reproductive system is composed of a genital anlage and the cirrus sac primordium. In short, trypsin and bile salts associated were fundamental for the in vitro metacercariae excystation of Echinostoma paraensei. This article presents the first detailed information of all stages of metacercariae excystation obtained through light and confocal microscopy. Copyright © 2013. Published by Elsevier Inc.
Ex vivo nonlinear microscopy imaging of Ehlers-Danlos syndrome-affected skin.
Kiss, Norbert; Haluszka, Dóra; Lőrincz, Kende; Kuroli, Enikő; Hársing, Judit; Mayer, Balázs; Kárpáti, Sarolta; Fekete, György; Szipőcs, Róbert; Wikonkál, Norbert; Medvecz, Márta
2018-07-01
Ehlers-Danlos syndrome (EDS) is the name for a heterogenous group of rare genetic connective tissue disorders with an overall incidence of 1 in 5000. The histological characteristics of EDS have been previously described in detail in the late 1970s and early 1980s. Since that time, the classification of EDS has undergone significant changes, yet the description of the histological features of collagen morphology in different EDS subtypes has endured the test of time. Nonlinear microscopy techniques can be utilized for non-invasive in vivo label-free imaging of the skin. Among these techniques, two-photon absorption fluorescence (TPF) microscopy can visualize endogenous fluorophores, such as elastin, while the morphology of collagen fibers can be assessed by second-harmonic generation (SHG) microscopy. In our present work, we performed TPF and SHG microscopy imaging on ex vivo skin samples of one patient with classical EDS and two patients with vascular EDS and two healthy controls. We detected irregular, loosely dispersed collagen fibers in a non-parallel arrangement in the dermis of the EDS patients, while as expected, there was no noticeable impairment in the elastin content. Based on further studies on a larger number of patients, in vivo nonlinear microscopic imaging could be utilized for the assessment of the skin status of EDS patients in the future.
Shi, C; Cassell, M D
1993-04-01
This report describes a combined retrograde tracing, intracellular injection and anterograde fluorescence labeling method using the application of confocal laser scanning microscopy. By simultaneously viewing the morphology of identified projection neurons and the distribution of anterogradely labeled fibers and terminals, this approach allows accurate characterization of the anatomical relationships between these two elements. To demonstrate this approach, the retrograde tracer Fast Blue was injected into the bed nucleus of stria terminalis (BNST) and the anterograde tracer tetramethylrhodamine-conjugated dextran was injected into the insular cortex in adult rats. After one week survival time, the brains were fixed and sectioned on a vibratome. Individual BNST projecting neurons identified in the amygdaloid complex on 120 microns thick sections were intracellularly injected with Lucifer Yellow under visual control and analyzed with confocal laser scanning microscopy. The results demonstrate that images from very thin optical sections can clearly show potential synaptic contacts between anterograde labeling and intracellularly labeled projecting neurons. Stacked images from optical sections show, in very great detail, the morphology of projection neurons in three-dimensions. Compared to other methodological combinations, the present method provides a more simple and efficient means to trace three successive components of a putative neuron chain.
Conforto, Egle; Joguet, Nicolas; Buisson, Pierre; Vendeville, Jean-Eudes; Chaigneau, Carine; Maugard, Thierry
2015-02-01
The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc... This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. Copyright © 2014 Elsevier B.V. All rights reserved.
A Simple Model of Hox Genes: Bone Morphology Demonstration
ERIC Educational Resources Information Center
Shmaefsky, Brian
2008-01-01
Visual demonstrations of abstract scientific concepts are effective strategies for enhancing content retention (Shmaefsky 2004). The concepts associated with gene regulation of growth and development are particularly complex and are well suited for teaching with visual models. This demonstration provides a simple and accurate model of Hox gene…
Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji
2017-01-01
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.
Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji
2017-01-01
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka. PMID:28399163
Smith, Selena Y.; Collinson, Margaret E.; Rudall, Paula J.; Simpson, David A.; Marone, Federica; Stampanoni, Marco
2009-01-01
While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool—virtual taphonomy—to improve our understanding of plant evolution and paleobiogeography. PMID:19574457
ERIC Educational Resources Information Center
Mirel, Barbara
2001-01-01
Conducts a scenario-based usability test with 10 data analysts using visual querying (visually analyzing data with interactive graphics). Details a range of difficulties found in visual selection that, at times, gave rise to inaccurate selections, invalid conclusions, and misguided decisions. Argues that support for visual selection must be built…
Automatic detection of multi-level acetowhite regions in RGB color images of the uterine cervix
NASA Astrophysics Data System (ADS)
Lange, Holger
2005-04-01
Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method used to detect cancer precursors and cancer of the uterine cervix, whereby a physician (colposcopist) visually inspects the metaplastic epithelium on the cervix for certain distinctly abnormal morphologic features. A contrast agent, a 3-5% acetic acid solution, is used, causing abnormal and metaplastic epithelia to turn white. The colposcopist considers diagnostic features such as the acetowhite, blood vessel structure, and lesion margin to derive a clinical diagnosis. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD, a complex image analysis system that at its core assesses the same visual features as used by colposcopists. The acetowhite feature has been identified as one of the most important individual predictors of lesion severity. Here, we present the details and preliminary results of a multi-level acetowhite region detection algorithm for RGB color images of the cervix, including the detection of the anatomic features: cervix, os and columnar region, which are used for the acetowhite region detection. The RGB images are assumed to be glare free, either obtained by cross-polarized image acquisition or glare removal pre-processing. The basic approach of the algorithm is to extract a feature image from the RGB image that provides a good acetowhite to cervix background ratio, to segment the feature image using novel pixel grouping and multi-stage region-growing algorithms that provide region segmentations with different levels of detail, to extract the acetowhite regions from the region segmentations using a novel region selection algorithm, and then finally to extract the multi-levels from the acetowhite regions using multiple thresholds. The performance of the algorithm is demonstrated using human subject data.
Krings, Markus; Klein, Benjamin; Heneka, Markus J; Rödder, Dennis
2017-01-01
The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group.
Krings, Markus; Klein, Benjamin; Heneka, Markus J.
2017-01-01
The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group. PMID:28235032
Falcão, Manuel Sousa; Freitas-Costa, Paulo; Beato, João Nuno; Pinheiro-Costa, João; Rocha-Sousa, Amândio; Carneiro, Ângela; Brandão, Elisete Maria; Falcão-Reis, Fernando
2017-02-27
To evaluate the safety and impact on visual acuity, retinal and choroidal morphology of simultaneous cataract surgery and intravitreal anti-vascular endothelial growth factor on patients with visually significant cataracts and previously treated exudative age-related macular degeneration. Prospective study, which included 21 eyes of 20 patients with exudative age-related macular degeneration submitted to simultaneous phacoemulsification and intravitreal ranibizumab or bevacizumab. The patients were followed for 12 months after surgery using a pro re nata strategy. Visual acuity, foveal and choroidal thickness changes were evaluated 1, 6 and 12 months post-operatively. There was a statistically significant increase in mean visual acuity at one (13.4 letters, p < 0.05), six (11.5 letters, p < 0.05) and twelve months (11.3 letters, p < 0.05) without significant changes in retinal or choroidal morphology. At 12 months, 86% of eyes were able to maintain visual acuity improvement. There were no significant differences between the two anti-vascular endothelial growth factor drugs and no complications developed during follow-up. Simultaneous phacoemulsification and intravitreal anti- vascular endothelial growth factor is safe and allows improvement in visual acuity in patients with visually significant cataracts and exudative age-related macular degeneration. Visual acuity gains were maintained with a pro re nata strategy showing that in this subset of patients, phacoemulsification may be beneficial. Cataract surgery and simultaneous anti-vascular endothelial growth factor therapy improves visual acuity in patients with exudative age-related macular degeneration.
ERIC Educational Resources Information Center
Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F.
2017-01-01
Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these…
Morphological Processing of Chinese Compounds from a Grammatical View
ERIC Educational Resources Information Center
Liu, Phil D.; McBride-Chang, Catherine
2010-01-01
In the present study, morphological structure processing of Chinese compounds was explored using a visual priming lexical decision task among 21 Hong Kong college students. Two compounding structures were compared. The first type was the subordinate, in which one morpheme modifies the other (e.g., [image omitted] ["laam4 kau4",…
Effects of Morphological Family Size for Young Readers
ERIC Educational Resources Information Center
Perdijk, Kors; Schreuder, Robert; Baayen, R. Harald; Verhoeven, Ludo
2012-01-01
Dutch children, from the second and fourth grade of primary school, were each given a visual lexical decision test on 210 Dutch monomorphemic words. After removing words not recognized by a majority of the younger group, (lexical) decisions were analysed by mixed-model regression methods to see whether morphological Family Size influenced decision…
Processing Trade-Offs in the Reading of Dutch Derived Words
ERIC Educational Resources Information Center
Kuperman, Victor; Bertram, Raymond; Baayen, R. Harald
2010-01-01
This eye-tracking study explores visual recognition of Dutch suffixed words (e.g., "plaats+ing" "placing") embedded in sentential contexts, and provides new evidence on the interplay between storage and computation in morphological processing. We show that suffix length crucially moderates the use of morphological properties. In words with shorter…
ERIC Educational Resources Information Center
Dunabeitia, Jon Andoni; Peream, Manuel; Carreiras, Manuel
2007-01-01
When does morphological decomposition occur in visual word recognition? An increasing body of evidence suggests the presence of early morphological processing. The present work investigates this issue via an orthographic similarity manipulation. Three masked priming lexical decision experiments were conducted to examine the transposed-letter…
Morphological Structures in Visual Word Recognition: The Case of Arabic
ERIC Educational Resources Information Center
Abu-Rabia, Salim; Awwad, Jasmin (Shalhoub)
2004-01-01
This research examined the function within lexical access of the main morphemic units from which most Arabic words are assembled, namely roots and word patterns. The present study focused on the derivation of nouns, in particular, whether the lexical representation of Arabic words reflects their morphological structure and whether recognition of a…
NASA Astrophysics Data System (ADS)
Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team
2018-01-01
We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.
Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori
2017-10-01
We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.
Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence
2017-07-01
While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.
Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan
2015-10-01
Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.
Kalindi, Sylvia Chanda; Chung, Kevin Kien Hoa
2018-01-01
This study investigated the role of morphological awareness in understanding Chinese word reading and dictation among Chinese-speaking adolescent readers in Hong Kong as well as the cognitive-linguistic profile of early adolescent readers with dyslexia. Fifty-four readers with dyslexia in Grades 5 and 6 were compared with 54 chronological age-matched (CA) typical readers on the following measures of cognitive-linguistic and literacy skills: morphological awareness, phonological awareness, visual-orthographic knowledge, rapid naming, vocabulary knowledge, verbal short-term memory (STM), Chinese word reading, and dictation (or spelling). The results indicated that early adolescent readers with dyslexia performed less well than the typical readers on all cognitive-linguistic and literacy measures except the phonological measures. Both groups' scores showed substantial correlations between morphological awareness and Chinese word reading and dictation. Visual-orthographic knowledge and rapid naming were also associated with dictation in early adolescent readers with and without dyslexia, respectively. Moderated multiple regression analyses further revealed that morphological awareness and rapid naming explained unique variance in word reading and dictation for the readers with dyslexia and typical readers separately after controlling readers' age and group effect. These results highlight the potential importance of morphological awareness and rapid naming in Chinese word reading and writing in Chinese early adolescents' literacy development and impairment.
Slope histogram distribution-based parametrisation of Martian geomorphic features
NASA Astrophysics Data System (ADS)
Balint, Zita; Székely, Balázs; Kovács, Gábor
2014-05-01
The application of geomorphometric methods on the large Martian digital topographic datasets paves the way to analyse the Martian areomorphic processes in more detail. One of the numerous methods is the analysis is to analyse local slope distributions. To this implementation a visualization program code was developed that allows to calculate the local slope histograms and to compare them based on Kolmogorov distance criterion. As input data we used the digital elevation models (DTMs) derived from HRSC high-resolution stereo camera image from various Martian regions. The Kolmogorov-criterion based discrimination produces classes of slope histograms that displayed using coloration obtaining an image map. In this image map the distribution can be visualized by their different colours representing the various classes. Our goal is to create a local slope histogram based classification for large Martian areas in order to obtain information about general morphological characteristics of the region. This is a contribution of the TMIS.ascrea project, financed by the Austrian Research Promotion Agency (FFG). The present research is partly realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support, using Hungarian state and European Union funds and cofinances from the European Social Fund.
Distribution, morphology, and origins of Martian pit crater chains
NASA Astrophysics Data System (ADS)
Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.
2004-06-01
Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.
Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.
2015-01-01
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760
Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C
2015-11-15
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Hwang, Jeongeun; Kim, Miju; Kim, Seunghwan; Lee, Jinwon
2013-01-01
An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman’s method was adopted for the whole-lung sample preparation, and Canny’s edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method’s feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies. PMID:23704918
A new morphology algorithm for shoreline extraction from DEM data
NASA Astrophysics Data System (ADS)
Yousef, Amr H.; Iftekharuddin, Khan; Karim, Mohammad
2013-03-01
Digital elevation models (DEMs) are a digital representation of elevations at regularly spaced points. They provide an accurate tool to extract the shoreline profiles. One of the emerging sources of creating them is light detection and ranging (LiDAR) that can capture a highly dense cloud points with high resolution that can reach 15 cm and 100 cm in the vertical and horizontal directions respectively in short periods of time. In this paper we present a multi-step morphological algorithm to extract shorelines locations from the DEM data and a predefined tidal datum. Unlike similar approaches, it utilizes Lowess nonparametric regression to estimate the missing values within the DEM file. Also, it will detect and eliminate the outliers and errors that result from waves, ships, etc by means of anomality test with neighborhood constrains. Because, there might be some significant broken regions such as branches and islands, it utilizes a constrained morphological open and close to reduce these artifacts that can affect the extracted shorelines. In addition, it eliminates docks, bridges and fishing piers along the extracted shorelines by means of Hough transform. Based on a specific tidal datum, the algorithm will segment the DEM data into water and land objects. Without sacrificing the accuracy and the spatial details of the extracted boundaries, the algorithm should smooth and extract the shoreline profiles by tracing the boundary pixels between the land and the water segments. For given tidal values, we qualitatively assess the visual quality of the extracted shorelines by superimposing them on the available aerial photographs.
Leintz, Rachel; Bond, John W
2013-05-01
Comparisons are made between the visualization of fingerprint corrosion ridge detail on fired brass cartridge casings, where fingerprint sweat was deposited prefiring, using both ultraviolet (UV) and visible (natural daylight) light sources. A reflected ultraviolet imaging system (RUVIS), normally used for visualizing latent fingerprint sweat deposits, is compared with optical interference and digital color mapping of visible light, the latter using apparatus constructed to easily enable selection of the optimum viewing angle. Results show that reflected UV, with a monochromatic UV source of 254 nm, was unable to visualize fingerprint ridge detail on any of 12 casings analyzed, whereas optical interference and digital color mapping using natural daylight yielded ridge detail on three casings. Reasons for the lack of success with RUVIS are discussed in terms of the variation in thickness of the thin film of metal oxide corrosion and absorption wavelengths for the corrosion products of brass. © 2013 American Academy of Forensic Sciences.
Hasanov, Samir; Demirkilinc Biler, Elif; Acarer, Ahmet; Akkın, Cezmi; Colakoglu, Zafer; Uretmen, Onder
2018-05-09
To evaluate and follow-up of functional and morphological changes of the optic nerve and ocular structures prospectively in patients with early-stage Parkinson's disease. Nineteen patients with a diagnosis of early-stage Parkinson's disease and 19 age-matched healthy controls were included in the study. All participants were examined minimum three times at the intervals of at least 6 month following initial examination. Pattern visually evoked potentials (VEP), contrast sensitivity assessments at photopic conditions, color vision tests with Ishihara cards and full-field visual field tests were performed in addition to measurement of retinal nerve fiber layer (RNFL) thickness of four quadrants (top, bottom, nasal, temporal), central and mean macular thickness and macular volumes. Best corrected visual acuity was observed significantly lower in study group within all three examinations. Contrast sensitivity values of the patient group were significantly lower in all spatial frequencies. P100 wave latency of VEP was significantly longer, and amplitude was lower in patient group; however, significant deterioration was not observed during the follow-up. Although average peripapillary RNFL thickness was not significant between groups, RNFL thickness in the upper quadrant was thinner in the patient group. While there was no difference in terms of mean macular thickness and total macular volume values between the groups initially, a significant decrease occurred in the patient group during the follow-up. During the initial and follow-up process, a significant deterioration in visual field was observed in the patient group. Structural and functional disorders shown as electro-physiologically and morphologically exist in different parts of visual pathways in early-stage Parkinson's disease.
Morphologic Quality of DSMs Based on Optical and Radar Space Imagery
NASA Astrophysics Data System (ADS)
Sefercik, U. G.; Bayik, C.; Karakis, S.; Jacobsen, K.
2011-09-01
Digital Surface Models (DSMs) are representing the visible surface of the earth by the height corresponding to its X-, Y-location and height value Z. The quality of a DSM can be described by the accuracy and the morphologic details. Both depend upon the used input information, the used technique and the roughness of the terrain. The influence of the topographic details to the DSM quality is shown for the test fields Istanbul and Zonguldak. Zonguldak has a rough mountainous character with heights from sea level up to 1640m, while Istanbul is dominated by rolling hills going up to an elevation of 435m. DSMs from SPOT-5, the SRTM C-band height models and ASTER GDEM have been investigated. The DSMs have been verified with height models from large scale aerial photos being more accurate and including morphologic details. It was necessary to determine and respect shifts of the height models caused by datum problems and orientation of the height models. The DSM quality is analyzed depending upon the terrain inclination. The DSM quality differs for both test fields. The morphologic quality depends upon the point spacing of the analyzed DSMs and the terrain characteristics.
ERIC Educational Resources Information Center
Jan, James E.; Heaven, Roberta K. B.; Matsuba, Carey; Langley, M. Beth; Roman-Lantzy, Christine; Anthony, Tanni L
2013-01-01
Introduction: In recent years, major progress has been made in understanding the human visual system because of new investigative techniques. These developments often contradict older concepts about visual function. Methods: A detailed literature search and interprofessional discussions. Results: Recent innovative neurological tests are described…
NASA Technical Reports Server (NTRS)
Tate, A.; Golombek, M. P.; Mueller, K. J.
2001-01-01
Mars Orbiter Laser Altimeter (MOLA) topography is used to define the detailed morphology and kinematic development of martian wrinkle ridges on Lunae and Solis Plana. Changes in ridge morphology suggest they form as fault-propagation folds, often with significant backthrusts. Additional information is contained in the original extended abstract.
Optimizing morphology through blood cell image analysis.
Merino, A; Puigví, L; Boldú, L; Alférez, S; Rodellar, J
2018-05-01
Morphological review of the peripheral blood smear is still a crucial diagnostic aid as it provides relevant information related to the diagnosis and is important for selection of additional techniques. Nevertheless, the distinctive cytological characteristics of the blood cells are subjective and influenced by the reviewer's interpretation and, because of that, translating subjective morphological examination into objective parameters is a challenge. The use of digital microscopy systems has been extended in the clinical laboratories. As automatic analyzers have some limitations for abnormal or neoplastic cell detection, it is interesting to identify quantitative features through digital image analysis for morphological characteristics of different cells. Three main classes of features are used as follows: geometric, color, and texture. Geometric parameters (nucleus/cytoplasmic ratio, cellular area, nucleus perimeter, cytoplasmic profile, RBC proximity, and others) are familiar to pathologists, as they are related to the visual cell patterns. Different color spaces can be used to investigate the rich amount of information that color may offer to describe abnormal lymphoid or blast cells. Texture is related to spatial patterns of color or intensities, which can be visually detected and quantitatively represented using statistical tools. This study reviews current and new quantitative features, which can contribute to optimize morphology through blood cell digital image processing techniques. © 2018 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna
2018-01-01
To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…
Decomposition into Multiple Morphemes during Lexical Access: A Masked Priming Study of Russian Nouns
ERIC Educational Resources Information Center
Kazanina, Nina; Dukova-Zheleva, Galina; Geber, Dana; Kharlamov, Viktor; Tonciulescu, Keren
2008-01-01
The study reports the results of a masked priming experiment with morphologically complex Russian nouns. Participants performed a lexical decision task to a visual target that differed from its prime in one consonant. Three conditions were included: (1) "transparent," in which the prime was morphologically related to the target and contained the…
Root morphology and growth of bare-root seedlings of Oregon white oak
Peter J. Gould; Constance A. Harrington
2009-01-01
Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...
NASA Astrophysics Data System (ADS)
Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong
2016-04-01
We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.
Ishizaka, Takayuki; Ishigaki, Atsushi; Kawanami, Hajime; Suzuki, Akira; Suzuki, Toshishige M
2012-02-01
Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time. Copyright © 2011 Elsevier Inc. All rights reserved.
Label-free visualization of ultrastructural features of artificial synapses via cryo-EM.
Gopalakrishnan, Gopakumar; Yam, Patricia T; Madwar, Carolin; Bostina, Mihnea; Rouiller, Isabelle; Colman, David R; Lennox, R Bruce
2011-12-21
The ultrastructural details of presynapses formed between artificial substrates of submicrometer silica beads and hippocampal neurons are visualized via cryo-electron microscopy (cryo-EM). The silica beads are derivatized by poly-d-lysine or lipid bilayers. Molecular features known to exist at presynapses are clearly present at these artificial synapses, as visualized by cryo-EM. Key synaptic features such as the membrane contact area at synaptic junctions, the presynaptic bouton containing presynaptic vesicles, as well as microtubular structures can be identified. This is the first report of the direct, label-free observation of ultrastructural details of artificial synapses.
