Sample records for detect gamma rays

  1. Multi-particle inspection using associated particle sources

    DOEpatents

    Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.

    2016-02-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.

  2. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  3. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  4. Probe for contamination detection in recyclable materials

    DOEpatents

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  5. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  6. Handheld dual thermal neutron detector and gamma-ray spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlapmore » in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.« less

  7. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  8. Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; hide

    2014-01-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.

  9. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  10. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.

  11. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    NASA Technical Reports Server (NTRS)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  12. Pulsed high-energy gamma rays from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  13. Arcsec source location measurements in gamma-ray astronomy from a lunar observatory

    NASA Astrophysics Data System (ADS)

    Koch, D. G.; Hughes, B. E.

    1990-03-01

    The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  14. Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  15. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  16. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  17. A Study of Spatially-Coincident IceCube Neutrinos and Fermi Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Seymour, Hannah; Mukherjee, Reshmi; Shaevitz, Michael; Santander, Marcos

    2016-03-01

    The IceCube neutrino telescope has detected very-high-energy neutrino events with energies between several hundred TeV to a few PeV beginning inside the detector. These events are unlikely to have originated in the atmosphere, and are suspected to come from astrophysical sources, the likes of which can also be observed in gamma rays by the Fermi Gamma-Ray Space Telescope. We present an analysis of archival GeV gamma-ray data collected with the Large Area Telescope onboard the Fermi satellite to search for gamma-ray sources spatially coincident with the locations of high-enery muon neutrinos detected by IceCube. The combined detection of gamma rays and neutrinos from an astrophysical source will allow us to identify cosmic-ray acceleration sites. With gratitude to the Nevis Laboratories REU program.

  18. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  19. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    PubMed

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  20. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  1. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  2. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-07-02

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. In this paper, we report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Finally, direct detection of gamma-raymore » pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.« less

  3. Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.

    2017-07-01

    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.

  4. Ground-based very high energy gamma ray astronomy: Observational highlights

    NASA Technical Reports Server (NTRS)

    Turver, K. E.

    1986-01-01

    It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.

  5. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  6. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  7. Recent results from the Compton Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelson, P.F.; Hansen, W.W.

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations.more » Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.« less

  8. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less

  9. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  10. Novel Chalcogenide Materials for X-ray and Gamma-ray Detection

    DTIC Science & Technology

    2016-05-01

    53 Novel Chalcogenide Materials for x-ray and y-ray Detection Distribution Statement A. Approved for public release; distribution is unlimited. 0...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Novel Chalcogenide Materials for x-ray and y-ray Detection Sb. GRANT NUMBER HDTRA 1-09-1-0044 Sc. PROGRAM...heavy atom chalcogenide family of semiconductors for room temperature gamma radiation detection . Its goal was to accelerate nuclear detector material

  11. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  12. Search for gamma-ray emission from Galactic novae with the Fermi -LAT

    NASA Astrophysics Data System (ADS)

    Franckowiak, A.; Jean, P.; Wood, M.; Cheung, C. C.; Buson, S.

    2018-02-01

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims: We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods: We repeated the analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results: Two new novae candidates have been found at 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.

  13. Search for gamma-ray emission from Galactic novae with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franckowiak, A.; Jean, P.; Wood, M.

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims. We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods. We repeated themore » analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results. Two new novae candidates have been found at ~ 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Lastly, our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.« less

  14. Search for gamma-ray emission from Galactic novae with the Fermi-LAT

    DOE PAGES

    Franckowiak, A.; Jean, P.; Wood, M.; ...

    2018-02-05

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims. We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods. We repeated themore » analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results. Two new novae candidates have been found at ~ 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Lastly, our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.« less

  15. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  16. A model for the UHE gamma-rays from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Eichler, D.; Vestrand, W. T.

    1985-01-01

    An outburst of gamma rays with energies E gamma 10 to the 12th power eV was recently detected from the X-ray pulsar Hercules X-1. The outburst had a 3 minute duration and occurred at a time during the 35 day X-ray modulation that is associated with X-ray turnon. The gamma rays also have the same 1.24 second modulation that is observed at X-ray energies. Subsequently a 40 minute outburst was detected at E gamma 10 to the 14th power eV. The interaction of ultrahigh energy particles with a precessing accretion disk explain the observed gamma ray light curve. The constraints one can place on acceleration mechanisms and the possibility that the UHE particles are accelerated by shocks in an accretion flow are explained.

  17. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  18. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  19. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    REPORT OF PROJECT: Novel chalcogenide materials for x - ray and - ray detection HDTRA1-09-1-0044 Mercouri Kanatzidis , PI Northwestern University...investigated semiconductor for hard radiation detection. The μτ products for electrons however are lower than those of CZT, the leading material for X - ray ...Formation of native defects in the gamma- ray detector material, Cs2Hg6S7 Semiconductor devices detecting hard radiation such as x - rays and

  20. Caracterización de un sistema de telescopios Cherenkov para la detección de rayos gamma de energías del TeV desde el CASLEO

    NASA Astrophysics Data System (ADS)

    Melo, D.; Yelós, L. D.; Garcia, B.; Rovero, A. C.

    2017-10-01

    Gamma-ray astronomy opened the universe of the more energetic electromagnetic radiation using ground and orbiting instruments, which provide information for the understanding of sources of different types. Ground-based telescope arrays use Cherenkov light produced by the charged particles from extensive air showers generated in the Earth's atmosphere to identify gamma rays. This imposes a minimum energy threshold on the gamma rays to be detected. Towards the high-energy end of the spectrum, however, the amount of Cherenkov radiation produced by a gamma-ray photon guarantees its detectability, the limiting factor being the low flux of the sources. For this reason, the detection strategy consists in using arrays of small telescopes. In this work, we investigate the feasibility of detecting gamma-ray cascades using Cherenkov telescopes, in the range of 100 GeV to 2 TeV, at the CASLEO site, characterizing the response of a system of three Cherenkov telescopes.

  1. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOEpatents

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  2. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  3. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  4. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  5. Spectral analysis method for detecting an element

    DOEpatents

    Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID

    2008-02-12

    A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.

  6. Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector

    NASA Astrophysics Data System (ADS)

    Jones, James L.

    1997-02-01

    The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.

  7. Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons

    NASA Astrophysics Data System (ADS)

    Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.

    1998-03-01

    he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.

  8. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  9. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  10. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    DOEpatents

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  11. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  12. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  13. Method and system for detecting explosives

    DOEpatents

    Reber, Edward L [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID; Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Derr, Kurt W [Idaho Falls, ID

    2009-03-10

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  14. Explosives detection system and method

    DOEpatents

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2007-12-11

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  15. Method and an apparatus for non-invasively determining the quantity of an element in a body organ

    DOEpatents

    Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1980-06-27

    An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.

  16. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  17. Population Studies of Radio and Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  18. Fermi-LAT detection of ongoing gamma-ray activity from the new gamma-ray source Fermi J1654-1055 (PMN J1632-1052)

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.

    2016-02-01

    During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.

  19. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  20. Results from the energetic gamma-ray experiment telescope (EGRET) on the Compton Observatory

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1993-01-01

    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) covers the high energy gamma ray energy range, approximately 30 MeV to 30 GeV, with a sensitivity considerably greater than earlier high energy gamma-ray satellites. Thus far, 4 pulsars have been detected and their properties measured, including in 3 cases the energy spectrum as a function of phase. The details of the galactic plane are being mapped and a spectra of the center region has been obtained in good agreement with that expected from cosmic ray interactions. The Magellanic clouds have been examined with the Large Magellanic Cloud (LMC) having been detected at a level consistent with it having a cosmic ray density compatible with quasi-stable equilibrium. Sixteen Active Galactic Nuclei (AGN's) have been seen thus far with a high degree of certainty including 12 quasars and 4 BL Lac objects, but no Seyferts. Time variation has been detected in some of these AGN's

  1. Process and apparatus for detecting presence of plant substances

    DOEpatents

    Kirby, John A.

    1991-01-01

    An apparatus and process for detecting the presence of plant substances in a particular environment which comprises the steps of: measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; measuring the amount of K40 gamma ray radiation emanating from a package containing a plant substance being passed through an environment with a counter; and generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level.

  2. Active interrogation using low-energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula

    2005-09-01

    High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.

  3. Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Fen

    1999-08-01

    Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.

  4. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Young S.; Sitaraman, Shivakumar

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and takingmore » the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.« less

  5. Swift detection of increased X-ray activity from gamma-ray flaring blazar PKS 1424-41

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Cutini, Sara

    2013-01-01

    Following enduring gamma-ray flaring activity of the flat spectrum radio quasar PKS 1424-41 (also known as 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31) detected by Fermi LAT during January 2013, two Swift target of opportunity observations were performed on January 24 and 27, 2013. Recent gamma-ray and X-ray flaring activity from the source was observed on January 6 and January 7 (ATel#4714 and ATel #4717).

  6. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    NASA Technical Reports Server (NTRS)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  7. The Highest-Energy Photons Seen by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; ONeal, R. H., Jr.

    2005-01-01

    During its nine-year lifetime, the Energetic Gamma Ray Experiment Telescope (EGBET) on the Compton Gamma Ray Observatory (CGRO) detected 1506 cosmic photons with measured energy E>10 GeV. Of this number, 187 are found within a 1 deg of sources that are listed in the Third EGRET Catalog and were included in determining the detection likelihood, flux, and spectra of those sources. In particular, five detected EGRET pulsars are found to have events above 10 GeV, and together they account for 37 events. A pulsar not included in the Third EGRET Catalog has 2 events, both with the same phase and in one peak of the lower-energy gamma-ray light-curve. Most of the remaining 1319 events appear to be diffuse Galactic and extragalactic radiation based on the similarity of the their spatial and energy distributions with the diffuse model and in the E>100, MeV emission. No significant time clustering which would suggest a burst was detected.

  8. Observation of nuclear reactors on satellites with a balloon-borne gamma-ray telescope

    NASA Technical Reports Server (NTRS)

    O'Neill, Terrence J.; Kerrick, Alan D.; Ait-Ouamer, Farid; Tumer, O. Tumay; Zych, Allen D.

    1989-01-01

    Four Soviet nuclear-powered satellites flying over a double Compton gamma-ray telescope resulted in the detection of gamma rays with 0.3-8.0 MeV energies on April 15, 1988, as the balloonborne telescope searched, from a 35-km altitude, for celestial gamma-ray sources. The satellites included Cosmos 1900 and 1932. The USSR is the only nation currently employing moderated nuclear reactors for satellite power; reactors in space may cause significant problems for gamma-ray astronomy by increasing backgrounds, especially in the case of gamma-ray bursts.

  9. Classifying threats with a 14-MeV neutron interrogation system.

    PubMed

    Strellis, Dan; Gozani, Tsahi

    2005-01-01

    SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.

  10. The possibility of gamma-ray astronomy measurements on the Russian segment of the International Space Station.

    NASA Astrophysics Data System (ADS)

    Fradkin, M. I.; Gorchakov, E. V.; Kaplin, V. A.; Kaplin, D. V.; Kurnosova, L. V.; Labenskij, A. G.; Runtso, M. F.; Topchiev, N. P.

    The conditions required for gamma-ray astronomy measurements at energies of 10 - 1000 GeV by a gamma-ray telescope on the International Space Station are discussed. It is shown that the properties of the detected gamma rays can be determined accurately at 30 - 1000 GeV, even if the space station solar arrays fall in the aperture of the gamma-ray telescope. Measurements of the secondary gamma-ray spectrum using a ground-based model of the gamma-ray telescope have been carried out, and the resulting spectrum at energies of 1 - 100 GeV is presented.

  11. Modeling and Maximum Likelihood Fitting of Gamma-Ray and Radio Light Curves of Millisecond Pulsars Detected with Fermi

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Harding, A. K.; Venter, C.

    2012-01-01

    Pulsed gamma rays have been detected with the Fermi Large Area Telescope (LAT) from more than 20 millisecond pulsars (MSPs), some of which were discovered in radio observations of bright, unassociated LAT sources. We have fit the radio and gamma-ray light curves of 19 LAT-detected MSPs in the context of geometric, outermagnetospheric emission models assuming the retarded vacuum dipole magnetic field using a Markov chain Monte Carlo maximum likelihood technique. We find that, in many cases, the models are able to reproduce the observed light curves well and provide constraints on the viewing geometries that are in agreement with those from radio polarization measurements. Additionally, for some MSPs we constrain the altitudes of both the gamma-ray and radio emission regions. The best-fit magnetic inclination angles are found to cover a broader range than those of non-recycled gamma-ray pulsars.

  12. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    NASA Technical Reports Server (NTRS)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  13. Coded-aperture imaging of the Galactic center region at gamma-ray energies

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.

    1991-01-01

    The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.

  14. Search for gamma-rays from M31 and other extragalactic objects

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weeles, T. C.

    1985-01-01

    Although the existence of fluxes of gamma-rays of energies 10 to the 12th power eV is now established for galactic sources, the detection of such gamma-rays from extragalactic sources has yet to be independently confirmed in any case. The detection and confirmation of such energetic photons is of great astrophysical importance in the study of production mechanisms for cosmic rays, and other high energy processes in extragalactic objects. Observations of m31 are discussed. It is reported as a 10 to the 12th power eV gamma-ray source. Flux limits on a number of other extragalactic objects chosen for study are given.

  15. Lightning Initiation and Propagation

    DTIC Science & Technology

    2009-08-22

    ray (gamma ray ) and multiple-station (>24) cosmic - ray - muon detection network (TERA) pl:esently in place. Upgrade TERA with LaBr3 detectors to...DATES COVERED 4. TITLE AND SUBTITLE Lightning Initistion and Propagation Including the Role of X- Rays , Gamma Rays , and Cosmic Rays 5a... rays , gamma rays , and cosmic rays in the initiation and propagation of lightning and in the phenomenology of thunderclouds. The experimental

  16. Detection of Neutrons with Scintillation Counters

    DOE R&D Accomplishments Database

    Hofstadter, R.

    1948-11-01

    Detection of slow neutrons by: detection of single gamma rays following capture by cadmium or mercury; detection of more than one gamma ray by observing coincidences after capture; detection of heavy charged particles after capture in lithium or baron nuclei; possible use of anthracene for counting fast neutrons investigated briefly.

  17. The GeV Gamma-Ray Emission Detected by Fermi-LAT Adjacent to SNR Kesteven 41

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Chen, Yang; Zhang, Xiao; Zhang, Gao-Yuan; Xing, Yi; Pannuti, Thomas G.

    2017-02-01

    Gamma-ray observations for Supernova remnant (SNR)-molecular cloud (MC) association systems play an important role in the research on the acceleration and propagation of cosmic-ray protons. Through the analysis of 5.6 years of Fermi-Large Area Telescope observation data, here we report on the detection of a gamma-ray emission source near the SNR Kesteven 41 with a significance of 24σ in 0.2-300 GeV. The best-fit location of the gamma-ray source is consistent with the MC with which the SNR interacts. Several hypotheses including both leptonic and hadronic scenarios are considered to investigate the origin of these gamma-rays. The gamma-ray emission can be naturally explained by the decay of neutral pions produced via the collision between high energy protons accelerated by the shock of Kesteven 41 and the adjacent MC. The electron energy budget would be too high for the SNR if the gamma-rays were produced via inverse Compton (IC) scattering off the Cosmic Microwave Background (CMB) photons.

  18. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  19. Fermi: The Gamma-Ray Large Area Space Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of a population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  20. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  1. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  2. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  3. Search for gamma-ray emission from AE Aquarii with seven year of Fermi LAT observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Torres, Diego F.; Rea, Nanda

    2016-11-14

    AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (more » $${P}_{\\mathrm{spin}}$$ = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. When using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. We detected no gamma-ray pulsations above 3σ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We also impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $$1.3\\times {10}^{-12}$$ erg cm -2 s -1 in the 100 MeV–300 GeV energy range, providing constraints on models.« less

  4. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    NASA Astrophysics Data System (ADS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-10-01

    Using a fast digitizer, the neutron-gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  5. Gamma-ray lines from neutron stars as probes of fundamental physics

    NASA Technical Reports Server (NTRS)

    Brecher, K.

    1978-01-01

    The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.

  6. Time Domain Astronomy with Fermi GBM in the Multi-messenger Era

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Fermi GBM team, GBM-LIGO team

    2018-01-01

    As the Multi-Messenger era begins with detections of gravitational waves with LIGO/Virgo and neutrinos with IceCube, the Fermi Gamma-ray Burst Monitor (GBM) provides context observations of gamma-ray transients between 8 keV and 40 MeV. Fermi GBM has a wide field of view, high uptime, and both in-orbit triggering and high time resolution continuous data enabling offline searches for weaker transients. GBM detects numerous gamma-ray bursts (GRBs), soft gamma-ray repeaters, X-ray bursters, solar flares and terrestrial gamma-ray flashes. Longer timescale transients, predominantly in our galaxy so far, are detected using the Earth occultation technique and epoch-folding for periodic sources. The GBM team has developed two ground-based searches to enhance detections of faint transients, especially short GRBs. The targeted search uses the time and location of an event detected with another instrument to coherently search the GBM data, increasing the sensitivity to a transient. The untargeted search agnostically searches the GBM data for all directions and times to find weaker transients. This search finds about 80 short GRBs per year, adding to the 40 per year triggered on-orbit. With its large field of view, high duty cycle and increasingly sophisticated detection methods, Fermi GBM is expected to have a major role in the Multi-Messenger era.

  7. The First FERMI-LAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  8. Multimode imaging device

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M

    2013-08-27

    Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.

  9. Detecting Axionlike Particles with Gamma Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Serpico, Pasquale D.

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1 100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  10. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Barbieri, C.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; Desiante, F. de Palma R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hagiwara, K.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Johnson, T. J.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Marshall, F.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naletto, G.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Parkinson, P. M. Saz; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Uchiyama, Y.; Vianello, G.; Wood, K. S.; Wood, M.; Zampieri, L.

    2015-11-01

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar’s by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  11. The Use of the BAT Instrument on SWIFT for the Detection of Prompt Gamma-Ray Emission from Novae

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Senziani, Fabio; Jean, Pierre; Hernanz, Margarita

    2007-01-01

    Gamma-rays are expected to be emitted during and immediately following a nova explosion due to the annihilation of positrons emitted by freshly produced short-lived radioactive isotopes. The expected gammaray emission is relatively short-lived and as nova explosions are unpredictable, the best chance of detecting the gamma-rays is with n wide field instrument. At the time when the flux is expected to rcach its peak, most of the gamma-ray production is at depths such that the photons suffer several Compton scatterings before escaping, degrading their energy down to the hard X-ray band (10s of keV). SWIFT/BAT is a very wide field coded mask instrument working in the energy band 14-190 keV and so is very well suited to the search for such gamma-rays. A retrospective search is being made in the BAT data for evidence for gamma-ray emission from the direction of novae at around the time of their explosion. So far the only positive detection is of RS Ophiuchi and in this case the emission is probably due to shock heating.

  12. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  13. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  14. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  15. Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less

  16. Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors

    NASA Astrophysics Data System (ADS)

    Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi

    2011-06-01

    We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.

  17. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  18. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design and construction of the Mini-Calorimeter of the AGILE satellite

    NASA Astrophysics Data System (ADS)

    Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.

    2009-01-01

    AGILE is a small space mission of the Italian Space Agency (ASI) devoted to gamma-ray and hard-X astrophysics, successfully launched on April 23, 2007. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a tungsten-silicon tracker (ST), for observations in the gamma ray energy range 30 MeV-50 GeV, a Silicon based X-ray detector, SuperAGILE (SA), for imaging in the range 18-60 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or charged particles energy loss in the range 300 keV-100 MeV. MCAL is composed of 30 CsI(Tl) scintillator bars with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for transients and gamma-ray bursts detection. In this paper a detailed description of MCAL is presented together with its performance.

  20. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  1. Gamma-ray line afterglow from burst environments

    NASA Technical Reports Server (NTRS)

    Fencl, H. S.; Boyd, R. N.; Hartmann, Dieter

    1992-01-01

    We consider photoerosion and direct pair production in a medium surrounding a gamma-ray burst. The resulting secondary gamma-rays may provide diagnostic tools of these environments and, in turn, of the nature of the bursters themselves. In some instances short-lived nuclides are formed; the beta-delayed gamma-rays produced from their decays provide the signatures of the photoerosion. In addition, annihilation radiation produced from positrons resulting from direct pair production is related to the plasma conditions in the medium. We investigate the plausibility of detecting the various radiations. Under extremely favorable conditions, the photoerosion afterglow might be detectable with the present generation of detectors. However, the positron annihilation line should be detectable under a fairly wide range in the conditions of the medium.

  2. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  3. AGILE detection of prolonged gamma-ray emission from the Galactic Nova ASASSN-18fv

    NASA Astrophysics Data System (ADS)

    Piano, G.; Lucarelli, F.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Parmiggiani, N.; Cardillo, M.; Ursi, A.; Minervini, G.; Donnarumma, I.; Vercellone, S.; Fioretti, V.; Pilia, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Ferrari, A.; Colafrancesco, S.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2018-04-01

    AGILE detected intense gamma-ray emission above 100 MeV from a source at Galactic coordinates (l, b) = (287.08, -1.08) +/- 0.6 deg (68% stat. c.l.) +/- 0.1 deg (syst.) (R.A., Dec. = 159.94, -59.84 deg, J2000), positionally consistent with the Galactic Nova ASASSN-18fv, previously reported in a gamma-ray flaring state by Fermi-LAT (ATel #11546).

  4. Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño deLeón, S.; De la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hernandez, S.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-07-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico that has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index 1.66, the high-energy component is extended to higher energies with no cutoff other than that from extragalactic background light attenuation, HAWC would observe gamma-rays with a peak energy of ˜300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift and Fermi, including 3 GRBs that were also detected by the Large Area Telescope (Fermi-LAT). An ON/OFF analysis method is employed, searching on the timescale given by the observed light curve at keV-MeV energies and also on extended timescales. For all GRBs and timescales, no statistically significant excess of counts is found and upper limits on the number of gamma-rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi satellite (Fermi-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cutoff in an additional high-energy component to be less than 100 {GeV} for reasonable assumptions about the energetics and redshift of the burst.

  5. Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope

    DOE PAGES

    Cognard, I.; Guillemot, L.; Johnson, Tyrel J.; ...

    2011-04-14

    Here, we report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nançay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties aremore » similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.« less

  6. High energy gamma-ray astronomy; Proceedings of the International Conference, ANN Arbor, MI, Oct. 2-5, 1990

    NASA Astrophysics Data System (ADS)

    Matthews, James

    The present volume on high energy gamma-ray astronomy discusses the composition and properties of heavy cosmic rays greater than 10 exp 12 eV, implications of the IRAS Survey for galactic gamma-ray astronomy, gamma-ray emission from young neutron stars, and high-energy diffuse gamma rays. Attention is given to observations of TeV photons at the Whipple Observatory, TeV gamma rays from millisecond pulsars, recent data from the CYGNUS experiment, and recent results from the Woomera Telescope. Topics addressed include bounds on a possible He/VHE gamma-ray line signal of Galactic dark matter, albedo gamma rays from cosmic ray interactions on the solar surface, source studies, and the CANGAROO project. Also discussed are neural nets and other methods for maximizing the sensitivity of a low-threshold VHE gamma-ray telescope, a prototype water-Cerenkov air-shower detector, detection of point sources with spark chamber gamma-ray telescopes, and real-time image parameterization in high energy gamma-ray astronomy using transputers. (For individual items see A93-25002 to A93-25039)

  7. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  8. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    DOE PAGES

    Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; ...