MACULAR COLOBOMA IN A CHILD WITH USHER SYNDROME.
Ishaq, Mazhar; Mukhtar, Ahsan; Khan, Saim
2015-01-01
Macular coloboma is a rare entity and its concomitance with Usher syndrome is described here. A 14 years male child was studied in detail along with other family members. He underwent two complete ophthalmologic examinations (4-years follow-up), including visual assessment, orthoptic evaluation, colour vision test, visual fields, corneal topography, Optical coherence tomography, fluorescein angiography, and electroretinography. Detailed ophthalmic examination was also conducted on other asymptomatic members of the same family. Patient had sensorineural deafness, poor visual acuity, and progressive visual field impairment in both eyes, bilaterally presenting macular coloboma and atypical retinitis pigmentosa pattern. The other investigated relatives did not show any specific and/or significant ocular disorder. This concurrence represents no genetic pattern and is observed in sporadic cases.
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
Three New Teosintes (Zea spp., Poaceae) From Mexico
USDA-ARS?s Scientific Manuscript database
The discovery of new species of teosinte from México motivated the comparative study of populations from México, Guatemala and Nicaragua through detailed ecogeographic, morphologic, cytogenetic and molecular characterization. The study involved a comparative analysis of morphological, ecogeographic,...
US Army Research Laboratory Visualization Framework Architecture Document
2018-01-11
this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of...release; distribution is unlimited. 14. ABSTRACT Visualization of network science experimentation results is generally achieved using stovepipe...report documents the ARL Visualization Framework system design and specific details of its implementation. 15. SUBJECT TERMS visualization
Zhao, Jing; Liu, Menglian; Liu, Hanlong; Huang, Chen
2018-02-16
It has been suggested that orthographic transparency and age changes may affect the relationship between visual attention span (VAS) deficit and reading difficulty. The present study explored the developmental trend of VAS in children with developmental dyslexia (DD) in Chinese, a logographic language with a deep orthography. Fifty-seven Chinese children with DD and fifty-four age-matched normal readers participated. The visual 1-back task was adopted to examine VAS. Phonological and morphological awareness tests, and reading tests in single-character and sentence levels were used for reading skill measurements. Results showed that only high graders with dyslexia exhibited lower accuracy than the controls in the VAS task, revealing an increased VAS deficit with development in the dyslexics. Moreover, the developmental trajectory analyses demonstrated that the dyslexics seemed to exhibit an atypical but not delayed pattern in their VAS development as compared to the controls. A correlation analysis indicated that VAS was only associated with morphological awareness for dyslexic readers in high grades. Further regression analysis showed that VAS skills and morphological awareness made separate and significant contributions to single-character reading for high grader with dyslexia. These findings suggested a developmental increasing trend in the relationship between VAS skills and reading (dis)ability in Chinese.
Micro-computed tomography visualization of the vestigial alimentary canal in adult oestrid flies.
Martín-Vega, D; Garbout, A; Ahmed, F; Ferrer, L M; Lucientes, J; Colwell, D D; Hall, M J R
2018-02-16
Oestrid flies (Diptera: Oestridae) do not feed during the adult stage as they acquire all necessary nutrients during the parasitic larval stage. The adult mouthparts and digestive tract are therefore frequently vestigial; however, morphological data on the alimentary canal in adult oestrid flies are scarce and a proper visualization of this organ system within the adult body is lacking. The present work visualizes the morphology of the alimentary canal in adults of two oestrid species, Oestrus ovis L. and Hypoderma lineatum (de Villiers), with the use of non-invasive micro-computed tomography (micro-CT) and compares it with the highly developed alimentary canal of the blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Both O. ovis and H. lineatum adults showed significant reductions of the cardia and the diameter of the digestive tract, an absence of the helicoidal portion of the midgut typical of other cyclorrhaphous flies, and a lack of crop and salivary glands. Given the current interest in the alimentary canal in adult dipterans in biomedical and developmental biology studies, further understanding of the morphology and development of this organ system in adult oestrids may provide valuable new insights in several areas of research. © 2018 The Royal Entomological Society.
Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L
2015-12-01
Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
The case of the missing visual details: Occlusion and long-term visual memory.
Williams, Carrick C; Burkle, Kyle A
2017-10-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Campana, Florence; Rebollo, Ignacio; Urai, Anne; Wyart, Valentin; Tallon-Baudry, Catherine
2016-05-11
The reverse hierarchy theory (Hochstein and Ahissar, 2002) makes strong, but so far untested, predictions on conscious vision. In this theory, local details encoded in lower-order visual areas are unconsciously processed before being automatically and rapidly combined into global information in higher-order visual areas, where conscious percepts emerge. Contingent on current goals, local details can afterward be consciously retrieved. This model therefore predicts that (1) global information is perceived faster than local details, (2) global information is computed regardless of task demands during early visual processing, and (3) spontaneous vision is dominated by global percepts. We designed novel textured stimuli that are, as opposed to the classic Navon's letters, truly hierarchical (i.e., where global information is solely defined by local information but where local and global orientations can still be manipulated separately). In line with the predictions, observers were systematically faster reporting global than local properties of those stimuli. Second, global information could be decoded from magneto-encephalographic data during early visual processing regardless of task demands. Last, spontaneous subjective reports were dominated by global information and the frequency and speed of spontaneous global perception correlated with the accuracy and speed in the global task. No such correlation was observed for local information. We therefore show that information at different levels of the visual hierarchy is not equally likely to become conscious; rather, conscious percepts emerge preferentially at a global level. We further show that spontaneous reports can be reliable and are tightly linked to objective performance at the global level. Is information encoded at different levels of the visual system (local details in low-level areas vs global shapes in high-level areas) equally likely to become conscious? We designed new hierarchical stimuli and provide the first empirical evidence based on behavioral and MEG data that global information encoded at high levels of the visual hierarchy dominates perception. This result held both in the presence and in the absence of task demands. The preferential emergence of percepts at high levels can account for two properties of conscious vision, namely, the dominance of global percepts and the feeling of visual richness reported independently of the perception of local details. Copyright © 2016 the authors 0270-6474/16/365200-14$15.00/0.
The effect of magnesium ions on chromosome structure as observed by helium ion microscopy.
Dwiranti, Astari; Hamano, Tohru; Takata, Hideaki; Nagano, Shoko; Guo, Hongxuan; Onishi, Keiko; Wako, Toshiyuki; Uchiyama, Susumu; Fukui, Kiichi
2014-02-01
One of the few conclusions known about chromosome structure is that Mg2+ is required for the organization of chromosomes. Scanning electron microscopy is a powerful tool for studying chromosome morphology, but being nonconductive, chromosomes require metal/carbon coating that may conceal information about the detailed surface structure of the sample. Helium ion microscopy (HIM), which has recently been developed, does not require sample coating due to its charge compensation system. Here we investigated the structure of isolated human chromosomes under different Mg2+ concentrations by HIM. High-contrast and resolution images from uncoated samples obtained by HIM enabled investigation on the effects of Mg2+ on chromosome structure. Chromatin fiber information was obtained more clearly with uncoated than coated chromosomes. Our results suggest that both overall features and detailed structure of chromatin are significantly affected by different Mg2+ concentrations. Chromosomes were more condensed and a globular structure of chromatin with 30 nm diameter was visualized with 5 mM Mg2+ treatment, while 0 mM Mg2+ resulted in a less compact and more fibrous structure 11 nm in diameter. We conclude that HIM is a powerful tool for investigating chromosomes and other biological samples without requiring metal/carbon coating.
Maar, Noemi; Pemp, Berthold; Kircher, Karl; Luksch, Alexandra; Weigert, Günther; Polska, Elzbieta; Tittl, Michael; Stur, Michael; Schmetterer, Leopold
2009-09-01
To investigate in patients with neovascular age-related macular degeneration (ARMD) the changes in ocular perfusion caused by single treatment with photodynamic therapy (PDT) by different non-invasive methods; to evaluate correlations between relative changes of ocular haemodynamic parameters after PDT among each other and compared to morphological parameters; and to assess this in relation to early changes of visual acuity. 17 consecutive patients with subfoveal choroidal neovascularization (CNV) caused by ARMD scheduled for PDT without previous PDT treatment (four patients with predominantly classic CNV and 13 patients with occult CNV). best-corrected visual acuity (before PDT, 6 and 8 weeks after PDT), fundus photography, fluorescein angiography, haemodynamic measurements with laser Doppler flowmetry (LDF), laser interferometry and ocular blood flow (OBF) tonometry (baseline and 1, 2, 6 and 8 weeks after treatment). choroidal blood flow (CHBF), fundus pulsation amplitude (FPA), pulsatile ocular blood flow (POBF), visual acuity. Changes smaller than 20% were considered clinically irrelevant. Ocular haemodynamic parameters did not change significantly in the follow-up period. Changes of haemodynamic parameters showed no correlation to treatment spot, morphological changes or visual acuity. Changes of visual acuity were comparable to results of earlier studies. Single treatment with PDT did not modify ocular blood flow parameters above 20% as assessed with different non-invasive methods.
Presentation of Information on Visual Displays.
ERIC Educational Resources Information Center
Pettersson, Rune
This discussion of factors involved in the presentation of text, numeric data, and/or visuals using video display devices describes in some detail the following types of presentation: (1) visual displays, with attention to additive color combination; measurements, including luminance, radiance, brightness, and lightness; and standards, with…
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
Visual long-term memory has the same limit on fidelity as visual working memory.
Brady, Timothy F; Konkle, Talia; Gill, Jonathan; Oliva, Aude; Alvarez, George A
2013-06-01
Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.
Low agreement of visual rating for detailed quantification of pulmonary emphysema in whole-lung CT.
Mascalchi, Mario; Diciotti, Stefano; Sverzellati, Nicola; Camiciottoli, Gianna; Ciccotosto, Cesareo; Falaschi, Fabio; Zompatori, Maurizio
2012-02-01
Multidetector spiral computed tomography (CT) has opened the possibility of quantitative evaluation of emphysema extent in the whole lung. Visual assessment can be used for such a purpose, but its reproducibility has not been established. To assess agreement of detailed assessment of pulmonary emphysema on whole-lung CT using a visual scale. Thirty patients with chronic obstructive pulmonary disease underwent whole-lung inspiratory CT. Four chest radiologists rated the same 22 ± 2 thin sections using a visual scale which defines a range of emphysema extent between 0 and 100. Two of them repeated the rating two months later. Inter- and intra-operator agreement was evaluated with the Bland and Altman method. In addition, the percentage of emphysema at -950 Hounsfield units in the whole lung was determined using fully automated commercially available software for 3D densitometry. In three of six operator pairs and in one of two intra-operator pairs the Kendall τ test showed a significant correlation between the difference and the average magnitude of visual scores. Among different operators the half-width of 95% limits of agreement (95% LoA) was wide ranging between a score of 14.2-27.7 for an average visual score of 20 and between 18.5-36.8 for an average visual score of 80. Within the same operator the half-width of 95% LoA ranged between a score of 10.9-21.0 for an average visual score of 20 and between 25.1-30.1 for an average visual score of 80. The visual scores of the four radiologists were correlated with the results of densitometry (P < 0.001; r = 0.65-0.81). The inter- and intra-operator agreement of detailed assessment of emphysema in the whole lung using a visual scale is low and decreases with increasing emphysema extent.
Mass, A M; Supin, A Ya
2017-03-01
The eye optics and topographic distribution of ganglion cells were studied using whole mount preparations from European beaver Castor fiber L. The beaver eye optics provides emmetropia in air and hypermetropia in water. The optometrical measurements predict retinal resolution of the beaver eye around 17' in air and 9' in water. In air, retinal resolution corresponds to the real visual acuity, whereas in water, visual acuity is below the retinal resolution because of the non-precise focusing.
Children's Use of Morphological Cues in Real-Time Event Representation
ERIC Educational Resources Information Center
Zhou, Peng; Ma, Weiyi
2018-01-01
The present study investigated whether and how fast young children can use information encoded in morphological markers during real-time event representation. Using the visual world paradigm, we tested 35 adults, 34 5-year-olds and 33 3-year-olds. The results showed that the adults, the 5-year-olds and the 3-year-olds all exhibited eye gaze…
ERIC Educational Resources Information Center
Quémart, Pauline; Casalis, Séverine
2014-01-01
We report two experiments that investigated whether phonological and/or orthographic shifts in a base word interfere with morphological processing by French 3rd, 4th, and 5th graders and adults (as a control group) along the time course of visual word recognition. In both experiments, prime-target pairs shared four possible relationships:…
Physiological and morphological characterization of ganglion cells in the salamander retina
Wang, Jing; Jacoby, Roy; Wu, Samuel M.
2016-01-01
Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON–OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON–OFF RGCs. Dendritic field diameters of RGCs ranged 102–490 µm: narrow field (<200 µm, 31% of RGCs), medium field (200–300 µm, 45%) and wide field (>300 µm, 24%). Dendritic ramification patterns of RGCs agree with the sub-lamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON–OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645
The contribution of single case studies to the neuroscience of vision.
Zihl, Josef; Heywood, Charles A
2016-03-01
Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Senter, P
2010-08-01
It is important to demonstrate evolutionary principles in such a way that they cannot be countered by creation science. One such way is to use creation science itself to demonstrate evolutionary principles. Some creation scientists use classic multidimensional scaling (CMDS) to quantify and visualize morphological gaps or continuity between taxa, accepting gaps as evidence of independent creation and accepting continuity as evidence of genetic relatedness. Here, I apply CMDS to a phylogenetic analysis of coelurosaurian dinosaurs and show that it reveals morphological continuity between Archaeopteryx, other early birds, and a wide range of nonavian coelurosaurs. Creation scientists who use CMDS must therefore accept that these animals are genetically related. Other uses of CMDS for evolutionary biologists include the identification of taxa with much missing evolutionary history and the tracing of the progressive filling of morphological gaps in the fossil record through successive years of discovery.
Route visualization using detail lenses.
Karnick, Pushpak; Cline, David; Jeschke, Stefan; Razdan, Anshuman; Wonka, Peter
2010-01-01
We present a method designed to address some limitations of typical route map displays of driving directions. The main goal of our system is to generate a printable version of a route map that shows the overview and detail views of the route within a single, consistent visual frame. Our proposed visualization provides a more intuitive spatial context than a simple list of turns. We present a novel multifocus technique to achieve this goal, where the foci are defined by points of interest (POI) along the route. A detail lens that encapsulates the POI at a finer geospatial scale is created for each focus. The lenses are laid out on the map to avoid occlusion with the route and each other, and to optimally utilize the free space around the route. We define a set of layout metrics to evaluate the quality of a lens layout for a given route map visualization. We compare standard lens layout methods to our proposed method and demonstrate the effectiveness of our method in generating aesthetically pleasing layouts. Finally, we perform a user study to evaluate the effectiveness of our layout choices.
Chen, Hui-Xia; Ju, Hui-Dong; Li, Yang; Li, Liang
2017-12-20
In the present study, light and scanning electron microscopy (SEM) were used to further study the detailed morphology of Physaloptera clausa Rudolphi, 1819, based on the material collected from the Amur hedgehog E. amurensis Schrenk in China. The results revealed a few previously unreported morphological features and some morphological and morphometric variability between our specimens and the previous studies. The present supplementary morphological characters and morphometric data could help us to recognize this species more accurately.
Impact of phytoplankton community structure and function on marine particulate optical properties
NASA Astrophysics Data System (ADS)
McFarland, Malcolm Neil
Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.
The attentive brain: insights from developmental cognitive neuroscience.
Amso, Dima; Scerif, Gaia
2015-10-01
Visual attention functions as a filter to select environmental information for learning and memory, making it the first step in the eventual cascade of thought and action systems. Here, we review studies of typical and atypical visual attention development and explain how they offer insights into the mechanisms of adult visual attention. We detail interactions between visual processing and visual attention, as well as the contribution of visual attention to memory. Finally, we discuss genetic mechanisms underlying attention disorders and how attention may be modified by training.
Visual and Spatial Mental Imagery: Dissociable Systems of Representation.
1987-08-07
identification of visual stimuli (the visual agnosias ) could occur independently of impairr-’e"s in their spatial localization (Potzl. 1928: Lange. 1936) Patients...of brain damage that is generally associated with visual "PIre - i’ e/ e~~ :S~ OF Visual and Spatial Imagery 1i agnosia . Details of L.H.’s medical...This approach is nowhere more called for than in the study of subjects with visual object agnosia . a condition that is both extremely rare and somewhat
Neuron analysis of visual perception
NASA Technical Reports Server (NTRS)
Chow, K. L.
1980-01-01
The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.
Utility of fluorescence microscopy in embryonic/fetal topographical analysis.
Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M
1995-06-01
For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.
Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W
2012-06-01
Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.
Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis.
Wong, Raymond C S; Cloherty, Shaun L; Ibbotson, Michael R; O'Brien, Brendan J
2012-10-01
Mammalian retina contains 15-20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.
Lingenhöhl, K; Finch, D M
1991-01-01
We used in vivo intracellular labeling with horseradish peroxidase in order to study the soma-dendritic morphology and axonal projections of rat entorhinal neurons. The cells responded to hippocampal stimulation with inhibitory postsynaptic potentials, and thus likely received direct or indirect hippocampal input. All cells (n = 24) showed extensive dendritic domains that extended in some cases for more than 1 mm. The dendrites of layer II neurons were largely restricted to layers I and II or layers I-III, while the dendrites of deeper cells could extend through all cortical layers. Computed 3D rotations showed that the basilar dendrites of deep pyramids extended roughly parallel to the cortical layering, and that they were mostly confined to the layer containing the soma and layers immediately adjacent. Total dendritic lengths averaged 9.8 mm +/- 3.8 (SD), and ranged from 5 mm to more than 18 mm. Axonal processes could be visualized in 21 cells. Most of these showed axonal branching within the entorhinal cortex, sometimes extensive. Efferent axonal domains were reconstructed in detail in 3 layer II stellate cells. All 3 projected axons across the subicular complex to the dentate gyrus. One of these cells showed an extensive net-like axonal domain that also projected to several other structures, including the hippocampus proper, subicular complex, and the amygdalo-piriform transition area. The axons of layer III and IV cells projected to the angular bundle, where they continued in a rostral direction. In contrast to the layer II, III and IV cells, no efferent axonal branches leaving the entorhinal cortex could be visualized in 5 layer V neurons. The data indicate that entorhinal neurons can integrate input from a considerable volume of entorhinal cortex by virtue of their extensive dendritic domains, and provide a further basis for specifying the layers in which cells receive synaptic input. The extensive axonal branching pattern seen in most of the cells would support divergent propagation of their activity.
ERIC Educational Resources Information Center
Poplu, Gerald; Ripoll, Hubert; Mavromatis, Sebastien; Baratgin, Jean
2008-01-01
The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants…
VizieR Online Data Catalog: Morphologies of z<0.01 SDSS-DR7 galaxies (Ann+, 2015)
NASA Astrophysics Data System (ADS)
Ann, H. B.; Seo, M.; Ha, D. K.
2015-05-01
This paper presents a catalog of the morphological types of galaxies whose redshifts are less than z=0.01. The morphological types are determined by a visual inspection of the color images provided by SDSS DR7 (II/294). The majority of galaxies in the present sample come from the KIAS-VAGC (Choi et al. 2010JKAS...43..191C) which is based on the spectroscopic target galaxies of the SDSS DR7 complemented by the bright galaxies with known redshifts from various catalogs. (1 data file).
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
The Effects of Varying Pictorial Detail and Presentation Strategy on Concept Formation.
ERIC Educational Resources Information Center
Gorman, Don A.
The purpose of this study is to determine the effects of varying pictorial detail and presentation strategy on learners of varying grade levels in a visually transmitted concept formation task. Specifically, line drawings containing only relevant details and halftones containing relevant and irrelevant detail were presented successively and…
De Oliveira, Danielly Brito; Martinelli-Lemos, Jussara Moretto; Abrunhosa, Fernando Araújo
2014-07-01
The larval development of Upogebia vasquezi consists of four zoeal stages and a megalopa. In the present study, each larval stage was described and illustrated in detail. The first two stages are re-described in order to provide a detailed comparison with the data available for this species recorded in a previous study. The morphological features of all the stages are compared with those of the larvae of other Upogebia species reported previously in the literature. Broad morphological similarities and distinctions were found among most Upogebia species. The main interspecific variations in the morphology of the zoeal stages are the segmentation pattern of the antennular endopod and number of aesthetascs, the number of setae on the scaphognathite and the presence or absence of a mandibular palp.