    2015-08-04

    Silicon pillar structures filled with a neutron converter material ( 10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 10 6 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 10 9 photons/cm 2s.

  9. Modeling the non-recycled Fermi Gamma-ray pulsar population

    DOE PAGES

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.; ...

    2013-09-25

    Here, we use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L γ depends on the period P and the period derivativemore » $$\\dot{P}$$. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L γ on P and $$\\dot{P}$$, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is $$L_\\gamma \\propto P^{-a} \\dot{P}^{b}$$ where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar to but not identical to the commonly assumed $$L_\\gamma \\propto \\sqrt{\\dot{E}} \\propto P^{-1.5} \\dot{P}^{0.5}$$. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 1010 G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. As a result, we note that these predictions significantly depend on our model assumptions.« less

  10. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. Copyright © 2015, American Association for the Advancement of Science.

  11. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  12. Fermi-LAT Gamma-ray Observations of Nova Lupus 2016 (ASASSN-16kt)

    NASA Astrophysics Data System (ADS)

    Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-10-01

    The Fermi Gamma-ray Space Telescope performed a ~6-day Target of Opportunity (ToO) observation of Nova Lupus 2016 (ATel #9538, #9539, CBET #4322) that commenced on September 28. Considering earlier all-sky survey Large Area Telescope (LAT) observations as well, preliminary analysis indicates gamma-ray emission at ~2 sigma was detected around 1 to 2 days after the optical peak on September 25th (pre-validated AAVSO visual lightcurve; ATel #9550, CBET #4322) when the optical spectra show opaque ejecta, similar to previous gamma-ray detected novae (Fermi-LAT collaboration, 2014 Science 345, 554; Cheung et al. 2016 ApJ 826, 142).

  13. Fermi-LAT Observations of Continued Gamma-ray Activity from Nova ASASSN-16ma

    NASA Astrophysics Data System (ADS)

    Li, Kwan-Lok; Chomiuk, Laura; Strader, Jay; Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-11-01

    Following the report of a sudden gamma-ray onset detection of nova ASASSN-16ma coincident with the optical peak of 5.5 mag on November 8 (ATel #9736), ASASSN-16ma was observed to slowly decrease in gamma-rays but has remained bright enough to be detectable with Fermi-LAT over the last 9 days (test statistic, TS > 10 per day, except for November 17 with TS=5).

  14. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  15. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  16. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  17. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  18. Fermi-LAT Bright Gamma-ray Detection of Nova ASASSN-18fv

    NASA Astrophysics Data System (ADS)

    Jean, P.; Cheung, C. C.; Ojha, R.; van Zyl, P.; Angioni, R.

    2018-04-01

    The Large Area Telescope (LAT), one of two instruments on the Fermi Gamma-ray Space Telescope, has observed bright gamma-ray emission from a source positionally consistent with the bright optical nova ASASSN-18fv (ATel #11454, #11456, #11460, #11467, #11508).

  19. Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants

    PubMed Central

    Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.

    1986-01-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724

  20. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  1. BOW TIES IN THE SKY. I. THE ANGULAR STRUCTURE OF INVERSE COMPTON GAMMA-RAY HALOS IN THE FERMI SKY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broderick, Avery E.; Shalaby, Mohamad; Tiede, Paul

    2016-12-01

    Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicularmore » to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.« less

  2. Anomaly Detection in Gamma-Ray Vehicle Spectra with Principal Components Analysis and Mahalanobis Distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.

    2006-01-23

    The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates andmore » probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.« less

  3. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    NASA Technical Reports Server (NTRS)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  4. Statistical properties of the time histories of cosmic gamma-ray bursts detected by the BATSE experiment of the Compton gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Sagdeev, Roald

    1995-01-01

    The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.

  5. Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2015-01-01

    The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.

  6. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    PubMed

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  7. Gamma-Ray Flares from the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costamante, L.; Cutini, S.; D'Ammando, F.; Dermer, C. D.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Khangulyan, D.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marelli, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Sanchez, D.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Wang, P.; Wood, K. S.; Yang, Z.; Ziegler, M.

    2011-02-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (1015 electron volts) electrons in a region smaller than 1.4 × 10-2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  8. The Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Gonthier, Peter L.; VanGuilder, Robert; Harding, Alice K.

    2004-01-01

    We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multi-beam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and gamma-ray beams are included in our Monte Carlo computer code that simulates the characteristics of the Galactic population of radio and gamma-ray pulsars. We adopted with some modifications the radio beam geometry of Arzoumanian, Chernoff & Cordes (2002). For the gamma-ray beam, we have assumed the slot gap geometry described in the work of Muslimov & Harding (2003). To account for the shape of the distribution of radio pulsars in the P(dot) - P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen 7 radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud gamma-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud gamma-ray pulsars, while GLAST, with greater sensitivity is expected to detect 276 radio-quiet and 344 radio-loud gamma-ray pulsars. When the Parkes multi-beam pulsar survey is excluded, the ratio of radio-loud to radio-quiet gamma-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud gamma-ray pulsars. In the radio geometry adopted, short period pulsars are core dominated. Unlike the EGRET gamma-ray pulsars, our model predicts that when two gamma-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the gamma-ray peaks. Our findings suggest that further improvements are required in describing both the radio and gamma-ray geometries.

  9. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  10. The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-03-25

    The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 × 10 –8 ph cm –2 s –1 (for E>100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 × 10 –8 ph cm –2 s –1 (for E>100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range ~1-5 GeV. The rotational energy-loss rate (more » $$\\dot{E}$$) of these neutron stars spans five decades, from ~3 × 10 33 erg s –1 to 5 × 10 38 erg s –1, and the apparent efficiencies for conversion to gamma-ray emission range from ~0.1% to ~ unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by ≳0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. In conclusion, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.« less

  11. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  12. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  13. An Ordinary Gamma-Ray Burst with Extraordinary Consequences

    NASA Image and Video Library

    2017-10-18

    On Aug. 17, the Gamma-ray Burst Monitor on NASA's Fermi Gamma-ray Space Telescope caught a short burst of gamma rays from the spectacular smashup of two neutron stars, setting off a chain of events that marks the first-ever detection of a cosmic event in gravitational waves and different kinds of light. NASA scientists Colleen Wilson-Hodge and Tyson Littenberg explain what happened and what it means for science and discovery.

  14. Low energy gamma ray emission from the Cygnus OB2 association

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.

  15. New Organic Scintillators for Neutron Detection

    DTIC Science & Technology

    2016-03-01

    highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are...New Organic Scintillators for Neutron Detection Distribution Statement A. Approved for public release; distribution is unlimited. March...Title: New Organic Scintillators for Neutron Detection I. Abstract In this project, Radiation Monitoring Devices (RMD) proposes to develop novel

  16. Low energy prompt gamma-ray tests of a large volume BGO detector.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A

    2012-01-01

    Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. In-flight observation of long duration gamma-ray glows by aircraft

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  18. Fermi detection of delayed GeV emission from the short gamma-ray burst 081024B

    DOE PAGES

    Abdo, A. A.

    2010-03-03

    Here, we report on the detailed analysis of the high-energy extended emission from the short gamma-ray burst (GRB) 081024B detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. Furthermore, the light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 s whereas the emission in the Fermi Large Area Telescope lasts for about 3 s. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. These observations, together with the earlier reported study of the bright short GRBmore » 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.« less

  19. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  20. The first Fermi-LAT Gamma-Ray burst catalog

    DOE PAGES

    Ackermann, M.; Ajello, M.; Asano, K.; ...

    2013-10-23

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ~20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi andmore » processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. Here, we summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.« less

  1. The sensitivity of EGRET to gamma ray polarization

    NASA Astrophysics Data System (ADS)

    Mattox, John R.

    1990-05-01

    A Monte Carlo simulation shows that EGRET (Energetic Gamma-Ray Experimental Telescope) does not even have sufficient sensitivity to detect 100 percent polarized gamma-rays. This is confirmed by analysis of calibration data. A Monte Carlo study shows that the sensitivity of EGRET to polarization peaks around 100 MeV. However, more than 10 5 gamma-ray events with 100 percent polarization would be required for a 3 sigma significance detection - more than available from calibration, and probably more than will result from a single score source during flight. A drift chamber gamma ray telescope under development (Hunter and Cuddapah 1989) will offer better sensitivity to polarization. The lateral position uncertainty will be improved by an order of magnitude. Also, if pair production occurs in the drift chamber gas (xenon at 2 bar) instead of tantalum foils, the effects of multiple Coulomb scattering will be reduced.

  2. Gamma-ray flares from the Crab Nebula.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  3. Gamma-Ray Flares from the Crab Nebula

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-01-06

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega–electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta–electron-volt (10more » 15 electron volts) electrons in a region smaller than 1.4 × 10 -2 parsecs. In conclusion, these are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.« less

  4. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-12-08

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  5. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an outline of how these techniques can be used to superior detection of radioactive and fissile materials.

  6. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; hide

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  7. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  8. High-Energy Gamma-Ray Emission From Solar Flares: Summary of Fermi LAT Detections and Analysis of Two M-Class Flares

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    We present the detections of 19 solar flares detected in high-energy gamma rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its rst four years of operation. Interestingly, all ares are associated with fairly fast Coronal Mass Ejections (CMEs) and are not all powerful X-ray ares. We then describe the detailed temporal, spatial and spectral characteristics of the rst two long-lasting events: the 2011 March 7 are, a moderate (M3.7) impulsive are followed by slowly varying gamma-ray emission over 13 hours, and the 2011 June 7 M2.5 are, which was followed by gamma-ray emission lasting for 2 hours. We compare the Fermi-LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that a hadronic origin of the gamma rays is more likely than a leptonic origin and nd that the energy spectrum of the proton distribution softens after the 2011 March 7 are, favoring a scenario with continuous acceleration at the are site. This work suggests that proton acceleration in solar ares is more common than previously thought, occurring for even modest X-ray ares, and for longer durations.

  9. The mini-calorimeter of the AGILE satellite

    NASA Astrophysics Data System (ADS)

    Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Costa, E.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.

    2006-06-01

    AGILE is a small space mission of the Italian Space Agency (ASI) devoted to astrophysics in the gamma-ray energy range 30 MeV - 50 GeV, and in the X-ray band 15 keV - 45 keV. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a Tungsten-Silicon Tracker (ST), for observations in the gamma ray energy range 30 MeV - 50 GeV, a Silicon based X-ray detector, Super-Agile (SA), for imaging in the range 15 keV - 40 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or particle energy deposits between 300 keV and 200 MeV. The payload is currently fully integrated and the satellite is expected to be launched in the second half of 2006. MCAL is composed of 30 CsI(Tl) scintillator detectors with the shape of a bar with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for the detection of transients and Gamma Ray Bursts. In this paper a detailed description of MCAL is presented together with the first on ground calibration results.

  10. A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic ray spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.

    2007-12-17

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less

  11. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  12. GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Archambault, S.; Archer, A.

    2015-12-20

    Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet’s base. VERITAS detected gamma-ray emission up to ∼200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of PKS 1441+25more » suggests that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths.« less

  13. FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+6114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2009-12-01

    We report the detection of gamma-ray pulsations (>=0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar tomore » the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +- 0.01 and 0.57 +- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 +- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +- 0.22 +- 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 +- 0.22 +- 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane.« less

  14. Fermi LAT Detection of Pulsed Gamma-Rays From the Vela-Like Pulsars PSR J1048-5832 and PSR J2229+6114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    We report the detection of {gamma}-ray pulsations ({ge}0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the {gamma}-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the {gamma}-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar tomore » the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 {+-} 0.01 and 0.57 {+-} 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 {+-} 0.01. The {gamma}-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 {+-} 0.22 {+-} 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 {+-} 0.22 {+-} 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young {gamma}-ray pulsars that make up the dominant population of GeV {gamma}-ray sources in the Galactic plane.« less

  15. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  16. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  17. Using gamma-ray emission to measure areal density of inertial confinement fusion capsulesa)

    NASA Astrophysics Data System (ADS)

    Hoffman, N. M.; Wilson, D. C.; Herrmann, H. W.; Young, C. S.

    2010-10-01

    Fusion neutrons streaming from a burning inertial confinement fusion capsule generate gamma rays via inelastic nuclear scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density (ρR) and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, C12 nuclei emit gamma rays at 4.44 MeV after excitation by 14.1 MeV neutrons from D+T fusion. These gamma rays can be measured by a new gamma-ray detector under development. Analysis of predicted signals is in progress, with results to date indicating that the method promises to be useful for diagnosing imploded capsules.

  18. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  19. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; hide

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  20. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  1. Measurement of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makii, H.; Miyatake, H.; Wakabayashi, Y.

    2012-11-12

    We have measured the {gamma}-ray angular distribution of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC (Tokai Radioactive Ion Accelerator Complex) to accurately determine the E1 and E2 cross sections. In this experiment, we used high efficiency anti-Compton NaI(T1) spectrometers to detect a {gamma}-ray from the reaction with large S/N ratio, intense pulsed {alpha}-beams to discriminate true event from background events due to neutrons from {sup 13}C({alpha},n){sup 16}O reaction with a time-of-flight (TOF) method. We succeeded in removing a background events due to neutrons and clearly detected {gamma}-ray from the {sup 12}C({alpha}{gamma}){sup 16}O reaction with high statistics.

  2. A search for optical counterparts of gamma-ray bursts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hye-Sook

    Gamma Ray Bursts (GRBS) are mysterious flashes of gamma rays lasting several tens to hundreds of seconds that occur approximately once per day. NASA launched the orbiting Compton Gamma Ray Observatory to study GRBs and other gamma ray phenomena. CGRO carries the Burst and Transient Experiment (BATSE) specifically to study GRBS. Although BATSE has collected data on over 600 GRBS, and confirmed that GRBs are localized, high intensity point sources of MeV gamma rays distributed isotropically in the sky, the nature and origin of GRBs remains a fundamental problem in astrophysics. BATSE`s 8 gamma ray sensors located on the comersmore » of the box shaped CGRO can detect the onset of GRBs and record their intensity and energy spectra as a function of time. The position of the burst on the sky can be determined to < {plus_minus}10{degrees} from the BATSE data stream. This position resolution is not sufficient to point a large, optical telescope at the exact position of a GRB which would determine its origin by associating it with a star. Because of their brief duration it is not known if GRBs are accompanied by visible radiation. Their seemingly large energy output suggests thatthis should be. Simply scaling the ratio of visible to gamma ray intensities of the Crab Nebula to the GRB output suggests that GRBs ought to be accompanied by visible flashes of magnitude 10 or so. A few photographs of areas containing a burst location that were coincidentally taken during the burst yield lower limits on visible output of magnitude 4. The detection of visible light during the GRB would provide information on burst physics, provide improved pointing coordinates for precise examination of the field by large telescope and provide the justification for larger dedicated optical counterpart instruments. The purpose of this experiment is to detect or set lower limits on optical counterpart radiation simultaneously accompanying the gamma rays from« less

  3. Fermi Large Area Telescope detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A [ Fermi-LAT detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A

    DOE PAGES

    Yuan, Yajie; Funk, Stefan; Jóhannesson, Gülauger; ...

    2013-12-02

    Here, we report on observations of the supernova remnant Cassiopeia A in the energy range from 100 MeV to 100 GeV using 44 months of observations from the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. We perform a detailed spectral analysis of this source and report on a low-energy break in the spectrum atmore » $$1.72^{+1.35}_{-0.89}$$ GeV. By comparing the results with models for the gamma-ray emission, we find that hadronic emission is preferred for the GeV energy range.« less

  4. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    NASA Astrophysics Data System (ADS)

    Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.

    2017-10-01

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2-5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  5. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; hide

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  6. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    NASA Technical Reports Server (NTRS)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  7. Fermi-LAT Gamma-Ray Bursts and Insights from Swift

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.

    2010-01-01

    A new revolution in Gamma-ray Burst (GRB) observations and theory has begun over the last two years since the launch of the Fermi Gamma-ray Space Telescope. The new window into high energy gamma-rays opened by the Fermi-Large Area Telescope (LAT) is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts compared to the large sample detected by Swift over the last 6 years. In this talk, I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by the Swift X-ray Telescope (XRT) and UV/Optical Telescope (UVOT). Through comparisons between the GRBs detected by Swift-BAT, G8M, and LAT, we can learn about the unique characteristics, physical differences, and the relationships between each population. These population characteristics provide insight into the different physical parameters that contribute to the diversity of observational GRB properties.

  8. Enhanced high-energy gamma-ray emission from the microquasar Cygnus X-3 detected by Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Loh, Alan; Corbel, Stephane

    2017-02-01

    Following the recent decrease of the hard X-ray emission from the high-mass X-ray binary Cygnus X-3 as seen by the Swift/Burst Alert Telescope (https://swift.gsfc.nasa.gov/results/transients/CygX-3/), the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed significant gamma-ray emission originating from the microquasar.

  9. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    NASA Technical Reports Server (NTRS)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; hide

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  10. The AGILE Mission and Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; INFN, section of Trieste; Tavani, M.

    2007-05-01

    The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a largemore » field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  11. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    NASA Astrophysics Data System (ADS)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  12. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  13. Fermi LAT detection of increased gamma-ray activity from blazar S5 0716+71

    NASA Astrophysics Data System (ADS)

    Buson, S.

    2014-04-01

    The Large Area Telescope (LAT), one of two instruments on-board the Fermi Gamma-ray Space Telescope, has observed an increase in gamma-ray activity from a source positionally coincident with the BL Lac object S5 0716+71 (also known as 2FGL J0721.9+7120, Nolan et al. ...

  14. The gamma-ray light curves of SN 1987A

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Share, Gerald H.

    1990-01-01

    Observations of the SN 1987A ejecta in four Co-56-decay gamma-ray lines, obtained using the SMM gamma-ray spectrometer between February 1987 and May 1989, are reported and analyzed. The instrument characteristics and data-reduction procedures are described, and the results are presented in extensive tables and graphs and discussed with reference to theoretical models. Gamma-ray fluxes significantly above possible instrumental levels (as determined from analysis of pre-1987 data) were detected in the second half of 1987 and the first half of 1988. The data are found to favor a model with some Co-56 in regions of low gamma-ray optical depth by 200 d after the SN outburst over models with all Co-56 at one depth within a uniform expanding envelope. Also investigated are the gamma-ray contribution to the total bolometric luminosity and the escape (and potential observability) of Co-57 gamma rays.

  15. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  16. Fermi-LAT Constraints on the Pulsar Wind Nebula Nature of HESS J1857+026

    NASA Technical Reports Server (NTRS)

    Rousseau, R.; Grondin, M.-H.; VanEtten, A.; Lemoine-Goumard, M.; Bogdanov, S.; Hessels, J. W. T.; Kaspi, V. M.; Arzoumanian, Z.; Camilo, F.; Casandjian, J. M.; hide

    2012-01-01

    Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857+026 is a spatially extended gamma-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856+0245. Aims. We search for -ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase.fold 36 months of gamma-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete gamma-ray spectral and morphological analysis. Results. No pulsation was detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857+026. The gamma-ray spectrum is well described by a simple power law with a spectral index of Gamma = 1.53 +/- 0.11(sub stat) +/- 0.55(sub syst) and an energy flux of G(0.1 C100 GeV) = (2.71 +/- 0.52(sub stat) +/- 1.51(sub syst) X 10(exp -11) ergs/ sq cm/s. This implies a gamma.ray efficiency of approx 5 %, assuming a distance of 9 kpc, the gamma-ray luminosity of L(sub gamma) (sub PWN) (0.1 C100 GeV) = (2.5 +/- 0.5(sub stat) +/- 1.5(sub syst)) X 10(exp 35)(d/(9kpc))(exp 2) ergs/s and E-dot = 4.6 X 10(exp 36) erg /s, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature.

  17. DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    2012-05-10

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat}more » {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.« less

  18. Discovery of gamma- and X-ray pulsations from the young and energetic PSR J1357$-$6429 with Fermi and XMM-Newton

    DOE PAGES

    Lemoine-Goumard, M.; Zavlin, V. E.; Grondin, M. -H.; ...

    2011-09-07

    Context. Since the launch of the Fermi satellite, the number of known gamma-ray pulsars has increased tenfold. Most gamma-ray detected pulsars are young and energetic, and many are associated with TeV sources. PSR J1357-6429 is a high spin-down power pulsar (È = 3.1 × 1036 erg s -1), discovered during the Parkes multibeam survey of the Galactic plane, with significant timing noise typical of very young pulsars. In the very-high-energy domain (E > 100 GeV), H.E.S.S. has reported the detection of the extended source HESS J1356-645 (intrinsic Gaussian width of 12') whose centroid lies 7' from PSR J1357-6429. Aims. Wemore » search for gamma- and X-ray pulsations from this pulsar, characterize the neutron star emission and explore the environment of PSR J1357-6429. Methods. Using a rotational ephemeris obtained with 74 observations made with the Parkes telescope at 1.4 GHz, we phase-fold more than two years of gamma-ray data acquired by the Large Area Telescope on-board Fermi as well as those collected with XMM-Newton, and perform gamma-ray spectral modeling. Results. Significant gamma- and X-ray pulsations are detected from PSR J1357-6429. The light curve in both bands shows one broad peak. Gamma-ray spectral analysis of the pulsed emission suggests that it is well described by a simple power-law of index 1.5 ± 0.3 stat ± 0.3 syst with an exponential cut-off at 0.8 ± 0.3 stat ± 0.3 syst GeV and an integral photon flux above 100 MeV of (6.5 ± 1.6 stat ± 2.3 syst) × 10 -8 cm -2 s -1. The X-ray spectra obtained from the new data provide results consistent with previous work. Upper limits on the gamma-ray emission from its potential pulsar wind nebula (PWN) are also reported. Conclusions. Assuming a distance of 2.4 kpc, the Fermi LAT energy flux yields a gamma-ray luminosity for PSR J1357-6429 of L γ = (2.13 ± 0.25 stat ± 0.83 syst) × 1034 erg s -1, consistent with an relationship. The Fermi non-detection of the pulsar wind nebula associated with HESS J1356-645 provides new constraints on the electron population responsible for the extended TeV emission.« less

  19. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; hide

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  20. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  1. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  2. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  3. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  4. TIME STRUCTURE OF GAMMA-RAY SIGNALS GENERATED IN LINE-OF-SIGHT INTERACTIONS OF COSMIC RAYS FROM DISTANT BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosekin, Anton; Aharonian, Felix; Essey, Warren

    2012-10-01

    Blazars are expected to produce both gamma rays and cosmic rays. Therefore, observed high-energy gamma rays from distant blazars may contain a significant contribution from secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. Unlike the standard models of blazars that consider only the primary photons emitted at the source, models that include the cosmic-ray contribution predict that even {approx}10 TeV photons should be detectable from distant objects with redshifts as high as z {>=} 0.1. Secondary photons contribute to signals of point sources only if the intergalactic magnetic fields aremore » very small, B {approx}< 10{sup -14} G, and their detection can be used to set upper bounds on magnetic fields along the line of sight. Secondary gamma rays have distinct spectral and temporal features. We explore the temporal properties of such signals using a semi-analytical formalism and detailed numerical simulations, which account for all the relevant processes, including magnetic deflections. In particular, we elucidate the interplay of time delays coming from the proton deflections and from the electromagnetic cascade, and we find that, at multi-TeV energies, secondary gamma rays can show variability on timescales of years for B {approx} 10{sup -15} G.« less

  5. Neutron and Gamma-ray Detection in Reversed-Field Pinch Deuterium Plasmas in the RFX-mod Device

    NASA Astrophysics Data System (ADS)

    Zuin, Matteo; Stevanato, Luca; Martines, Emilio; Gonzalez, Winder; Cavazzana, Roberto; Cester, Davide; Nebbia, G.; Sajo-Bohus, Laszlo; Viesti, Giuseppe

    2014-10-01

    An experimental analysis of neutron and gamma-ray fluxes exiting purely ohmically heated plasmas in reversed-field pinch (RFP) configuration is presented. The diagnostic system, installed in the RFX-mod, is made of 2 scintillators (EJ-301 liquid and NaI(Tl)) coupled to flat-panel photomultipliers, which can be operated under magnetic fields. The production of neutrons and gamma rays in Deuterium plasmas is found to be strongly dependent on the Ohmic input power, with a threshold value of about 1.2 MA in terms of plasma current level, below which low levels of gamma rays and almost no neutrons are detected. Neutron and gamma production is characterized by a bursty behavior, correlated to the spontaneous magnetic reconnection events, occurring almost cyclically in the RFP plasmas. The role of ion heating and particle acceleration during such events is discussed.