NASA Astrophysics Data System (ADS)
Moradi, Gelare; Cardot, Romain; Lane, Stuart; Rennie, Colin
2017-04-01
River confluences are zones where two or more rivers join and form a single channel downstream of their junction. Because of their essential role in the dynamic of fluvial networks, there has been an increase in the attention given to their hydrodynamics and morphodynamics during last three decades. Despite this increased understanding of the complex flow behavior and morphological aspects, few studies has been focused on low momentum ratio river confluences and mixing processes. As among these few studies, most of them have been driven by the mean of laboratory experiments and numerical models, a combination of field data collection and data processing is required to study the effect of low momentum ratio on flow dynamic, rive morphology and rate of mixing in river confluences. In the present poster, the flow discharge and velocity data of two upper Rhône river confluences in Switzerland, which are characterized by low momentum ratio and a varied rate of poorly sorted sediment transport is shown. The data set is mostly collected, using spatial distributed acoustic Doppler current profiling (aDcp) measurements. The morphological changes are studied using a combination of high-resolution aerial imagery data obtained by a phantom drone and acoustic bathymetric surveys. The mixing processes are investigated by measuring the surface water temperature with a thermic camera mounted on an E-bee drone [, whereas sediment pathways can be explored through the use of the 'bottom-tracking' feature of the aDcp device (not sure there will be such results at the conference time)]. These collected data is processed using a matlab code, Pix4D and visualization software. These processed data then can be used to describe the flow behavior, morphological aspects and mixing processes at river confluences characterized by low momentum ratio and to test laboratory derived conceptual models of flow processes at such junctions. The obtained results can be used under a wider range of forcing conditions to provide detailed data on the three-dimensional flow field and the morphology, to validate numerical models.
Evolution of the amniote pallium and the origins of mammalian neocortex
Butler, Ann B.; Reiner, Anton; Karten, Harvey J.
2012-01-01
Karten's neocortex hypothesis holds that many component cell populations of the sauropsid dorsal ventricular ridge (DVR) are homologous to particular cell populations in layers of auditory and visual tectofugal-recipient neocortex of mammals (i.e., temporal neocortex), as well as to some amygdaloid populations. The claustroamygdalar hypothesis, based on gene expression domains, proposes that mammalian homologues of DVR are found in the claustrum, endopiriform nuclei, and/or pallial amygdala. Because hypotheses of homology need to account for the totality of the evidence, the available data on multiple forebrain features of sauropsids and mammals are reviewed here. While some genetic data are compatible with the claustroamygdalar hypothesis, and developmental (epigenetic) data are indecisive, hodological, morphological, and topographical data favor the neocortex hypothesis and are inconsistent with the claustroamygdalar hypothesis. Detailed studies of gene signaling cascades that establish neuronal cell-type identity in DVR, tectofugal-recipient neocortex, and claustroamygdala will be needed to resolve this debate about the evolution of neocortex. PMID:21534989
A graph grammar approach to artificial life.
Kniemeyer, Ole; Buck-Sorlin, Gerhard H; Kurth, Winfried
2004-01-01
We present the high-level language of relational growth grammars (RGGs) as a formalism designed for the specification of ALife models. RGGs can be seen as an extension of the well-known parametric Lindenmayer systems and contain rule-based, procedural, and object-oriented features. They are defined as rewriting systems operating on graphs with the edges coming from a set of user-defined relations, whereas the nodes can be associated with objects. We demonstrate their ability to represent genes, regulatory networks of metabolites, and morphologically structured organisms, as well as developmental aspects of these entities, in a common formal framework. Mutation, crossing over, selection, and the dynamics of a network of gene regulation can all be represented with simple graph rewriting rules. This is demonstrated in some detail on the classical example of Dawkins' biomorphs and the ABC model of flower morphogenesis: other applications are briefly sketched. An interactive program was implemented, enabling the execution of the formalism and the visualization of the results.
Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies
2011-01-01
To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157
Melo, Rossana C N; Weller, Peter F
2016-10-01
Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Gulati, Neetu M; Pitek, Andrzej S; Steinmetz, Nicole F; Stewart, Phoebe L
2017-03-09
Nanoparticles offer great potential in drug delivery and imaging, but shielding strategies are necessary to increase circulation time and performance. Structure-function studies are required to define the design rules to achieve effective shielding. With several formulations reaching clinical testing and approval, the ability to assess and detail nanoparticle formulations at the single particle level is becoming increasingly important. To address this need, we use cryo-electron tomography (cryo-ET) to investigate stealth-coated nanoparticles. As a model system, we studied the soft matter nanotubes formed by tobacco mosaic virus (TMV) coated with human serum albumin (SA) stealth proteins. Cryo-ET and subtomogram averaging allow for visualization of individual SA molecules and determination of their orientations relative to the TMV surface, and also for measurement of the surface coverage provided by added stealth proteins. This information fills a critical gap in the understanding of the structural morphology of stealth-coated nanoparticles, and therefore cryo-ET may play an important role in guiding the development of future nanoparticle-based therapeutics.
Quantitative neuroanatomy for connectomics in Drosophila
Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert
2016-01-01
Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. DOI: http://dx.doi.org/10.7554/eLife.12059.001 PMID:26990779
Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua
2017-06-28
The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.
Arevalo, J Fernando; Lasave, Andres F; Arias, Juan D; Serrano, Martin A; Arevalo, Fernando A
2013-01-01
Optical coherence tomography (OCT) is a high-resolution, cross-sectional imaging technique that allows detailed assessment of retinal thickness and morphologic evaluation of the retinal layers. This technology has developed quickly over the past two decades. OCT imaging has rapidly been integrated into routine ophthalmic clinical practice and trials. It has complemented fluorescein angiography in many instances, especially in the diagnosis and management of retinal disorders, including diabetic macular edema and age-related macular degeneration. With OCT, the exact localization of pathologic features can be visualized in segmentation maps of the retina, and this has allowed OCT to be used to evaluate specific features that may serve as predictive factors in the prognosis and follow up of these pathologies. Therefore, it has become an important clinical and research tool for the diagnosis, follow up, treatment, and assessment of new treatment modalities for all diseases that affect the posterior pole of the eye. PMID:24235811
da Silva Filho, Manoel; Santos, Daniel Valle Vasconcelos; Costa, Kauê Machado
2013-01-01
Analyzing cell morphology is crucial in the fields of cell biology and neuroscience. One of the main methods for evaluating cell morphology is by using intracellular fluorescent markers, including various commercially available dyes and genetically encoded fluorescent proteins. These markers can be used as free radical sources in photooxidation reactions, which in the presence of diaminobenzidine (DAB) forms an opaque and electron-dense precipitate that remains localized within the cellular and organelle membranes. This method confers many methodological advantages for the investigator, including absence of photo-bleaching, high visual contrast and the possibility of correlating optical imaging with electron microscopy. However, current photooxidation techniques require the continuous use of fluorescent or confocal microscopes, which wastes valuable mercury lamp lifetime and limits the conversion process to a few cells at a time. We developed a low cost optical apparatus for performing photooxidation reactions and propose a new procedure that solves these methodological restrictions. Our “photooxidizer” consists of a high power light emitting diode (LED) associated with a custom aluminum and acrylic case and a microchip-controlled current source. We demonstrate the efficacy of our method by converting intracellular DiI in samples of developing rat neocortex and post-mortem human retina. DiI crystals were inserted in the tissue and allowed to diffuse for 20 days. The samples were then processed with the new photooxidation technique and analyzed under optical microscopy. The results show that our protocols can unveil the fine morphology of neurons in detail. Cellular structures such as axons, dendrites and spine-like appendages were well defined. In addition to its low cost, simplicity and reliability, our method precludes the use of microscope lamps for photooxidation and allows the processing of many labeled cells simultaneously in relatively large tissue samples with high efficacy. PMID:23441199
Brush Plating of Nickel-Tungsten Alloy for Engineering Application
2012-08-01
ASETS Defense ‘12 1 Brush Plating of Nickel-Tungsten Alloy for Engineering Application Zhimin Zhong & Sid Clouser Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Brush Plating of Nickel-Tungsten Alloy for Engineering Application 5a. CONTRACT NUMBER...6 Surface morphology Visual appearance, scanning electron and optical microscope images. Smooth, fine grained, micro- cracked surface morphology
ERIC Educational Resources Information Center
Quemart, Pauline; Casalis, Severine; Cole, Pascale
2011-01-01
Three visual priming experiments using three different prime durations (60 ms in Experiment 1, 250 ms in Experiment 2, and 800 ms in Experiment 3) were conducted to examine which properties of morphemes (form and/or meaning) drive developing readers' processing of written morphology. French third, fifth, and seventh graders and adults (the latter…
Crystal morphology of sunflower wax in soybean oil organogel
USDA-ARS?s Scientific Manuscript database
While sunflower wax has been recognized as an excellent organogelator for edible oil, the detailed morphology of sunflower wax crystals formed in an edible oil organogel has not been fully understood. In this study, polarized light microscopy, phase contrast microscopy, scanning electron microscopy ...
Nagler, Christina; Haug, Joachim T
2016-01-01
Parasites significantly influence food webs and ecosystems and occur all over the world in almost every animal group. Within crustaceans there are numerous examples of ectoparasites; for example, representatives of the isopod group Cymothoidae. These obligatory parasitic isopods are relatively poorly studied regarding their functional morphology. Here we present new details of the morphological adaptations to parasitism of the cymothoiid ingroup Nerocila with up-to-date imaging methods (macro photography, stereo imaging, fluorescence photography, micro CT, and histology). Central aspects of the study were (1) the morphology of the mouthparts and (2) the attachment on the host, hence the morphology of the thoracopods. The mouthparts (labrum, mandibles, paragnaths, maxillulae, maxillae, maxillipeds) form a distinct mouth cone and are most likely used for true sucking. The mouthparts are tightly "folded" around each other and provide functional rails for the only two moving mouthparts, mandible and maxillula. Both are not moving in an ancestral-type median-lateral movement, but are strongly tilted to move more in a proximal-distal axis. New details concerning the attachment demonstrate that the angular arrangement of the thoracopods is differentiated to impede removal by the host. The increased understanding of morphological adaptation to parasitism of modern forms will be useful in identifying disarticulated (not attached to the host) fossil parasites.
Haug, Joachim T.
2016-01-01
Parasites significantly influence food webs and ecosystems and occur all over the world in almost every animal group. Within crustaceans there are numerous examples of ectoparasites; for example, representatives of the isopod group Cymothoidae. These obligatory parasitic isopods are relatively poorly studied regarding their functional morphology. Here we present new details of the morphological adaptations to parasitism of the cymothoiid ingroup Nerocila with up-to-date imaging methods (macro photography, stereo imaging, fluorescence photography, micro CT, and histology). Central aspects of the study were (1) the morphology of the mouthparts and (2) the attachment on the host, hence the morphology of the thoracopods. The mouthparts (labrum, mandibles, paragnaths, maxillulae, maxillae, maxillipeds) form a distinct mouth cone and are most likely used for true sucking. The mouthparts are tightly “folded” around each other and provide functional rails for the only two moving mouthparts, mandible and maxillula. Both are not moving in an ancestral-type median-lateral movement, but are strongly tilted to move more in a proximal-distal axis. New details concerning the attachment demonstrate that the angular arrangement of the thoracopods is differentiated to impede removal by the host. The increased understanding of morphological adaptation to parasitism of modern forms will be useful in identifying disarticulated (not attached to the host) fossil parasites. PMID:27441121
Does Sexual Selection Influence Ornamentation of Hemipenes in Old World Snakes?
Andonov, Kostadin; Natchev, Nikolay; Kornilev, Yurii V; Tzankov, Nikolay
2017-09-01
In the present study, we investigated and documented the morphology of the male copulatory organs (hemipenes) in fifteen wide-ranging snake species. The species represent four families (Boidae, Colubridae, Lamprophiidae, and Viperidae) and ten genera. We applied the same preparation techniques for all species, successfully everting and expanding the organs completely. The detailed description of the general morphology of the male copulatory organs was based on 31 specimens. Our data were compared with published observations and we point out some incorrectly described details in previous investigations. We provide the first description of the hemipenial morphology for three ophidian species (Elaphe sauromates, Telescopus fallax, and Malpolon insignitus). In addition to the morphological characteristics of the hemipenes presented in the research, we propose the adoption of a standardized index describing the hemipenial proportions. The immense variation in hemipenial morphology presupposes its dynamic evolution, but we suggest that many of the significant structures observed here may have escaped previous researchers due to differing methodologies. Some of the highly ornamented morphologies that we describe are consistent with a locking mechanism during copulation. However, other morphologies may relate to the variety of mating behaviors observed. As a result, we propose that sexual selection is the major driver affecting the hemipenial ornamentation in snakes. Anat Rec, 300:1680-1694, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.
DspaceOgreTerrain 3D Terrain Visualization Tool
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.
2012-01-01
DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.
Integrating human and machine intelligence in galaxy morphology classification tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl
2018-06-01
Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
Russo, Tommaso; Scardi, Michele; Cataudella, Stefano
2014-01-01
We propose a new graphical approach to the analysis of multi-temporal morphological and ecological data concerning the life history of fish, which can typically serves models in ecomorphological investigations because they often undergo significant ontogenetic changes. These changes can be very complex and difficult to describe, so that visualization, abstraction and interpretation of the underlying relationships are often impeded. Therefore, classic ecomorphological analyses of covariation between morphology and ecology, performed by means of multivariate techniques, may result in non-exhaustive models. The Self Organizing map (SOM) is a new, effective approach for pursuing this aim. In this paper, lateral outlines of larval stages of gilthead sea bream (Sparus aurata) and dusky grouper (Epinephelus marginatus) were recorded and broken down using by means of Elliptic Fourier Analysis (EFA). Gut contents of the same specimens were also collected and analyzed. Then, shape and trophic habits data were examined by SOM, which allows both a powerful visualization of shape changes and an easy comparison with trophic habit data, via their superimposition onto the trained SOM. Thus, the SOM provides a direct visual approach for matching morphological and ecological changes during fish ontogenesis. This method could be used as a tool to extract and investigate relationships between shape and other sinecological or environmental variables, which cannot be taken into account simultaneously using conventional statistical methods. PMID:24466185
Tamasi, Alison L.; Cash, Leigh J.; Mullen, William Tyler; ...
2016-07-05
Changes in the visual characteristics of uranium oxide surfaces and morphology following storage under different conditions of temperature and relative humidity may provide insight into the history of an unknown sample. Sub-samples of three α-U 3O 8 materials—one that was phase-pure and two that were phase-impure—were stored under controlled conditions for two years. We used scanning electron microscopy to image the oxides before and after storage, and a morphology lexicon was used to characterize the images. Finally, temporal changes in morphology were observed in some sub-samples, and changes were greatest following exposure to high relative humidity.
ERIC Educational Resources Information Center
Stewig, John Warren
Visual literacy--seeing with insight--enables child viewers of pictures to examine elements such as color, line, shape, form, depth, and detail to see what relations exist both among these components and between what is in the picture and their previous visual experience. The viewer can extract meaning and respond to it, either by talking or…
A visual analysis of multi-attribute data using pixel matrix displays
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel; Schreck, Tobias
2007-01-01
Charts and tables are commonly used to visually analyze data. These graphics are simple and easy to understand, but charts show only highly aggregated data and present only a limited number of data values while tables often show too many data values. As a consequence, these graphics may either lose or obscure important information, so different techniques are required to monitor complex datasets. Users need more powerful visualization techniques to digest and compare detailed multi-attribute data to analyze the health of their business. This paper proposes an innovative solution based on the use of pixel-matrix displays to represent transaction-level information. With pixelmatrices, users can visualize areas of importance at a glance, a capability not provided by common charting techniques. We present our solutions to use colored pixel-matrices in (1) charts for visualizing data patterns and discovering exceptions, (2) tables for visualizing correlations and finding root-causes, and (3) time series for visualizing the evolution of long-running transactions. The solutions have been applied with success to product sales, Internet network performance analysis, and service contract applications demonstrating the benefits of our method over conventional graphics. The method is especially useful when detailed information is a key part of the analysis.
The retinal morphology and retinal histochemistry of a twilight fish Corydoras paleatus (J.).
Yew, D T; Woo, H H
1976-01-01
1. The retinas of Corydoras paleatus were studied by histology (HE) and histochemistry (PAS and Nucleic acid). 2. Three types of visual cells were observed, namely rod, single cone and twin cone. All of them are PAS positive. 3. The histochemical PAS pattern of these visual cells differs from those species which are not of a twilight habitat. 4. Significant amount of RNA were not detected in the inner segments of visual cells in this species indicating a possible slow renewal of outer segments.
An Integrated Tone Mapping for High Dynamic Range Image Visualization
NASA Astrophysics Data System (ADS)
Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun
2018-01-01
There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.
ERIC Educational Resources Information Center
Boumaraf, Assia; Macoir, Joël
2016-01-01
Deep dyslexia is a written language disorder characterized by poor reading of non-words, and advantage for concrete over abstract words with production of semantic, visual and morphological errors. In this single case study of an Arabic patient with input deep dyslexia, we investigated the impact of graphic features of Arabic on manifestations of…
Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing
2017-11-01
Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.
Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
The virtual windtunnel: Visualizing modern CFD datasets with a virtual environment
NASA Technical Reports Server (NTRS)
Bryson, Steve
1993-01-01
This paper describes work in progress on a virtual environment designed for the visualization of pre-computed fluid flows. The overall problems involved in the visualization of fluid flow are summarized, including computational, data management, and interface issues. Requirements for a flow visualization are summarized. Many aspects of the implementation of the virtual windtunnel were uniquely determined by these requirements. The user interface is described in detail.
Publications - GMC 15 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 15 Publication Details Title: Visual kerogen and thermal maturation (vitrinite) data for the Reference Unknown, 1981, Visual kerogen and thermal maturation (vitrinite) data for the SOCAL Cape Espenberg
Publications - GMC 121 | Alaska Division of Geological & Geophysical
DGGS GMC 121 Publication Details Title: Vitrinite reflectance and visual kerogen data of cuttings from -Strat, Inc., 1989, Vitrinite reflectance and visual kerogen data of cuttings from the Texaco Inc
Reliability of Visual Inspection for Highway Bridges, Volume I : Final Report
DOT National Transportation Integrated Search
2001-06-01
This technical summary announces the findings of an investigation by the Federal Highway Administrations Nondestructive Evaluation Validation Center (NDEVC) concerning the reliability of Visual Inspection for highway bridges. Details and results a...
NASA Astrophysics Data System (ADS)
Aufaristama, Muhammad; Hölbling, Daniel; Höskuldsson, Ármann; Jónsdóttir, Ingibjörg
2017-04-01
The Krafla volcanic system is part of the Icelandic North Volcanic Zone (NVZ). During Holocene, two eruptive events occurred in Krafla, 1724-1729 and 1975-1984. The last eruptive episode (1975-1984), known as the "Krafla Fires", resulted in nine volcanic eruption episodes. The total area covered by the lavas from this eruptive episode is 36 km2 and the volume is about 0.25-0.3 km3. Lava morphology is related to the characteristics of the surface morphology of a lava flow after solidification. The typical morphology of lava can be used as primary basis for the classification of lava flows when rheological properties cannot be directly observed during emplacement, and also for better understanding the behavior of lava flow models. Although mapping of lava flows in the field is relatively accurate such traditional methods are time consuming, especially when the lava covers large areas such as it is the case in Krafla. Semi-automatic mapping methods that make use of satellite remote sensing data allow for an efficient and fast mapping of lava morphology. In this study, two semi-automatic methods for lava morphology classification are presented and compared using Landsat 8 (30 m spatial resolution) and SPOT-5 (10 m spatial resolution) satellite images. For assessing the classification accuracy, the results from semi-automatic mapping were compared to the respective results from visual interpretation. On the one hand, the Spectral Angle Mapper (SAM) classification method was used. With this method an image is classified according to the spectral similarity between the image reflectance spectrums and the reference reflectance spectra. SAM successfully produced detailed lava surface morphology maps. However, the pixel-based approach partly leads to a salt-and-pepper effect. On the other hand, we applied the Random Forest (RF) classification method within an object-based image analysis (OBIA) framework. This statistical classifier uses a randomly selected subset of training samples to produce multiple decision trees. For final classification of pixels or - in the present case - image objects, the average of the class assignments probability predicted by the different decision trees is used. While the resulting OBIA classification of lava morphology types shows a high coincidence with the reference data, the approach is sensitive to the segmentation-derived image objects that constitute the base units for classification. Both semi-automatic methods produce reasonable results in the Krafla lava field, even if the identification of different pahoehoe and aa types of lava appeared to be difficult. The use of satellite remote sensing data shows a high potential for fast and efficient classification of lava morphology, particularly over large and inaccessible areas.
The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions.
Marino, T A; Cook, P N; Cook, L T; Dwyer, S J
1980-11-01
Atrial muscle cells and atrioventricular bundle cells were reconstructed using a computer-assisted three-dimensional reconstruction system. This reconstruction technique permitted these cells to be viewed from any direction. The cell surfaces were approximated using triangular tiles, and this optimization technique for cell reconstruction allowed for the computation of cell surface area and cell volume. A transparent mode is described which enables the investigator to examine internal cellular features such as the shape and location of the nucleus. In addition, more than one cell can be displayed simultaneously, and, therefore, spatial relationships are preserved and intercellular relationships viewed directly. The use of computer imaging techniques allows for a more complete collection of quantitative morphological data and also the visualization of the morphological information gathered.
Controllable morphology of flux avalanches in microstructured superconductors
NASA Astrophysics Data System (ADS)
Motta, M.; Colauto, F.; Vestgârden, J. I.; Fritzsche, J.; Timmermans, M.; Cuppens, J.; Attanasio, C.; Cirillo, C.; Moshchalkov, V. V.; Van de Vondel, J.; Johansen, T. H.; Ortiz, W. A.; Silhanek, A. V.
2014-04-01
The morphology of abrupt bursts of magnetic flux into superconducting films with engineered periodic pinning centers (antidots) has been investigated. Guided flux avalanches of thermomagnetic origin develop a treelike structure, with the main trunk perpendicular to the borders of the sample, while secondary branches follow well-defined directions determined by the geometrical details of the underlying periodic pinning landscape. Strikingly, we demonstrate that in a superconductor with relatively weak random pinning the morphology of such flux avalanches can be fully controlled by proper combinations of lattice symmetry and antidot geometry. Moreover, the resulting flux patterns can be reproduced, to the finest details, by simulations based on a phenomenological thermomagnetic model. In turn, this model can be used to predict such complex structures and to estimate physical variables of more difficult experimental access, such as the local values of temperature and electric field.
NASA Astrophysics Data System (ADS)
Wang, Mengyu; Wang, Hui; Baniasadi, Neda; Elze, Tobias
2017-02-01
Purpose: Optic disc tilt defined over 3D optic disc morphology has been shown to be associated with the location of initial glaucomatous damages. In this work, we study the impact of optic cup depth (OCD) on spatial patterns of visual field loss in glaucoma. Methods: Pairs of reliable Cirrus OCT scans around optic disc and Humphrey visual fields of glaucoma patients without visually significant cataract and age-related macular degeneration were selected. The most recent visit of a randomly selected eye of each patient was chosen. The OCD was automatically calculated on the superior-inferior cross sectional image passing through the optic disc center. The correlations between the mean pattern deviation (PD) of each sector in glaucoma hemifield test (GHT) and Garway-Heath scheme and OCD were evaluated for all severities glaucoma and mild glaucoma (mean deviation >= -5 dB), respectively. Results: 424 eyes of 424 patients passed the data reliability criteria with 346 mild glaucoma patients. For all severities glaucoma, there was no significant correlation between the mean sector PD and OCD. For mild glaucoma, OCD was uniquely correlated to the mean PD of the inferior pericentral sector (r=-0.18, p=0.01) in GHT, which was independent of mean deviation and retinal nerve fiber layer thickness (p<0.001 for both). Conclusion: OCD was uniquely correlated to the vision loss of the inferior pericentral sector in GHT and Garway- Health scheme for mild glaucoma. Future advancement of OCT imaging techniques may provide better clinical diagnosis for early glaucoma by focusing on 3D morphological variation of the optic disc.
ERIC Educational Resources Information Center
de Zeeuw, Marlies; Verhoeven, Ludo; Schreuder, Robert
2012-01-01
This study examined to what extent young second language (L2) learners showed morphological family size effects in L2 word recognition and whether the effects were grade-level related. Turkish-Dutch bilingual children (L2) and Dutch (first language, L1) children from second, fourth, and sixth grade performed a Dutch lexical decision task on words…
Morphology and force probing of primary murine liver sinusoidal endothelial cells.
Zapotoczny, B; Owczarczyk, K; Szafranska, K; Kus, E; Chlopicki, S; Szymonski, M
2017-07-01
Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.
McNeill, C A; Allan, S A; Koehler, P G; Pereira, R M; Weeks, E N I
2016-12-01
Bed bugs as pests of public health importance recently experienced a resurgence in populations throughout the U.S. and other countries. Consequently, recent research efforts have focused on improving understanding of bed bug physiology and behaviour to improve management. While few studies have investigated the visual capabilities of bed bugs, the present study focused specifically on eye morphology and spectral sensitivity. A 3-D imaging technique was used to document bed bug eye morphology from the first instar through adult and revealed morphological characteristics that differentiate the common bed bug from the tropical bed bug as well as sex-specific differences. Electrophysiological measurements were used to evaluate the spectral sensitivity of adult bed bugs. Male bed bugs were more responsive than females at some wavelengths. Electrophysiological studies provided evidence for at least one photoreceptor with a spectral sensitivity curve peak in the green (λ max 520 nm) region of the spectrum. The broadened long wavelength portion of the spectral sensitivity curve may potentially indicate another photoreceptor in the yellow-green (λ max 550 nm) portion of the spectrum or screening pigments. Understanding more about bed bug visual biology is vital for designing traps, which are an important component of integrated bed bug management. © 2016 The Royal Entomological Society.
[Clinical, morphological and molecular biological characteristics of the aging eye].
Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P
2017-02-01
The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.
Rastogi, Ravi; Pawluk, Dianne T V
2013-01-01
An increasing amount of information content used in school, work, and everyday living is presented in graphical form. Unfortunately, it is difficult for people who are blind or visually impaired to access this information, especially when many diagrams are needed. One problem is that details, even in relatively simple visual diagrams, can be very difficult to perceive using touch. With manually created tactile diagrams, these details are often presented in separate diagrams which must be selected from among others. Being able to actively zoom in on an area of a single diagram so that the details can be presented at a reasonable size for exploration purposes seems a simpler approach for the user. However, directly using visual zooming methods have some limitations when used haptically. Therefore, a new zooming method is proposed to avoid these pitfalls. A preliminary experiment was performed to examine the usefulness of the algorithm compared to not using zooming. The results showed that the number of correct responses improved with the developed zooming algorithm and participants found it to be more usable than not using zooming for exploration of a floor map.
On the Distinction between Regular and Irregular Inflectional Morphology: Evidence from Dinka
ERIC Educational Resources Information Center
Ladd, D. Robert; Remijsen, Bert; Manyang, Caguor Adong
2009-01-01
Discussions of the psycholinguistic significance of regularity in inflectional morphology generally deal with languages in which regular forms can be clearly identified and revolve around whether there are distinct processing mechanisms for regular and irregular forms. We present a detailed description of Dinka's notoriously irregular noun number…
Martian deltas: Morphology and distribution
NASA Technical Reports Server (NTRS)
Rice, J. W., Jr.; Scott, D. H.
1993-01-01
Recent detailed mapping has revealed numerous examples of Martian deltas. The location and morphology of these deltas are described. Factors that contribute to delta morphology are river regime, coastal processes, structural stability, and climate. The largest delta systems on Mars are located near the mouths of Maja, Maumee, Vedra, Ma'adim, Kasei, and Brazos Valles. There are also several smaller-scale deltas emplaced near channel mouths situated in Ismenius Lacus, Memnonia, and Arabia. Delta morphology was used to reconstruct type, quantity, and sediment load size transported by the debouching channel systems. Methods initially developed for terrestrial systems were used to gain information on the relationships between Martian delta morphology, river regime, and coastal processes.
2013-01-01
Background Despite ongoing interest in the neurophysiology of visual systems in scorpions, aspects of their neuroanatomy have received little attention. Lately sets of neuroanatomical characters have contributed important arguments to the discussion of arthropod ground patterns and phylogeny. In various attempts to reconstruct phylogeny (from morphological, morphological + molecular, or molecular data) scorpions were placed either as basalmost Arachnida, or within Arachnida with changing sister-group relationships, or grouped with the extinct Eurypterida and Xiphosura inside the Merostomata. Thus, the position of scorpions is a key to understanding chelicerate evolution. To shed more light on this, the present study for the first time combines various techniques (Cobalt fills, DiI / DiO labelling, osmium-ethyl gallate procedure, and AMIRA 3D-reconstruction) to explore central projections and visual neuropils of median and lateral eyes in Euscorpius italicus (Herbst, 1800) and E. hadzii Di Caporiacco, 1950. Results Scorpion median eye retinula cells are linked to a first and a second visual neuropil, while some fibres additionally connect the median eyes with the arcuate body. The lateral eye retinula cells are linked to a first and a second visual neuropil as well, with the second neuropil being partly shared by projections from both eyes. Conclusions Comparing these results to previous studies on the visual systems of scorpions and other chelicerates, we found striking similarities to the innervation pattern in Limulus polyphemus for both median and lateral eyes. This supports from a visual system point of view at least a phylogenetically basal position of Scorpiones in Arachnida, or even a close relationship to Xiphosura. In addition, we propose a ground pattern for the central projections of chelicerate median eyes. PMID:23842208
Thoracic cavity definition for 3D PET/CT analysis and visualization.
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W; Higgins, William E
2015-07-01
X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard imaging modalities for lung-cancer management. CT gives anatomical details on diagnostic regions of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer management process, a patient receives a co-registered whole-body PET/CT scan pair and a dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information can be gleaned to facilitate disease management. Effective image segmentation of the thoracic cavity, however, is needed to focus attention on the central chest. We present an automatic method for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our segmentation method draws upon digital topological and morphological operations, active-contour analysis, and key organ landmarks. Using a large patient database, the method showed high agreement to ground-truth regions, with a mean coverage=99.2% and leakage=0.52%. Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring anatomical structures truly relevant to lung-cancer assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tiffan, K.F.; Rondorf, D.W.
2005-01-01
The striking body coloration and morphology that Pacific salmon display during spawning coupled with elaborate courtship behaviors suggest that visual cues are important during their reproductive period. To date, virtually all existing information on chum salmon (Oncorhynchus keta) spawning behavior has been derived from studies conducted during the daytime, and has contributed to the assumption that salmon do not spawn at night. We tested this assumption using a new technology - a dual-frequency identification sonar (DIDSON) - to describe and measure nighttime spawning behavior of wild chum salmon in the Columbia River. The DIDSON produces detailed, video-like images using sound, which enabled us to collect behavioral information at night in complete darkness. The display of DIDSON images enabled fish movements and behaviors to be spatially quantified. We collected continuous observational data on 14 pairs of chum salmon in a natural spawning channel during the daytime and nighttime. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the pre-spawning behavior of tail crossing. We observed a total of 13 spawning events, of which nine occurred at night and four occurred during the day. The behaviors we observed at night suggest the assumption that chum salmon do not spawn at night is false. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. We speculate that non-visual cues (e.g. tactile and auditory) enable chum salmon to carry out most spawning behaviors at night. Our findings have implications for how nighttime flows from hydroelectric dams on the Columbia River are managed for power production and protection of imperiled salmon stocks.
Thoracic Cavity Definition for 3D PET/CT Analysis and Visualization
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W.; Higgins, William E.
2015-01-01
X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard imaging modalities for lung-cancer management. CT gives anatomical detail on diagnostic regions of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer management process, a patient receives a co-registered whole-body PET/CT scan pair and a dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information can be gleaned to facilitate disease management. Effective image segmentation of the thoracic cavity, however, is needed to focus attention on the central chest. We present an automatic method for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our segmentation method draws upon digital topological and morphological operations, active-contour analysis, and key organ landmarks. Using a large patient database, the method showed high agreement to ground-truth regions, with a mean coverage = 99.2% and leakage = 0.52%. Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring anatomical structures truly relevant to lung-cancer assessment. PMID:25957746
Landi, Andrea; Pirillo, David; Cilia, Roberto; Antonini, Angelo; Sganzerla, Erik P
2011-02-01
Neurophysiologic monitoring during deep brain stimulation (DBS) interventions in the globus pallidus internum (Gpi) for the treatment of Parkinson's disease or primary dystonia is generally based upon microelectrode recordings (MER); moreover, MER request sophisticated technology and high level trained personnel for a reliable monitoring. Recordings of cortical visual evoked potentials (CVEPs) obtained after stimulation of the optic tract may be a potential option to MER; since optic tract lies just beneath the best target for Gpi DBS, changes in CVEPs during intraoperative exploration may drive a correct electrode positioning. Cortical VEPs from optic tract stimulation (OT C-CEPs) have been recorded in seven patients during GPi-DBS for the treatment of Parkinson's disease and primary dystonia under general sedation. OT C-VEPs were obtained after near-field monopolar stimulation of the optic tract; recording electrodes were at the scalp. Cortical responses after optic tract versus standard visual stimulation were compared. After intraoperative near-field OT stimulation a biphasic wave, named N40-P70, was detected in all cases. N40-P70 neither change in morphology nor in latency at different depths, but increased in amplitude approaching the optic tract. The electrode tip was positioned just 1mm above the point where OT-CVEPs showed the larger amplitude. No MERs were obtained in these patients; OT CVEPs were the only method to detect the Gpi before positioning the electrodes. OT CVEPs seem to be as reliable as MER to detail the optimal target in Gpi surgery: in addition they are less expensive, faster to perform and easier to decode. Copyright © 2010. Published by Elsevier B.V.
3D visualization of ultra-fine ICON climate simulation data
NASA Astrophysics Data System (ADS)
Röber, Niklas; Spickermann, Dela; Böttinger, Michael
2016-04-01
Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.
Buchs, Galit; Maidenbaum, Shachar; Levy-Tzedek, Shelly; Amedi, Amir
2015-01-01
Purpose: To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a ‘visual’ scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information –perceived in parts - into larger percepts despite never having had any visual experience? Methods: We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic’s zooming mechanism. Results: After specialized training of just 6–10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P < 1.55E-04). Conclusions: These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods. PMID:26518671
Change Detection via Selective Guided Contrasting Filters
NASA Astrophysics Data System (ADS)
Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.
2017-05-01
Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented filters provide the robustness relative to weak geometrical discrepancy of compared images. Selective guided contrasting based on morphological opening/closing and thresholded morphological correlation demonstrates the best change detection result.
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.
Schmitz, Lars; Wainwright, Peter C
2011-11-19
Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.
ERIC Educational Resources Information Center
Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria
2013-01-01
A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…
ERIC Educational Resources Information Center
Kelly, Resa M.
2014-01-01
Molecular visualizations have been widely endorsed by many chemical educators as an efficient way to convey the dynamic and atomic-level details of chemistry events. Research indicates that students who use molecular visualizations are able to incorporate most of the intended features of the animations into their explanations. However, studies…
Publications - GMC 32 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 32 Publication Details Title: Visual kerogen and vitrinite reflectance data, and a thermal . Bibliographic Reference Maynard, J., and Hemler, Tom, 1983, Visual kerogen and vitrinite reflectance data, and a
Publications - GMC 249 | Alaska Division of Geological & Geophysical
DGGS GMC 249 Publication Details Title: Source rock geochemical and visual kerogen data from cuttings Reference Unknown, 1995, Source rock geochemical and visual kerogen data from cuttings (2,520-8,837') of the
The Use of Visual Arts as a Window to Diagnosing Medical Pathologies.
Bramstedt, Katrina A
2016-08-01
Observation is a key step preceding diagnosis, prognostication, and treatment. Careful patient observation is a skill that is learned but rarely explicitly taught. Furthermore, proper clinical observation requires more than a glance; it requires attention to detail. In medical school, the art of learning to look can be taught using the medical humanities and especially visual arts such as paintings and film. Research shows that such training improves not only observation skills but also teamwork, listening skills, and reflective and analytical thinking. Overall, the use of visual arts in medical school curricula can build visual literacy: the capacity to identify and analyze facial features, emotions, and general bodily presentations, including contextual features such as clothing, hair, and body art. With the ability to formulate and convey a detailed "picture" of the patient, clinicians can integrate aesthetic and clinical knowledge, helping facilitate the diagnosing of medical pathologies. © 2016 American Medical Association. All Rights Reserved.
Remote sensing image denoising application by generalized morphological component analysis
NASA Astrophysics Data System (ADS)
Yu, Chong; Chen, Xiong
2014-12-01
In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.
The time course of morphological processing during spoken word recognition in Chinese.
Shen, Wei; Qu, Qingqing; Ni, Aiping; Zhou, Junyi; Li, Xingshan
2017-12-01
We investigated the time course of morphological processing during spoken word recognition using the printed-word paradigm. Chinese participants were asked to listen to a spoken disyllabic compound word while simultaneously viewing a printed-word display. Each visual display consisted of three printed words: a semantic associate of the first constituent of the compound word (morphemic competitor), a semantic associate of the whole compound word (whole-word competitor), and an unrelated word (distractor). Participants were directed to detect whether the spoken target word was on the visual display. Results indicated that both the morphemic and whole-word competitors attracted more fixations than the distractor. More importantly, the morphemic competitor began to diverge from the distractor immediately at the acoustic offset of the first constituent, which was earlier than the whole-word competitor. These results suggest that lexical access to the auditory word is incremental and morphological processing (i.e., semantic access to the first constituent) that occurs at an early processing stage before access to the representation of the whole word in Chinese.
NASA Astrophysics Data System (ADS)
Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.
2016-11-01
Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.
Mastropasqua, Leonardo; Toto, Lisa; Vecchiarino, Luca; Di Nicola, Marta; Mastropasqua, Rodolfo
2011-01-01
To compare functional and morphological outcomes of 1.8-mm versus 2.2-mm microincision coaxial cataract surgery (MCCS). Thirty eyes of 30 patients that underwent MCCS were randomized to two groups: 1.8-mm MCCS (group 1: 15 eyes) and 2.2-mm MCCS (group 2: 15 eyes). There were no significant between-group differences in uncorrected visual acuity, best-corrected visual acuity, keratometric astigmatism, and endothelial cell count. One day postoperatively, a greater increase of corneal thickness at the incision site was observed in group 1 compared to group 2 using anterior segment optical coherence tomography with no significant differences in tunnel morphometric features and confocal microscopy showed more tunnel edema in group 1 versus group 2 that resolved in both groups. Both 1.8- and 2.2-mm torsional MCCS were safe and efficient with easy surgical maneuvers and excellent functional and morphological results; 1.8-mm MCCS induced slightly greater tunnel edema shortly after surgery that resolved in the medium term. Copyright 2011, SLACK Incorporated.
Koddenberg, Tim; Militz, Holger
2018-05-05
The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.
In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.
Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz
2015-07-01
The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images. X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina
Venkataramani, Sowmya
2016-01-01
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.
Venkataramani, Sowmya; Taylor, W Rowland
2016-03-16
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.
Kuhli-Hattenbach, Claudia; Koss, Michael Janusz; Kohnen, Thomas; Fronius, Maria
2015-11-01
To search for morphological abnormalities in compliant unilaterally amblyopic children with poor occlusion treatment outcomes, for the first time with electronically recorded patching dosage. We included school children with remaining interocular logMAR (logarithm of the minimum angle of resolution) difference ≥ 0.3 after patching time of more than 22 months and 1300 h total in a previous prospective study. Six patients with a mean age of 11.19 years were included. Four patients had anisometropic amblyopia and two patients had a mixed strabismic and anisometropic amblyopia. Best-corrected visual acuity, cycloplegic refraction, dilated fundus examination, optic disc morphology and macular thickness using optical coherence tomography (OCT), retinal visual acuity, color perception, and the presence of a relative afferent pupillary defect (RAPD) were assessed. Paired t tests were performed to compare optic disc values and macular thickness of the amblyopic eyes to those of the fellow eyes. Average (± SD) logMAR VA in the amblyopic eyes was 0.42 (±0.23) with a remaining average interocular difference (IOD) of 0.51 (± 0.23), despite electronically monitored occlusion treatment of more than 1300 h. All patients presented with hyperopia and a significantly different mean spherical equivalent of + 4.73 (± 2.73) D in the amblyopic eye compared with the fellow eye (p = 0.02). A statistically significant difference in macular thickness was found between amblyopic and fellow eyes, with amblyopic eyes having an increased average thickness (p = 0.0062) and total volume (p = 0.0091) of the macula. One patient had familial hereditary primary macrodisc in both eyes. Our results provide evidence that average macular thickness and total macular volume tended to be increased among these compliant amblyopic children with unsatisfactory occlusion treatment outcomes. Further studies are warranted to evaluate whether morphological changes may have an impact on the effectiveness of amblyopia treatment. Moreover, our findings suggest that greater magnitude of hyperopia and anisometropia as well as older age may be risk factors associated with a poor visual acuity outcome among compliant amblyopic children.
Prete, Frederick R; Komito, Justin L; Dominguez, Salina; Svenson, Gavin; López, LeoLin Y; Guillen, Alex; Bogdanivich, Nicole
2011-09-01
We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis' eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons.
A neotropical Miocene pollen database employing image-based search and semantic modeling1
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren
2014-01-01
• Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648
The correlation dimension: a useful objective measure of the transient visual evoked potential?
Boon, Mei Ying; Henry, Bruce I; Suttle, Catherine M; Dain, Stephen J
2008-01-14
Visual evoked potentials (VEPs) may be analyzed by examination of the morphology of their components, such as negative (N) and positive (P) peaks. However, methods that rely on component identification may be unreliable when dealing with responses of complex and variable morphology; therefore, objective methods are also useful. One potentially useful measure of the VEP is the correlation dimension. Its relevance to the visual system was investigated by examining its behavior when applied to the transient VEP in response to a range of chromatic contrasts (42%, two times psychophysical threshold, at psychophysical threshold) and to the visually unevoked response (zero contrast). Tests of nonlinearity (e.g., surrogate testing) were conducted. The correlation dimension was found to be negatively correlated with a stimulus property (chromatic contrast) and a known linear measure (the Fourier-derived VEP amplitude). It was also found to be related to visibility and perception of the stimulus such that the dimension reached a maximum for most of the participants at psychophysical threshold. The latter suggests that the correlation dimension may be useful as a diagnostic parameter to estimate psychophysical threshold and may find application in the objective screening and monitoring of congenital and acquired color vision deficiencies, with or without associated disease processes.