  6. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  7. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  8. Balloon Borne Instrumentation for Detection of Gamma Ray Glows

    NASA Astrophysics Data System (ADS)

    Sterpka, C. F.; Bagheri, M.; Dwyer, J. R.; Liu, N.; Morman, K.; Gadbois, J. L.; Bozarth, A.; Boggs, L.; Mailyan, B. G.; Nag, A.; Lazarus, S. M.; Austin, M.; Aguirre, F.; Colvin, J.; Haley, V.; Rassoul, H.

    2017-12-01

    Gamma-ray glows are emissions of gamma rays that last from seconds to minutes and are produced by runaway electrons in high-field regions of thunderclouds. The lightning group at the University of New Hampshire in collaboration with the Florida Institute of Technology has designed balloon-based instrumentation for flying into thunderstorms with the aim of detecting such radiation. The instrumentation includes two Geiger-Muller tubes, sensitive to both gamma rays and charged particles, and a low-power lightweight electric field mill, designed and calibrated to measure both polarity and amplitude of the vertical electric field inside the thunderstorm region. With the polarity measurement provided by the field mill, the Geiger-Muller tubes should be capable of differentiating energetic electrons from positrons. Additionally, a lead sheet is placed between the Geiger-Muller tubes to differentiate between charged particles and gamma rays. We have conducted several test flights of this system during the summer of 2017. In this study, we will present an overview of the instrumentation and discuss preliminary results from the test flights.

  9. Photon attenuation and neutron moderation correction factors for the inspection of cargo containers with tagged neutrons

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Perot, B.; Viesti, G.; Valkovic, V.; Sudac, D.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Lunardon, M.; Bottosso, C.; Moretto, S.; Pesente, S.; Peerani, P.; Sequeira, V.; Salvato, M.

    2007-11-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system uses 14 MeV neutrons produced by the D(T,n α) reaction to detect explosives in cargo containers. Fast-neutron-induced reactions inside the container produce gamma rays, which are detected in coincidence with the associated alpha particle. The definition of the neutron path and the time-of-flight measurement allow positioning the source of the gamma ray inside the container, while the chemical composition of the target material is correlated with the energy spectrum of the coincident gamma rays. However, in case of dense cargo, neutron moderation and photon attenuation inside the container make difficult the reconstruction of the material composition from the measured gamma-ray energy spectrum. An analytical method has been developed and validated against experimental data, which allows obtaining the chemical carbon-to-oxygen and carbon-to-nitrogen ratios of the inspected items from the gamma-ray energy spectra. The principle of the method is presented along with validation tests.

  10. OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7-3946 WITH THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.{sup 0}55 {+-} 0.{sup 0}04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of {Gamma} = 1.5 {+-} 0.1 thatmore » coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.« less

  11. Gamma Irradiation Upregulates B-cell Translocation Gene 2 to Attenuate Cell Proliferation of Lung Cancer Cells Through the JNK and NF-κB Pathways.

    PubMed

    Wang, Peihe; Cai, Yuanyuan; Lin, Dongju; Jiang, Yingxiao

    2017-08-07

    Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we investigated the signaling pathway by which gamma ray might regulate BTG2. We found that gamma ray inhibited A549 cell viability and promoted apoptosis and cell cycle arrest, while BTG2 knockdown could relieve the effect caused by gamma ray on A549 cells. Moreover, we confirmed that the effect of BTG2 partly depends on p53 expression and gamma ray-promoting BTG2 expression through the JNK/NF-κB signaling pathway. Our study assessed the possible mechanism of gamma ray in tumor treatment and also investigated the role of BTG2 in gamma ray therapy. All these findings might give a deep understanding of the effect of gamma ray on the progression of lung cancer involving BTG2.

  12. Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Williams, D.; Clark, J. A.; Williamson, A. R.; Heng, I. S.

    2018-05-01

    The first detection of a binary neutron star merger, GW170817, and an associated short gamma-ray burst confirmed that neutron star mergers are responsible for at least some of these bursts. The prompt gamma-ray emission from these events is thought to be highly relativistically beamed. We present a method for inferring limits on the extent of this beaming by comparing the number of short gamma-ray bursts (SGRBs) observed electromagnetically with the number of neutron star binary mergers detected in gravitational waves. We demonstrate that an observing run comparable to the expected Advanced LIGO (aLIGO) 2016–2017 run would be capable of placing limits on the beaming angle of approximately θ \\in (2\\buildrel{\\circ}\\over{.} 88,14\\buildrel{\\circ}\\over{.} 15), given one binary neutron star detection, under the assumption that all mergers produce a gamma-ray burst, and that SGRBs occur at an illustrative rate of {{ \\mathcal R }}grb}=10 {Gpc}}-3 {yr}}-1. We anticipate that after a year of observations with aLIGO at design sensitivity in 2020, these constraints will improve to θ \\in (8\\buildrel{\\circ}\\over{.} 10,14\\buildrel{\\circ}\\over{.} 95), under the same efficiency and SGRB rate assumptions.

  13. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals

    DOE PAGES

    He, Yihui; Matei, Liviu; Jung, Hee Joon; ...

    2018-04-23

    Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materialsmore » in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10 –3 cm 2 V –1) derives mainly from the record long hole carrier lifetime (over 25 μs). Here, the easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.« less

  14. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yihui; Matei, Liviu; Jung, Hee Joon

    Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materialsmore » in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10 –3 cm 2 V –1) derives mainly from the record long hole carrier lifetime (over 25 μs). Here, the easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.« less

  15. Six millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection of millisecond pulsars

    DOE PAGES

    Espinoza, C. M.; Guillemot, L.; Celik, O.; ...

    2013-01-25

    In this work, we report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and J2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While PSR J2051-0827more » is firmly detected, we can only give upper limits for the X-ray flux of PSR J1600-3053. There are no dedicated X-ray observations available for the other three objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs. This sample is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We show that MSPs with pulsed gamma-ray emission which is phase-aligned with the radio emission present the steepest radio spectra and the largest magnetic fields at the light cylinder among all MSPs. Also, we observe a trend towards very low, or undetectable, radio linear polarization levels. These properties could be attributed to caustic radio emission produced at a range of different altitudes in the magnetosphere. In conclusion, we note that most of these characteristics are also observed in the Crab pulsar, the only other radio pulsar known to exhibit phase-aligned radio and gamma-ray emission.« less

  16. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016]Peng and collaborators argue that this emission is due solely to cosmic-ray interactions with interstellar gas. This picture is supported by the lack of variability in the emission, and the fact that Arp 220s gamma-ray luminosity is consistent with the scaling relation between gamma-ray and infrared luminosity for star-forming galaxies. The authors also argue that, due to Arp 220s high gas density, all cosmic rays will interact with the gas before escaping.Under these two assumptions, Peng and collaborators use the gamma-ray luminosity and the known supernova rate in Arp 220 to estimate how efficiently cosmic rays are acceleratedby supernova remnants in the galaxy. They determine that 4.2 2.6% of the supernova remnants kinetic energy is used to accelerate cosmic rays above 1 GeV.This is the first time such a rate has been measured directly from gamma-ray emission, but its consistent with estimates of 3-10% efficiency in the Milky Way. Future analysis of other ultraluminous infrared galaxies like Arp 220 with Fermi (and Pass 8!) will hopefully reveal more about these recent-merger, starburst environments.CitationFang-Kun Peng et al 2016 ApJ 821 L20. doi:10.3847/2041-8205/821/2/L20

  17. Observations of the Large Magellanic Cloud with Fermi

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-03-18

    Context. The Large Magellanic Cloud (LMC) is to date the only normal external galaxy that has been detected in high-energy gamma rays. High-energy gamma rays trace particle acceleration processes and gamma-ray observations allow the nature and sites of acceleration to be studied. Aims. We characterise the distribution and sources of cosmic rays in the LMC from analysis of gamma-ray observations. Methods. We analyse 11 months of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope and compare it to tracers of the interstellar medium and models of the gamma-ray sources in the LMC. Results.more » The LMC is detected at 33σ significance. The integrated >100 MeV photon flux of the LMC amounts to (2.6 ± 0.2) × 10 -7 ph cm -2 s -1 which corresponds to an energy flux of (1.6 ± 0.1) × 10 -10 erg cm -2 s -1, with additional systematic uncertainties of 16%. The analysis reveals the massive star forming region 30 Doradus as a bright source of gamma-ray emission in the LMC in addition to fainter emission regions found in the northern part of the galaxy. The gamma-ray emission from the LMC shows very little correlation with gas density and is rather correlated to tracers of massive star forming regions. The close confinement of gamma-ray emission to star forming regions suggests a relatively short GeV cosmic-ray proton diffusion length. In conclusion, the close correlation between cosmic-ray density and massive star tracers supports the idea that cosmic rays are accelerated in massive star forming regions as a result of the large amounts of kinetic energy that are input by the stellar winds and supernova explosions of massive stars into the interstellar medium.« less

  18. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  19. Primary standardization of 57Co.

    PubMed

    Koskinas, Marina F; Moreira, Denise S; Yamazaki, Ione M; de Toledo, Fábio; Brancaccio, Franco; Dias, Mauro S

    2010-01-01

    This work describes the method developed by the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, for the standardization of a (57)Co radioactive solution. Cobalt-57 is a radionuclide used for calibrating gamma-ray and X-ray spectrometers, as well as a gamma reference source for dose calibrators used in nuclear medicine services. Two 4pibeta-gamma coincidence systems were used to perform the standardization, the first used a 4pi(PC) counter coupled to a pair of 76 mm x 76 mm NaI(Tl) scintillators for detecting gamma-rays, the other one used a HPGe spectrometer for gamma detection. The measurements were performed by selecting a gamma-ray window comprising the (122 keV+136 keV) total absorption energy peaks in the NaI(Tl) and selecting the total absorption peak of 122 keV in the germanium detector. The electronic system used the TAC method developed at LMN for registering the observed events. The methodology recently developed by the LMN for simulating all detection processes in a 4pibeta-gamma coincidence system, by means of the Monte Carlo technique, was applied and the behavior of extrapolation curve compared to experimental data. The final activity obtained by the Monte Carlo calculation agrees with the experimental results within the experimental uncertainty. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Six faint gamma-ray pulsars seen with the Fermi Large Area Telescope: Towards a sample blending into the background

    DOE PAGES

    Hou, X.; Smith, D. A.; Guillemot, L.; ...

    2014-10-14

    Context. Here, GeV gamma-ray pulsations from over 140 pulsars have been characterized using the Fermi Large Area Telescope, enabling improved understanding of the emission regions within the neutron star magnetospheres, and the contributions of pulsars to high energy electrons and diffuse gamma rays in the Milky Way. The first gamma-ray pulsars to be detected were the most intense and/or those with narrow pulses. Aims. As the Fermi mission progresses, progressively fainter objects can be studied. In addition to more distant pulsars (thus probing a larger volume of the Galaxy), or ones in high background regions (thus improving the sampling uniformitymore » across the Galactic plane), we detect pulsars with broader pulses or lower luminosity. Adding pulsars to our catalog with inclination angles that are rare in the observed sample, and/or with lower spindown power, will reduce the bias in the currently known gamma-ray pulsar population. Methods. We use rotation ephemerides derived from radio observations to phase-fold gamma rays recorded by the Fermi Large Area Telescope, to then determine the pulse profile properties. Spectral analysis provides the luminosities and, when the signal-to-noise ratio allows, the cutoff energies. We constrain the pulsar distances by different means in order to minimize the luminosity uncertainties. Results. We present six new gamma-ray pulsars with an eclectic mix of properties. Three are young, and three are recycled. They include the farthest, the lowest power, two of the highest duty-cycle pulsars seen, and only the fourth young gamma-ray pulsar with a radio interpulse. Finally, we discuss the biases existing in the current gamma-ray pulsar catalog, and steps to be taken to mitigate the bias.« less

  1. Analysis of the COS B data for evidence of linear polarization of VELA pulsar gamma rays

    NASA Astrophysics Data System (ADS)

    Mattox, John R.; Mayer-Hasselwander, Hans A.; Strong, Andy W.

    1990-11-01

    The COS B spark chamber telescope observations of the Vela pulsar were analyzed for gamma-ray polarization. No significant quadrupole moment is found in the azimuthal distribution of the electron-positron pair production planes. However, analysis of the sensitivity indicates that even 100-percent polarization would not be detected. Therefore, the null result does not constrain the polarization of the Vela pulsar gamma-ray emission. This result contradicts the report of Caraveo et al. (1988) of possible evidence for polarization of the Vela pulsar gamma rays.

  2. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  3. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  4. Fission Signatures for Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-06-01

    Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The trade off of signatures, their means of stimulation, and methods of detection, will be reviewed.

  5. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars therefore provides a fresh perspective on the early evolution of the luminosity and beam width of the gamma-ray emission from young pulsars, calling for thin and more luminous gaps.

  6. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  7. DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data

    DOE PAGES

    Poci, A.; Kuehn, K.; Abbott, T.; ...

    2016-09-30

    Here, the Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automatedmore » notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.« less

  8. DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poci, A.; Kuehn, K.; Abbott, T.

    Here, the Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automatedmore » notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.« less

  9. Fermi LAT discovery of GeV gamma-ray emission from the young supernova remnan Cassiopeia A

    DOE PAGES

    Abdo, A. A.

    2010-01-27

    Here, we report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant (SNR) with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. Our observations reveal a source with no discernible spatial extension detected at a significance level of 12.2σ above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation—Cassiopeia A (Cas A). The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles acceleratedmore » in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W CR sime (1-4) × 1049 erg thanks to the well-known density in the remnant assuming that the observed gamma ray originates in the SNR shell(s). Finally, the magnetic field in the radio-emitting plasma can be robustly constrained as B ≥ 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.« less

  10. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    DOE PAGES

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less

  11. The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    NASA Astrophysics Data System (ADS)

    Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.

    2018-02-01

    We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.

  12. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Albert, A.

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign andmore » show that, despite their low latitudes, most of them are likely of extragalactic origin.« less

  13. The FERMI All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in Our Galaxy

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2013-06-17

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. In addition, for each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. Finally, we proceed to discuss the 27 sources found at Galactic latitudes smaller thanmore » 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.« less

  14. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  15. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  16. The search for MeV gamma-ray pulsars with COMPTEL

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Buccheri, R.; Busetta, M.; Carraminana, A.; Connors, A.; Diehl, R.; Hermsen, W.; Kuiper, L.; Lichti, G. G.; Much, R.

    1995-01-01

    The Compton Gamma Ray Observatory (CGRO) completed a full sky survey in November 1993 during which the number of known gamma-ray pulsars more than doubled. During this survey the Compton Telescope (COMPTEL) observed the classical isolated pulsars Crab and Vela and detected PSR 1509-58. Attempts to detect the newly discovered pulsars, Geminga, PSR 1706-44 and PSR 1055-52, in the COMPTEL energy range provide only upper limits. The results of these analyses are presented together with the outcome of a search for further candidate radio pulsars whose ephemerides are given in the Princeton Pulsar Catalogue.

  17. Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole

    NASA Astrophysics Data System (ADS)

    Balagopal V., A.; Haungs, A.; Huege, T.; Schröder, F. G.

    2018-02-01

    The South Pole, which hosts the IceCube Neutrino Observatory, has a complete and around-the-clock exposure to the Galactic Center. Hence, it is an ideal location to search for gamma rays of PeV energy coming from the Galactic Center. However, it is hard to detect air showers initiated by these gamma rays using cosmic-ray particle detectors due to the low elevation of the Galactic Center. The use of antennas to measure the radio footprint of these air showers will help in this case, and would allow for a 24/7 operation time. So far, only air showers with energies well above 10^{16} eV have been detected with the radio technique. Thus, the energy threshold has to be lowered for the detection of gamma-ray showers of PeV energy. This can be achieved by optimizing the frequency band in order to obtain a higher level of signal-to-noise ratio. With such an approach, PeV gamma-ray showers with high inclination can be measured at the South Pole.

  18. Risk analysis: divergent models and convergent interpretations

    NASA Technical Reports Server (NTRS)

    Carnes, B. A.; Gavrilova, N.

    2001-01-01

    Material presented at a NASA-sponsored workshop on risk models for exposure conditions relevant to prolonged space flight are described in this paper. Analyses used mortality data from experiments conducted at Argonne National Laboratory on the long-term effects of external whole-body irradiation on B6CF1 mice by 60Co gamma rays and fission neutrons delivered as a single exposure or protracted over either 24 or 60 once-weekly exposures. The maximum dose considered was restricted to 1 Gy for neutrons and 10 Gy for gamma rays. Proportional hazard models were used to investigate the shape of the dose response at these lower doses for deaths caused by solid-tissue tumors and tumors of either connective or epithelial tissue origin. For protracted exposures, a significant mortality effect was detected at a neutron dose of 14 cGy and a gamma-ray dose of 3 Gy. For single exposures, radiation-induced mortality for neutrons also occurred within the range of 10-20 cGy, but dropped to 86 cGy for gamma rays. Plots of risk relative to control estimated for each observed dose gave a visual impression of nonlinearity for both neutrons and gamma rays. At least for solid-tissue tumors, male and female mortality was nearly identical for gamma-ray exposures, but mortality risks for females were higher than for males for neutron exposures. As expected, protracting the gamma-ray dose reduced mortality risks. Although curvature consistent with that observed visually could be detected by a model parameterized to detect curvature, a relative risk term containing only a simple term for total dose was usually sufficient to describe the dose response. Although detectable mortality for the three pathology end points considered typically occurred at the same level of dose, the highest risks were almost always associated with deaths caused by tumors of epithelial tissue origin.

  19. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) andmore » 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).« less

  20. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  1. Helios-2 Vela-Ariel-5 gamma-ray burst source position

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Trainor, J. H.; Desai, U. D.; Klebesadel, R. W.; Ricketts, M.; Heluken, H.

    1979-01-01

    The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure.

  2. High Energy Astrophysics with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  3. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    NASA Astrophysics Data System (ADS)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  4. CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A

    DOE PAGES

    Aliu, E.; Aune, T.; Barnacka, A.; ...

    2014-10-10

    In this study, prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is alsomore » evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. In conclusion, the non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.« less

  5. Chandra X-Ray Observations of the Two Brightest Unidentified High Galactic Latitude Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Donato, D.; Gehrels, N.; Sokolovsky, K. V.; Giroletti, M.

    2012-01-01

    We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (absolute value (beta) >10 deg) gamma-ray sources from the three-month Fermi Large Area Telescope (LAT) bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are cataloged, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within the respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations, are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.

  6. GLAST Science Across Wavelengths

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.

    2006-12-01

    The GLAST satellites is almost guaranteed to revolutionize GeV gamma ray astronomy because of the great discoveries that are being made at hard X-ray energy by the Suzaku and Swift satellites and in the TeV range using the H.E.S.S. and Magic telescopes. Unidentified EGRET sources are likely to be identified and new and fainter sources will be found. Known classes of sources blazars, pulsars, gamma ray bursts, supernova remnants, binary X-ray sources and so on will be monitored in much greater detail. Finally, there is the need to limit or even detect dark matter through its annihilation signature. The science that will emerge from GLAST will be determined in large measure by the effort that is put into multiwavelength observing. This will require significant commitments of observing time for monitoring pulsar arrival times, measuring faint galaxy spectra, detecting GeV gamma rays gamma ray bursts and so on. In this talk I will attempt to summarize current thinking on the GLAST multi-wavelength observing program and propose some new approaches.

  7. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  8. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Angellier, G.; Balleyguier, L.; Dauvergne, D.; Freud, N.; Hérault, J.; Létang, J. M.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y.

    2017-04-01

    For the purpose of detecting deviations from the prescribed treatment during particle therapy, the integrals of uncollimated prompt gamma-ray timing distributions are investigated. The intention is to provide information, with a simple and cost-effective setup, independent from monitoring devices of the beamline. Measurements have been performed with 65 MeV protons at a clinical cyclotron. Prompt gamma-rays emitted from the target are identified by means of time-of-flight. The proton range inside the PMMA target has been varied via a modulator wheel. The measured variation of the prompt gamma peak integrals as a function of the modulator position is consistent with simulations. With detectors covering a solid angle of 25 msr (corresponding to a diameter of 3-4 in. at a distance of 50 cm from the beam axis) and 108 incident protons, deviations of a few per cent in the prompt gamma-ray count rate can be detected. For the present configuration, this change in the count rate corresponds to a 3 mm change in the proton range in a PMMA target. Furthermore, simulation studies show that a combination of the signals from multiple detectors may be used to detect a misplacement of the target. A different combination of these signals results in a precise number of the detected prompt gamma rays, which is independent on the actual target position.

  9. Using Deep Learning for Gamma Ray Source Detection at the First G-APD Cherenkov Telescope (FACT)

    NASA Astrophysics Data System (ADS)

    Bieker, Jacob

    2018-06-01

    Finding gamma-ray sources is of paramount importance for Imaging Air Cherenkov Telescopes (IACT). This study looks at using deep neural networks on data from the First G-APD Cherenkov Telescope (FACT) as a proof-of-concept of finding gamma-ray sources with deep learning for the upcoming Cherenkov Telescope Array (CTA). In this study, FACT’s individual photon level observation data from the last 5 years was used with convolutional neural networks to determine if one or more sources were present. The neural networks used various architectures to determine which architectures were most successful in finding sources. Neural networks offer a promising method for finding faint and extended gamma-ray sources for IACTs. With further improvement and modifications, they offer a compelling method for source detection for the next generation of IACTs.

  10. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    DOE PAGES

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; ...

    2018-02-28

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. Here, in an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetectedmore » in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.« less

  11. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. Here, in an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetectedmore » in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.« less

  12. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    PubMed Central

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J.; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A.; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D.; Bloom, Elliott D.; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J.; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H.; Buson, Sara; Cameron, Rob A.; Caputo, Regina; Caraveo, Patrizia A.; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R.; Costantin, Denise; Cutini, Sara; D’Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W.; Favuzzi, Cecilia; Ferrara, Elizabeth C.; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A.; Green, David; Grenier, Isabelle A.; Guiriec, Sylvain; Harding, Alice K.; Hewitt, John W.; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N.; Lubrano, Pasquale; Magill, Jeffrey D.; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N.; McEnery, Julie E.; Michelson, Peter F.; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V.; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S.; de Palma, Francesco; Paneque, David; Perkins, Jeremy S.; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A.; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S.; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W.; Saz Parkinson, Pablo M.; Sgrò, Carmelo; Siskind, Eric J.; Smith, David A.; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B.; Thompson, David J.; Torres, Diego F.; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-01-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population. PMID:29503868

  13. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

  14. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar.

    PubMed

    Clark, Colin J; Pletsch, Holger J; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D; Bloom, Elliott D; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H; Buson, Sara; Cameron, Rob A; Caputo, Regina; Caraveo, Patrizia A; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R; Costantin, Denise; Cutini, Sara; D'Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W; Favuzzi, Cecilia; Ferrara, Elizabeth C; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A; Green, David; Grenier, Isabelle A; Guiriec, Sylvain; Harding, Alice K; Hewitt, John W; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N; Lubrano, Pasquale; Magill, Jeffrey D; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N; McEnery, Julie E; Michelson, Peter F; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S; de Palma, Francesco; Paneque, David; Perkins, Jeremy S; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W; Saz Parkinson, Pablo M; Sgrò, Carmelo; Siskind, Eric J; Smith, David A; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B; Thompson, David J; Torres, Diego F; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-02-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.

  15. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  16. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  17. First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare

    DOE PAGES

    Pesce-Rollins, Melissa; Omodei, Nicola; Petrosian, V.; ...

    2015-05-28

    Here, we report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~9°.9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent withmore » the RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ~3.8. Furthermore, we show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less

  18. FIRST DETECTION OF >100 MeV GAMMA-RAYS ASSOCIATED WITH A BEHIND-THE-LIMB SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesce-Rollins, M.; Omodei, N.; Petrosian, V.

    2015-06-01

    We report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ∼9.°9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ∼30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent with themore » RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ∼3.8. We show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less

  19. A Search for Ultra--High-Energy Gamma-Ray Emission from Five Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Allen, G. E.; Berley, D.; Biller, S.; Burman, R. L.; Cavalli-Sforza, M.; Chang, C. Y.; Chen, M. L.; Chumney, P.; Coyne, D.; Dion, C. L.; Dorfan, D.; Ellsworth, R. W.; Goodman, J. A.; Haines, T. J.; Hoffman, C. M.; Kelley, L.; Klein, S.; Schmidt, D. M.; Schnee, R.; Shoup, A.; Sinnis, C.; Stark, M. J.; Williams, D. A.; Wu, J.-P.; Yang, T.; Yodh, G. B.

    1995-07-01

    The majority of the cosmic rays in our Galaxy with energies in the range of ~1010--1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volk's recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNR's shock but are produced at some other site (such as a pulsar).

  20. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  1. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOEpatents

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  2. MODELING THE NON-RECYCLED FERMI GAMMA-RAY PULSAR POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.

    2013-10-10

    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L{sub γ} depends on the period P and the period derivative P-dot . We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L{sub γ} on P and P-dot , including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L{sub γ}∝P{sup -a} P-dot {sup b} where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar tomore » but not identical to the commonly assumed L{sub γ}∝√( E-dot )∝P{sup -1.5} P-dot {sup 0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 10{sup 10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.« less

  3. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  4. A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.

    Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.

  5. RADIO DETECTION PROSPECTS FOR A BULGE POPULATION OF MILLISECOND PULSARS AS SUGGESTED BY FERMI-LAT OBSERVATIONS OF THE INNER GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calore, F.; Weniger, C.; Mauro, M. Di

    The dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis has found support in an analysis of gamma-rays detected using the Large Area Telescope onboard the Fermi satellite, which revealed an excess of diffuse GeV photons in the inner 15 deg about the Galactic center. The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution strongly peaked toward the Galactic center. In order to fully establish the MSP interpretation, it is essential to findmore » corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsations from individual bulge MSPs. Based on globular cluster observations and gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that upcoming large-area surveys of this region should lead to the detection of dozens of bulge MSPs. Additionally, we show that deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way, and strategy optimization for future deep radio pulsar surveys.« less

  6. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    PubMed

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  7. Study on detecting spatial distribution of neutrons and gamma rays using a multi-imaging plate system.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Endo, Satoru; Takada, Jun

    2014-06-01

    In order to measure the spatial distributions of neutrons and gamma rays separately using the imaging plate, the requirement for the converter to enhance specific component was investigated with the PHITS code. Consequently, enhancing fast neutrons using recoil protons from epoxy resin was not effective due to high sensitivity of the imaging plate to gamma rays. However, the converter of epoxy resin doped with (10)B was found to have potential for thermal and epithermal neutrons, and graphite for gamma rays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Spectral analysis of the gamma-ray background near the dwarf Milky Way satellite Segue 1: Improved limits on the cross section of neutralino dark matter annihilation

    DOE PAGES

    Baushev, A. N.; Federici, S.; Pohl, M.

    2012-09-20

    The indirect detection of dark matter requires that dark matter annihilation products be discriminated from conventional astrophysical backgrounds. We re-analyze GeV-band gamma-ray observations of the prominent Milky Way dwarf satellite galaxy Segue 1, for which the expected astrophysical background is minimal. Here, we explicitly account for the angular extent of the conservatively expected gamma-ray signal and keep the uncertainty in the dark-matter profile external to the likelihood analysis of the gamma-ray data.

  9. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  10. AGILE detection of gamma-ray emission from the FSRQ Ton 0599

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Parmiggiani, N.; Lucarelli, F.; Verrecchia, F.; Pittori, C.; Tavani, M.; Vercellone, S.; Colafrancesco, S.; Cardillo, M.; Piano, G.; Ursi, A.; Fioretti, V.; Pilia, M.; Donnarumma, I.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-12-01

    AGILE is detecting increasing gamma-ray emission above 100 MeV from a source positionally consistent with the FSRQ Ton 0599. Integrating from 2017-12-16 05:45 to 2017-12-18 05:45 UT, a preliminary maximum likelihood analysis yields a detection above 5 sigma and a flux F(E > 100 MeV)=(2.0 +/- 0.6) x 10^-6 ph cm^-2 s^-1.

  11. AGILE detection of increasing gamma-ray activity from CTA 102

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Verrecchia, F.; Pittori, C.; Tavani, M.; Vercellone, S.; Colafrancesco, S.; Bulgarelli, A.; Cardillo, M.; Piano, G.; Fioretti, V.; Parmiggiani, N.; Pilia, M.; Donnarumma, I.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-12-01

    AGILE is detecting increasing gamma-ray emission above 100 MeV from a source positionally consistent with the FSRQ CTA 102. Integrating from 2017-12-07 06:00 UT to 2017-12-09 06:00 UT, a preliminary maximum likelihood analysis yields a detection above 6 sigma and a flux F(E > 100 MeV)=(3.6 +/- 0.9) x 10^-6 ph cm^-2 s^-1.

  12. Detection of nuclear gamma rays from Centaurus A

    NASA Technical Reports Server (NTRS)

    Hall, R. D.; Walraven, G. D.; Djuth, F. T.; Haymes, R. C.; Meegan, C. A.

    1976-01-01

    Results are reported for an observation of nuclear gamma rays in the energy range between 0.033 and 12.25 MeV from Centaurus A using a balloon-borne actively collimated NaI(Tl) crystal scintillation counter. The observing procedure is outlined, no systematic errors are found in the data, and power-law fits to the source's energy spectrum are attempted. A power law of approximately 0.86E to the -1.9 power photon/sq cm/sec per keV is shown to give an acceptable fit to the continuum, and the detection of two gamma-ray lines at 1.6 and 4.5 MeV, respectively, is discussed. It is found that the low-energy gamma-ray luminosity of Cen A is 9.4 by 10 to the 43rd power erg/sec for a distance of 5 Mpc and that Cen A is apparently variable in low-energy gamma radiation. It is suggested that the broad feature detected at 1.6 MeV may be due to three blended lines (possibly excited Ne-20, Mg-24, and Si-28), the 4.5-MeV line is most likely due to deexcitation of excited C-12, and the nuclear excitation results from either cosmic-ray bombardment of Cen A's interstellar medium or nucleosynthesis within the source.

  13. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  14. Five Years of the Fermi LAT Flare Advocate

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, R.; Gasparrini, D.; Ciprini, S.; Fermi LAT Collaboration; Fermi LAT Flare Advocates

    2014-01-01

    Since the launch of the Fermi satellite, the Fermi Large Area Telescope (LAT) team has run a program that provides a daily review of the the gamma-ray sky as soon as Fermi LAT data becomes available. The Flare Advocate/Gamma-ray Sky Watcher (FA-GSW) program allows a rapid analysis of the Automatic Science Processing (ASP) products and triggers dedicated followup analyses by several LAT science groups such as those studying Galactic transients, extragalactic sources and new gamma-ray sources. Significant gamma-ray detections also trigger rapid communications to the entire astrophysical community via astronomical telegrams and gamma-ray coordination network notices. The FA-GSW program plays a key role in maximizing the science return from Fermi by increasing the rate of multi-frequency observations of sources in an active gamma-ray state. In the past ~5 years blazar flaring activity of varying strength and duty cycles, gravitationally lensed blazars, flares from Galactic sources (like Nova Delphini and the Crab Nebula), unidentified transients near and off the Galactic plane, and emission from the quiet and flaring Sun, represent the range of detections made. Flare Advocates have published about 250 Astronomical Telegrams and they publish a weekly blog. Timely, extensive multi-frequency campaigns have been organized to follow-up on these phenomena leading to some of Fermi’s most interesting results.

  15. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    NASA Astrophysics Data System (ADS)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  16. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; hide

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  17. Development of a digital method for neutron/gamma-ray discrimination based on matched filtering

    NASA Astrophysics Data System (ADS)

    Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.

    2016-09-01

    Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.

  18. Identification of lunar rock types and search for polar ice by gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Metzger, A. E.; Drake, D. M.

    1990-01-01

    This paper examines the possibility of mapping the surface composition of the moon from an orbiting spin-stabilized spacecraft, using gamma ray spectroscopy and a cooled germanium solid-state device as a detector. A design for accommodating the germanium detector gamma ray spectrometer was devised, and the detection sensitivity was applied to typical lunar-rock compositions. For sets comprising nine highland and 16 mare types, the most useful elements were found to be Mg, Al, K, Ti, Fe, U, and Th. An analysis of the expected instrument response to the gamma ray and neutron fluxes of water ice indicated that a neutron mode added to the spectrometer will be more sensitive than the gamma ray mode to the possible presence of polar ice. It was calculated that, with a pair of selected neutron absorbers and a model which provides that 2.5 percent of the area above 75-deg latitude is occupied by trapping sites, the instrument will provide a 1-yr mission detection limit of 0.056 percent H2O by weight for each polar region.

  19. Discovery of Gamma-Ray Emission from the Supernova Remnant Kes 17 with Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Wu, J. H. K.; Wu, E. M. H.; Hui, C. Y.; Tam, P. H. T.; Huang, R. H. H.; Kong, A. K. H.; Cheng, K. S.

    2011-10-01

    We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12σ in the 1-20 GeV range. Moreover, a number of γ-ray sources were detected in its vicinity. The γ-ray spectrum of Kes 17 can be described well by a simple power law with a photon index of Γ ~ 2.4. Together with the multiwavelength evidence for its interactions with the nearby molecular cloud, the γ-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic rays.

  20. Detection of a long-duration solar gamma-ray flare on Jun. 11, 1991 with EGRET on Compton-GRO

    NASA Technical Reports Server (NTRS)

    Kanbach, G.; Bertsch, D. L.; Fitchel, C. E.; Hartman, R. C.; Hunter, S. D.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasslewander, H. A.

    1992-01-01

    On 11 Jun. 1991, the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (Comption-GRO) observed high energy gamma radiation above 30 MeV from the Sun following an intense flare around 2:00 Universal Time (UT). After the decay of most of the x ray flare, which caused nearly complete deadtime losses in EGRET, high energy emission was registered during the interval from about 3:30 UT to at least 10:30 UT. Gamma rays were detected up to energies above 1 GeV. The solar origin of the emission is assured by the time profile of the gamma ray count rate and by time resolved sky maps, which show a clear maximum at the position of the sun. The gamma ray lightcurve of the flare can be described with two components: a fast decaying emission with an e-folding time constant of about 25 minutes and a slow decay with about 255 minutes. There are indications for a spectral evolution with time, such that the emission below 100 MeV fades away earlier than the 100 to 300 MeV radiation, roughly in the time scale of the fast component. The spectrum of the flare can be fitted with a composite of a proton generated pion neutral spectrum and an electron bremsstrahlung component. The latter can be identified with the fast decaying component of the lightcurve.

  1. High energy gamma-ray astronomy observations of Geminga with the VERITAS array

    NASA Astrophysics Data System (ADS)

    Finnegan, Gary Marvin

    The closest known supernova remnant and pulsar is Geminga. The Geminga pulsar is the first pulsar to have ever been detected initially by gamma rays and the first pulsar in a class of radio-quiet pulsars. In 2007, the Milagro collaboration detected a large angularly extended (˜ 2.6°) emission of high energy gamma rays (˜ 20 TeV ) that was positionally coincident with Geminga. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground- based observatory with four imaging Cherenkov telescopes with an energy range between 100 GeV to more than 30 TeV. The imaging Cherenkov telescopes detect the Cherenkov light from charged particles in electromagnetic air showers initiated by high energy particles such as gamma rays and cosmic rays. Most gamma-ray sources detected by VERITAS are point like sources, which have an angular extension smaller than the angular resolution of the telescopes (˜ 0.1°). For a point source, the background noise can be measured in the same field of view (FOV) as the source. For an angularly extended object, such as Geminga, an external FOV from the source region must be used to estimate the background noise, to avoid contamination from the extended source region. In this dissertation, I describe a new analysis procedure that is designed to increase the observation sensitivity of angularly extended objects like Geminga. I apply this procedure to a known extended gamma-ray source, Boomerang, as well as Geminga. The results indicate the detection of very high energy emission from the Geminga region at the level of 4% of the Crab nebula with a weighted average spectral index of -2.8 ± 0.2. A possible extension less than one degree wide is shown. This detection, however, awaits a confirmation by the VERITAS collaboration. The luminosity of the Geminga extended source, the Vela Nebula, and the Crab nebula was calculated for energies greater than 1 TeV. The data suggest that older pulsars, such as Geminga and Vela, convert the spin-down power of the pulsar more efficiently to TeV energies than a younger pulsar such as the Crab pulsar.

  2. The Fermi-GBM Three-year X-Ray Burst Catalog

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  3. A new population of very high energy gamma-ray sources in the Milky Way.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-03-25

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

  4. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2013-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula. Such events, detected roughly once per year, can be very spectacular. Indeed, in April 2011, for a few days the Crab was by far the brightest source in the gamma-ray sky. Such a dramatic variability challenges our understanding of how pulsar wind nebulae work and defies current astrophysical models for particle acceleration. With the aim of locating the site{s} of the flares, an ad hoc HST strategy must be put in place to be prepared and react promptly in case of a new brightening in gamma rays. We ask here for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions. This is a crucial part of a multiwavelength program that we are organizing, based on lessons learnt from our follow-up observations of previous flares, including a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.

  5. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2012-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula in September 2010. In April 2011 a similar flare, lasting several days, made the nebula the brightest source in the gamma-ray sky. A critical reassessment of long term behavior of the Crab flux clearly showed that both Agile and Fermi had already detected similar events in October 2007 and February 2009, pointing to a recurrence time of once per year. A HST observing strategy must be set up to react promptly to any possible new brightening of the Crab in gamma rays. In September 2010 we requested a DD observation which was promptly accepted and carried out. However, the lack of a suitable reference image hampered our efforts to pinpoint the sites of possible variability inside the nebula. Thus, while now we ask for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions, we are also organizing a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.

  6. Blazar Duty-Cycle at Gamma-Ray Frequecies: Constraints From Extragalactic Background Radiation And Prospects for AGILE And GLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittori, Carlotta; Cavazzuti, Elisabetta; Colafrancesco, Sergio

    2011-11-29

    We take into account the constraints from the observed extragalactic {gamma}-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST {gamma}-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

  7. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  8. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  9. Psr J2030+3641: Radio Discovery And Gamma-Ray Study Of A Middle-Aged Pulsar In The Now Identified Fermi -Lat Source 1FGL J2030.0+3641

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camilo, F.; Kerr, M.; Ray, P. S.

    2012-01-23

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.2 s, spin-down luminosity of 3X10 34 erg s -1, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright andmore » radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc cm-3. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive — PSR J2030+3641 would have been found blindly in gamma rays if only & 0:8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.« less

  10. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; hide

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  11. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; hide

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  12. Gamma-ray astronomy with muons: Sensitivity of IceCube to PeVatrons in the Southern sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halzen, Francis; O'Murchadha, Aongus; Kappes, Alexander

    2009-10-15

    Northern hemisphere TeV gamma-ray observatories such as Milagro and Tibet AS{gamma} have demonstrated the importance of all-sky instruments by discovering previously unidentified sources that may be the PeVatrons producing cosmic rays up to the knee in the cosmic ray spectrum. We evaluate the potential of IceCube to identify similar sources in the southern sky by detailing an analytic approach to determine fluxes of muons from TeV gamma-ray showers. We apply this approach to known gamma-ray sources such as supernova remnants. We find that, similar to Milagro, detection is possible in 10 years for pointlike PeVatrons with fluxes stronger than severalmore » 10{sup -11} particles TeV{sup -1} cm{sup -2} s{sup -1}.« less

  13. A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.

    2006-01-01

    We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification

  14. DAMPE: A gamma and cosmic ray observatory in space

    NASA Astrophysics Data System (ADS)

    D'Urso, D.; Dampe Collaboration

    2017-05-01

    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.

  15. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, V.; Ferrigno, C.; Bozzo, E.

    We report the INTernational Gamma-ray Astrophysics Laboratory ( INTEGRAL ) detection of the short gamma-ray burst GRB 170817A (discovered by Fermi -GBM) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS) merging event GW170817 detected by the LIGO and Virgo observatories. The significance of association between the gamma-ray burst observed by INTEGRAL and GW170817 is 3.2σ, while the association between the Fermi -GBM and INTEGRAL detections is 4.2σ. GRB 170817A was detected by the SPI-ACS instrument about 2 s after the end of the GW event.more » We measure a fluence of (1.4 ± 0.4 ± 0.6) × 10{sup −7} erg cm{sup −2} (75–2000 keV), where, respectively, the statistical error is given at the 1σ confidence level, and the systematic error corresponds to the uncertainty in the spectral model and instrument response. We also report on the pointed follow-up observations carried out by INTEGRAL , starting 19.5 hr after the event, and lasting for 5.4 days. We provide a stringent upper limit on any electromagnetic signal in a very broad energy range, from 3 keV to 8 MeV, constraining the soft gamma-ray afterglow flux to <7.1 × 10{sup −11} erg cm{sup −2} s{sup −1} (80–300 keV). Exploiting the unique capabilities of INTEGRAL , we constrained the gamma-ray line emission from radioactive decays that are expected to be the principal source of the energy behind a kilonova event following a BNS coalescence. Finally, we put a stringent upper limit on any delayed bursting activity, for example, from a newly formed magnetar.« less

  16. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  17. Observations of the young supernova remnant RX J1713.7–3946 with the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2011-05-23

    Here, we present observations of the young supernova remnant (SNR) RX J1713.7–3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0°.55 ± 0°.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7–3946. The spectrum of the source can be described by a very hard power law with a photon index of Γ = 1.5 ± 0.1 that coincidesmore » in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.« less

  18. Search for GeV and X-Ray Flares Associated with the IceCube Track-like Neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Fang-Kun; Wang, Xiang-Yu, E-mail: xywang@nju.edu.cn

    Dozens of high-energy neutrinos have been detected by the IceCube neutrino telescope, but no clear association with any classes of astrophysical sources has been identified so far. Recently, Kadler et al. reported that a PeV cascade-like neutrino event occurred in positional and temporal coincidence with a giant gamma-ray flare of the blazar PKS B1424-418. Since IceCube track-like events have much better angular resolution, we here search for possible short-term gamma-ray flares that are associated with the IceCube track-like events with Fermi Large Area Telescope (LAT) observations. Among them, three track-like neutrino events occur within the field of view of Fermimore » -LAT at the time of the detection, so searching for the prompt gamma-ray emission associated with neutrinos is possible. Assuming a point source origin and a single power-law spectrum for the possible gamma-ray sources associated with neutrinos, a likelihood analysis of 0.2–100 GeV photons observed by Fermi -LAT on the timescales of ∼12 hr and one year are performed, and for the three special neutrinos, the analyses are also performed on the timescales of thousands of seconds before and after the neutrino detection. No significant GeV excesses over the background are found and upper limit fluxes at the 95% confidence level are obtained for different timescales. We also search for possible the Swift hard X-ray transient sources associated with the IceCube track-like neutrino events, but the search also yields null results. We discuss the implication of the non-detection of gamma-ray flares for the constraints on the neutrino source density.« less

  19. AGILE detection of enhanced gamma-ray emission from the blazar 3C 279

    NASA Astrophysics Data System (ADS)

    Cardillo, M.; Verrecchia, F.; Pittori, C.; Lucarelli, F.; Ursi, A.; Piano, G.; Minervini, G.; Bulgarelli, A.; Fioretti, V.; Parmiggiani, N.; Tavani, M.; Munar-Adrover, P.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2018-06-01

    AGILE is detecting enhanced gamma-ray emission above 100 MeV from the blazar 3C 279. Integrating from 2018-06-03 07:56:19 UT to 2018-06-05 07:56:19 UT, a preliminary maximum likelihood analysis yields a detection at a flux F(E > 100 MeV)=(7.0 +/- 1.5) x 10^-6 ph cm^-2 s^-1 and a significance greater than 7 sigma.

  20. Prompt Optical Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-03-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  1. Gamma-Ray Upper Limits on Magnetars with Six Years of FERMI-LAT Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Rea, Nanda; Torres, Diego F.

    2017-01-16

    In this article, we report on the search for gamma-ray emission from 20 magnetars using six years of Fermi Large Area Telescope observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. We derived the most stringent upper limits to date on the 0.1–10 GeV emission of Galactic magnetars, which are estimated between ~10 -12 and 10 -11 erg s -1 cm -2. We searched gamma-ray pulsations for the four magnetars having reliable ephemerides over the observing period, but detected none. Finally, we also report updated morphologies and spectral properties of seven spatially extendedmore » gamma-ray sources, which are most likely attributed to supernova remnants associated with or adjacent to the magnetars.« less

  2. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  3. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  4. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically in gamma - ray blazars, then these objects should appear as bright MeV sources when viewed along off-axis lines of sight.

  5. MODELING THE MULTIWAVELENGTH EMISSION FROM G73.9+0.9: GAMMA RAYS FROM AN SNR–MC INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Miguel, E-mail: miguel.araya@ucr.ac.cr

    G73.9+0.9 has been classified as a probable shell-type supernova remnant, though it has also been suggested that it could have a pulsar wind nebula (PWN). Here, a broadband model of the non-thermal emission of G73.9+0.9 from radio to gamma rays is presented. The model includes a new gamma-ray observation obtained by the analysis of seven years of data from the Fermi/LAT telescope. Above 200 MeV, the source is detected with a significance of 13σ and the spectrum of the radiation is best described by a power law with an index of ∼2.5. The leptonic mechanisms are hard to reconcile withmore » the measured radio and gamma-ray spectral energy distribution. A PWN origin for the high-energy emission is also not very likely, due to the lack of detection of pulsars and of X-ray emission in the region, as well as from the shape of the gamma-ray spectrum. Given the possibility that the object is interacting with molecular clouds, a hadronic origin of the high-energy emission is more likely, and the spectral properties of the cosmic rays responsible for this radiation are derived.« less

  6. An airport cargo inspection system based on X-ray and thermal neutron analysis (TNA).

    PubMed

    Ipe, Nisy E; Akery, A; Ryge, P; Brown, D; Liu, F; Thieu, J; James, B

    2005-01-01

    A cargo inspection system incorporating a high-resolution X-ray imaging system with a material-specific detection system based on Ancore Corporation's patented thermal neutron analysis (TNA) technology can detect bulk quantities of explosives and drugs concealed in trucks or cargo containers. The TNA process utilises a 252Cf neutron source surrounded by a moderator. The neutron interactions with the inspected object result in strong and unique gamma-ray signals from nitrogen, which is a key ingredient in modern high explosives, and from chlorinated drugs. The TNA computer analyses the gamma-ray signals and automatically determines the presence of explosives or drugs. The radiation source terms and shielding design of the facility are described. For the X-ray generator, the primary beam, leakage radiation, and scattered primary and leakage radiation were considered. For the TNA, the primary neutrons and tunnel scattered neutrons as well as the neutron-capture gamma rays were considered.