Hayworth, C R; Rojas, J C; Gonzalez-Lima, F
2008-01-01
This is the first study using a reporter transgenic model to investigate the effects of an environmental toxin on the retina. Rotenone is a widely used pesticide that inhibits mitochondrial complex I and produces neurotoxicity. Previous studies demonstrated the time course and dose response of rotenone toxicity on retinal ganglion cells (RGC). However, previous analyses of rotenone-induced retinotoxicity provided little detail of the optic nerve axons and cellular pathology. These limitations were successfully surmounted by using a transgenic mouse line shown to express cyan fluorescent protein (CFP) in neurons, including RGC, under regulatory elements of the human the thy1.1 promoter (thy-CFP). Data showed that CFP expression is limited to RGC and their processes in the retina of thy-CFP mice. Eyes exposed to the pesticide rotenone displayed marked alterations in RGC morphology, inner plexiform layer, optic disc, and optic nerves. After 24 h, the number of CFP-labeled RGC was reduced 50%. Correlated with a loss of RGC bodies was an approximate 50% reduction in CFP fluorescence intensity at the optic disc. The findings showed that rotenone-induced degeneration of RGC and their processes can be visualized with exquisite detail in thy-CFP mice, and that this approach may provide a novel and effective way to monitor the association between environmental toxins and neurodegeneration in living animals.
Small-spot laser-exposure effects on visual function
NASA Astrophysics Data System (ADS)
Zwick, Harry; Robbins, David O.; Stuck, Bruce E.; Lund, David J.; Reynolds, Scottie B.; Nawim, Maqsood; Schuschereba, Steven T.
1990-07-01
Laser field exposure effects on visual function involve produc tJon of minimal spot irradiation on or near the huntan fovea. Functional effects of such exposure may involve transient or perinanent change in visual function depending upon exposure dose. While Maximun Permissible Exposure (MPE) lirrtits define exposure in terins of threshold retinal niorphological change such limits are not applicable with regard to transient changes in visual function below MPE limits induced by alteration in retinal physiological processes. Mechanisms of transient and permanent functional change reported in these exper iments point out the need to examine laser safety limits in terms of both the functional as well as the morphological disturbance induced in retinal tissue. L
Interactive displays in medical art
NASA Technical Reports Server (NTRS)
Mcconathy, Deirdre Alla; Doyle, Michael
1989-01-01
Medical illustration is a field of visual communication with a long history. Traditional medical illustrations are static, 2-D, printed images; highly realistic depictions of the gross morphology of anatomical structures. Today medicine requires the visualization of structures and processes that have never before been seen. Complex 3-D spatial relationships require interpretation from 2-D diagnostic imagery. Pictures that move in real time have become clinical and research tools for physicians. Medical illustrators are involved with the development of interactive visual displays for three different, but not discrete, functions: as educational materials, as clinical and research tools, and as data bases of standard imagery used to produce visuals. The production of interactive displays in the medical arts is examined.
Integration of nonthematic details in pictures and passages.
Viera, C L; Homa, D L
1991-01-01
Nonthematic details in naturalistic scenes were manipulated to produce four stimulus versions: color photos, black-white copies, and elaborated and unelaborated line drawings (Experiment 1); analogous verbal descriptions of each visual version were produced for Experiment 2. In Experiment 1, two or three different versions of a scene were presented in the mixed condition; the same version of the scene was repeated either two or three times in the same condition, and a 1-presentation control condition was also included. In Experiment 2, the same presentation conditions were used across different groups of subjects who either viewed the pictures or heard the descriptions. An old/new recognition test was given in which the nonstudied versions of the studied items were used as foils. Higher false recognition performances for the mixed condition were found for the visual materials in both experiments, and in the second experiment the verbal materials produced equivalently high levels of false recognition for both same and mixed conditions. Additionally, in Experiment 2 the patterns of performances across material conditions were differentially affected by the manipulation of detail in the four stimulus versions. These differences across materials suggest that the integration of semantically consistent details across temporally separable presentations is facilitated when the stimuli do not provide visual/physical attributes to enhance discrimination of different presentations. Further, the evidence derived from the visual scenes in both experiments indicates that the semantic schema abstracted from a picture is not the sole mediator of recognition performance.
Visualizing cellulase activity.
Bubner, Patricia; Plank, Harald; Nidetzky, Bernd
2013-06-01
Commercial exploitation of lignocellulose for biotechnological production of fuels and commodity chemicals requires efficient-usually enzymatic-saccharification of the highly recalcitrant insoluble substrate. A key characteristic of cellulose conversion is that the actual hydrolysis of the polysaccharide chains is intrinsically entangled with physical disruption of substrate morphology and structure. This "substrate deconstruction" by cellulase activity is a slow, yet markedly dynamic process that occurs at different length scales from and above the nanometer range. Little is currently known about the role of progressive substrate deconstruction on hydrolysis efficiency. Application of advanced visualization techniques to the characterization of enzymatic degradation of different celluloses has provided important new insights, at the requisite nano-scale resolution and down to the level of single enzyme molecules, into cellulase activity on the cellulose surface. Using true in situ imaging, dynamic features of enzyme action and substrate deconstruction were portrayed at different morphological levels of the cellulose, thus providing new suggestions and interpretations of rate-determining factors. Here, we review the milestones achieved through visualization, the methods which significantly promoted the field, compare suitable (model) substrates, and identify limiting factors, challenges and future tasks. Copyright © 2013 Wiley Periodicals, Inc.
Visualization of stratospheric ozone depletion and the polar vortex
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.
1995-01-01
Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.
Orthogonal transform feasibility study
NASA Technical Reports Server (NTRS)
Robinson, G. S.
1971-01-01
The application of various orthogonal transformations to communication was investigated, with particular emphasis placed on speech and visual signal processing. The fundamentals of the one- and two-dimensional orthogonal transforms and their application to speech and visual signals are treated in detail.
Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Choonho
2006-01-01
Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10 -3 m/sec and with a temperature gradient of 7.5 x 10 3 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristicmore » spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.« less
ERIC Educational Resources Information Center
Vainio, Seppo; Anneli, Pajunen; Hyona, Jukka
2014-01-01
This study investigated the effect of the first language (L1) on the visual word recognition of inflected nouns in second language (L2) Finnish by native Russian and Chinese speakers. Case inflection is common in Russian and in Finnish but nonexistent in Chinese. Several models have been posited to describe L2 morphological processing. The unified…
The Time Course of Morphological Processing in a Second Language
ERIC Educational Resources Information Center
Clahsen, Harald; Balkhair, Loay; Schutter, John-Sebastian; Cunnings, Ian
2013-01-01
We report findings from psycholinguistic experiments investigating the detailed timing of processing morphologically complex words by proficient adult second (L2) language learners of English in comparison to adult native (L1) speakers of English. The first study employed the masked priming technique to investigate "-ed" forms with a group of…
Are insular populations of the Philippine falconet (Microhierax erythrogenys) steps in a cline?
Todd E. Katzner; Nigel J. Collar
2013-01-01
Founder effects, new environments, and competition often produce changes in species colonizing islands, although the resulting endemism sometimes requires molecular identification. One method to identify fruitful areas for more detailed genetic study is through comparative morphological analyses. We measured 210 museum specimens to evaluate the potential morphological...
Geomorphology of Triton's polar materials
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1993-01-01
One of Triton's most debated puzzles is the nature, distribution, and transport of its atmospheric volatiles. The full potential of constraints provided by detailed observations of the morphology and distribution of the polar deposits has not been realized. The objective of this study is characterization of the morphology, distribution, stratigraphy, and geologic setting of Triton's polar materials.
USDA-ARS?s Scientific Manuscript database
A comparative, morphological analysis of the female genitalia of species included in genus Catageiomyia Theobald was conducted. Treatment of the genital morphology of the genus includes a composite description of the genus, a detailed description and illustration of the type species (Cg. irritans (...
Hunt, N C; Attanoos, R; Jasani, B
1996-01-01
The use of high temperature antigen retrieval methods has been of major importance in increasing the diagnostic utility of immunocytochemistry. However, these techniques are not without their problems and in this report attention is drawn to a loss of nuclear morphological detail, including mitotic figures, following microwave antigen retrieval. This was not seen with an equivalent autoclave technique. This phenomenon was quantified using image analysis in a group of B cell lymphomas stained with the antibody L26. Loss of nuclear morphological detail may lead to difficulty in identifying cells accurately, which is important in the diagnostic setting-for example, when trying to distinguish a malignant lymphoid infiltrate within a mixed cell population. In such cases it would clearly be wise to consider the use of alternative high temperature retrieval methods and accept their slightly lower staining enhancement capability compared with the microwave technique. Images PMID:9038766
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.; Medina, Honorio
2000-05-01
Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.
Dineen, Brendan; Gilbert, Clare E; Rabiu, Mansur; Kyari, Fatima; Mahdi, Abdull M; Abubakar, Tafida; Ezelum, Christian C; Gabriel, Entekume; Elhassan , Elizabeth; Abiose, Adenike; Faal, Hannah; Jiya, Jonathan Y; Ozemela, Chinenyem P; Lee, Pak Sang; Gudlavalleti, Murthy VS
2008-01-01
Background Despite having the largest population in Africa, Nigeria has no accurate population based data to plan and evaluate eye care services. A national survey was undertaken to estimate the prevalence and determine the major causes of blindness and low vision. This paper presents the detailed methodology used during the survey. Methods A nationally representative sample of persons aged 40 years and above was selected. Children aged 10–15 years and individuals aged <10 or 16–39 years with visual impairment were also included if they lived in households with an eligible adult. All participants had their height, weight, and blood pressure measured followed by assessment of presenting visual acuity, refractokeratomery, A-scan ultrasonography, visual fields and best corrected visual acuity. Anterior and posterior segments of each eye were examined with a torch and direct ophthalmoscope. Participants with visual acuity of < = 6/12 in one or both eyes underwent detailed examination including applanation tonometry, dilated slit lamp biomicroscopy, lens grading and fundus photography. All those who had undergone cataract surgery were refracted and best corrected vision recorded. Causes of visual impairment by eye and for the individual were determined using a clinical algorithm recommended by the World Health Organization. In addition, 1 in 7 adults also underwent a complete work up as described for those with vision < = 6/12 for constructing a normative data base for Nigerians. Discussion The field work for the study was completed in 30 months over the period 2005–2007 and covered 305 clusters across the entire country. Concurrently persons 40+ years were examined to form a normative data base. Analysis of the data is currently underway. Conclusion The methodology used was robust and adequate to provide estimates on the prevalence and causes of blindness in Nigeria. The survey would also provide information on barriers to accessing services, quality of life of visually impaired individuals and also provide normative data for Nigerian eyes. PMID:18808712
Kitaoka, Yasushi; Tanito, Masaki; Yokoyama, Yu; Nitta, Koji; Katai, Maki; Omodaka, Kazuko; Nakazawa, Toru
2018-01-01
The Glaucoma Stereo Analysis Study, a cross-sectional multicenter collaborative study, used a stereo fundus camera (nonmyd WX) to assess various morphological parameters of the optic nerve head (ONH) in glaucoma patients. We compared the associations of each parameter between the visual field loss progression group and no-progression group. The study included 187 eyes of 187 patients with primary open-angle glaucoma or normal-tension glaucoma. We divided the mean deviation (MD) slope values of all patients into the progression group (<-0.3 dB/year) and no-progression group (≧-0.3 dB/year). ONH morphological parameters were calculated with prototype analysis software. The correlations between glaucomatous visual field progression and patient characteristics or each ONH parameter were analyzed with Spearman's rank correlation coefficient. The MD slope averages in the progression group and no-progression group were -0.58 ± 0.28 dB/year and 0.05 ± 0.26 dB/year, respectively. Among disc parameters, vertical disc width (diameter), disc area, cup area, and cup volume in the progression group were significantly less than those in the no-progression group. Logistic regression analysis revealed a significant association between the visual field progression and disc area (odds ratio 0.49/mm 2 disc area). A smaller disc area may be associated with more rapid glaucomatous visual field progression.
Visualizing Structure and Dynamics of Disaccharide Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
The Case of the Missing Visual Details: Occlusion and Long-Term Visual Memory
ERIC Educational Resources Information Center
Williams, Carrick C.; Burkle, Kyle A.
2017-01-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing…
Interactive Exploration of Cosmological Dark-Matter Simulation Data.
Scherzinger, Aaron; Brix, Tobias; Drees, Dominik; Volker, Andreas; Radkov, Kiril; Santalidis, Niko; Fieguth, Alexander; Hinrichs, Klaus H
2017-01-01
The winning entry of the 2015 IEEE Scientific Visualization Contest, this article describes a visualization tool for cosmological data resulting from dark-matter simulations. The proposed system helps users explore all aspects of the data at once and receive more detailed information about structures of interest at any time. Moreover, novel methods for visualizing and interactively exploring dark-matter halo substructures are proposed.
Hand Movement Deviations in a Visual Search Task with Cross Modal Cuing
ERIC Educational Resources Information Center
Aslan, Asli; Aslan, Hurol
2007-01-01
The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants'…
The differential contributions of visual imagery constructs on autobiographical thinking.
Aydin, Cagla
2018-02-01
There is a growing theoretical and empirical consensus on the central role of visual imagery in autobiographical memory. However, findings from studies that explore how individual differences in visual imagery are reflected on autobiographical thinking do not present a coherent story. One reason for the mixed findings was suggested to be the treatment of visual imagery as an undifferentiated construct while evidence shows that there is more than one type of visual imagery. The present study investigates the relative contributions of different imagery constructs; namely, object and spatial imagery, on autobiographical memory processes. Additionally, it explores whether a similar relation extends to imagining the future. The results indicate that while object imagery was significantly correlated with several phenomenological characteristics, such as the level of sensory and perceptual details for past events - but not for future events - spatial imagery predicted the level of episodic specificity for both past and future events. We interpret these findings as object imagery being recruited in tasks of autobiographical memory that employ reflective processes while spatial imagery is engaged during direct retrieval of event details. Implications for the role of visual imagery in autobiographical thinking processes are discussed.
Modeling and visualizing borehole information on virtual globes using KML
NASA Astrophysics Data System (ADS)
Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing
2014-01-01
Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.
77 FR 12240 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... experiments will consist of direct visual observations of fluorescently tagged DNA and DNA-bound protein... including animal tissues, bacteria, insects and parasites, involving the examination of their morphological...
NASA Technical Reports Server (NTRS)
Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen
1987-01-01
Very high resolution Viking Orbiter images of the Martian surface, though rare, make it possible to examine specific areas at image scales approaching those of high altitude terrestrial aerial photographs. Twenty three clear images lie within west Deuteronilus Mensae. The northernmost images which constitute an almost unbroken mosaic of the west wall of a long fingerlike canyon are examined. Morphological details on the plateau surface within zone B, not detectable at low resolution, make it possible to divide the zone into two distinct subzones separated by an east-west escarpment. The morphology of the canyon floor is described in detail.
Kaldırım, Havva; Yazgan, Serpil; Atalay, Kursat; Gurez, Ceren; Savur, Fatma
2018-05-01
To evaluate the effectiveness of a single intravitreal injection of dexamethasone implant in resistant diabetic macular edema that have different morphological types. In this retrospective study, 31 patients (35 eyes) with persistent diabetic macular edema, who underwent a single injection of dexamethasone implant, were evaluated. Diabetic macular edema was classified into three types: diffuse retinal thickening (n = 10), cystoid macular edema (n = 13), and serous retinal detachment (n = 12). Primary outcome measures were best corrected visual acuity, and central macular thickness. The three subgroups were similar in terms of age and gender (P > 0.05). Total duration of diabetes was significantly less in the serous retinal detachment subgroup (P = 0.01). There were no differences in the best corrected visual acuity between the three subgroups until the sixth month. However, the best corrected visual acuity was significantly better in the diffuse retinal thickness subgroup at the sixth month (P = 0.008). Regarding the central macular thickness values, it was statistically better in serous retinal detachment than in diffuse retinal thickening and cystoid macular edema subgroups till the sixth month (P = 0.001). However, at the sixth month, there was not any statistical difference between subgroups regarding central macular thickness values. Antiglaucomatous agents were required in 4 (11.4%) patients throughout the study. Treatment algorithms should differ according to the morphology of diabetic macular edema; however, more data is needed to give specific recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.
2015-02-15
Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information on inclusion formation.« less
Publications - GMC 147 | Alaska Division of Geological & Geophysical
DGGS GMC 147 Publication Details Title: Visual kerogen and TAI data of select cuttings and core (1260 , F.F., 1989, Visual kerogen and TAI data of select cuttings and core (1260 - 8130 feet) from the Union
Publications - GMC 129 | Alaska Division of Geological & Geophysical
DGGS GMC 129 Publication Details Title: Visual kerogen and TAI data of select cuttings and core from , Visual kerogen and TAI data of select cuttings and core from the Chevron USA Inc. Akulik #1 well: Alaska
Ian, Elena; Zhao, Xin C.; Lande, Andreas; Berg, Bente G.
2016-01-01
To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum. PMID:27822181
Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays.
Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis
2010-08-17
We propose a unique method for cell sorting, "Ephesia," using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples--blood, pleural effusion, and fine needle aspirates--issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost.
Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays
Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis
2010-01-01
We propose a unique method for cell sorting, “Ephesia,” using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples—blood, pleural effusion, and fine needle aspirates— issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost. PMID:20679245
Grande, Nicola M; Plotino, Gianluca; Gambarini, Gianluca; Testarelli, Luca; D'Ambrosio, Ferdinando; Pecci, Raffaella; Bedini, Rossella
2012-01-01
The goal of the present article is to illustrate and analyze the applications and the potential of microcomputed tomography (micro-CT) in the analysis of tooth anatomy and root canal morphology. The authors performed a micro-CT analysis of the following different teeth: maxillary first molars with a second canal in the mesiobuccal (MB) root, mandibular first molars with complex anatomy in the mesial root, premolars with single and double roots and with complicated apical anatomy. The hardware device used in this study was a desktop X-ray microfocus CT scanner (SkyScan 1072, SkyScan bvba, Aartselaar, Belgium). A specific software ResolveRT Amira (Visage Imaging) was used for the 3D analysis and imaging. The authors obtained three-dimensional images from 15 teeth. It was possible to precisely visualize and analyze external and internal anatomy of teeth, showing the finest details. Among the 5 upper molars analyzed, in three cases, the MB canals joined into one canal, while in the other two molars the two mesial canals were separate. Among the lower molars two of the five samples exhibited a single canal in the mesial root, which had a broad, flat appearance in a mesiodistal dimension. In the five premolar teeth, the canals were independent; however, the apical delta and ramifications of the root canals were quite complex. Micro-CT offers a simple and reproducible technique for 3D noninvasive assessment of the anatomy of root canal systems.
Memory for Details with Self-Referencing
Serbun, Sarah J.; Shih, Joanne Y.; Gutchess, Angela H.
2011-01-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgments in reference to the self, a close other (one’s mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). Results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can disproportionately improve memory for specific internal source details as well. PMID:22092106
Memory for details with self-referencing.
Serbun, Sarah J; Shih, Joanne Y; Gutchess, Angela H
2011-11-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or whether they also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgements in reference to the self, a close other (one's mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). The results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can also disproportionately improve memory for specific internal source details.
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2012-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899
Stevenson, Ryan A; Toulmin, Jennifer K; Youm, Ariana; Besney, Richard M A; Schulz, Samantha E; Barense, Morgan D; Ferber, Susanne
2017-10-30
Recent empirical evidence suggests that autistic individuals perceive the world differently than their typically-developed peers. One theoretical account, the predictive coding hypothesis, posits that autistic individuals show a decreased reliance on previous perceptual experiences, which may relate to autism symptomatology. We tested this through a well-characterized, audiovisual statistical-learning paradigm in which typically-developed participants were first adapted to consistent temporal relationships between audiovisual stimulus pairs (audio-leading, synchronous, visual-leading) and then performed a simultaneity judgement task with audiovisual stimulus pairs varying in temporal offset from auditory-leading to visual-leading. Following exposure to the visual-leading adaptation phase, participants' perception of synchrony was biased towards visual-leading presentations, reflecting the statistical regularities of their previously experienced environment. Importantly, the strength of adaptation was significantly related to the level of autistic traits that the participant exhibited, measured by the Autism Quotient (AQ). This was specific to the Attention to Detail subscale of the AQ that assesses the perceptual propensity to focus on fine-grain aspects of sensory input at the expense of more integrative perceptions. More severe Attention to Detail was related to weaker adaptation. These results support the predictive coding framework, and suggest that changes in sensory perception commonly reported in autism may contribute to autistic symptomatology.
Morphological changes during the life cycle of Aureobasidium pullulans (de Bary) Arnaud.
Kocková-Kratochvílová, A; Cernáková, M; Sláviková, E
1980-01-01
Aureobasidium pullulans (de Bary) Arnaud was isolated from different natural materials plant blossoms in particular. Elements of vegetative multiplication, structure of colonies and cultures in liquid media were analyzed in detail, leading to construction of the life cycle of this organism. Morphological polymorphism was found to be combined with the production of melanin and the polysaccharide pullulan. Morphological analysis served for a directed selection for studies of physiological properties of this organism and its practical application.