  7. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  8. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  9. The second FERMI large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  10. The second fermi large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  11. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detectionmore » of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.« less

  12. Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenke, P. A.; Linares, M.; Connaughton, V.

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient eventsmore » from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.« less

  14. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  15. Applications of Elpasolites as a Multimode Radiation Sensor

    NASA Astrophysics Data System (ADS)

    Guckes, Amber

    This study consists of both computational and experimental investigations. The computational results enabled detector design selections and confirmed experimental results. The experimental results determined that the CLYC scintillation detector can be applied as a functional and field-deployable multimode radiation sensor. The computational study utilized MCNP6 code to investigate the response of CLYC to various incident radiations and to determine the feasibility of its application as a handheld multimode sensor and as a single-scintillator collimated directional detection system. These simulations include: • Characterization of the response of the CLYC scintillator to gamma-rays and neutrons; • Study of the isotopic enrichment of 7Li versus 6Li in the CLYC for optimal detection of both thermal neutrons and fast neutrons; • Analysis of collimator designs to determine the optimal collimator for the single CLYC sensor directional detection system to assay gamma rays and neutrons; Simulations of a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system with the optimized collimator to determine the feasibility of detecting nuclear materials that could be encountered during field operations. These nuclear materials include depleted uranium, natural uranium, low-enriched uranium, highly-enriched uranium, reactor-grade plutonium, and weapons-grade plutonium. The experimental study includes the design, construction, and testing of both a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system. Both were designed in the Inventor CAD software and based on results of the computational study to optimize its performance. The handheld CLYC multimode sensor is modular, scalable, low?power, and optimized for high count rates. Commercial?off?the?shelf components were used where possible in order to optimize size, increase robustness, and minimize cost. The handheld CLYC multimode sensor was successfully tested to confirm its ability for gamma-ray and neutron detection, and gamma?ray and neutron spectroscopy. The sensor utilizes wireless data transfer for possible radiation mapping and network?centric deployment. The handheld multimode sensor was tested by performing laboratory measurements with various gamma-ray sources and neutron sources. The single CLYC scintillator collimated directional detection system is portable, robust, and capable of source localization and identification. The collimator was designed based on the results of the computational study and is constructed with high density polyethylene (HDPE) and lead (Pb). The collimator design and construction allows for the directional detection of gamma rays and fast neutrons utilizing only one scintillator which is interchangeable. For this study, a CLYC-7 scintillator was used. The collimated directional detection system was tested by performing laboratory directional measurements with various gamma-ray sources, 252Cf and a 239PuBe source.

  16. Network of wireless gamma ray sensors for radiological detection and identification

    NASA Astrophysics Data System (ADS)

    Barzilov, A.; Womble, P.; Novikov, I.; Paschal, J.; Board, J.; Moss, K.

    2007-04-01

    The paper describes the design and development of a network of wireless gamma-ray sensors based on cell phone or WiFi technology. The system is intended for gamma-ray detection and automatic identification of radioactive isotopes and nuclear materials. The sensor is a gamma-ray spectrometer that uses wireless technology to distribute the results. A small-size sensor module contains a scintillation detector along with a small size data acquisition system, PDA, battery, and WiFi radio or a cell phone modem. The PDA with data acquisition and analysis software analyzes the accumulated spectrum on real-time basis and returns results to the screen reporting the isotopic composition and intensity of detected radiation source. The system has been programmed to mitigate false alarms from medical isotopes and naturally occurring radioactive materials. The decision-making software can be "trained" to indicate specific signatures of radiation sources like special nuclear materials. The sensor is supplied with GPS tracker coupling radiological information with geographical coordinates. The sensor is designed for easy use and rapid deployment in common wireless networks.

  17. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  18. Use of CLYC spectrometer in counter-terrorism applications

    NASA Astrophysics Data System (ADS)

    Ing, H.; Smith, M. B.; Koslowsky, M. R.; Andrews, H. R.

    2015-05-01

    A new scintillator crystal, now known as CLYC (Cs2LiYCl6:Ce), has been under development for over 15 years (1). It was primarily of interest for radiation detection applications because of its good energy resolution for gamma rays (< 4% for 662 keV gamma rays) and its capability for detection of thermal neutrons. The pulse shapes of the signals from the two radiations are different, which allow them to be separated electronically, permitting simultaneous detection of gamma rays and neutrons. The crystal is now commercially available. Early investigations of the neutron response by the current authors (2) revealed that CLYC also responds to fast neutrons. In fact, the good energy resolution of the response under monoenergetic neutron irradiations showed that CLYC was an excellent high-energy neutron spectrometer. This discovery has great impact on the field of neutron spectroscopy, which has numerous, although often specialized, applications. This presentation focuses on applications in counter-terrorism scenarios where neutrons may be involved. The relative importance of the fast neutron response of CLYC, compared to the thermal and gamma-ray response, will be discussed for these scenarios.

  19. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  20. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  1. The EGRET high energy gamma ray telescope

    NASA Astrophysics Data System (ADS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nolan, P. L.; Pinkau, K.; Rothermel, H.; Schneid, E.; Sommer, M.; Sreekumar, P.; Thompson, D. J.

    1992-02-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  2. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-12

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  3. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor); Sheikh, Suneel I. (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  4. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    1989-01-01

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  5. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  6. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  7. Fermi-Lat and WMAP Observations of the Puppis a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hewitt, John William; Grondin, M. H.; Lemoine-Goumard, M.; Reposeur, T.; Ballet, J.; Tanaka, T.

    2012-01-01

    We report the detection of GeV gamma-ray emission from the supernova remnant Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest supernova remnants yet detected at GeV energies, with a luminosity of only 2.7×10(exp 34) (D/2.2 kpc)(exp 2) erg s(exp -1) between 1 and 100 GeV. The gamma-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution, from radio to gamma-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of WMAP data to extend the radio spectrum up to 93 GHz. Both leptonic and hadronic dominated models can reproduce the nonthermal spectral energy distribution, requiring a total content of cosmic ray (CR) electrons and protons accelerated in Puppis A of at least WCR is approx. (1 - 5)×10 (exp 49) erg.

  8. DISCOVERY OF A TRANSIENT GAMMA-RAY COUNTERPART TO FRB 131104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLaunay, J. J.; Murase, K.; Mészáros, P.

    We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2 σ confidence) to the fast radio burst (FRB) FRB 131104, the first such counterpart to any FRB. The transient has a duration T {sub 90} ≳ 100 s and a fluence S{sub γ} ≈ 4 × 10{sup −6} erg cm{sup −2}, increasing the energy budget for this event by more than a billion times; at the nominal z ≈ 0.55 redshift implied by its dispersion measure, the burst’s gamma-ray energy output is E{sub γ} ≈ 5 × 10{sup 51} erg. The observed radio to gamma-ray fluencemore » ratio for FRB 131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806−20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst (GRB) X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB’s nominal distance, D ≳ 320 Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, such as, for example, from magnetar flares, GRBs, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.« less

  9. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  10. Gamma-ray emission from internal shocks in novae

    NASA Astrophysics Data System (ADS)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity <2000 km s-1 and a mass-loss rate of 10-4-10-3 M⊙ yr-1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions: The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.

  11. Evidence for the Production of Neutral Mesons by Photons

    DOE R&D Accomplishments Database

    Steinberger, J.; Panofsky, W. K. H.; Steller, J.

    1950-04-01

    Evidence in favor of the existence of a gamma unstable neutral meson; report on the detection of the coincidences between the two gamma rays produced by the bombardment of various nuclei in the x-ray beam of the Berkeley synchrotron.

  12. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  13. Energetic neutron and gamma-ray spectra under the earth radiation belts according to ``SALUTE-7''-``KOSMOS-1686'' orbital complex and ``CORONAS-I'' satellite data

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Dmitriev, A. V.; Myagkova, I. N.; Ryumin, S. P.; Smirnova, O. N.; Sobolevsky, I. M.

    The spectra of neutrons > 10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex ``SALUTE-7''-``KOSMOS-1686'', are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm^-2 s^-1 for neutrons, 0.8 cm^-2 s^-1 for gamma-rays at the equator and 1.2 cm^-2 s^-1, 1.9 cm^-2 s^-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from ``CORONAS-I'' data are near those for albedo particles.

  14. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillemot, L.; Kramer, M.; Johnson, T. J.

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission,more » suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.« less

  15. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Eric; Briggs, Michael S.; Connaughton, Valerie

    2016-02-20

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find thatmore » the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.« less

  16. Performance of the EGRET astronomical gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hofstadter, R.; Hughes, E. B.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.

    1992-01-01

    On April 5, 1991, the Space Shuttle Atlantis carried the Compton Gamma Ray Observatory (CGRO) into orbit, deploying the satellite on April 7. The EGRET instrument was activated on April 15, and the first month of operations was devoted to verification of the instrument performance. Measurements made during that month and in the subsequent sky survey phase have verified that the instrument time resolution, angular resolution, and gamma ray detection efficiency are all within nominal limits.

  17. Dark Matter Indirect Detection with Gamma Rays

    DOE PAGES

    Patrick Harding, J.

    2017-07-27

    Searches for weakly interacting massive particle (WIMP) dark matter with gamma-ray instruments are a way to get a unique observational handle on the particle nature of dark matter. I will discuss the details of how to perform these searches, both for annihilating and decaying WIMPs. I will discuss the calculation of the gamma-ray flux from possible sources of dark matter annihilation or decay and show examples of limits which have been calculated using these techniques.

  18. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2009-10-30

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  19. Examining the nature of very-high-energy gamma-ray emission from the AGN PKS 1222+216 and 3C 279

    NASA Astrophysics Data System (ADS)

    Price, Sharleen; Brill, Ari; Mukherjee, Reshmi; VERITAS

    2018-01-01

    Blazars are a type of active galactic nuclei (AGN) that emit jets of ionized matter which move towards the Earth at relativistic speeds. In this research we carried out a study of two objects, 3C 279 and PKS 1222+216, which belong to the subset of blazars known as FSRQs (flat spectrum radio quasars), the most powerful TeV-detected sources at gamma-ray energies with bolometric luminosities exceeding 1048 erg/s. The high-energy emission of quasars peaks in the MeV-GeV band, making these sources very rarely detectable in the TeV energy range. In fact, only six FSRQs have ever been detected in this range by very-high-energy gamma-ray telescopes. We will present results from observing campaigns on 3C 279 in 2014 and 2016, when the object was detected in high flux states by Fermi-LAT. Observations include simultaneous coverage with the Fermi-LAT satellite and the VERITAS ground-based array spanning four decades in energy from 100 MeV to 1 TeV. We will also report VERITAS observations of PKS 1222+216 between 2008 and 2017. The detection/non-detection of TeV emission during flaring episodes at MeV energies will further contribute to our understanding of particle acceleration and gamma-ray emission mechanisms in blazar jets.

  20. Constraints On The Emission Geometries And Spin Evolution Of Gamma-Ray Millisecond Pulsars

    DOE PAGES

    Johnson, T. J.; Venter, C.; Harding, A. K.; ...

    2014-06-18

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic eld. We modeled the radio pro les using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-raymore » and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best- t parameters and con dence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II) or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best t roughly equal numbers of Class I and II, while Class III are exclusively t with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is diffcult. We explore the evolution of magnetic inclination angle with period and spin-down power, nding possible correlations. While the presence of signi cant off- peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.« less

  1. Constraints on the bulk Lorentz factor of gamma-ray bursts with the detection rate by Fermi LAT

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu

    2018-05-01

    The bulk Lorentz factor(Γ) of the outflow is an essential parameter to understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e., γγ → e+e-). In this paper, we attempt to interpret the dependence of the LAT detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_iso,52k, where Eiso, 52 is the isotropic photon energy in unit of 1052erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50 - 250.

  2. Constraints onthe bulk Lorentz factor of gamma-ray burstswith the detection rate by Fermi LAT

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu

    2018-07-01

    The bulk Lorentz factor (Γ) of the outflow is an essential parameter for understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e. γγ → e+e-). In this paper, we attempt to interpret the dependence of the Large Area Telescope (LAT) detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift, and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_{iso, 52}k, where Eiso,52 is the isotropic photon energy in unit of 1052 erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50-250.

  3. Novel Drift Structures for Silicon and Compound Semiconductor X-Ray and Gamma-Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley E. Patt; Jan S. Iwanczyk

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that we discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current (both bulk silicon dark current and surface dark current) and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector.

  4. Fermi Detection of Gamma-Ray Emission from the M2 Soft X-Ray Flare on 2010 June 12

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; hide

    2012-01-01

    The GOES M2-class solar flare, SOL2010-06-12T00:57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an approximately 50 s impulsive burst of hard X- and gamma-ray emission up to at least 400 MeV observed by the Fermi GBM and LAT experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or equal to 300 MeV with a delay of approximately 10 s from mildly relativistic electrons, but some reached these energies in as little as approximately 3 s. The gamma-ray line fluence from this flare was about ten times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended greater than 100 MeV emission as has been found for other flares with high-energy gamma rays.

  5. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  6. Optical photometric monitoring of gamma -ray loud blazars. II. Observations from November 1995 to June 1996

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.

    1998-02-01

    New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  7. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  8. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  9. An EAS experiment at mountain altitude for the detection of gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Allkofer, O. C.; Samorski, M.; Stamm, W.

    1985-01-01

    The plan of an extensive air shower experiment 2.200 m above sea level for the detection of 10 to the 14th power eV to 10 to the 17th power eV gamma rays from sources in the declination band 0 deg to + 60 deg is described. The site selection, detector array and electronic layout are detailed.

  10. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, A.; Roberts, O. J.; Connaughton, V.

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  11. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A

    NASA Astrophysics Data System (ADS)

    Goldstein, A.; Veres, P.; Burns, E.; Briggs, M. S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C. A.; Preece, R. D.; Poolakkil, S.; Roberts, O. J.; Hui, C. M.; Connaughton, V.; Racusin, J.; von Kienlin, A.; Dal Canton, T.; Christensen, N.; Littenberg, T.; Siellez, K.; Blackburn, L.; Broida, J.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; McEnery, J.; Meegan, C. A.; Paciesas, W. S.; Stanbro, M.

    2017-10-01

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  12. Gamma-Ray Bursts and Their Links with Supernovae and Cosmology

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter; Gehrels, Neil

    2012-01-01

    Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism are the focus of intense interest. They appear connected to supernova remnants from massive stars or the merger of their remnants, and their brightness makes them temporarily detectable out to the largest distances yet explored in the universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, as well as their connections to supernovae and cosmology.

  13. Gamma Ray Bursts and Their Links With Supernovae and Cosmology

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter; Gehrels, Neil

    2012-01-01

    Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism is the focus of intense interest. They appear connected to supernova remnants from massive stars or the merger of their remnants, and their brightness makes them temporarily detectable out to the largest distances yet explored in the Universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, as well as their connections to supernovae and cosmology.

  14. SMM observation of a cosmic gamma-ray burst from 20 keV to 100 MeV

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Matz, S. M.; Messina, D. C.; Nolan, P. L.; Chupp, E. L.

    1986-01-01

    The Solar Maximum Mission gamma-ray spectrometer has detected an intense gamma-ray burst that occurred on August 5, 1984. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence at 20 keV was 0.003 erg/sq cm. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. There is no evidence for narrow or broadened emission lines.

  15. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  16. Search for Gamma-Ray Emission from Galactic Novae using Fermi-LAT Pass 8

    NASA Astrophysics Data System (ADS)

    Buson, Sara; Franckowiak, Anna; Cheung, Teddy; Jean, Pierre; Fermi-LAT Collaboration

    2016-01-01

    Recently Galactic novae have been identified as a new class of GeV gamma-ray emitters, with 6 detected so far with the Fermi Large Area Telescope (Fermi-LAT) data. Based on optical observations we have compiled a catalog of ~70 Galactic novae, which peak (in optical) during the operations of the Fermi mission. Based on the properties of known gamma-ray novae we developed a search procedure that we apply to all novae in the catalog to detect these slow transient sources or set flux upper limits using the Fermi-LAT Pass 8 data set. This is the first time a large sample of Galactic novae has been uniformly studied.

  17. Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators

    NASA Astrophysics Data System (ADS)

    Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E. V.; Shah, K.

    2016-04-01

    We report on a new family of scintillators - Lithium alkaline halides, developed based on the alkaline halides by introducing lithium for dual mode gamma-neutron detection. Many different compositions were grown, among which LiSr2I5 (LSI), LiCa2I5 (LCI), LiSr2Br5 (LSB) activated with divalent Europium show good gamma and neutron detection properties. LSI shows the main emission at 497 nm under X-ray excitation. It also shows good proportionality, which in combination with the light yield as high as 60000 photons/MeV, results in an energy resolution of 3.5% at 662 keV. The electron or gamma equivalent energy (GEE) of the thermal neutron peak due to the 6Li neutron capture is 4.1 MeV, which amounts to a very high neutron light yield of 245000 photons. The decay times for neutrons are faster compared to that for gamma-rays, hence we achieved good pulse shape discrimination (PSD) between gamma and neutron events. Our initial studies on the effects of Eu concentration on the properties of LSI show that 3%-4% Eu concentration is optimal for the best performance in terms of gamma and neutron light yields and pulse shape discrimination. LCI shows the main emission at 475 nm under X-ray excitation and a very high gamma light yield of 90000 photons/MeV. The measured energy resolution is 6% at 662 keV. The electron equivalent energy for neutron detection has been measured to be around 3 MeV, which gives a neutron light yield of 270 000 photons. The measured decay times for neutrons are faster compared to gamma decays and the PSD between the gamma-rays and neutrons is not as good as LSI. LSB shows two emissions at 410 and 475 nm under X-ray excitation. The measured light yield is 32000 ph/MeV gamma-ray with an energy resolution of 6% at 662 keV. The electron equivalent energy of the 6Li capture peak was measured to be 3.3 MeV.

  18. A Survey of PWNe around Narrow-Pulse Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Romani, Roger

    2010-09-01

    We propose here, on behalf of the Fermi LAT team, ACIS observations of the X-ray counterparts of six unusual gamma-ray pulsars discovered by the LAT. The targets, four seen only in the gamma-rays, two also radio-detected, have unusual single or narrow double pulse profiles, which require particular emission geometries for different pulsar models. By measuring the arcsecond-scale structure of the wind nebula termination shocks of these young (<100kyr) objects, CXO can pin down the viewing angle and test the pulsar physics. All have known X-ray fluxes and we can also extract spectral and distance estimates needed to interpret the GeV gamma-rays. The survey sample covers a range of ages, spindown powers and expected inclinations, making it a powerful test of pulsar emission models.

  19. RoboPol: connection between optical polarization plane rotations and gamma-ray flares in blazars

    NASA Astrophysics Data System (ADS)

    Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Hovatta, T.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Maharana, S.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2018-02-01

    We use results of our 3 yr polarimetric monitoring programme to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by RoboPol is analysed together with the gamma-ray data provided by Fermi-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time-scales of rotations and flares are marginally correlated.

  20. Time-Domain Astronomy with the Fermi GBM

    NASA Technical Reports Server (NTRS)

    Hui, C. M.

    2017-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument sensitive to energies from 8 kiloelectronvolts to 40 megaelectronvolts. Over the past 8 years of operation, the GBM has detected over 240 gamma-ray bursts per year and provided timely GCN (Gamma-ray Coordinates Network) notices with localization to few-degree accuracy for follow-up observations. In addition to GRBs, galactic transients, solar flares, and terrestrial gamma-ray flashes have also been observed. In recent years we have also been searching the continuous GBM data for electromagnetic counterpart to astrophysical neutrinos and gravitational wave events, as these are believed to be associated with gamma-ray bursts. With continuous data downlink every few hours and a temporal resolution of 2 microseconds, GBM is well suited for observing transients and supporting EM followup in the era of multi-messenger astronomy.

  1. Method for on-line evaluation of materials using prompt gamma ray analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2009-12-08

    A method for evaluating a material specimen comprises: Mounting a neutron source and a detector adjacent the material specimen; bombarding the material specimen with neutrons from the neutron source to create prompt gamma rays within the material specimen, some of the prompt gamma rays being emitted from the material specimen, some of the prompt gamma rays resulting in the formation of positrons within the material specimen by pair production; collecting positron annihilation data by detecting with the detector at least one emitted annihilation gamma ray resulting from the annihilation of a positron; storing the positron annihilation data on a data storage system for later retrieval and processing; and continuing to collect and store positron annihilation data, the continued collected and stored positron annihilation data being indicative of an accumulation of lattice damage over time.

  2. GAMMA-RAY UPPER LIMITS ON MAGNETARS WITH SIX YEARS OF FERMI -LAT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Rea, Nanda; Torres, Diego F.

    2017-01-20

    We report on the search for gamma-ray emission from 20 magnetars using six years of Fermi Large Area Telescope observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. We derived the most stringent upper limits to date on the 0.1–10 GeV emission of Galactic magnetars, which are estimated between ∼10{sup −12} and 10{sup −11} erg s{sup −1} cm{sup −2}. We searched gamma-ray pulsations for the four magnetars having reliable ephemerides over the observing period, but detected none. We also report updated morphologies and spectral properties of seven spatially extended gamma-ray sources, which aremore » most likely attributed to supernova remnants associated with or adjacent to the magnetars.« less

  3. How gravitational-wave observations can shape the gamma-ray burst paradigm

    NASA Astrophysics Data System (ADS)

    Bartos, I.; Brady, P.; Márka, S.

    2013-06-01

    By reaching through shrouding blastwaves, efficiently discovering off-axis events and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic and neutrino observations should be combined to provide greater discriminating power and science reach.

  4. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  5. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  6. Doped Lanthanum Hafnates as Scintillating Materials for High-Energy Photon Detection

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Recent years have seen the emergence of nanocrystalline complex oxide scintillators for use in X-ray and gamma-ray detection. In this study, we investigate the structural and optical properties of La2Hf2O7 nanoparticles doped with varying levels of Eu3+ or Ce3+ by use of X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and optical photoluminescence. In addition, scintillation response under X-ray and gamma-ray exposure is reported. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  7. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  8. Gamma ray cosmology: The extra galactic gamma spectrum and methods to detect the underlying source

    NASA Technical Reports Server (NTRS)

    Cline, David B.

    1990-01-01

    The possible sources of extragalactic gamma rays and methods to distinguish the different sources are discussed. The sources considered are early universe decays and annihilation of Particles, active galactic nuclei (AGN) sources, and baryon-antibaryon annihilation in a baryon symmetric cosmology. The energy spectrum and possible angular fluctuations due to these sources are described.

  9. Recombining plasma in the gamma-ray-emitting mixed-morphology supernova remnant 3C 391

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergin, T.; Sezer, A.; Saha, L.

    2014-07-20

    A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MCs) has been discovered to be strong GeV gamma-ray emitters by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray-emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MCs. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3-10.0 keV X-ray band by Suzaku. In this work, 3C 391more » was detected in GeV gamma rays with a significance of ∼18σ and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this paper, we discuss the possible origin of this type of radiative plasma and hadronic gamma rays.« less

  10. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. Although calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.