Zobor, Ditta; Strasser, Torsten; Zobor, Gergely; Schober, Franziska; Messias, Andre; Strauss, Olaf; Batra, Anil; Zrenner, Eberhart
2015-04-01
Cannabis is a psychotomimetic agent that induces impairment of sensory perception. We present detailed clinical and electrophysiological data of patients with hallucinogen persisting perception disorder (HPPD) after marijuana consumption. A HPPD patient and four heavy cannabis smokers with no visual disturbances (controls) underwent complete ophthalmological examination including psychophysical tests (visual acuity, color vision, visual field, and dark adaptation) and detailed electrophysiological examinations, including extended Ganzfeld ERG, multifocal ERG, and electrooculography (EOG). Furthermore, electrically evoked phosphene thresholds (EPTs) were measured to further evaluate retinal function. Ophthalmological and most electrophysiological examinations were within normal limits for the HPPD patient and for all control subjects. Interestingly, EOG results of the HPPD patient showed a slightly reduced fast oscillation ratio, diminished standing potentials of the slow oscillations, and a light peak within normal range resulting in higher Arden ratios. The EPTs of the patient were reduced, in particular for pulses with long durations (50 ms) causing visual sensations even at lowest possible currents of the neurostimulator. The control subjects did not reveal such alterations. Our findings suggest a direct effect of cannabinoids on the retina and retinal pigment epithelium function, which may be involved in disturbances of the visual function experienced after drug consumption. The observations presented here may contribute to the elucidation of the detailed mechanism. Furthermore, EOG and EPT measurements may be useful tools to demonstrate long-term retinal alterations in cannabis-induced HPPD in patients.
Morphology-preserving chemical conversion of bioorganic and inorganic templates
NASA Astrophysics Data System (ADS)
Vernon, Jonathan Paul
The generation of nanostructured assemblies with complex (three-dimensional, 3D) self-assembled morphologies and with complex (multicomponent) tailorable inorganic compositions is of considerable technological and scientific interest. This dissertation demonstrates self-assembled 3D organic templates of biogenic origin can be converted into replicas comprised of numerous other functional nanocrystalline inorganic materials. Nature provides a spectacular variety of biologically-assembled 3D organic structures with intricate, hierarchical (macro-to-micro-to-nanoscale) morphologies. Such processing on readily-available structurally complex templates provides a framework for chemical conversion of synthetic organic templates and, potentially, production of organic/inorganic composites. Four specific research thrusts are detailed in this document. First, chemical conversion of a nanostructured bioorganic template into a multicomponent oxide compound (tetragonal BaTiO3) via SSG coating and subsequent morphology-preserving microwave hydrothermal processing is demonstrated. Second, morphology-preserving chemical conversion of bioorganic templates into hierarchical photoluminescent microparticles is demonstrated to reveal both the dramatic change in properties such processing can provide, and the potential utility of chemically transformed templates in anti-counterfeiting / authentication applications. Third, determination of the reaction mechanism(s) for morphology-preserving microwave hydrothermal conversion of TiO2 to BaTiO3, through Au inert markers on single crystal rutile titania, is detailed. Finally, utilization of constructive coating techniques (SSG) and moderate temperature (< 500°C) heat treatments to modify and replicate structural color is coupled with deconstructive focused ion beam microsurgery to prepare samples for microscale structure interrogation. Specifically, the effects of coating thickness and composition on reflection spectra of structurally colored templates are examined. Also, the effects of the replacement of natural material with higher index of refraction inorganic materials on optical properties are discussed. The three processing research thrusts constituting chapters 1, 2 and 4 take advantage of moderate temperature processing to ensure nanocrystalline materials, either for shape preservation or to prevent scattering in optical applications. The research thrust detailed in chapter 3 examines hydrothermal conversion of TiO2 to BaTiO3, not only to identify the reaction mechanism(s) involved in hydrothermal conversion under morphology-preserving conditions, but also to introduce inert marker experiments to the field of microwave hydrothermal processing.
Plastinated fetus: 3D CT scan (VRT) evaluation.
Tiwari, Shilpi; Nandlal, B; Shama Sundar, N M
2012-01-01
The intent of this study was to evaluate the effect of plastination on the morphology and structure of stored organs, to find out how much accuracy a plastinated specimen has, and to look into the changes that occurred because of plastination. A human fetus of gestational age 24 weeks was plastinated, and 3D CT scan evaluation of the fetus was done. The results showed normal, well-defined, clearly identifiable organs, with no alteration in morphology and structure of organs. In our opinion, plastinated specimens are better way of visualization of morphology and structure of stored organs, which is a useful tool for teaching as well as for research purposes.
Samuel, O M; Casanova, P M; Olopade, J O
2018-03-01
To evaluate sexual-size dimorphism and attempt at categorization of inter-individual shapes of foramen magnum outlines using Fourier descriptors which allow for shape outline evaluations with a resultant specimen character definition. Individual characterization and quantification of foramen magnum shapes in direct caudal view based on elliptical Fourier technique was applied to 46 tropical raccoon skulls (26 females, 20 males). Incremental number of harmonics demonstrates morphological contributions of such descriptors with their relations to specific anatomical constructions established. The initial harmonics (1st to 3rd) described the general foramen shapes while the second (4th to 12th) demonstrated fine morphological details. Sexual-size dimorphism was observed in females (87.1%) and 91.7% in males, normalization of size produces 75% in females and 83% in males. With respect to foramen magnum dimorphism analysis, the result obtained through elliptic Fourier analysis was comparatively better in detail information of outline contours than earlier classical methods. The first four effective principal components defined 70.63% of its shape properties while the rest (22.51%) constituted fine details of morphology. Both size and shape seems important in sexual dimorphisms in this species, this investigation suggest clinical implications, taxonomic and anthropologic perspectives in foramen characterization magnum characterization and further postulates an increased possibility of volume reduction cerebellar protrusion, ontogenic magnum shape irregularities in the sample population with neurologic consequences especially among females. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The Occurrence of Balansioid Endophytes in Georgia, Florida, and Southern Grasses
USDA-ARS?s Scientific Manuscript database
A collection of toxic fungal endophytes of grasses were detailed in terms of their morphology and taxonomy in detailed slides useful for identification of the little know species of Balansia or clavicipitalean fungi that are found on southern pasture and weed grass species. We have established as ...
The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).
Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N
2014-02-01
Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.
Modeling the brain morphology distribution in the general aging population
NASA Astrophysics Data System (ADS)
Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.
2016-03-01
Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.
Mechanical vibrations from tadpoles' flapping tails transform salamander's carnivorous morphology.
Michimae, Hirofumi; Nishimura, Kinya; Wakahara, Masami
2005-03-22
Some prey or predator organisms exhibit striking rapid morphological plastic changes with distinct morphology under the condition of predator or prey presence. Remote chemicals propagating from the inducing agents are the prevalent induction cues for most examples of induction of distinct morphs. Sonic and visual cues, as well as chemical cues, are known as triggers for induction of behavioural plasticity. Here we show that hydraulic vibration originating from flapping tails of anuran tadpoles is a key cue in relation to induction of a distinct carnivorous morphology, a broad-headed morph, in larval salamander Hynobius retardatus, which is able to efficiently capture and handle prey. This result was further supported by the fact that simple mechanical vibrations of tail-like vinyl fins were able to induce the morph without any biological cues. Induction of the morph triggered by hydraulic vibration provides a novel concept for understanding the proximate mechanisms of induction of morphological changes.
Multiscale morphological filtering for analysis of noisy and complex images
NASA Astrophysics Data System (ADS)
Kher, A.; Mitra, S.
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Multiscale Morphological Filtering for Analysis of Noisy and Complex Images
NASA Technical Reports Server (NTRS)
Kher, A.; Mitra, S.
1993-01-01
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes
2011-01-01
Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687
Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob
2016-01-01
The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche. © 2016 S. Karger AG, Basel.
A collection of flow visualization techniques used in the Aerodynamic Research Branch
NASA Technical Reports Server (NTRS)
1984-01-01
Theoretical and experimental research on unsteady aerodynamic flows is discussed. Complex flow fields that involve separations, vortex interactions, and transonic flow effects were investigated. Flow visualization techniques are used to obtain a global picture of the flow phenomena before detailed quantitative studies are undertaken. A wide variety of methods are used to visualize fluid flow and a sampling of these methods is presented. It is emphasized that the visualization technique is a thorough quantitative analysis and subsequent physical understanding of these flow fields.
Visual performance modeling in the human operator simulator
NASA Technical Reports Server (NTRS)
Strieb, M. I.
1979-01-01
A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.
USDA-ARS?s Scientific Manuscript database
A comparative, morphological analysis of the female genitalia of species included in genus Bifidistylus Reinert, Harbach and Kitching was conducted. Treatment of the genital morphology of the genus includes a composite description of the genus, a detailed description and illustration of the type sp...
USDA-ARS?s Scientific Manuscript database
A morphological analysis of the female genitalia of species included in genus Polyleptiomyia Theobald was conducted. Treatment of the genital morphology of the genus includes a description of the genus, a detailed description and illustration of the type species, Po. albocephala (Theobald), a list ...
Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.
2014-01-01
This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.
Schirmeier, Matthias K; Derwing, Bruce L; Libben, Gary
2004-01-01
Two types of experiments investigate the visual on-line and off-line processing of German ver-verbs (e.g., verbittern 'to embitter'). In Experiments 1 and 2 (morphological priming), latency patterns revealed the existence of facilitation effects for the morphological conditions (BITTER-VERBITTERN and BITTERN-VERBITTERN) as compared to the neutral conditions (SAUBER-VERBITTERN and SAUBERN-VERBITTERN). In Experiments 3 and 4 (rating tasks) participants had to judge whether the target (VERBITTERN) "comes from," "contains a form of," or "contains the meaning of" the root (BITTER) or the root+en substring (BITTERN). Taken together, these studies revealed the combined influence of the three factors of lexicality (real word status), morphological structure, and semantic transparency.
Ashraf, Mohammed; Souka, Ahmed; Adelman, Ron A
2018-03-01
To assess predictors of treatment response in neovascular age-related macular degeneration (AMD) in an attempt to develop a patient-centric treatment algorithm. We conducted a systematic search using PubMed, EMBASE and Web of Science for prognostic indicators/predictive factors with the key words: 'age related macular degeneration', 'neovascular AMD', 'choroidal neovascular membrane (CNV)', 'anti-vascular endothelial growth factor (anti-VEGF)', 'aflibercept', 'ranibizumab', 'bevacizumab', 'randomized clinical trials', 'post-hoc', 'prognostic', 'predictive', 'response' 'injection frequency, 'treat and extend (TAE), 'pro re nata (PRN)', 'bi-monthly' and 'quarterly'. We only included studies that had an adequate period of follow-up (>1 year), a single predefined treatment regimen with a predetermined re-injection criteria, an adequate number of patients, specific morphological [optical coherence tomography (OCT)] criteria that predicted final visual outcomes and injection frequency and did not include switching from one drug to the other. We were able to identify seven prospective studies and 16 retrospective studies meeting our inclusion criteria. There are several morphological and demographic prognostic indicators that can predict response to therapy in wet AMD. Smaller CNV size, subretinal fluid (SRF), retinal angiomatous proliferation (RAP) and response to therapy at 12 weeks (visual, angiographic or OCT) can all predict good visual outcomes in patients receiving anti-VEGF therapy. Patients with larger CNV, older age, pigment epithelial detachment (PED), intraretinal cysts (IRC) and vitreomacular adhesion (VMA) achieved less visual gains. Patients having VMA/VMT required more intensive treatment with increased treatment frequency. Patients with both posterior vitreous detachment (PVD) and SRF require infrequent injections. Patients with PED are prone to recurrences of fluid activity with a reduction in visual acuity (VA). A regimen that involves less intensive therapy and extended follow-up intervals (4 weekly) can be suggested for patients who show adequate visual response and have both SRF and PVD at baseline. In addition, patients with poor prognostic indicators such as IRC, VMA, large CNV size, older age and poor response at 12 weeks should be extended very cautiously with the possibility of fixed monthly/bimonthly (every 2 months) treatments if they fail to achieve dryness. Patients with PED at baseline should receive monthly/bimonthly injections of anti-VEGF therapy or can be extended very cautiously (two weekly intervals) using a TAE protocol. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
How (and why) the visual control of action differs from visual perception
Goodale, Melvyn A.
2014-01-01
Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899
Developmental palaeobiology of trilobite eyes and its evolutionary significance
NASA Astrophysics Data System (ADS)
Thomas, A. T.
2005-06-01
Understanding of the calcified composite eyes of trilobites, the oldest preserved visual system, has advanced greatly in recent decades. Three types of trilobite eye occur, the more derived abathochroal and schizochroal types having evolved neotenically from holochroal eyes. Comparative morphology and phylogenetic considerations suggest that all three eye-types were underlain by common developmental systems. So far, understanding of these systems has been based entirely on morphological data from fossils, particularly the way the visual surface grew and the patterning of lens emplacement. Lenses characteristically form a hexagonal array comprising horizontal rows and, conspicuously in schizochroal eyes, dorso-ventral files. Because individual trilobites sometimes have eyes with different numbers of files, file number must reflect the operation of a developmental programme rather than being under immediate genetic control. An empirical developmental model has been devised to describe trilobite eye development, with separate rules dealing with the initiation of lens emplacement, growth and differentiation of the visual surface, and the termination of lens emplacement. Rarely, trilobites may have visual surfaces of normal size, but which lack lenses. This confirms that visual surface growth must have been regulated separately from lens emplacement, and is a feature that cannot be accounted for by the existing developmental model. Such a developmental separation is one of a number of similarities shared with Drosophila, the modern arthropod in which eye development is best understood. Many aspects of eye development are conserved in the Euarthropoda, and in bilaterian metazoans in general. A revised model for trilobite eye development is proposed using extant phylogenetic bracketing, interpreting morphological data from the fossils in the context of the hierarchy of developmental controls now becoming known from living animals. This new model suggests that overall eye shape and size did not require differential growth of the generative zone, as previously thought, and that no separate instruction was needed to specify the termination of lens emplacement. Instead, these features were regulated directly, by controlling the proliferation of cells making up the nascent visual surface. A process documented from Drosophila, which involves the selective inhibition of cells in front of a wave-like front of differentiation, and that is regulated by widely conserved genes, can be used to explain how the trilobite visual surface became differentiated. The model implies also that changes in hormonally regulated developmental pathways known from recent arthropods may have been responsible for the development of abathochroal and schizochroal eyes, and for heterochronic secondary eye reduction and blindness in trilobites.
Development of a Geometric Spatial Visualization Tool
ERIC Educational Resources Information Center
Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya
2009-01-01
This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…
Visualization of small scale structures on high resolution DEMs
NASA Astrophysics Data System (ADS)
Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof
2015-04-01
Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky-view factor, for example, is an essential variable in many fields, e.g. in meteorology. RVT produces two types of results: 1) the original files have a full range of values and are intended for further analyses in geographic information systems, 2) the simplified versions are histogram stretched for visualization purposes and saved as 8-bit GeoTIFF files. This means that they can be explored in non-GIS software, e.g. with simple picture viewers, which is essential when a larger community of non-specialists needs to be considered, e.g. in public collaborative projects. The tool recognizes all frequently used single band raster formats and supports elevation raster file data conversion.
Typograph: Multiscale Spatial Exploration of Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.
2013-10-06
Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. These visual metaphors (e.g., word clouds, tag clouds, etc.) traditionally show a series of terms organized by space-filling algorithms. However, often lacking in these views is the ability to interactively explore the information to gain more detail, and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods,more » Typograh enables multiple levels of detail (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geographic metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.« less
A Space and Atmospheric Visualization Science System
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.
1994-01-01
SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.
Visual body perception in anorexia nervosa.
Urgesi, Cosimo; Fornasari, Livia; Perini, Laura; Canalaz, Francesca; Cremaschi, Silvana; Faleschini, Laura; Balestrieri, Matteo; Fabbro, Franco; Aglioti, Salvatore Maria; Brambilla, Paolo
2012-05-01
Disturbance of body perception is a central aspect of anorexia nervosa (AN) and several neuroimaging studies have documented structural and functional alterations of occipito-temporal cortices involved in visual body processing. However, it is unclear whether these perceptual deficits involve more basic aspects of others' body perception. A consecutive sample of 15 adolescent patients with AN were compared with a group of 15 age- and gender-matched controls in delayed matching to sample tasks requiring the visual discrimination of the form or of the action of others' body. Patients showed better visual discrimination performance than controls in detail-based processing of body forms but not of body actions, which positively correlated with their increased tendency to convert a signal of punishment into a signal of reinforcement (higher persistence scores). The paradoxical advantage of patients with AN in detail-based body processing may be associated to their tendency to routinely explore body parts as a consequence of their obsessive worries about body appearance. Copyright © 2012 Wiley Periodicals, Inc.
Large Impact Features on Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Moore, J. M.; Schenk, P. M.; Korycansky, D. G.
2017-01-01
Impact crater morphology can be a very useful tool for probing planetary interiors, but nowhere in the solar system is a greater variety of crater morphologies observed (Fig. 1) than on the large icy Galilean satellites Ganymede and Callisto [e.g., 1- 3]. As on the rocky terrestrial planets, impact crater morphology becomes more complex with increasing size on these satellites. With increasing size, however, these same craters become less like their counterparts on the rocky planets. Several impact landforms and structures (multiring furrows, palimpsests, and central domes, for example), have no obvious analogs on any other planets. Further, several studies [e.g., 4-6] have drawn attention to impact landforms on Europa which are unusual, even by Galilean satellite standards. These radical differences in morphology suggest that impact into icy lithospheres that are mechanically distinct from silicate lithospheres may be responsible. As such, large impact structures may be important probes of the interiors of these bodies over time [e.g., 7]. The first goal of this work is to integrate and correlate the detailed morphologic and morphometric measurements and observations of craters on icy Galilean satellites [e.g., 4, 8-12] with new detailed mapping of these structures from Galileo high-resolution images. As a result, we put forward a revised crater taxonomy for Ganymede and Callisto in order to simplify the nonuniform impact crater nomenclature cluttering the literature. We develop and present an integrated model for the development of these unusual crater morphologies and their implications for the thermal evolution of these bodies.
Morphology of Block Copolymer Electrolytes: A Numerical Self-Consistent Field Theory Study
NASA Astrophysics Data System (ADS)
Hou, Kevin; Qin, Jian
Engineering the morphology of ion-containing block copolymers is imperative for the optimization of their charge-transport and mechanical properties. Existing experiments have demonstrated that the addition of ions has a dramatic effect on the morphology and thermodynamic behavior of these structured electrolytes. We have developed an efficient, symmetry-adapted algorithm to calculate the ionic interactions in the SCFT for ion-containing polymers. We present the results of a numerical SCFT study examining how dielectric heterogeneity, ion concentration, and ion solvation affect morphology, domain spacing, ion distribution, and polymer density profiles. Particular attention is given to the detailed morphological analysis of the bicontinuous gyroidal phase, as well as the relevance of the aforementioned results to ionic conductivity.
NASA Astrophysics Data System (ADS)
Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.
2013-12-01
U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington-Baltimore, Norfolk-Washington, and Hatteras) are being investigated from the canyon heads down to their deep-water submarine fans in an effort to characterize their sediment transport history and constrain the influences of external processes on their morphology. Each canyon-fan system is morphologically unique and is strongly controlled by source region, antecedent margin morphology, landslide and debris flow processes, and the long-term influence of deep-water (along-slope) currents.
[Comparison study between biological vision and computer vision].
Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R
2001-08-01
The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.
Kalonia, Cavan; Kumru, Ozan S.; Kim, Jae Hyun; Middaugh, C. Russell; Volkin, David B.
2013-01-01
This study presents a novel method to visualize protein aggregate and particle formation data to rapidly evaluate the effect of solution and stress conditions on the physical stability of an IgG1 monoclonal antibody (mAb). Radar chart arrays were designed so that hundreds of Microflow Digital Imaging (MFI) solution measurements, evaluating different mAb formulations under varying stresses, could be presented in a single figure with minimal loss of data resolution. These MFI radar charts show measured changes in subvisible particle number, size and morphology distribution as a change in the shape of polygons. Radar charts were also created to visualize mAb aggregate and particle formation across a wide size range by combining data sets from size exclusion chromatography (SEC), Archimedes resonant mass measurements, and MFI. We found that the environmental/mechanical stress condition (e.g., heat vs. agitation) was the most important factor in influencing the particle size and morphology distribution with this IgG1 mAb. Additionally, the presence of NaCl exhibited a pH and stress dependent behavior resulting in promotion or inhibition mAb particle formation. This data visualization technique provides a comprehensive analysis of the aggregation tendencies of this IgG1 mAb in different formulations with varying stresses as measured by different analytical techniques. PMID:24122556
Improving galaxy morphologies for SDSS with Deep Learning
NASA Astrophysics Data System (ADS)
Domínguez Sánchez, H.; Huertas-Company, M.; Bernardi, M.; Tuccillo, D.; Fischer, J. L.
2018-05-01
We present a morphological catalogue for ˜670 000 galaxies in the Sloan Digital Sky Survey in two flavours: T-type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-types and a series of GZ2 type questions (disc/features, edge-on galaxies, bar signature, bulge prominence, roundness, and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from S0, where the T-type model is not so efficient. For the T-type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (>97 per cent), precision and recall values (>90 per cent), when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.
Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity
Ruf, Dominik; Brantl, Victor; Wagener, Johannes
2018-01-01
The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae. PMID:29868488
Water transparency drives intra-population divergence in Eurasian Perch (Perca fluviatilis).
Bartels, Pia; Hirsch, Philipp E; Svanbäck, Richard; Eklöv, Peter
2012-01-01
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.