  11. Assessment of Gamma-Ray-Spectra Analysis Method Utilizing the Fireworks Algorithm for Various Error Measures

    DOE PAGES

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    The analysis of measured data plays a significant role in enhancing nuclear nonproliferation mainly by inferring the presence of patterns associated with special nuclear materials. Among various types of measurements, gamma-ray spectra is the widest utilized type of data in nonproliferation applications. In this paper, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular, FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, where non-zero coefficients express the detected signatures. FWA is tested on a set of experimentallymore » obtained measurements optimizing various objective functions—MSE, RMSE, Theil-2, MAE, MAPE, MAP—with results exhibiting its potential in providing highly accurate and precise signature detection. Finally and furthermore, FWA is benchmarked against genetic algorithms and multiple linear regression, showing its superiority over those algorithms regarding precision with respect to MAE, MAPE, and MAP measures.« less

  12. Stacking Searches for Greater Than 100 MeV Gamma Ray Emission from Radio Galaxies and Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.; Bertsch, D. L.

    2003-01-01

    The EGRET telescope on CGRO detected more than sixty sources of high-energy gamma radiation associated with active galactic nuclei (AGN). All but one of those belong to the blazar subclass; the only exception is the nearby radio galaxy Centaurus A. Since there is no obvious reason other than proximity to expect Cen A to be the only non-blazar AGN emitting in high-energy gamma rays, we have utilized the "stacking" technique to search for $>100$-MeV emission from two non-blazar AGN subclasses, radio galaxies and Seyfert galaxies. Maps of gamma-ray counts, exposure, and diffuse background have been created, then co-added in varying numbers based on sorts by redshift, 5-GHZ flux density, and optical brightness, and finally tested for gamma-ray emission. No detection significance greater than $2\\sigma$ has been found for any subclass, sorting parameter, or number of objects co-added. Monte Carlo simulations have also been performed, to validate the technique and estimate the significance of the results.

  13. Pulsar timing for the Fermi gamma-ray space telescope

    DOE PAGES

    Smith, D. A.; Guillemot, L.; Camilo, F.; ...

    2008-10-27

    Here, we describe a comprehensive pulsar monitoring campaign for the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The detection and study of pulsars in gamma rays give insights into the populations of neutron stars and supernova rates in the Galaxy, into particle acceleration mechanisms in neutron star magnetospheres, and into the “engines” driving pulsar wind nebulae. LAT's unprecedented sensitivity between 20 MeV and 300 GeV together with its 2.4 sr field-of-view makes detection of many gamma-ray pulsars likely, justifying the monitoring of over two hundred pulsars with large spin-down powers. To search for gamma-ray pulsationsmore » from most of these pulsars requires a set of phase-connected timing solutions spanning a year or more to properly align the sparse photon arrival times. We describe the choice of pulsars and the instruments involved in the campaign. Attention is paid to verifications of the LAT pulsar software, using for example giant radio pulses from the Crab and from PSR B1937+21 recorded at Nançay, and using X-ray data on PSR J0218+4232 from XMM-Newton. We demonstrate accuracy of the pulsar phase calculations at the microsecond level.« less

  14. A future wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2017-01-01

    High-energy gamma-ray observations are an essential probe of cosmic-ray acceleration. Detection of the highest energies and the shortest timescales of variability are key motivations when designing the next generation of gamma-ray experiments. The Milagro experiment was the first-generation of gamma-ray detectors based on the water-Cherenkov technique, and demonstrated that it is possible to continuously monitor a large fraction of the TeV sky. The second-generation water-Cherenkov experiment, the High Altitude Water Cherenkov observatory, consists of an array of 300 water-Cherenkov detectors covering an area of 22,000 m2 at 4,100 m a.s.l. The larger effective area, the higher altitude, and the optical isolation of the detectors led to a 15-fold increase in sensitivity relative to Milagro. Instruments with a wide field of view and large duty cycle are capable of surveying the TeV sky, mapping the diffuse emission, detecting emission from extended regions, and observing transient events such as gamma ray bursts. They also have the potential for discovering electromagnetic counterparts to gravitational waves and astrophysical neutrinos. I will present the preliminary design of a third-generation water-Cherenkov observatory located at very high altitude in South America.

  15. The Study of the Cosmic Gamma-Emission Nonstationary Fluxes Characteristics by the AVS-F Apparatus Data

    NASA Astrophysics Data System (ADS)

    Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.

    The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25∘ up to +30∘. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line, nuclear lines, and neutron capture line on1H (2.223 MeV). In the spectrum of the January 20, 2005 solar flare the feature in the range of 15-21 MeV was detected for the first time. It can be associated with lines of 15.11 MeV (12C +16O) or 20.58 MeV (from neutron radiative capture on3He), or with their combination. Also several e-dominant flares without any gamma-lines in energy spectra were identified. All detected faint solar flares were e-dominant according to the preliminary data analysis.Thin structure with characteristic timescale of 30-160 s was observed at 99 % significance level on some solar flares stronger than M1.0 temporal profiles in the low-energy gamma-band in the energy ranges corresponding to the identified spectral features or whole gamma-band energy boundaries. According to the results of the preliminary analysis during the flare of January 20, 2005, thin structure with timescale from 7 ms to 35 ms was detected at 99 % confidence level in the energy range of 0.1-20 MeV. Some thin structure with characteristic timescale 50-110 s was observed on temporal profiles of several faint events.About 3 % of the identified events were gamma-ray bursts. During some bursts high-energy gamma-emission was observed, for example Emax = 147 ± 3 MeV for GRB050525.

  16. Simultaneous CT and SPECT tomography using CZT detectors

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  17. Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Cameron, R. A.; Caputo, R.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Conrad, J.; Costantin, D.; D’Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Johnson, C.; Kensei, S.; Kocevski, D.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Malyshev, D.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Persic, M.; Pesce-Rollins, M.; Piron, F.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Sánchez-Conde, M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. G.; Thayer, J. B.; Torres, D. F.; Tosti, G.; Troja, E.; Valverde, J.; Vianello, G.; Wood, K.; Wood, M.; Zaharijas, G.

    2018-04-01

    Black holes with masses below approximately 1015 g are expected to emit gamma-rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a result of stellar evolution, they may have formed in the early universe and are therefore called primordial black holes (PBHs). Previous searches for PBHs have focused on either short-timescale bursts or the contribution of PBHs to the isotropic gamma-ray emission. We show that, in cases of individual PBHs, the Fermi-LAT is most sensitive to PBHs with temperatures above approximately 16 GeV and masses 6 × 1011 g, which it can detect out to a distance of about 0.03 pc. These PBHs have a remaining lifetime of months to years at the start of the Fermi mission. They would appear as potentially moving point sources with gamma-ray emission that become spectrally harder and brighter with time until the PBH completely evaporates. In this paper, we develop a new algorithm to detect the proper motion of gamma-ray point sources, and apply it to 318 unassociated point sources at a high galactic latitude in the third Fermi-LAT source catalog. None of the unassociated point sources with spectra consistent with PBH evaporation show significant proper motion. Using the nondetection of PBH candidates, we derive a 99% confidence limit on the PBH evaporation rate in the vicinity of Earth, {\\dot{ρ }}PBH}< 7.2× {10}3 {pc}}-3 {yr}}-1. This limit is similar to the limits obtained with ground-based gamma-ray observatories.

  18. Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Atwood, W. B.; Baldini, L.; ...

    2018-04-10

    Black holes with masses below approximately 10 15 g are expected to emit gamma-rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a result of stellar evolution, they may have formed in the early universe and are therefore called primordial black holes (PBHs). Previous searches for PBHs have focused on either short-timescale bursts or the contribution of PBHs to the isotropic gamma-ray emission. We show that, in cases of individual PBHs, the Fermi-LAT is most sensitive to PBHs with temperatures above approximately 16 GeV and masses 6 × 10 11 g, which it can detect out to a distance of about 0.03 pc. These PBHs have a remaining lifetime of months to years at the start of the Fermi mission. They would appear as potentially moving point sources with gamma-ray emission that become spectrally harder and brighter with time until the PBH completely evaporates. In this paper, we develop a new algorithm to detect the proper motion of gamma-ray point sources, and apply it to 318 unassociated point sources at a high galactic latitude in the third Fermi-LAT source catalog. None of the unassociated point sources with spectra consistent with PBH evaporation show significant proper motion. Finally, using the nondetection of PBH candidates, we derive a 99% confidence limit on the PBH evaporation rate in the vicinity of Earth,more » $${\\dot{\\rho }}_{\\mathrm{PBH}}\\lt 7.2\\times {10}^{3}\\ {\\mathrm{pc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$. This limit is similar to the limits obtained with ground-based gamma-ray observatories.« less

  19. Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Atwood, W. B.; Baldini, L.

    Black holes with masses below approximately 10 15 g are expected to emit gamma-rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a result of stellar evolution, they may have formed in the early universe and are therefore called primordial black holes (PBHs). Previous searches for PBHs have focused on either short-timescale bursts or the contribution of PBHs to the isotropic gamma-ray emission. We show that, in cases of individual PBHs, the Fermi-LAT is most sensitive to PBHs with temperatures above approximately 16 GeV and masses 6 × 10 11 g, which it can detect out to a distance of about 0.03 pc. These PBHs have a remaining lifetime of months to years at the start of the Fermi mission. They would appear as potentially moving point sources with gamma-ray emission that become spectrally harder and brighter with time until the PBH completely evaporates. In this paper, we develop a new algorithm to detect the proper motion of gamma-ray point sources, and apply it to 318 unassociated point sources at a high galactic latitude in the third Fermi-LAT source catalog. None of the unassociated point sources with spectra consistent with PBH evaporation show significant proper motion. Finally, using the nondetection of PBH candidates, we derive a 99% confidence limit on the PBH evaporation rate in the vicinity of Earth,more » $${\\dot{\\rho }}_{\\mathrm{PBH}}\\lt 7.2\\times {10}^{3}\\ {\\mathrm{pc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$. This limit is similar to the limits obtained with ground-based gamma-ray observatories.« less

  20. Gamma-Ray Emission from the Broad-Line Radio Galaxy 3C 111

    NASA Technical Reports Server (NTRS)

    Hartman, Robert C.; Kadler, M.; Tueller, Jack

    2008-01-01

    The broad-line radio galaxy 3C 111 has been suggested as the counterpart of the y-ray source 3EG J0416+3650. While 3C 111 meets most of the criteria for a high-probability identification, like a bright flat-spectrum radio core and a blazar-like broadband SED, in the Third EGRET Catalog, the large positional offset of about 1.5' put 3C 111 outside the 99% probability region for 3EG J0416+3650, making this association questionable. We present a re-analysis of all available archival data for 3C 111 from the EGRET archives, resulting in detection of variable hard-spectrum high-energy gamma-ray emission above 1000 MeV from a position close to the nominal position of 3C 111, in three separate viewing periods (VPs), at a 3sigma level in each. A second variable hard-spectrum source is present nearby. At >100 MeV, one variable soft-spectrum source seems to account for most of the EGRET-detected emission of 3EG J0416+3650. A follow-up Swift UVOT/XRT observation reveals one moderately bright X-ray source in the error box of 3EG J0416+3650, but because of the large EGRET position uncertainty, it is not certain that the X-ray and gamma-ray sources are associated. Another Swift observation near the second (unidentified) hard gamma-ray source detected no X-ray source nearby.

  1. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to energy deposition analysis and is the same as in the main aperture. Gamma-quanta, electrons/positrons and light nuclei with energy E>10 GeV also are registered in the lateral aperture. This aperture allows detecting of low-energy gammas in the ranges of 0.2 - 10 MeV and high energy ones from 10 MeV to several TeV with energy resolution 8% - 2% and 2% correspondingly.

  2. Observation of supernova remnant IC 443 with the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.

    2010-03-03

    Here, we report observation of the supernova remnant (SNR) IC 443 (G189.1+3.0) with the Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) in the energy band between 200 MeV and 50 GeV. IC 443 is a shell-type SNR with mixed morphology located off the outer Galactic plane where high-energy emission has been detected in the X-ray, GeV and TeV gamma-ray bands. Past observations suggest IC 443 has been interacting with surrounding interstellar matter. Proximity between dense shocked molecular clouds and GeV-TeV gamma-ray emission regions detected by EGRET, MAGIC, and VERITAS suggests an interpretation that cosmic-ray (CR) particles are accelerated by the SNR. We accurately characterize the gamma-ray emission produced by the CRs accelerated at IC 443 using the high gamma-ray statistics and broad energy coverage provided by the LAT. The emission region is extended in the energy band with θ 68 = 0more » $$°\\atop{.}$$27 ± 0fdg01(stat) ± 0$$°\\atop{.}$$03(sys) for an assumed two-dimensional Gaussian profile and overlaps almost completely with the extended source region of VERITAS. Its centroid is displaced significantly from the known pulsar wind nebula (PWN) which suggests the PWN is not the major contributor in the present energy band. The observed spectrum changes its power-law slope continuously and continues smoothly to the MAGIC and VERITAS data points. Furthermore, the combined gamma-ray spectrum (200 MeV« less

  3. Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.

    2017-08-01

    The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.

  4. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  5. Fermi LAT detection of increase gamma-ray emission from OJ 248

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.

    2012-09-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar OJ 248 (also known as 2FGL J0830.5+2407, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 127.7170254 deg, Dec: 24.1832836 deg (J2000, Johnston et al. 1995, AJ, 110, 880) at redshift z=0.94 (Hewitt & Burbidge 1993, ApJS, 87, 451).

  6. Fermi LAT detection of increased gamma-ray activity from the blazar TXS 1318+225

    NASA Astrophysics Data System (ADS)

    Torresi, E.; D'Ammando, F.; Tanaka, Y.

    2012-11-01

    The Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, has observed an increase in the gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar TXS 1318+225 (z=0.943, Sowards-Emmerd et al. 2003, ApJ, 590, 109; RA=200.2966771 deg, Dec=22.2700300 deg, J2000), also known as 2FGL J1321.1+2215 (Nolan et al. 2012, ApJS, 199, 31).

  7. Fermi LAT detection of an increase of gamma-ray activity of S5 1044+71

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2014-01-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar S5 1044+71 (also known as 2FGL J1048.3+7144, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 162.1150829 deg, Dec: 71.7266494 deg (J2000; Johnston et al. 1995, AJ, 110, 880) at redshift z=1.15 (Polatidis et al.

  8. Fermi LAT detection of a continuing increase of gamma-ray activity of CTA 102

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.

    2012-09-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar CTA 102 (also known as 2FGL J2232.4+1143, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 338.1517038 deg, Dec: 11.7308067 deg (J2000, Johnston et al. 1995, AJ, 110, 880) at redshift z=1.037 (Schmidt 1965, ApJ, 141, 1295).

  9. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  10. An experimental assessment of the imaging quality of the low energy gamma-ray telescope ZEBRA

    NASA Technical Reports Server (NTRS)

    Butler, R. C.; Caroli, E.; Dicocco, G.; Natalucci, L.; Spada, G.; Spizzichino, A.; Stephen, J. B.; Carter, J. N.; Charalambous, P. M.; Dean, A. J.

    1985-01-01

    One gamma-ray detection plane of the ZEBRA telescope, consisting of nine position sensitive scintillation crystal bars designed to operate over the spectral range 0.2 to 10 MeV, has been constructed in the laboratory. A series of experimental images has been generated using a scaled down flight pattern mask in conjunction with a diverging gamma-ray beam. Point and extended sources have been imaged in order to assess quantitatively the performance of the system.

  11. Constraining heavy decaying dark matter with the high energy gamma-ray limits

    NASA Astrophysics Data System (ADS)

    Kalashev, O. E.; Kuznetsov, M. Yu.

    2016-09-01

    We consider decaying dark matter with masses 1 07≲M ≲1 016 GeV as a source of ultrahigh energy (UHE) gamma rays. Using recent limits on UHE gamma-ray flux for energies Eγ>2 ×1 014 eV , provided by extensive air shower observatories, we put limits on masses and lifetimes of the dark matter. We also discuss possible dark matter decay origin of tentative 100 PeV photon flux detected with the EAS-MSU experiment.

  12. Long-term variations in the gamma-ray background on SMM

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Share, G. H.; Kinzer, R. L.; Johnson, W. N.; Adams, J. H., Jr.

    1989-01-01

    Long-term temporal variations in the various components of the background radiation detected by the gamma-ray spectrometer on the Solar Maximum Mission are presented. The SMM gamma-ray spectrometer was launched in February, 1980 and continues to operate normally. The extended period of mission operations has provided a large data base in which it is possible to investigate a variety of environmental and instrumental background effects. In particular, several effects associated with orbital precession are introduced and discussed.

  13. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiuhua, E-mail: xhwang@mail.ahnu.edu.cn; Shi, Zhijie; Yao, Shangwu

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiationmore » improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.« less

  14. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  15. Fast variability of tera-electron volt gamma rays from the radio galaxy M87.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-12-01

    The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.

  16. The application of network synthesis to repeating classical gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Kouveliotou, C.; Fishman, J.; Meegan, C.; Laros, J.; Klebesadel, R.

    1995-01-01

    It has been suggested that the Burst and Transient Source Experiment (BATSE) gamma-ray burst catalog contains several groups of bursts clustered in space or in space and time, which provide evidence that a substantial fraction of the classical gamma-ray burst sources repeat. Because many of the bursts in these groups are weak, they are not directly detected by the Ulysses GRB experiment. We apply the network synthesis method to these events to test the repeating burst hypothesis. Although we find no evidence for repeating sources, the method must be applied under more general conditions before reaching any definite conclusions about the existence of classical gamma-ray burst repeating sources.

  17. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  18. AGILE confirmation of gamma-ray activity from the IceCube-170922A error region

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Ursi, A.; Vercellone, S.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-09-01

    Following the IceCube observation of a high-energy neutrino candidate event, IceCube-170922A, at T0 = 17/09/22 20:54:30.43 UT (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3), and the detection of increased gamma-ray activity from a previously known Fermi-LAT gamma-ray source (3FGL J0509.4+0541) in the IceCube-170922A error region (ATel #10791), we have analysed the AGILE-GRID data acquired in the days before and after the neutrino event T0, searching for significant gamma-ray excess above 100 MeV from a position compatible with the IceCube and Fermi-LAT error regions.

  19. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-08-07

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  20. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  1. GeV Observations of star-forming glaxies with the FERMI Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We findmore » further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values lesssim 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  2. CAFNA{reg{underscore}sign}, coded aperture fast neutron analysis for contraband detection: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Lanza, R.C.

    1999-12-01

    The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low.more » For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.« less

  3. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  4. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  5. Pulsed Gamma Rays from the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2009-06-19

    In this paper, we report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power E(dotabove) = 3.5 x 10 33 erg s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 andmore » 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) × 10 –8 cm –2 s –1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Finally, based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ/E(dotabove) ≃ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.« less

  6. Energy dependence of polarization across broad deexcitation gamma-ray line profiles

    NASA Astrophysics Data System (ADS)

    Werntz, Carl; Lang, F. L.

    1998-04-01

    The energy profiles of deexcitation gamma-ray lines from recoiling inelastically scattered nuclei exhibit detailed structure. MeV-wide gamma-ray lines from the direction of the Orion nebula have been detected (H. Bloemen, et al., Astr. and Astrophys. L5, 281 (1994).) by COMPTEL whose source is postulated to be cosmic ray carbon and oxygen nuclei shock accelerated near supernova remnants colliding with ambient hydrogen and helium. Even when the heavy ion velocity distributions are isotropic, structure characteristic of the multipolarity of the gamma transition remains (A. M. Bykov et al, Astr. and Astrophys. 607, L37 (1996); B. Kozlovsky et al, Astrophys. J. 484, (1997).). In experiments in which the energy dependent structure of the deexcitation gamma-ray profiles is not resolved, the gammas display a high degree of linear polarization that rapidly changes with gamma-beam angle. We calculate the polarization, both linear and circular, as a function of gamma-ray energy across the laboratory line profiles of C12*(4.44) and O16*(6.13) inelastically excited by protons and alphas. We then investigate the polarization in the surviving structures for isotropic energetic ions colliding with ^1H and ^4He.

  7. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  8. SEARCHING FOR OVERIONIZED PLASMA IN THE GAMMA-RAY-EMITTING SUPERNOVA REMNANT G349.7+0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergin, T.; Sezer, A.; Saha, L.

    2015-05-10

    G349.7+0.2 is a supernova remnant (SNR) expanding in a dense medium of molecular clouds and interacting with clumps of molecular material emitting gamma-rays. We analyzed the gamma-ray data of the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope and detected G349.7+0.2 in the energy range of 0.2–300 GeV with a significance of ∼13σ, showing no extended morphology. Modeling of the gamma-ray spectrum revealed that the GeV gamma-ray emission dominantly originates from the decay of neutral pions, where the protons follow a broken power-law distribution with a spectral break at ∼12 GeV. To search for features of radiative recombinationmore » continua in the eastern and western regions of the remnant, we analyzed the Suzaku data of G349.7+0.2 and found no evidence for overionized plasma. In this paper, we discuss possible scenarios to explain the hadronic gamma-ray emission in G349.7+0.2 and the mixed morphology nature of this SNR.« less

  9. Associating Long-term Gamma-ray Variability with the Superorbital Period of LS I + 61 Deg. 303

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bonamente, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; hide

    2013-01-01

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the gamma-ray binary LS I + 61?303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the approx. 26.4960 day orbital period. Here we show that, during the time of our observations, the gamma-ray emission of LS I + 61 deg. 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use gamma-ray observations to study the outflows of massive stars in eccentric binary systems.

  10. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  11. AGILE detects enhanced gamma-ray emission above 100 MeV from the blazar S4 0554+58 region

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Pittori, C.; Verrecchia, F.; Tavani, M.; Piano, G.; Bulgarelli, A.; Fioretti, V.; Striani, E.; Vercellone, S.; Donnarumma, I.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Pilia, M.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2015-02-01

    AGILE is detecting increased gamma-ray emission above 100 MeV from a source positionally consistent with the flat spectrum radio quasar S4 0554+58 (also known as BZQ J0559+5804), with radio coordinates R.A.: 89.8058092 deg, Dec.: 58.0676239 deg (J2000, A. J. Beasley et al., 2002ApJS..141...13B).

  12. BurstCube: A CubeSat for Gravitational Wave Counterparts

    NASA Astrophysics Data System (ADS)

    Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila

    2018-01-01

    We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.

  13. ON THE LACK OF TIME DILATION SIGNATURES IN GAMMA-RAY BURST LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocevski, Daniel; Petrosian, Vahe

    2013-03-10

    We examine the effects of time dilation on the temporal profiles of gamma-ray burst (GRB) pulses. By using prescriptions for the shape and evolution of prompt gamma-ray spectra, we can generate a simulated population of single-pulsed GRBs at a variety of redshifts and observe how their light curves would appear to a gamma-ray detector here on Earth. We find that the observer frame duration of individual pulses does not increase with redshift as 1 + z, which one would expect from cosmological expansion. This time dilation is masked by an opposite and often stronger effect: with increasing redshift and decreasingmore » signal-to-noise ratio only the brightest portion of the light curve can be detected. The results of our simulation are consistent with the fact that the simple time dilation of GRB light curves has not materialized in either the Swift or Fermi detected GRBs with known redshift. We show that the measured durations and associated E{sub iso} estimates for GRBs detected near the instrument's detection threshold should be considered lower limits to the true values. Furthermore, we conclude that attempts at distinguishing between long and short GRBs, at even moderate redshifts, cannot be done based on a burst's temporal properties alone.« less

  14. Some problems of the detection of the high energy gamma-radiation in space

    NASA Astrophysics Data System (ADS)

    Fradkin, M. I.; Ginzburg, V. L.; Kurnosova, L. V.; Labensky, A. G.; Razorenov, L. A.; Rusakovich, M. A.; Topchiev, N. P.; Kaplin, V. A.; Runtso, M. F.; Gorchakov, E. V.; Ignatiev, P. P.