Velan, Hadas; Frost, Ram
2010-01-01
Recent studies suggest that basic effects which are markers of visual word recognition in Indo-European languages cannot be obtained in Hebrew or in Arabic. Although Hebrew has an alphabetic writing system, just like English, French, or Spanish, a series of studies consistently suggested that simple form-orthographic priming, or letter-transposition priming are not found in Hebrew. In four experiments, we tested the hypothesis that this is due to the fact that Semitic words have an underlying structure that constrains the possible alignment of phonemes and their respective letters. The experiments contrasted typical Semitic words which are root-derived, with Hebrew words of non-Semitic origin, which are morphologically simple and resemble base words in European languages. Using RSVP, TL priming, and form-priming manipulations, we show that Hebrew readers process Hebrew words which are morphologically simple similar to the way they process English words. These words indeed reveal the typical form-priming and TL priming effects reported in European languages. In contrast, words with internal structure are processed differently, and require a different code for lexical access. We discuss the implications of these findings for current models of visual word recognition. PMID:21163472
Yong, Woon Jae; Tan, Jun; Adikrishna, Arnold; Lee, Hyun Joo; Jung, Jin Woo; Cho, Dong-Woo; Jeon, In-Ho
2014-10-01
The proximal ulna, particularly the course of the posterior border, has a complex three-dimensional (3D) morphology which has been highlighted recently due to its clinical relevance in relation to surgical treatments. 3D computed tomography (CT) reconstruction and computer-aided design (CAD) based software can help to visualize the complex anatomy and thus aid the investigation of the more detailed morphology of the proximal ulna. In our current study, 3D CT reconstruction images of 20 cadavers were imported into the 3D CAD program. Three morphologic angle parameters of the proximal ulna were measured including the dorsal, varus and torsion angulation. The torsion angulation was measured using the flat spot of olecranon dorsal aspect. We measured the total length of the ulna and the distance between the olecranon tip and the apex of dorsal and varus angulation. Furthermore, the thickness of olecranon was also measured for all the specimens. The results showed that the mean dorsal, varus, and torsion angulation was 4.3° (range 2.6°-5.9°), 12.1° (range 7.9°-17.6°), and 22.5° (range 16.6°-30.5°), respectively. The average length ratio of the dorsal and varus angulation apex to the total ulnar length was 26.4 % (range 19.8-30.7 %) and 32.7 % (range 27.5-37.5 %), respectively. The average of olecranon thickness at the proximal tip, mid-olecranon fossa, and at coronoid tip level was 17.8 mm (range 14.1-22.8 mm), 19.7 mm (range 15.8-23.1 mm), and 35.1 mm (range 27.9-41.8 mm), respectively. In conclusion, variations in the proximal ulna have to be considered when anatomically contoured dorsal plates are applied. Knowledge of the 3D morphologic anatomy of the proximal ulna would provide important information on fracture reductions, and the design of a precontoured dorsal plate or a prosthetic ulnar stem.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.
Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells.
Kitchens, Kelly M; Foraker, Amy B; Kolhatkar, Rohit B; Swaan, Peter W; Ghandehari, Hamidreza
2007-11-01
To investigate the internalization and subcellular trafficking of fluorescently labeled poly (amidoamine) (PAMAM) dendrimers in intestinal cell monolayers. PAMAM dendrimers with positive or negative surface charge were conjugated to fluorescein isothiocyanate (FITC) and visualized for colocalization with endocytosis markers using confocal microscopy. Effect of concentration, generation and charge on the morphology of microvilli was observed using transmission electron microscopy. Both cationic and anionic PAMAM dendrimers internalized within 20 min, and differentially colocalized with endocytosis markers clathrin, EEA-1, and LAMP-1. Transmission electron microscopy analysis showed a concentration-, generation- and surface charge-dependent effect on microvilli morphology. These studies provide visual evidence that endocytic mechanism(s) contribute to the internalization and subcellular trafficking of PAMAM dendrimers across the intestinal cells, and that appropriate selection of PAMAM dendrimers based on surface charge, concentration and generation number allows the application of these polymers for oral drug delivery.
Visualization of exciton transport in ordered and disordered molecular solids.
Akselrod, Gleb M; Deotare, Parag B; Thompson, Nicholas J; Lee, Jiye; Tisdale, William A; Baldo, Marc A; Menon, Vinod M; Bulović, Vladimir
2014-04-16
Transport of nanoscale energy in the form of excitons is at the core of photosynthesis and the operation of a wide range of nanostructured optoelectronic devices such as solar cells, light-emitting diodes and excitonic transistors. Of particular importance is the relationship between exciton transport and nanoscale disorder, the defining characteristic of molecular and nanostructured materials. Here we report a spatial, temporal and spectral visualization of exciton transport in molecular crystals and disordered thin films. Using tetracene as an archetype molecular crystal, the imaging reveals that exciton transport occurs by random walk diffusion, with a transition to subdiffusion as excitons become trapped. By controlling the morphology of the thin film, we show that this transition to subdiffusive transport occurs at earlier times as disorder is increased. Our findings demonstrate that the mechanism of exciton transport depends strongly on the nanoscale morphology, which has wide implications for the design of excitonic materials and devices.
Human spatial orientation in the pitch dimension
NASA Technical Reports Server (NTRS)
Cohen, M. M.; Larson, C. A.
1974-01-01
Two experiments were conducted. In Experiment I, each of eight Ss attempted to place himself at 13 different goal orientations between prone and supine. Deviations of achieved body pitch angles from goal orientations were determined. In Experiment II, each of eight Ss attempted to align a visual target with his morphological horizon while he was placed at each of the 13 goal orientations. Changes in settings of the target were examined. Results indicate that Ss underestimate body pitch when they are tilted less than 60 deg backward or forward from the vertical, overestimate body pitch when they are nearly prone, and accurately estimate body pitch when they are nearly supine. In contrast, Ss set the visual target maximally above the morphological horizon when they are tilted 30 deg forward from the vertical. The findings are discussed in terms of common and different physiological mechanism that may underlie judgments of these types.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920
Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.
2016-01-01
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161
Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J
2016-04-07
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.
California State Waters Map Series Data Catalog
Golden, Nadine E.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps and associated data layers through the collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. CSMP has divided coastal California into 110 map blocks (fig. 1), each to be published individually as USGS Scientific Investigations Maps (SIMs) at a scale of 1:24,000. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. This CSMP data catalog contains much of the data used to prepare the SIMs in the California State Waters Map Series. Other data that were used to prepare the maps were compiled from previously published sources (for example, onshore geology) and, thus, are not included herein.
Masselli, Gabriele; Mastroiacovo, Ilaria; De Marco, Emidio; Francione, Giulia; Casciani, Emanuele; Polettini, Elisabetta; Gualdi, Gianfranco
2016-01-01
Crohn’s disease affects more than 500000 individuals in the United States, and about 25% of cases are diagnosed during the pediatric period. Imaging of the bowel has undergone dramatic changes in the past two decades. The endoscopy with biopsy is generally considered the diagnostic reference standard, this combination can evaluates only the mucosa, not inflammation or fibrosis in the mucosa. Actually, the only modalities that can visualize submucosal tissues throughout the small bowel are the computed tomography (CT) enterography (CTE) with the magnetic resonance enterography (MRE). CT generally is highly utilized, but there is growing concern over ionizing radiation and cancer risk; it is a very important aspect to keep in consideration in pediatric patients. In contrast to CTE, MRE does not subject patients to ionizing radiation and can be used to detect detailed morphologic information and functional data of bowel disease, to monitor the effects of medical therapy more accurately, to detect residual active disease even in patients showing apparent clinical resolution and to guide treatment more accurately. PMID:27551337
Analysis of coherent dynamical processes through computer vision
NASA Astrophysics Data System (ADS)
Hack, M. J. Philipp
2016-11-01
Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.
Mapping Landslides in Lunar Impact Craters Using Chebyshev Polynomials and Dem's
NASA Astrophysics Data System (ADS)
Yordanov, V.; Scaioni, M.; Brunetti, M. T.; Melis, M. T.; Zinzi, A.; Giommi, P.
2016-06-01
Geological slope failure processes have been observed on the Moon surface for decades, nevertheless a detailed and exhaustive lunar landslide inventory has not been produced yet. For a preliminary survey, WAC images and DEM maps from LROC at 100 m/pixels have been exploited in combination with the criteria applied by Brunetti et al. (2015) to detect the landslides. These criteria are based on the visual analysis of optical images to recognize mass wasting features. In the literature, Chebyshev polynomials have been applied to interpolate crater cross-sections in order to obtain a parametric characterization useful for classification into different morphological shapes. Here a new implementation of Chebyshev polynomial approximation is proposed, taking into account some statistical testing of the results obtained during Least-squares estimation. The presence of landslides in lunar craters is then investigated by analyzing the absolute values off odd coefficients of estimated Chebyshev polynomials. A case study on the Cassini A crater has demonstrated the key-points of the proposed methodology and outlined the required future development to carry out.
Towne, Danli L; Nicholl, Emily E; Comess, Kenneth M; Galasinski, Scott C; Hajduk, Philip J; Abraham, Vivek C
2012-09-01
Efficient elucidation of the biological mechanism of action of novel compounds remains a major bottleneck in the drug discovery process. To address this need in the area of oncology, we report the development of a multiparametric high-content screening assay panel at the level of single cells to dramatically accelerate understanding the mechanism of action of cell growth-inhibiting compounds on a large scale. Our approach is based on measuring 10 established end points associated with mitochondrial apoptosis, cell cycle disruption, DNA damage, and cellular morphological changes in the same experiment, across three multiparametric assays. The data from all of the measurements taken together are expected to help increase our current understanding of target protein functions, constrain the list of possible targets for compounds identified using phenotypic screens, and identify off-target effects. We have also developed novel data visualization and phenotypic classification approaches for detailed interpretation of individual compound effects and navigation of large collections of multiparametric cellular responses. We expect this general approach to be valuable for drug discovery across multiple therapeutic areas.
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip
2018-03-01
Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
MEG masked priming evidence for form-based decomposition of irregular verbs
Fruchter, Joseph; Stockall, Linnaea; Marantz, Alec
2013-01-01
To what extent does morphological structure play a role in early processing of visually presented English past tense verbs? Previous masked priming studies have demonstrated effects of obligatory form-based decomposition for genuinely affixed words (teacher-TEACH) and pseudo-affixed words (corner-CORN), but not for orthographic controls (brothel-BROTH). Additionally, MEG single word reading studies have demonstrated that the transition probability from stem to affix (in genuinely affixed words) modulates an early evoked response known as the M170; parallel findings have been shown for the transition probability from stem to pseudo-affix (in pseudo-affixed words). Here, utilizing the M170 as a neural index of visual form-based morphological decomposition, we ask whether the M170 demonstrates masked morphological priming effects for irregular past tense verbs (following a previous study which obtained behavioral masked priming effects for irregulars). Dual mechanism theories of the English past tense predict a rule-based decomposition for regulars but not for irregulars, while certain single mechanism theories predict rule-based decomposition even for irregulars. MEG data was recorded for 16 subjects performing a visual masked priming lexical decision task. Using a functional region of interest (fROI) defined on the basis of repetition priming and regular morphological priming effects within the left fusiform and inferior temporal regions, we found that activity in this fROI was modulated by the masked priming manipulation for irregular verbs, during the time window of the M170. We also found effects of the scores generated by the learning model of Albright and Hayes (2003) on the degree of priming for irregular verbs. The results favor a single mechanism account of the English past tense, in which even irregulars are decomposed into stems and affixes prior to lexical access, as opposed to a dual mechanism model, in which irregulars are recognized as whole forms. PMID:24319420
Morphology of zirconia particles exposed to D.C. arc plasma jet
NASA Technical Reports Server (NTRS)
Zaplatynsky, Isidor
1987-01-01
Zirconia particles were sprayed into water with an arc plasma gun in order to determine the effect of various gun operating parameters on their morphology. The collected particles were examined by XRD and SEM techniques. A correlation was established between the content of spherical (molten) particles and the operating parameters by visual inspection and regression analysis. It was determined that the composition of the arc gas and the power input were the predominant parameters that affected the melting of zirconia particles.
ERIC Educational Resources Information Center
Zannino, Gian Daniele; Perri, Roberta; Salamone, Giovanna; Di Lorenzo, Concetta; Caltagirone, Carlo; Carlesimo, Giovanni A.
2010-01-01
There is now a large body of evidence suggesting that color and photographic detail exert an effect on recognition of visually presented familiar objects. However, an unresolved issue is whether these factors act at the visual, the semantic or lexical level of the recognition process. In the present study, we investigated this issue by having…
Eye-hand exercise: new variant in amblyopia management.
Svĕrák, J; Peregrin, J; Juran, J
1990-01-01
A total of 50 children with unilateral amblyopia was treated by short term 10 minute-lasting weekly occlusions of visually well eye. During the occlusion the child is providing the intensive detailed activities under patient's supervision. After an approximately half-a-year lasting interval, the "eye-hand" exercise resulted in the mean improvement of visual acuity for 2.44 normalised lines. The visual motor factor is involved in amblyopia treatment.
Dynamic visual noise reduces confidence in short-term memory for visual information.
Kemps, Eva; Andrade, Jackie
2012-05-01
Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.
The cranial anatomy of the neornithischian dinosaur Thescelosaurus neglectus
2014-01-01
Though the dinosaur Thescelosaurus neglectus was first described in 1913 and is known from the relatively fossiliferous Lance and Hell Creek formations in the Western Interior Basin of North America, the cranial anatomy of this species remains poorly understood. The only cranial material confidently referred to this species are three fragmentary bones preserved with the paratype, hindering attempts to understand the systematic relationships of this taxon within Neornithischia. Here the cranial anatomy of T. neglectus is fully described for the first time based on two specimens that include well-preserved cranial material (NCSM 15728 and TLAM.BA.2014.027.0001). Visual inspection of exposed cranial elements of these specimens is supplemented by detailed CT data from NCSM 15728 that enabled the examination of otherwise unexposed surfaces, facilitating a complete description of the cranial anatomy of this species. The skull of T. neglectus displays a unique combination of plesiomorphic and apomorphic traits. The premaxillary and ‘cheek’ tooth morphologies are relatively derived, though less so than the condition seen in basal iguanodontians, suggesting that the high tooth count present in the premaxillae, maxillae, and dentaries may be related to the extreme elongation of the skull of this species rather than a retention of the plesiomorphic condition. The morphology of the braincase most closely resembles the iguanodontians Dryosaurus and Dysalotosaurus, especially with regard to the morphology of the prootic. One autapomorphic feature is recognized for the first time, along with several additional cranial features that differentiate this species from the closely related and contemporaneous Thescelosaurus assiniboiensis. Published phylogenetic hypotheses of neornithischian dinosaur relationships often differ in the placement of the North American taxon Parksosaurus, with some recovering a close relationship with Thescelosaurus and others with the South American taxon Gasparinisaura, but never both at the same time. The new morphological observations presented herein, combined with re-examination of the holotype of Parksosaurus, suggest that Parksosaurus shares a closer relationship with Thescelosaurus than with Gasparinisaura, and that many of the features previously cited to support a relationship with the latter taxon are either also present in Thescelosaurus, are artifacts of preservation, or are the result of incomplete preparation and inaccurate interpretation of specimens. Additionally, the overall morphology of the skull and lower jaws of both Thescelosaurus and Parksosaurus also closely resemble the Asian taxa Changchunsaurus and Haya, though the interrelationships of these taxa have yet to be tested in a phylogenetic analysis that includes these new morphological data for T. neglectus. PMID:25405076
Madsen, Sarah K.; Bohon, Cara; Feusner, Jamie D.
2013-01-01
Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are psychiatric disorders that involve distortion of the experience of one’s physical appearance. In AN, individuals believe that they are overweight, perceive their body as “fat,” and are preoccupied with maintaining a low body weight. In BDD, individuals are preoccupied with misperceived defects in physical appearance, most often of the face. Distorted visual perception may contribute to these cardinal symptoms, and may be a common underlying phenotype. This review surveys the current literature on visual processing in AN and BDD, addressing lower- to higher-order stages of visual information processing and perception. We focus on peer-reviewed studies of AN and BDD that address ophthalmologic abnormalities, basic neural processing of visual input, integration of visual input with other systems, neuropsychological tests of visual processing, and representations of whole percepts (such as images of faces, bodies, and other objects). The literature suggests a pattern in both groups of over-attention to detail, reduced processing of global features, and a tendency to focus on symptom-specific details in their own images (body parts in AN, facial features in BDD), with cognitive strategy at least partially mediating the abnormalities. Visuospatial abnormalities were also evident when viewing images of others and for non-appearance related stimuli. Unfortunately no study has directly compared AN and BDD, and most studies were not designed to disentangle disease-related emotional responses from lower-order visual processing. We make recommendations for future studies to improve the understanding of visual processing abnormalities in AN and BDD. PMID:23810196
A faster technique for rendering meshes in multiple display systems
NASA Astrophysics Data System (ADS)
Hand, Randall E.; Moorhead, Robert J., II
2003-05-01
Level of detail algorithms have widely been implemented in architectural VR walkthroughs and video games, but have not had widespread use in VR terrain visualization systems. This thesis explains a set of optimizations to allow most current level of detail algorithms run in the types of multiple display systems used in VR. It improves both the visual quality of the system through use of graphics hardware acceleration, and improves the framerate and running time through moifications to the computaitons that drive the algorithms. Using ROAM as a testbed, results show improvements between 10% and 100% on varying machines.
Do you see what I see? Optical morphology and visual capability of ‘disco’ clams (Ctenoides ales)
Dubielzig, Richard R.; Schobert, Charles S.; Teixeira, Leandro B.; Li, Jingchun
2017-01-01
ABSTRACT The ‘disco’ clam Ctenoides ales (Finlay, 1927) is a marine bivalve that has a unique, vivid flashing display that is a result of light scattering by silica nanospheres and rapid mantle movement. The eyes of C. ales were examined to determine their visual capabilities and whether the clams can see the flashing of conspecifics. Similar to the congener C. scaber, C. ales exhibits an off-response (shadow reflex) and an on-response (light reflex). In field observations, a shadow caused a significant increase in flash rate from a mean of 3.9 Hz to 4.7 Hz (P=0.0016). In laboratory trials, a looming stimulus, which increased light intensity, caused a significant increase in flash rate from a median of 1.8 Hz to 2.2 Hz (P=0.0001). Morphological analysis of the eyes of C. ales revealed coarsely-packed photoreceptors lacking sophisticated structure, resulting in visual resolution that is likely too low to detect the flashing of conspecifics. As the eyes of C. ales are incapable of perceiving conspecific flashing, it is likely that their vision is instead used to detect predators. PMID:28396488
Pulmonary nodule characterization, including computer analysis and quantitative features.
Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E
2015-03-01
Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.
USDA-ARS?s Scientific Manuscript database
A morphological analysis of the female genitalia of the species included in genus Lewnielsenius Reinert, Harbach and Kitching was conducted. The genitalia of the type species of the genus, Ln. muelleri (Dyar), are illustrated. Treatment of the genital morphology of the genus includes a detailed de...
Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis
2017-01-01
Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.
2013-01-01
Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569
Form follows function: ultrastructure of different morphotypes of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Oettmeier, Christina; Lee, Jonghyun; Döbereiner, Hans-Günther
2018-04-01
The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits ‘smart’ behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold’s mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.
NASA Astrophysics Data System (ADS)
Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka
2004-04-01
We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.
Selecting and perceiving multiple visual objects
Xu, Yaoda; Chun, Marvin M.
2010-01-01
To explain how multiple visual objects are attended and perceived, we propose that our visual system first selects a fixed number of about four objects from a crowded scene based on their spatial information (object individuation) and then encode their details (object identification). We describe the involvement of the inferior intra-parietal sulcus (IPS) in object individuation and the superior IPS and higher visual areas in object identification. Our neural object-file theory synthesizes and extends existing ideas in visual cognition and is supported by behavioral and neuroimaging results. It provides a better understanding of the role of the different parietal areas in encoding visual objects and can explain various forms of capacity-limited processing in visual cognition such as working memory. PMID:19269882
NASA Astrophysics Data System (ADS)
Ramsey, M. S.; Harris, A. J. L.
2016-12-01
Satellite observations of active vents commonly group into several broad categories: thermal analysis, deformational studies, and gas/ash detection. These observations become increasingly detailed depending on the spatial, spectral and/or temporal resolution of the sensor. Higher temporal resolution thermal infrared (TIR) data are used to determine the time-averaged discharge rate (TADR) and the potential down-slope inundation of the newly-forming flow using thermorheologic-based modelling. Whereas, increased spectral resolution leads to improved measurement of the flow's composition, crystal content, and vesicularity. Combined, these data help to improve the accuracy of cooling-based viscosity models such as FLOWGO. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. The cooling of the glassy lava surface is directly imaged by the TIR instrument to determine temperature, which is then used to calculate the model's starting conditions. Understanding the cooling, formation and dynamics of basaltic surfaces therefore helps to resolve compositional, textural, and silicate structural changes. Models, coupled with accurate knowledge of the characteristics of older, inactive flows (such as those on Mars), can be reversed to predict the vent conditions at the time of the eruption. Being able to directly connect the final flow morphology to specific eruption conditions is a critical goal to understand the last stages of volcanism on Mars and becomes an important educational tool where combined with 3D visualization. The 2012-2013 eruption of Tolbachik volcano, Russia was the largest and most thermally intense flow-forming eruption in the past 50 years, producing longer lava flows than that of a typical eruption at Kilauea or Etna. These flows have been studied using various scales of TIR data at the time of eruption and following cooling. The input parameters for the FLOWGO model are then tuned to produce the best fit of eruptive conditions to final flow morphology. The refined model can then be used to determine the TADR from the vent and make improved estimates of cooling, viscosity, velocity and crystallinity with distance. Final results are visualized and their educational potential assessed.