    1995-05-01

    Diffuse gamma radiation in the Galaxy has been measured with instruments onboard the COS-B and Compton Gamma Ray Observatory (CGRO) satellites from the tens of keV up to about 30 GeV. There is no experimental data at higher energies, but this data is very important for the spectrum of primary cosmic rays and the existence of neutralinos (hypothetical supersymmetrical particles which are supposed to constitute dark matter in the Galaxy and create gamma-quanta in the process of annihilation). The GAMMA-400 collaboration is working on the design of a telescope for gamma-ray measurements in the 10-1000 GeV range. The electronics of the GAMMA-400 eliminate some hindering effects, in particular the influence of backscattered gammas emitted by the very massive calorimeter (calorimeter albedo). The GAMMA-400 project may be realized in the near future if economic conditions in Russia are favorable.

  15. Cosmic-ray physics with the milagro gamma-ray observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    The Milagro gamma-ray observatory is a water Cherenkov detector with an energy response between 100 GeV and 100 TeV. While the major scientific goals of Milagro were to detect and study cosmic sources of TeV gamma rays, Milagro has made measurements important to furthering our understanding of the cosmic radiation that pervades our Galaxy. Milagro has made the first measurement of the Galactic diffuse emission in the TeV energy band. In the Cygnus Region we measure a flux {approx}2.7 times that predicted by GALPROP. Milagro has also made measurements of the anisotropy of the arrival directions of the local cosmicmore » radiation. On large scales the measurements made by Milagro agree with those previously reported by the Tibet AS{gamma} array. However, we have also discovered a time dependence to this anisotropy, perhaps due to solar modulation. On smaller scales, {approx}10 degrees, we have detected two regions of excess. These excesses have a spectrum that is inconsistent with the local cosmic-ray spectrum.« less

  16. Flash-Bang Detector to Model the Attenuation of High-Energy Photons

    NASA Astrophysics Data System (ADS)

    Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.

    2015-12-01

    It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.

  17. Gamma Radiation from PSR B1055-52

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N. D.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; hide

    1998-01-01

    The telescopes on the Compton Gamma Ray Observatory (CCRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

  18. Gamma Radiation from PSR B1055-52

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; hide

    1999-01-01

    The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

  19. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  20. Origin of Gamma-Ray Families Accompanied by Halos and Detected in Experiments with X-Ray Emulsion Chambers

    NASA Astrophysics Data System (ADS)

    Puchkov, V. S.; Pyatovsky, S. E.

    2018-03-01

    The phenomenon of gamma-ray families featuring halos that is observed in an experiment with x-ray emulsion chambers (XREC) in the Pamir experiment and in other XREC experiments is explained. The experimental properties of halos are analyzed via a comparison with the results of their simulation. It is shown that gamma-ray families featuring halos are predominantly produced (more than 96% of them) by protons and heliumnuclei. This makes it possible to employ the experimental properties of halos to estimate the fraction of protons and helium nuclei in the mass composition of primary cosmic radiation.

  1. Method of photon spectral analysis

    DOEpatents

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  2. Method of photon spectral analysis

    DOEpatents

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  3. Gamma ray astrophysics and signatures of axion-like particles

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.

    2009-02-01

    We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to effects in the spectra of high-energy gamma-ray sources detectable by satellite or ground-based telescopes. We discuss two kinds of signatures: (i) a peculiar spectral depletion due to gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies; (ii) an appearance of otherwise invisible sources in the GeV or TeV sky due to back-conversion of an ALP flux (associated with gamma-ray emitters suffering some attenuation) in the magnetic field of the Milky Way. These two mechanisms might also provide an exotic way to avoid the exponential cutoff of very high energy gamma-rays expected due to the pair production onto the extragalactic background light.

  4. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Müller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.

  5. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  6. Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; McDermott, Samuel D.

    2018-06-01

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range of 10-27 cm2≲σDM -p≲10-24 cm2 . With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.

  7. Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbel, S; Corbet, R; DeCesar, M E; den Hartog, P R; Dermer, C D; de Palma, F; Digel, S W; Donato, D; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Hill, A B; Horan, D; Hughes, R E; Itoh, R; Jean, P; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nestoras, I; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schinzel, F K; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Sokolovsky, K V; Spandre, G; Spinelli, P; Stawarz, Ł; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Tanaka, Y; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wolff, M T; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M; Maehara, H; Nishiyama, K; Kabashima, F; Bach, U; Bower, G C; Falcone, A; Forster, J R; Henden, A; Kawabata, K S; Koubsky, P; Mukai, K; Nelson, T; Oates, S R; Sakimoto, K; Sasada, M; Shenavrin, V I; Shore, S N; Skinner, G K; Sokoloski, J; Stroh, M; Tatarnikov, A M; Uemura, M; Wahlgren, G M; Yamanaka, M

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.

  8. Gamma-ray astronomy with a large muon detector in the ARGO-YBJ experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sciascio, G.; Di Girolamo, T.; Megna, R.

    2005-02-21

    The ARGO-YBJ experiment, currently under construction at the YangBaJing Laboratory (Tibet, P.R. China, 4300 m a.s.l.), could be upgraded with a large ({approx} 2500 m2) muon detector both to extend the sensitivity to {gamma}-ray sources to energies greater than {approx} 20 TeV and to perform a cosmic ray primary composition study. In this paper we present an evaluation of the rejection power for proton-induced showers achievable with the upgraded ARGO-YBJ detector. Minimum detectable {gamma}-ray fluxes are calculated for different experimental setups.

  9. Flying high-altitude balloon-borne telescopes 50 years ago

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.

    Based on theoretical predictions of cosmic gamma-ray fluxes by P. Morrison (1958) and M. Savedoff (1959), we started, at the University of Rochester, a program in high-energy gammaray astronomy to search for these sources using high-altitude balloon-borne telescopes. The first flight occurred in 1959 from Sioux Falls, SD, using scintillator/Cerenkov detectors. In 1962 I initiated a gamma-ray astronomy program at the Smithsonian Astrophysical Observatory (SAO) using vidicon spark chambers. Later Henry Helmken (SAO) developed a program in low-energy gamma-ray astronomy based on a gas Cerenkov detector. During the 1960's more flights followed from San Angelo, TX; Holloman AFB, NM; Hyderabad, India, and finally, Palestine, TX. All of these flights just produced upper limits to the cosmic gamma-ray flux. We also entered a collaboration with the Cornell Group (K. Greisen) to fly a large gas-Cerenkov telescope to search for ˜ 100 MeV gamma-rays. In the early 1970's, using this telescope, gammarays from the Crab Nebula pulsar were detected (McBreen et al. 1973). It soon became evident that gamma-ray astronomy, to be successful, had to be performed from space telescopes. In 1970, somewhat frustrated, I changed fields and started at SAO/Harvard the construction of a 1-meter balloon-borne telescope for far-infrared astronomy. This was a collaborative program with the University of Arizona (F. Low). This program was extremely successful, resulting in 19 flights over 20 years, and produced the first far-infrared high-resolution maps of many new galactic regions and detection of solar system sources. Experience gained from these programs later led to the development and flight of space gamma-ray and infrared telescopes and many of the participants were, and some still are, active in numerous space programs.

  10. Systems and methods for detecting nuclear radiation in the presence of backgrounds

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-06-21

    Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.

  11. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  12. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; hide

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  13. Observations of gamma-ray pulsars at the highest energies with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, Pablo

    2016-07-01

    One of the most exciting developments in pulsar astrophysics in recent years has been the detection, with ground-based instruments (VERITAS, MAGIC), of pulsed gamma-ray emission from the Crab at very high energies (VHE, E>100 GeV). The Large Area Telescope (LAT) on board the Fermi satellite has detected over 160 pulsars above 100 MeV. Twenty-eight of these have been shown to emit pulsations above 10 GeV and approximately a dozen show emission above 25 GeV. While most gamma-ray pulsars are well-fitted in the GeV range by a power law with an exponential cut-off at around a few GeV, some emission models predict emission at energies above 100 GeV, either through a power-law extrapolation of the low-energy spectrum, or via a new (e.g. Inverse Compton) component. We will present results of our search for high-energy emission from LAT-detected gamma-ray pulsars using the latest Pass 8 data and discuss the prospects of finding the next VHE pulsar, providing a good target (or targets) for follow-up observations with current and future ground-based observatories, like CTA.

  14. Illuminating Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; GROWTH (Global Relay of Observatories Watching Transients Happen) Team

    2018-01-01

    On August 17 2017, for the first time, an electromagnetic counterpart to gravitational waves was detected. Two neutron stars merged and lit up the entire electromagnetic spectrum, from gamma-rays to the radio. The infrared signature vividly demonstrates that neutron star mergers are indeed the long-sought production sites that forge heavy elements by r-process nucleosynthesis. The weak gamma-rays are dissimilar to classical short gamma-ray bursts with ultra-relativistic jets. Instead, by synthesizing a panchromatic dataset, we suggest that break-out of a wide-angle, mildly-relativistic cocoon engulfing the jet elegantly explains the low-luminosity gamma-rays, the high-luminosity ultraviolet-optical-infrared and the delayed radio/X-ray emission. I conclude with the promise of a literally bright and loud future, thanks to even more sensitive survey telescopes and gravitational wave interferometers.

  15. Five New Millisecond Pulsars from a Radio Survey of 14 Unidentified Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Guillemot, L.; Harding, A. K.; Hessels, J.; Johnson, S.; Keith, M.; Kramer, M.; hide

    2012-01-01

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Ferm;'LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR JOl01-6422 (P=2.57ms, DH=12pc/cubic cm ), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey -- enabled by selecting gamma-ray sources based on their detailed spectral characteristics -- and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  16. Gamma-Ray Bursts: An Overview of Recent Observational Progress

    NASA Astrophysics Data System (ADS)

    McKay, T. A.; Akerlof, C.; Kehoe, B.; Pawl, A.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Szymanski, J.; Wren, J.; Marshall, S.; Lee, B.

    Gamma-ray bursts have, since their discovery in 1969, been the archetypal astrophysical mystery. Despite the detection of thousands of events, our knowledge of the origin and nature of GRBs remained minimal for nearly 30 years. Progress in understanding gamma-ray bursts has undergone explosive growth since the observation in 1997 of the first optical afterglow of a burst. The discovery of afterglows was followed in 1999 by the first simultaneous optical detection of a GRB. These discoveries constitute the beginning of a new field, the multiwavelength study of GRBs. We review here some highlights of what we have learned over the last two years, and look ahead towards an observational program likely to settle most of the remaining GRB questions.

  17. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  18. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  19. Initial results from a multi-point mapping observation of thundercloud high-energy radiation in coastal area of Japan sea

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Enoto, T.; Furuta, Y.; Nakazawa, K.; Yuasa, T.; Okuda, K.; Makishima, K.; Nakano, T.; Umemoto, D.; Tsuchiya, H.

    2017-12-01

    On-ground detections of Thunderstorm Radiation Bursts (TRB) which mainly consist of bremsstrahlung gamma rays with energy extending up to 20 MeV indicate powerful electron accelerations inside thunderclouds or along lightning discharge paths (e.g. Torii et al., 2002, Tsuchiya et al., 2007, Dwyer et al., 2004). In order to resolve time variation and structure of the electron accelerators, we have constructed a multi-point mapping observation network with the aim of tracing gamma rays from moving thunderclouds since 2015. In fiscal 2016, we developed low cost and small size detectors dedicated to our observation. The data acquisition system records energy and timing of individual gamma-ray photons by 4-ch and 50 MHz sampling electrical boards (9.5 cm x 9.5 cm), coupled with BGO scintillator crystals. The systems were installed in portable water-proof boxes. We operated 10 detectors in two areas (Ishikawa and Niigata) along the coast of Japan Sea from October 2016 to April 2017. During this period, detectors in Ishikawa detected in total 10 TRBs lasting for several minutes associated with passage of a thundercloud. Our previous single-site measurement at Niigata, has recorded 1.4 TRBs per year on average in 2006-2015. Therefore, our new multi-point observation detected 7 times as many events as the previous system. One of the TRB gamma-ray spectra was fitted well by a cutoff power-law model. We performed a Monte Carlo simulation, and revealed that this spectrum was explained as bremsstrahlung of a monochromatic 15 MeV electron beam generated at an altitude of 500 m. We also succeeded in tracing gamma rays from an identical moving thundercloud with two detectors, demonstrating performance of the multi-point observation. In addition, we detected "short TRBs" lasting for a few hundred milliseconds associated with lightning discharges from four independent detectors placed 500 m apart simultaneously, in January and February 2017 at Niigata. The results in 2016-2017 winter season are proving that our multi-point observation can firmly detect a large number of TRBs and trace gamma rays from thunderstorms.

  20. GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.

  1. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  2. Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.; hide

    2001-01-01

    Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.

  3. A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date

    NASA Astrophysics Data System (ADS)

    Finzell, Thomas; Chomiuk, Laura; Metzger, Brian D.; Walter, Frederick M.; Linford, Justin D.; Mukai, Koji; Nelson, Thomas; Weston, Jennifer H. S.; Zheng, Yong; Sokoloski, Jennifer L.; Mioduszewski, Amy; Rupen, Michael P.; Dong, Subo; Starrfield, Sumner; Cheung, C. C.; Woodward, Charles E.; Taylor, Gregory B.; Bohlsen, Terry; Buil, Christian; Prieto, Jose; Wagner, R. Mark; Bensby, Thomas; Bond, I. A.; Sumi, T.; Bennett, D. P.; Abe, F.; Koshimoto, N.; Suzuki, D.; Tristram, P. J.; Christie, Grant W.; Natusch, Tim; McCormick, Jennie; Yee, Jennifer; Gould, Andy

    2018-01-01

    It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanisms involved in the production ofgamma-rays are still not well understood. We present here a comprehensive multiwavelength data set—from radio to X-rays—for the most gamma-ray-luminous classical nova to date, V1324 Sco. Using this data set, we show that V1324 Sco is a canonical dusty Fe II-type nova, with a maximum ejecta velocity of 2600 km s‑1 and an ejecta mass of a few × {10}-5 {M}ȯ . There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324 Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324 Sco with other gamma-ray-detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma-rays in novae.

  4. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  5. Observation of high-energy gamma rays from the quasi-stellar object CTA 102

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1993-01-01

    The quasar CTA 102 (QSO 2230 + 114) was observed four times in 1991-1992 by the EGRET high-energy gamma-ray telescope on the Compton GRO satellite. In the 1992 January 23-February 6 observation, emission was detected at the level (2.4 +/- 0.5) x 10 exp 7 photons/sq cm s (E is greater than 100 MeV). The other observations produced upper limits or detections with lower significance which are consistent with the same flux. The photon spectrum can be represented by a power law with a number index of 2.6 +/- 0.2, the softest so far observed by EGRET. The emitted gamma-ray luminosity, if isotropic, is 5 x 10 exp 47 ergs/s (H(0) = 75 km/s Mpc , q(0) = 0.5), although there are good reasons to believe that the gamma emission is strongly beamed.

  6. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  7. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  8. Systems for detecting charged particles in object inspection

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  9. Nuclear radiation-warning detector that measures impedance

    DOEpatents

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  10. AGILE detection of a rebrightening of the gamma-ray source AGL J2251-1239

    NASA Astrophysics Data System (ADS)

    Piano, G.; Pittori, C.; Tavani, M.; Lucarelli, F.; Verrecchia, F.; Giommi, P.; Cardillo, M.; Ursi, A.; Minervini, G.; Bulgarelli, A.; Parmiggiani, N.; Vercellone, S.; Fioretti, V.; Pilia, M.; Donnarumma, I.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Ferrari, A.; Colafrancesco, S.; Paoletti, F.; Antonelli, A.; Salotti, L.; Valentini, G.; D'Amico, F.

    2018-01-01

    AGILE is detecting again intense gamma-ray emission above 100 MeV from a source at Galactic coordinates (l, b) = (54.6, -58.4) +/- 0.9 deg (95% stat. c.l.) +/- 0.1 deg (syst.) (R.A., Dec. (J2000): 342.26, -12.74 deg), compatible with AGL J2251-1239 reported in a flaring state by AGILE on December 8, 2017 (ATel #11043, F. Lucarelli et al.).

  11. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  12. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  13. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    PubMed

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles.

  14. GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Briggs, M. S.; Fishman, G. J.; Connaughton, V.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.; Chaplin, V. L.; Kippen, R. M.; vonKienlin, A.; hide

    2010-01-01

    The TGF detection rate of Gamma-ray Burst Monitor (GBM) has been increased twice since launch. The most recent improvement is from a new operating mode in which data for individual photons are down-linked for selected portions of the orbit, enabling a more sensitive ground-based search for TGFs. The new search has increased the TGF detection rate and is finding TGFs more than five times fainter than the TGFs of the previous GBM sample. We summarize the properties of the original GBM TGF sample and compare to the less intense TGFs now being detected. In addition to gamma-ray TGFs, GBM is observing distant TGFs from the propagation of charged particles along geomagnetic field lines. Strong 511 keV annihilation lines have been observed, demonstrating that both electrons and positrons are present in the particle beams. Spectral fits to these electron/positron TGFs will be shown.

  15. Time encoded radiation imaging

    DOEpatents

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  16. On the Puzzling High-Energy Pulsations of the Energetic Radio-Quiet -Ray Pulsar J1813-1246

    NASA Technical Reports Server (NTRS)

    Marelli, M.; Harding, Alice K.; Pizzocaro, D.; De Luca, A.; Wood, K. S.; Caraveo, P.; Salvetti, D.; Parkinson, P. M.; Acero, F.

    2014-01-01

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813-1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase.We extended the available Fermi ephemeris to five years.We found two glitches. The gamma-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the gamma-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and gamma-ray emission of J1813. The unique X-ray and gamma-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  17. Discovery of a Hand X-Ray Source, SAX J0635+0533, in the Error Box of the Gamma-Ray Source 2EG J0635+0521

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.

  18. LaCl3:Ce Coincidence Signatures to Calibrate Gamma-ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.

    Abstract Calibrating the gamma-ray detection efficiency of radiation detectors in a field environment is difficult under most circumstances. To counter this problem we have developed a technique that uses a Cerium doped Lanthanum-Tri-Chloride (LaCl3:Ce) scintillation detector to provide gated gammas[ , ]. Exploiting the inherent radioactivity of the LaCl3:Ce due to the long-lived radioactive isotope 138La (t1/2 = 1.06 x 1011 yrs) allows the use of the 788 and 1436-keV gammas as a measure of efficiency. In this paper we explore the effectiveness of using the beta-gamma coincidences radiation LaCl3:Ce detector to calibrate the energy and efficiency of a numbermore » of gamma-ray detectors.« less

  19. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Desiante, R.

    2016-11-01

    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims: The spectral energy distribution of QSO B0218+357 can give information on the energetics of z 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z 1. Methods: MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Results: Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.

  20. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.

    QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less

  1. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    DOE PAGES

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...

    2016-11-04

    QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less

  2. Observing the Non-Thermal Universe with the Highest Energy Photons

    NASA Astrophysics Data System (ADS)

    Dingus, Brenda L.; HAWC, VERITAS, CTA

    2016-01-01

    Astrophysical sources of relativistic particles radiate gamma rays to such high energies that they can be detected from the ground. The existence of high energy gamma rays implies that even higher energy particles are being accelerated placing strong constraints on these non-thermal accelerators. Within our galaxy, TeV gamma rays have been detected from supernova remnants, pulsar wind nebula, x-ray binaries and some yet to be identified sources in the Galactic plane. In addition, these gamma rays have sufficient energy to be attenuated by the interaction with infrared photons producing an electron-positron pair. Thus the spectrum of gamma rays can also constrain the infrared photon density, which for distant extragalactic sources is a direct probe of cosmology. The known extragalactic TeV sources are primarily the blazer class of active galactic nuclei. And TeV gamma rays might even be produced by annihilating dark matter.The US currently supports two ground-based gamma-ray observatories—HAWC and VERITAS—and NSF is developing a prototype for the international Cherenkov Telescope Array (CTA) observatory. The HAWC (High Altitude Water Cherenkov) observatory just began operation of the full detector in March 2015 and with its wide field of view scans ~2/3 of the sky each day for TeV sources. VERITAS (Very EneRgetic Imaging Telescope Array System) is an array of four imaging atmospheric Cherenkov telescopes that follows individual sources to produce lightcurves and spectra from 85 GeV to > 30 TeV. The combination of both a survey and pointed observatory is very complementary with a broad scientific reach that includes the study of extragalactic and Galactic objects as well as the search for astrophysical signatures of dark matter and the measurement of cosmic rays. I will present the current view of the TeV sky and the latest results from HAWC and VERITAS as well as plans for CTA.

  3. Cen A Optical Gamma Composite

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 The gamma-ray output from Cen A's lobes exceeds their radio output by more than ten times. High-energy gamma rays detected by Fermi's Large Area Telescope are depicted as purple in this gamma ray/optical composite of the galaxy. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  4. Enhanced gamma-ray emission from the FSRQ PKS 0131-522

    NASA Astrophysics Data System (ADS)

    Piano, G.; Pittori, C.; Verrecchia, F.; Minervini, G.; Lucarelli, F.; Munar-Adrover, P.; Ursi, A.; Bulgarelli, A.; Fioretti, V.; Parmiggiani, N.; Tavani, M.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-11-01

    AGILE is detecting enhanced gamma-ray emission above 100 MeV from the FSRQ PKS 0131-522 (z=0.02; also known as 3FGL J0133.2-5159), at Galactic coordinates (l, b) = (288.4, -63.8) +/- 0.6 deg (stat.) +/- 0.1 deg (sys.).

  5. The recent NIR Flare of the Blazar CTA102

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Escobedo, G.; Porras, A.; Recillas, E.; Chavushyan, V.; Mayya, D. Y.

    2018-01-01

    Following the report of increased Gamma-Ray activity detected by AGILE of the high redshift QSO (z=1.037) CTA102 cross identified with the radio source 4C+11.69 and the Gamma-ray source 2FGLJ2232.4+1143 by Lucarelli et al.(ATEL #11045).

  6. Multi-wavelength Observations of the Flaring Gamma-ray Blazar 3C 66A in 2008 October

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Costamante, L.; Cutini, S.; Davis, D. S.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nestoras, I.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ripken, J.; Ritz, S.; Romani, R. W.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Cui, W.; de la Calle Perez, I.; Dickherber, R.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Mukherjee, R.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Smith, A. W.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Villata, M.; Raiteri, C. M.; Gurwell, M. A.; Larionov, V. M.; Kurtanidze, O. M.; Aller, M. F.; Lähteenmäki, A.; Chen, W. P.; Berduygin, A.; Agudo, I.; Aller, H. D.; Arkharov, A. A.; Bach, U.; Bachev, R.; Beltrame, P.; Benítez, E.; Buemi, C. S.; Dashti, J.; Calcidese, P.; Capezzali, D.; Carosati, D.; Da Rio, D.; Di Paola, A.; Diltz, C.; Dolci, M.; Dultzin, D.; Forné, E.; Gómez, J. L.; Hagen-Thorn, V. A.; Halkola, A.; Heidt, J.; Hiriart, D.; Hovatta, T.; Hsiao, H.-Y.; Jorstad, S. G.; Kimeridze, G. N.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Leto, P.; Ligustri, R.; Lindfors, E.; Lopez, J. M.; Marscher, A. P.; Mommert, M.; Mujica, R.; Nikolashvili, M. G.; Nilsson, K.; Palma, N.; Pasanen, M.; Roca-Sogorb, M.; Ros, J. A.; Roustazadeh, P.; Sadun, A. C.; Saino, J.; Sigua, L. A.; Sillanää, A.; Sorcia, M.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Turchetti, R.; Umana, G.; Belloni, T.; Blake, C. H.; Bloom, J. S.; Angelakis, E.; Fumagalli, M.; Hauser, M.; Prochaska, J. X.; Riquelme, D.; Sievers, A.; Starr, D. L.; Tagliaferri, G.; Ungerechts, H.; Wagner, S.; Zensus, J. A.; Fermi LAT Collaboration; VERITAS Collaboration; GASP-WEBT Consortium

    2011-01-01

    The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.