NASA Astrophysics Data System (ADS)
Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.
2018-05-01
The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.
War and peace: morphemes and full forms in a noninteractive activation parallel dual-route model.
Baayen, H; Schreuder, R
This article introduces a computational tool for modeling the process of morphological segmentation in visual and auditory word recognition in the framework of a parallel dual-route model. Copyright 1999 Academic Press.
MeetingVis: Visual Narratives to Assist in Recalling Meeting Context and Content.
Shi, Yang; Bryan, Chris; Bhamidipati, Sridatt; Zhao, Ying; Zhang, Yaoxue; Ma, Kwan-Liu
2018-06-01
In team-based workplaces, reviewing and reflecting on the content from a previously held meeting can lead to better planning and preparation. However, ineffective meeting summaries can impair this process, especially when participants have difficulty remembering what was said and what its context was. To assist with this process, we introduce MeetingVis, a visual narrative-based approach to meeting summarization. MeetingVis is composed of two primary components: (1) a data pipeline that processes the spoken audio from a group discussion, and (2) a visual-based interface that efficiently displays the summarized content. To design MeetingVis, we create a taxonomy of relevant meeting data points, identifying salient elements to promote recall and reflection. These are mapped to an augmented storyline visualization, which combines the display of participant activities, topic evolutions, and task assignments. For evaluation, we conduct a qualitative user study with five groups. Feedback from the study indicates that MeetingVis effectively triggers the recall of subtle details from prior meetings: all study participants were able to remember new details, points, and tasks compared to an unaided, memory-only baseline. This visual-based approaches can also potentially enhance the productivity of both individuals and the whole team.
Adlington, Rebecca L; Laws, Keith R; Gale, Tim M
2009-10-01
It has been suggested that object recognition in patients with Alzheimer's disease (AD) may be strongly influenced both by image format (e.g. colour vs. line-drawn) and by low-level visual impairments. To examine these notions, we tested basic visual functioning and picture naming in 41 AD patients and 40 healthy elderly controls. Picture naming was examined using 105 images representing a wide range of living and nonliving subcategories (from the Hatfield image test [HIT]: [Adlington, R. A., Laws, K. R., & Gale, T. M. (in press). The Hatfield image test (HIT): A new picture test and norms for experimental and clinical use. Journal of Clinical and Experimental Neuropsychology]), with each item presented in colour, greyscale, or line-drawn formats. Whilst naming for elderly controls improved linearly with the addition of surface detail and colour, AD patients showed no benefit from the addition of either surface information or colour. Additionally, controls showed a significant category by format interaction; however, the same profile did not emerge for AD patients. Finally, AD patients showed widespread and significant impairment on tasks of visual functioning, and low-level visual impairment was predictive of patient naming.
NASA Astrophysics Data System (ADS)
West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram
2014-02-01
Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
Three-dimensional concentration mapping of organic blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, John D.; Batenburg, Kees J.; Swain, F. B.
2013-05-06
We quantitatively measure the three-dimensional morphology of mixed organic layers using high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM) with electron tomography for the first time. The mixed organic layers used for organic photovoltaic applications have not been previously imaged using STEM tomography as there is insufficient contrast between donor and acceptor components. We generate contrast by substituting fullerenes with endohedral fullerenes that contain a Lu3N cluster within the fullerene cage. The high contrast and signal-to-noise ratio, in combination with use of the discrete algebraic reconstruction technique (DART), allowed us to generate the most detailed and accurate three-dimensional map ofmore » BHJ morphology to date. From the STEM tomography reconstructions we determined that three distinct material phases are present within the BHJs. By observation of the changes to morphology and mixing ratio that occur during thermal and solvent annealing, we are able to determine how mutual solubility and fullerene crystallization affect the formation of morphology and long term stability of the material mixture. This material/technique combination shows itself as a powerful tool for examining morphology in detail and allows for observation of nanoscopic changes in local concentration. This research was supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.« less
Spatial/Spectral Identification of Endmembers from AVIRIS Data using Mathematical Morphology
NASA Technical Reports Server (NTRS)
Plaza, Antonio; Martinez, Pablo; Gualtieri, J. Anthony; Perez, Rosa M.
2001-01-01
During the last several years, a number of airborne and satellite hyperspectral sensors have been developed or improved for remote sensing applications. Imaging spectrometry allows the detection of materials, objects and regions in a particular scene with a high degree of accuracy. Hyperspectral data typically consist of hundreds of thousands of spectra, so the analysis of this information is a key issue. Mathematical morphology theory is a widely used nonlinear technique for image analysis and pattern recognition. Although it is especially well suited to segment binary or grayscale images with irregular and complex shapes, its application in the classification/segmentation of multispectral or hyperspectral images has been quite rare. In this paper, we discuss a new completely automated methodology to find endmembers in the hyperspectral data cube using mathematical morphology. The extension of classic morphology to the hyperspectral domain allows us to integrate spectral and spatial information in the analysis process. In Section 3, some basic concepts about mathematical morphology and the technical details of our algorithm are provided. In Section 4, the accuracy of the proposed method is tested by its application to real hyperspectral data obtained from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer. Some details about these data and reference results, obtained by well-known endmember extraction techniques, are provided in Section 2. Finally, in Section 5 we expose the main conclusions at which we have arrived.
An automated approach for tone mapping operator parameter adjustment in security applications
NASA Astrophysics Data System (ADS)
Krasula, LukáÅ.¡; Narwaria, Manish; Le Callet, Patrick
2014-05-01
High Dynamic Range (HDR) imaging has been gaining popularity in recent years. Different from the traditional low dynamic range (LDR), HDR content tends to be visually more appealing and realistic as it can represent the dynamic range of the visual stimuli present in the real world. As a result, more scene details can be faithfully reproduced. As a direct consequence, the visual quality tends to improve. HDR can be also directly exploited for new applications such as video surveillance and other security tasks. Since more scene details are available in HDR, it can help in identifying/tracking visual information which otherwise might be difficult with typical LDR content due to factors such as lack/excess of illumination, extreme contrast in the scene, etc. On the other hand, with HDR, there might be issues related to increased privacy intrusion. To display the HDR content on the regular screen, tone-mapping operators (TMO) are used. In this paper, we present the universal method for TMO parameters tuning, in order to maintain as many details as possible, which is desirable in security applications. The method's performance is verified on several TMOs by comparing the outcomes from tone-mapping with default and optimized parameters. The results suggest that the proposed approach preserves more information which could be of advantage for security surveillance but, on the other hand, makes us consider possible increase in privacy intrusion.
Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.
Mörschel, Konstantin; Breit, Markus; Queisser, Gillian
2017-07-01
Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.
Dandona, L; Dandona, R; Naduvilath, T J; McCarty, C A; Nanda, A; Srinivas, M; Mandal, P; Rao, G N
1998-05-02
India's National Programme for Control of Blindness focuses almost exclusively on cataract, based on a national survey done in the 1980s which reported that cataract caused 80% of the blindness in India. No current population-based data on the causes of blindness in India are available. We assessed the rate and causes of blindness in an urban population in southern India. We selected 2954 participants by stratified, random, cluster, systematic sampling from Hyderabad city. Eligible participants were interviewed and given a detailed ocular assessment, including visual acuity, refraction, slitlamp biomicroscopy, applanation intraocular pressure, gonioscopy, dilatation, grading of cataract, stereoscopic fundus assessment, and automated-threshold visual fields. 2522 participants, including 1399 aged 30 years or more, were assessed. 49 participants (all aged > or =30 years) were blind (presenting distance visual acuity <6/60 or central visual field <200 in the better eye). The rate of blindness among those aged 30 years or more, adjusted for age and sex, was 3.08% ([95% CI 1.95-4.21]). Causes included cataract (29.7%), retinal disease (17.1%), corneal disease (15.4%), refractive error (12.5%), glaucoma (12.1%), and optic atrophy (11.0%). 15.7% of the blindness caused by visual-field constriction would have been missed without visual-field examination. Also without visual-field and detailed dilated-fundus assessments, blindness attributed to cataract would have been overestimated by up to 75.8%. If the use of cataract surgery in this urban population was half that found in this study, which simulates the situation in rural India, cataract would have caused 51.8% (39.4-64.2) of blindness, significantly less than the 80% accepted by current policy. Much of the blindness in this Indian population was due to non-cataract causes. The previous national survey did not include detailed dilated-fundus assessment and visual-field examination which could have led to overestimation of cataract as a cause of blindness in India. Policy-makers in India should encourage well-designed population-based epidemiological studies from which to develop a comprehensive long-term policy on blindness in addition to dealing with cataract.
Daily Living Skills: A Manual for Educating Visually Impaired Students.
ERIC Educational Resources Information Center
Lieberman, Gail, Ed.
The manual contains rationales, general approaches, and specific procedures for educators and parents to use in teaching daily living skills to visually impaired students. Detailed suggestions are given with regard to learning objectives for blind or partially sighted children, age levels, and instructional adaptations for developing competency in…
Publications - GMC 23 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 23 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for Information gmc023.pdf (199.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 22 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 22 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, 1984, Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for the gmc022.pdf (247.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
ERIC Educational Resources Information Center
Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil
2010-01-01
Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and…
Development of Encoding and Decision Processes in Visual Recognition.
ERIC Educational Resources Information Center
Newcombe, Nora; MacKenzie, Doris L.
This experiment examined two processes which might account for developmental increases in accuracy in visual recognition tasks: age-related increases in efficiency of scanning during inspection, and age-related increases in the ability to make decisions systematically during test. Critical details necessary for recognition were highlighted as…
The Visually Impaired Preschooler with an Emphasis on Medical Intervention.
ERIC Educational Resources Information Center
Harrell, Lois
The paper details the impact of blindness and visual impairments on young children's development. Specific developmental risks are examined for the following areas (sample difficulties in parentheses): body awareness (delayed concept of object permanence), motor development (lack of incentive to explore and resultant delay in purposeful movement),…
The Graphics of Communication: Typography--Layout--Design. Third Edition.
ERIC Educational Resources Information Center
Turnbull, Arthur T.; Baird, Russell N.
This book includes detailed explanations of the latest technological innovations as well as discussions of the theoretical bases of visual communication. The six sections of the book focus on the following: the theoretical aspects of graphic communication; the verbal elements of communication; the visual elements of communication; design, the…
Design Standards for School Art Facilities
ERIC Educational Resources Information Center
National Art Education Association, 2015
2015-01-01
"Design Standards for School Art Facilities" is an invaluable resource for any school or school district looking to build new facilities for the visual arts or renovate existing ones. Discover detailed information about spaces for the breadth of media used in the visual arts. Photographs illustrate all types of features including…
Visual Invention and the Composition of Scientific Research Graphics: A Topological Approach
ERIC Educational Resources Information Center
Walsh, Lynda
2018-01-01
This report details the second phase of an ongoing research project investigating the visual invention and composition processes of scientific researchers. In this phase, four academic researchers completed think-aloud protocols as they composed graphics for research presentations; they also answered follow-up questions about their visual…
Visual Grading and Quality of 1-0 Northern Red Oak Seedlings
S.L. Clark; S.E. Scblarbaum; Paul P. Kormanik
2000-01-01
Past research has used detailed measurements of various growth characteristics to determine seedling grades and quality of northern red oak nursery stock This study evaluates the effectiveness ofa visual grading process. similar to thosefound in commercial nursery operations, to distinguish high quality seedlings. Northern red oak (Quercus rubra...
Bohm's Quantum Potential and the Visualization of Molecular Structure
NASA Technical Reports Server (NTRS)
Levit, Creon; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.
Self-Referencing Enhances Memory Specificity with Age
Hamami, Ayala; Serbun, Sarah J.; Gutchess, Angela H.
2011-01-01
Self-referencing has been identified as an advantageous mnemonic strategy for young and older adults. However, little research has investigated the ways in which self-referencing may influence older adults’ memory for details, which is typically impaired with age, beyond memory for the item itself. Experiment 1 assessed the effects of self- and other-referencing on memory for visually detailed pictures of objects in thirty-two young and thirty-two older adults. Results indicate that self- and close other-referencing similarly enhance general (item) and specific (detail) recognition for both young and older adults relative to the distant other condition. Experiment 2 extended these findings to source memory, with young and older adults encoding verbal information in self-referent, semantic, and structural conditions. Findings suggest that self-referencing provides an age-equivalent boost in general memory and specific memory for specific source details. We conclude that the mnemonic benefits of referencing the self extend to specific memory for visual and verbal information across the lifespan. PMID:21480719
NASA Astrophysics Data System (ADS)
Prandi, F.; Magliocchetti, D.; Poveda, A.; De Amicis, R.; Andreolli, M.; Devigili, F.
2016-06-01
Forests represent an important economic resource for mountainous areas being for a few region and mountain communities the main form of income. However, wood chain management in these contexts differs from the traditional schemes due to the limits imposed by terrain morphology, both for the operation planning aspects and the hardware requirements. In fact, forest organizational and technical problems require a wider strategic and detailed level of planning to reach the level of productivity of forest operation techniques applied on flatlands. In particular, a perfect knowledge of forest inventories improves long-term management sustainability and efficiency allowing a better understanding of forest ecosystems. However, this knowledge is usually based on historical parcel information with only few cases of remote sensing information from satellite imageries. This is not enough to fully exploit the benefit of the mountain areas forest stocks where the economic and ecological value of each single parcel depends on singletree characteristics. The work presented in this paper, based on the results of the SLOPE (Integrated proceSsing and controL systems fOr sustainable forest Production in mountain arEas) project, investigates the capability to generate, manage and visualize detailed virtual forest models using geospatial information, combining data acquired from traditional on-the-field laser scanning surveys technologies with new aerial survey through UAV systems. These models are then combined with interactive 3D virtual globes for continuous assessment of resource characteristics, harvesting planning and real-time monitoring of the whole production.
Forced free-shear layer measurements
NASA Technical Reports Server (NTRS)
Leboeuf, Richard L.
1994-01-01
Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.
Laser scatter in clinical applications
NASA Astrophysics Data System (ADS)
Luther, Ed; Geddie, William
2008-02-01
Brightfield Laser Scanning Imaging (BLSI) is available on Laser Scanning Cytometers (LSCs) from CompuCyte Corporation. Briefly, digitation of photodetector outputs is coordinated with the combined motions of a small diameter (typically 2 to 10 microns) laser beam scanning a specimen in the Y direction (directed by a galvanometer-driven scanning mirror) and the microscope stage motion in the X direction. The output measurements are assembled into a two-dimensional array to provide a "non-real" digital image, where each pixel value reports the amount of laser-scattered light that is obtained when the laser beam is centered on that location. Depending on the detector positions, these images are analogous to Differential Interference Contrast or Phase Contrast microscopy. We report the incorporation of the new laser scattering capabilities into the workflow of a high-volume clinical cytology laboratory at University Health Network, Toronto, Canada. The laboratory has been employing LSC technology since 2003 for immunophenotypic fluorescence analysis of approximately 1200 cytological specimens per year, using the Clatch methodology. The new BLSI component allows visualization of cellular morphology at higher resolution levels than is possible with standard brightfield microscopic evaluation of unstained cells. BLSI is incorporated into the triage phase, where evaluation of unstained samples is combined with fluorescence evaluation to obtain specimen background levels. Technical details of the imaging methodology will be presented, as well as illustrative examples from current studies and comparisons to detailed, but obscure, historical studies of cytology specimens based on phase contrast microscopy.
Harrison, Katharine L.; Zavadil, Kevin R.; Hahn, Nathan T.; ...
2017-11-07
To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. In addition, we conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence ofmore » a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl 0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. In conclusion, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.« less
Harrison, Katharine L; Zavadil, Kevin R; Hahn, Nathan T; Meng, Xiangbo; Elam, Jeffrey W; Leenheer, Andrew; Zhang, Ji-Guang; Jungjohann, Katherine L
2017-11-28
To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl 0.3 S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Katharine L.; Zavadil, Kevin R.; Hahn, Nathan T.
To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. In addition, we conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence ofmore » a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl 0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. In conclusion, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.« less
NASA Astrophysics Data System (ADS)
Tickle, Andrew J.; Harvey, Paul K.; Smith, Jeremy S.
2010-10-01
Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. The additional ability to set up the system in virtually any location due to the FPGA makes it ideal for insertion into an autonomous mobile robot for patrol duties. However, security is not the only potential of this robust algorithm. This paper details how such a system can be used for the detection of leaks in piping for use in the process and chemical industries and could be deployed as stated in the above manner. The test substance in this work was water, which was pumped either as a liquid or as low pressure steam through a simple pipe configuration with holes at set points to simulate the leaks. These holes were situated randomly at either the center of a pipe (in order to simulate an impact to it) or at a joint or corner (to simulate a failed weld). Imagery of the resultant leaks, which were visualised as drips or the accumulation of steam, which where analysed using MATLAB to determine their pixel volume in order to calibrate the trigger for the MSCD. The triggering mechanism is adaptive to make it possible in theory for the type of leak to be determined by the number of pixels in the threshold of the image and a numerical output signal to state which of the leak situations is being observed. The system was designed using the DSP Builder package from Altera so that its graphical nature is easily comprehensible to the non-embedded system designer. Furthermore, all the data from the DSP Builder simulation underwent verification against MATLAB comparisons using the image processing toolbox in order to validate the results.
NASA Astrophysics Data System (ADS)
Hughes, S. S.; Nawotniak, S. K.; Haberle, C. W.; Downs, M.; Sehlke, A.; Elphic, R. C.; Lim, D. S. S.; Heldmann, J.
2016-12-01
Highway Flow, a latite lava flow at the northern edge of Craters of the Moon National Monument and Preserve in Idaho, appears to have been northward flowing on the basis of its footprint and broad morphology. In plan view, the overall morphology suggests a northward flow in a self-defined channel before finishing in a rounded terminus. Comparison with topographic maps clearly demonstrates, however, that this would require significant uphill travel. We hypothesize, based on topography, alteration, and contacts between flow lobes, that the lava flow emerged from a vent under the highest elevation in the central part of the flow. More detailed ground investigation with the Biologic Analog Science Associated with Lava Terrains (BASALT) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) projects, using Highway flow as an analog for planetary lavas, demonstrates that Highway Flow is actually two separate compound flow lobes, one that flowed mostly westward and the other southward. The western lobe has a circular footprint and is extensively broken by radial fractures. The southern lobe is elongate, with sheared margins and interior ribs perpendicular to flow direction; the ribs include crude ogives and extension cracks. The vent for Highway Flow, previously thought to be buried by North Crater or Big Crater flows to the south or transported tephra from Sunset Cone to the east, is identifiable at the approximate center of the seam between the two lobes using new high-resolution DTMs from UAV flights and alteration patterns observed in the field and via multispectral imagery. Contrasting topographic controls surrounding the vent resulted in very different morphologies for the two lobes, despite emplacement under otherwise similar conditions. These results argue in favor of using multiple datasets, rather than simply using visual orbiter imagery, to interpret lava flow emplacement features on other planetary bodies.
Morphological and physiological analysis of type-5 and other bipolar cells in the Mouse Retina.
Hellmer, C B; Zhou, Y; Fyk-Kolodziej, B; Hu, Z; Ichinose, T
2016-02-19
Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Gender-specific contribution of a visual cognition network to reading abilities.
Huestegge, Lynn; Heim, Stefan; Zettelmeyer, Elena; Lange-Küttner, Christiane
2012-02-01
Based on the assumption that boys are more likely to tackle reading based on the visual modality, we assessed reading skills, visual short-term memory (VSTM), visual long-term memory for details (VLTM-D), and general non-verbal cognitive ability in primary school children. Reading was within the normal range in both accuracy and understanding. There was no reading performance gap in favour of girls, on the contrary, in this sample boys read better. An entire array of visual, non-verbal processes was associated directly or indirectly with reading in boys, whereas this pattern was not observed for the girls. ©2011 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Marco-Herrero, Elena; González-Gordillo, J. Ignacio; Cuesta, José A.
2014-06-01
The morphology of the megalopa stage of the panopeid Rhithropanopeus harrisii is redescribed and illustrated in detail from plankton specimens identified by DNA barcode (16S mtDNA) as previous descriptions do not meet the current standard of brachyuran larval description. Several morphological characters vary widely from those of other panopeid species which could cast some doubt on the species' placement in the same family. Besides, some anomalous megalopae of R. harrisii were found among specimens reared at the laboratory from zoeae collected in the plankton. These anomalous morphological features are discussed in terms of problems associated with laboratory rearing conditions.
NASA Astrophysics Data System (ADS)
Hu, Shen; Liu, Min; Guo, Xinwen; Kuang, Zhichong; Li, Keyan; Song, Chunshan; Zhang, Guoliang
2018-06-01
Titanium based MOF materials NH2-MIL-125 was synthesized through solvothermal method. By increasing the concentration of the reactants, the morphology of NH2-MIL-125 can be controlled from circular plate to special polyhedron. Meanwhile, the polyhedron can be modulated from octahedron to rhombic dodecahedron through changing the titanium ester of the reactants from tetraethyl titanate to tetrabutyl titanate. This is the first time to obtain NH2-MIL-125 with rhombic dodecahedron morphology. The test of acetic acid as additive on morphology changes shows that the adsorption of additives on special facets shows a more significant impact on the morphology formation. The morphology control of NH2-MIL-125 based on the modulation of the type of titanium ester, reactants concentration, and the added acetic acid concentration were detailed exhibited and explained.