  7. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  8. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  9. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33

    DOE PAGES

    Abdo, A. A.

    2010-11-01

    Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M 31 and M 33. We compare the results with thosemore » for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M 82 and NGC 253. Results. We detect a gamma-ray signal at 5σ significance in the energy range 200 MeV–20 GeV that is consistent with originating from M 31. The integral photon flux above 100 MeV amounts to (9.1 ± 1.9stat ± 1.0sys) × 10 -9 ph cm-2 s -1. We find no evidence for emission from M 33 and derive an upper limit on the photon flux >100 MeV of 5.1 × 10 -9 ph cm -2 s -1 (2σ). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M 31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M 31 and the Milky Way amounts to ξ = 0.35 ± 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M 33 is not far below the current upper limit from the LAT observations.« less

  10. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; ...

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. As a result, calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.« less

  11. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  12. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Swift Team

    2005-12-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  13. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  14. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  15. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  16. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Yearian, Mason R.

    1990-01-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements.

  17. Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2009-05-01

    AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  18. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  20. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  1. AGILE Observations of the Gravitational-wave Source GW170817: Constraining Gamma-Ray Emission from an NS-NS Coalescence

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Tavani, M.; Donnarumma, I.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Ursi, A.; Piano, G.; Pilia, M.; Cardillo, M.; Parmiggiani, N.; Giuliani, A.; Pittori, C.; Longo, F.; Lucarelli, F.; Minervini, G.; Feroci, M.; Argan, A.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Fioretti, V.; Trois, A.; Del Monte, E.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Colafrancesco, S.; Costa, E.; D'Amico, F.; Ferrari, A.; Giommi, P.; Morselli, A.; Paoletti, F.; Pellizzoni, A.; Picozza, P.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; Baroncelli, L.; Zollino, G.

    2017-12-01

    The LIGO-Virgo Collaboration (LVC) detected, on 2017 August 17, an exceptional gravitational-wave (GW) event temporally consistent within ˜ 1.7 {{s}} with the GRB 1708117A observed by Fermi-GBM and INTEGRAL. The event turns out to be compatible with a neutron star-neutron star (NS-NS) coalescence that subsequently produced a radio/optical/X-ray transient detected at later times. We report the main results of the observations by the AGILE satellite of the GW170817 localization region (LR) and its electromagnetic (EM) counterpart. At the LVC detection time T 0, the GW170817 LR was occulted by the Earth. The AGILE instrument collected useful data before and after the GW/GRB event because in its spinning observation mode it can scan a given source many times per hour. The earliest exposure of the GW170817 LR by the gamma-ray imaging detector started about 935 s after T 0. No significant X-ray or gamma-ray emission was detected from the LR that was repeatedly exposed over timescales of minutes, hours, and days before and after GW170817, also considering Mini-calorimeter and Super-AGILE data. Our measurements are among the earliest ones obtained by space satellites on GW170817 and provide useful constraints on the precursor and delayed emission properties of the NS-NS coalescence event. We can exclude with high confidence the existence of an X-ray/gamma-ray emitting magnetar-like object with a large magnetic field of {10}15 {{G}}. Our data are particularly significant during the early stage of evolution of the EM remnant.

  2. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-06-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  3. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  4. Fermi LAT detection of renewed gamma-ray flaring activity from the radio galaxy NGC 1275 (Perseus A)

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed GeV gamma-ray flaring activity from a source positionally consistent with NGC 1275 (also known as 2FGL J0319.8+4130, Nolan et al. 2012, ApJS, 199, 31, as Perseus A and 3C 84) a radio galaxy located at the center of the Perseus galaxy cluster (see also Abdo et al. 2009, ApJ, 699, 31).

  5. Fermi LAT detection of renewed gamma-ray activity from the FSRQ PKS 2326-502

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Torresi, E.

    2012-06-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has observed an increasing gamma-ray flux from a source positionally consistent with the Flat Spectrum Radio Quasar PKS 2326-502 (also known as 2FGL J2329.2-4956, Nolan et al. 2012, ApJS, 199, 31; R.A.=23:29:20.880 Dec.=-49:55:40.68, J2000.0, Costa and Loyola 1996, A&AS, 115, 75) at redshift z=0.518 (Jauncey et al. 1984, ApJ, 286, 498).

  6. Fermi LAT detection of gamma-ray flaring activity from the blazar MG J221916+1806 through the Fermi All-sky Variability Analysis (FAVA)

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Kocevski, D.; Gasparrini, D.; Buehler, R.; Thompson, D.; Ciprini, S.

    2014-03-01

    During the week between March 17 and March 24, 2014, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increased gamma-ray activity from a source positionally coincident with the flat-spectrum radio quasar MG J221916+1806 (also known as 2FGL J2219.1+1805, Nolan et al., 2012, ApJS, 199, 31, and CGRaBS J2219+1806, Healey et al. ...

  7. Probing the debris disks of nearby stars with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Riley, Alexander; Strigari, Louis; Porter, Troy; Blandford, Roger

    2018-01-01

    Many nearby stars are known to host circumstellar debris disks, similar to our Sun's asteroid and Kuiper belts, that are believed to be the birthplace of extrasolar planets. The bodies in these objects passively emit gamma radiation resulting from interactions with cosmic rays, as previously observed from measurements of the gamma ray albedo of the Moon. We apply a point source analysis to four nearby debris disks using the past nine years of data taken by Fermi-LAT, and report on the updated prospects for detecting gamma-ray emission from these sources.

  8. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-12-08

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  10. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  11. Molecular Imaging in the College of Optical Sciences – An Overview of Two Decades of Instrumentation Development

    PubMed Central

    Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.

    2015-01-01

    During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069

  12. Robust Constraints and Novel Gamma-Ray Signatures of Dark Matter That Interacts Strongly With Nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; McDermott, Samuel D.

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models, and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range ofmore » $$10^{-27} {\\rm cm}^2 < \\sigma_{{\\rm DM}-p} < 10^{-24} \\, {\\rm cm}^{2}$$. With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.« less

  13. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  14. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs should emit similar amounts of gamma-ray energy. The fraction of it detected at Earth should then depend on the 'width' (opening angle) and orientation of the beam as well as on the distance. The energy received should be larger when the beam is narrow or points towards us and smaller when the beam is broad or points away from us. New data collected with ESA's high energy observatories, Integral and XMM-Newton, now show that this picture is not so clear-cut and that the amount of energy emitted by GRBs can vary significantly. "The idea that all GRBs spit out the same amount of gamma rays, or that they are 'standard candles' as we call them, is simply ruled out by the new data," said Dr Sergey Sazonov, from the Space Research Institute of the Russian Academy of Sciences, Moscow (Russia) and the Max-Planck Institute for Astrophysics, Garching near Munich (Germany). Sazonov and an international team of researchers studied the GRB detected by Integral on 3 December 2003 and given the code-name of GRB 031203. Within a record 18 seconds of the burst, the Integral Burst Alert System had pinpointed the approximate position of GRB 031203 in the sky and sent the information to a network of observatories around the world. A few hours later one of them, ESA's XMM-Newton, determined a much more precise position for GRB 031203 and detected a rapidly fading X-ray source, which was subsequently seen by radio and optical telescopes on the ground. This wealth of data allowed astronomers to determine that GRB 031203 went off in a galaxy less than 1300 million light years away, making it the closest GRB ever observed. Even so, the way in which GRB 031203 dimmed with time and the distribution of its energy were not different from those of distant GRBs. Then, scientists started to realise that the concept of the 'standard candle' may not hold. "Being so close should make GRB 031203 appear very bright, but the amount of gamma-rays measured by Integral is about one thousand times less than what we would normally expect from a GRB," Sazonov said. A burst of gamma rays observed in 1998 in a closer galaxy appeared even fainter, about one hundred times less bright than GRB 031203. Astronomers, however, could not conclusively tell whether that was a genuine GRB because the bulk of its energy was emitted mostly as X-rays instead of gamma-rays. The work of Sazonov's team on GRB 031203 now suggests that intrinsically fainter GRBs can indeed exist. A team of US astronomers, coordinated by Alicia Soderberg from the California Institute of Technology, Pasadena (USA), studied the 'afterglow' of GRB 031203 and gave further support to this conclusion. The afterglow, emitted when a GRB's blastwave shocks the diffuse medium around it, can last weeks or months and progressively fades away. Using NASA's Chandra X-ray Observatory, Soderberg and her team saw that the X-ray brightness of the afterglow was about one thousand times fainter than that of typical distant GRBs. The team's observations with the Very Large Array telescope of the National Radio Astronomy Observatory in Socorro (USA) also revealed a source dimmer than usual. Sazonov and Soderberg explain that their teams looked carefully for signs that GRB 031203 could be tilted in such a way that most of its energy would escape Integral's detection. However, as Sazonov said, "the fact that most of the energy that we see is emitted in the gamma-ray domain, rather than in the X-rays, means that we are seeing the beam nearly on axis." It is, therefore, unlikely that much of its energy output can go unnoticed. This discovery suggests the existence of a new population of GRBs much closer but also dimmer than the majority of those known so far, which are very energetic but distant. Objects of this type may also be very numerous and thus produce more frequent bursts. The bulk of this population has so far escaped our attention because it lies at the limit of detection with past and present instruments. Integral, however, may be just sensitive enough to reveal a few more of them in the years to come. These could be just the tip of the iceberg and future gamma-ray observatories, such as the planned NASA's Swift mission, should be able to extend this search to a much larger volume of the Universe and find many more sub-energetic GRBs. Notes for editors The results of this investigation are presented in two articles that have appeared in today's issue of the scientific journal Nature. One of them, by S. Sazonov, A. Lutovinov and R. Sunyaev, is entitled "An apparently normal gamma-ray burst with unusually low luminosity". The other, entitled "The sub-energetic GRB 031203 as a cosmic analogue to GRB 980425", is signed by A. Soderberg, S. Kulkarni, E. Berger, D. Fox, M. Sako, D. Frail, A. Gal-Yam, D. Moon, S. Cenko, S. Yost, M. Phillips, E. Persson, W. Freedman, P. Wyatt, R. Jayawardhana and D. Paulson. The original announcement of the Integral detection of GRB 031203 was made by D. Goetz, S. Mereghetti, M. Beck, J. Borkowski and N. Mowlavi, via the Circular Service of the GRB Co-ordinates Network. More about Integral The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays and visible light. Integral was launched on a Russian Proton rocket on 17 October 2002 into a highly elliptical orbit around Earth. Its principal targets include regions of the galaxy where chemical elements are being produced and compact objects, such as black holes. For more information about Integral please see: http://www.esa.int/esaSC/spk.html More about XMM-Newton ESA's XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket, from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects. For more information about XMM-Newton please see: http://www.esa.int/esaSC/spk.html More about Chandra NASA's Marshall Space Flight Center, Huntsville, Alabama, manages the Chandra programme for the Office of Space Science, NASA Headquarters, Washington DC, USA. Northrop Grumman of Redondo Beach, California, formerly TRW Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Massachusetts. For more information about Chandra please see: http://chandra.harvard.edu/about More about the Very Large Array The Very Large Array (VLA) is a research facility of the United States National Science Foundation. With 27 dish antennas, each 25 metres in diameter, working together as a single imaging instrument, it is the most versatile and most widely used radio telescope in the world. Dedicated in 1980, the VLA has been used by thousands of scientists and has contributed valuable new information to nearly every specialty within astronomy. In 1997, the VLA made the first-ever detection of a gamma-ray burst afterglow at radio wavelengths, and has been at the forefront of gamma-ray burst afterglow research since.

  15. Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for various Error Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less

  16. ASSOCIATING LONG-TERM {gamma}-RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61 Degree-Sign 303

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2013-08-20

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the {gamma}-ray binary LS I +61 Degree-Sign 303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the {approx}26.4960 day orbital period. Here we show that, during the time of our observations, the {gamma}-ray emission of LS I +61 Degree-Sign 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation ismore » more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use {gamma}-ray observations to study the outflows of massive stars in eccentric binary systems.« less

  17. A Monte Carlo simulation to study a design of a gamma-ray detector for neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.

    2013-11-01

    Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.

  18. Early optical emission from the gamma-ray burst of 4 October 2002.

    PubMed

    Fox, D W; Yost, S; Kulkarni, S R; Torii, K; Kato, T; Yamaoka, H; Sako, M; Harrison, F A; Sari, R; Price, P A; Berger, E; Soderberg, A M; Djorgovski, S G; Barth, A J; Pravdo, S H; Frail, D A; Gal-Yam, A; Lipkin, Y; Mauch, T; Harrison, C; Buttery, H

    2003-03-20

    Observations of the long-lived emission--or 'afterglow'--of long-duration gamma-ray bursts place them at cosmological distances, but the origin of these energetic explosions remains a mystery. Observations of optical emission contemporaneous with the burst of gamma-rays should provide insight into the details of the explosion, as well as into the structure of the surrounding environment. One bright optical flash was detected during a burst, but other efforts have produced negative results. Here we report the discovery of the optical counterpart of GRB021004 only 193 seconds after the event. The initial decline is unexpectedly slow and requires varying energy content in the gamma-ray burst blastwave over the course of the first hour. Further analysis of the X-ray and optical afterglow suggests additional energy variations over the first few days.

  19. Nature of gamma rays background radiation in new and old buildings of Qatar University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Houty, L.; Abou-Leila, H.; El-Kameesy, S.

    Measurements and analysis of gamma-background radiation spectrum in four different places of Qatar University campus were performed at the energy range 10 keV-3 MeV using hyper pure Ge-detector. The dependence of the detector absolute photopeak efficiency on gamma-ray energies was determined and correction of the data for that was also done. The absorbed dose for each gamma line was calculated and an estimation of the total absorbed dose for the detected gamma lines in the four different places was obtained. Comparison with other results was also performed.

  20. Radiation portal monitor system and method

    DOEpatents

    Morris, Christopher [Los Alamos, NM; Borozdin, Konstantin N [Los Alamos, NM; Green, J Andrew [Los Alamos, NM; Hogan, Gary E [Los Alamos, NM; Makela, Mark F [Los Alamos, NM; Priedhorsky, William C [Los Alamos, NM; Saunders, Alexander [Los Alamos, NM; Schultz, Larry J [Los Alamos, NM; Sossong, Michael J [Los Alamos, NM

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  1. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  2. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  3. Investigating the X-ray and Gamma-ray Properties of the Galactic Supernova Remnants Kes 69, 3C 396, 3C 400.2

    NASA Astrophysics Data System (ADS)

    Ergin, Tülün; Sezer, Aytap; Yamazaki, Ryo

    2016-06-01

    Kes 69, 3C 396, and 3C 400.2 are mixed-morphology (MM) Galactic supernova remnants (SNRs), where Kes 69 and 3C 396 are interacting with molecular clouds (MCs). Previous X-ray studies showed that the emission from these SNRs is thermal. It has been suggested that MM SNRs interacting with MCs are potential candidates for recombining plasma (RP) in X-rays and hadronic gamma-ray emission. Recently, Chandra observations revealed signs of RP in 3C 400.2. Our preliminary analyses show that the X-ray emission of NW and SE region of 3C 400.2 arises from recombining plasma. We detected GeV gamma-ray emission from Kes 69 and 3C 396 above 5σ

  4. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-12-08

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  5. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  6. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    DOE PAGES

    Pletsch, H. J.; Guillemot, L.; Fehrmann, H.; ...

    2012-12-07

    We present that millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such “recycled” rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. Lastly, the pulsar is in a circular orbit with an orbital period ofmore » only 93 minutes, the shortest of any spin-powered pulsar binary ever found.« less

  7. New constraints on neutron star models of gamma-ray bursts. II - X-ray observations of three gamma-ray burst error boxes

    NASA Technical Reports Server (NTRS)

    Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.

    1991-01-01

    Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.

  8. Swift and Fermi observations of the early afterglow of the short gamma-ray burst 090510

    DOE PAGES

    De Pasquale, M.

    2010-01-14

    Here, we present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. In a GeV range, we detected a bright, short burst that shows an extended emission. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the gamma-ray burst outflow, poorly known in short bursts. Here, we discuss internal and external shock models for the broadband energy emission of this object.

  9. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillemot, L.; Kramer, M.; Freire, P. C. C.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by twomore » peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.« less

  10. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  11. POWERFUL HIGH-ENERGY EMISSION OF THE REMARKABLE BL Lac OBJECT S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittorini, V.; Chen, A. W.; Ferrari, A.

    BL Lac objects of the intermediate subclass (IBLs) are known to emit a substantial fraction of their power in the energy range 0.1-10 GeV. Detecting gamma-ray emission from such sources provides therefore a direct probe of the emission mechanisms and of the underlying powerhouse. The gamma-ray satellite, AGILE, detected the remarkable IBL S5 0716+714 (z approx = 0.3) during a high state in the period from 2007 September-October, marked by two very intense flares reaching peak fluxes of 200 x 10{sup -8} photons cm{sup -2} s{sup -1} above 100 MeV, with simultaneous optical and X-ray observations. We present here amore » theoretical model for the two major flares and discuss the overall energetics of the source. We conclude that 0716+714 is among the brightest BL Lac's ever detected at gamma-ray energies. Because of its high power and lack of signs for ongoing accretion or surrounding gas, the source is an ideal candidate to test the maximal power extractable from a rotating supermassive black hole via the pure Blandford-Znajek (BZ) mechanism. We find that during the 2007 gamma-ray flares 0716+714 approached or just exceeded the upper limit set by BZ for a black hole of mass 10{sup 9} M{sub sun}.« less

  12. Discovery of gamma-ray pulsations from the transitional redback PSR J1227-4853

    DOE PAGES

    Johnson, Tyrel J.; Ray, Paul S.; Roy, Jayanta; ...

    2015-06-10

    Here, the 1.69 ms spin period of PSR J1227–4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270–4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227–4853 can be fit by one broad peak, which occurs at nearlymore » the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227–4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.« less

  13. The 2017 Periastron Passage of PSR B1259-63 in Gamma-rays and X-rays

    NASA Astrophysics Data System (ADS)

    Wood, Kent S.; Johnson, Tyrel; Ray, Paul S.; Kerr, Matthew T.; Chernyakova, Masha; Fermi LAT Collaboration

    2018-01-01

    PSR B1259‑ 63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star LS 2883. While the pulsed emission has been detected only in radio, un-pulsed radio, X-ray and gamma-ray emission are regularly observed from the binary system around the periastron. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The spectral energy distribution observed near periastron peaks in GeV gamma-rays, reaching maximum flux several weeks past periastron. In September 2017 it is being observed for a third periastron passage by the Fermi satellite. Here we present first results of the 2017 multi-wavelength campaign. The 2017 observations are compared to the two previous cycles, and used to test current models. Until recently there was no similar source known in the Galaxy but now a near-twin to it, PSR J2032+4127 , (Pspin=143 ms, Porbit ~50 yr, detectable radio to gamma rays) has been found, and is also undergoing periastron passage in Nov 2017. Gamma-ray and X-ray phenomena in the two sources are compared and discussed. These objects may represent a transitional phase, with possible later phases being accreting pulsars, and eventually perhaps NS-BH or NS-NS binary systems. Portions of this research performed at the US Naval Research Laboratory are sponsored by NASA DPR S-15633-Y.

  14. A luminous gamma-ray binary in the large magellanic cloud

    DOE PAGES

    Corbet, R. H. D.; Chomiuk, L.; Coe, M. J.; ...

    2016-09-27

    Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Previously, only a handful of such systems have been discovered, all within our Galaxy. We report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the Fermi Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. Furthermore, the system has an orbital period ofmore » 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0–673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.« less

  15. Multiwavelength observations of unidentified high energy gamma ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1993-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with cataloged objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. Even a rudimentary understanding of their nature awaits identifications and follow-up work at other wavelengths to tell us what they are. The as yet unidentified sources are potentially the most interesting, since they may represent unrecognized new classes of astronomical objects, such as radio-quiet pulsars or new types of active galactic nuclei (AGN's). This two-year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. According to plan, in the first year concentration was on the identification and study of Geminga. The second year will be devoted to studies of similar unidentified gamma-ray sources which will become available in the first EGRET catalogs. The results obtained so far are presented in the two papers which are reproduced in the Appendix. In these papers, we discuss the pulse profiles of Geminga, the geometry and efficiency of the magnetospheric accelerator, the distance to Geminga, the implications for theories of polar cap heating, the effect of the magnetic field on the surface emission and environment of the neutron star, and possible interpretations of a radio-quiet Geminga. The implications of the other gamma-ray pulsars which were discovered to have high gamma-ray efficiency are also discussed, and the remaining unidentified COS B sources are attributed to a population of efficient gamma-ray sources, some of which may be radio quiet.

  16. MAGIC detection of increased activity from FSRQ 3C 279 at very-high-energy gamma rays

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2018-04-01

    The MAGIC telescopes observed an increase in the very-high-energy (VHE; > 100 GeV) gamma-ray flux from FSRQ 3C 279 at radio coordinates R.A.=194.04652737 deg and Dec= -5.78931242 deg, J2000.0 (Fey et al. 2004, AJ, 127, 3587).

  17. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2010-05-20

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits excludemore » large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~ 5 over a smooth-halo assumption. Here, we also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. Finally, in this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.« less

  18. RoboPol: first season rotations of optical polarization plane in blazars

    DOE PAGES

    Blinov, D.; Pavlidou, V.; Papadakis, I.; ...

    2015-08-26

    Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periodsmore » have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10 -2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10 -5) that none of our rotations is physically connected with an increase in gamma-ray activity.« less

  19. GeV Detection of HESS J0632+057

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Torres, Diego F.; Wilhelmi, Emma de Oña

    2017-09-10

    HESS J0632+057 is the only gamma-ray binary that has been detected at TeV energies, but not at GeV energies yet. Based on nearly nine years of Fermi Large Area Telescope (LAT) Pass 8 data, we report here on a deep search for the gamma-ray emission from HESS J0632+057 in the 0.1–300 GeV energy range. We find a previously unknown gamma-ray source, Fermi J0632.6+0548, spatially coincident with HESS J0632+057. The measured flux of Fermi J0632.6+0548 is consistent with the previous flux upper limit on HESS J0632+057 and shows variability that can be related to the HESS J0632+057 orbital phase. We proposemore » that Fermi J0632.6+0548 is the GeV counterpart of HESS J0632+057. Considering the Very High Energy spectrum of HESS J0632+057, a possible spectral turnover above 10 GeV may exist in Fermi J0632.6+0548, as appears to be common in other established gamma-ray binaries.« less

  20. Detection of a Spectral Break in the Extra Hard Component of GRB 090926A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaplin, V.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ripken, J.; Ritz, S.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Tierney, D.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2011-03-01

    We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.

Top