Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[MPLW515L point mutation in patients with myeloproliferative disease].
Xia, Jun; Xu, Wei; Zhang, Su-Jiang; Fan, Lei; Qiao, Chun; Li, Jian-Yong
2008-12-01
In order to investigate the frequency of MPLW515L and JAK2V617F point mutations of the patients with myeloproliferative disease (MPD) in Nanjing area, MPLW515L and JAK2V617F point mutations were simultaneously detected by alleles specific polymerase chain reaction (AS-PCR) and sequencing in 190 MPD patients. The results showed that MPLW515L point mutation was detected in 1 out of 102 essential thrombocythemia (ET) patients (1.0%) and was not detected in 32 polycythemia vera (PV) patients, 13 idiopathic myelofibrosis (IMF) patients, 43 chronic myelogenous leukemia (CML) patients. JAK2V617F point mutation was detected in 20 out of 32 PV patients (62.5%), 43 out of 102 ET patients (42.2%), 5 out of 13 IMF patients (38.5%), and was not detected in 43 CML patients. It is concluded that MPLW515L point mutation exists in ET patient, but is not found in PV, IMF and CML. JAK2V617F point mutation exists in PV, ET and IMF, but not in CML.
NASA Astrophysics Data System (ADS)
Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang
2016-10-01
Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.
Jang, Hyunjung; Kim, Jihyun; Choi, Jae-jin; Son, Yeojin; Park, Heekyung
2010-01-01
The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. PMID:20573874
De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino
2014-03-01
Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (P<0.001; odds ratio 6.1, 95% confidence interval 2-18.6) and the concordance to 0.81. No significant differences in MIC values among different point mutations were observed. This study suggests that: (i) the prevalence of the usually reported point mutations may be decreasing, with a concomitant emergence of new mutations; (ii) PCR-based methods should search for at least six point mutations to achieve good accuracy in detecting clarithromycin resistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.
Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay
NASA Astrophysics Data System (ADS)
Zhou, Huijuan; Wu, Baoyan
2008-12-01
The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.
Martin-Kleiner, I; Pape-Medvidović, E; Pavlić-Renar, I; Metelko, Z; Kusec, R; Gabrilovac, J; Boranić, M
2004-12-01
In this work, patients having type 2 diabetes mellitus and diabetic mothers were tested for the presence of mitochondrial DNA point mutation A3243G. This mutation is associated with the MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), diabetes and deafness. Twenty-two diabetic persons were screened. DNA was isolated from peripheral blood lymphocytes and from swabs of oral mucosa. The mitochondrial DNA point mutation A3243G was detected using PCR-RFLP test. The mutation was detected in oral mucosal DNA of two patients (but not from lymphocyte DNA). One patient was a man with hearing and visual impairments and proteinuria; the other was a woman having proteinuria but no hearing impairment. The mutation was not detectable in oral mucosal DNA from the control persons: 20 diabetic patients having diabetic fathers and 22 healthy, nondiabetic volunteers. The incidence of mitochondrial DNA point mutation A3243G in this study of Croatian diabetic patients is in line with data in the literature.
Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo
2011-01-01
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry
Sawamura, Kensuke; Hashimoto, Masahiko
2017-01-01
A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).
Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar
2016-06-01
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.
Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette
2009-06-01
Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.
Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li
2010-08-01
Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.
NASA Astrophysics Data System (ADS)
Su, Qiang; Zhou, Xiaoming
2008-12-01
Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.
Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji
2018-03-01
The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.
Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR
Olmedillas-López, Susana; Lévano-Linares, Dennis César; Alexandre, Carmen Laura Aúz; Vega-Clemente, Luz; Sánchez, Edurne León; Villagrasa, Alejandro; Ruíz-Tovar, Jaime; García-Arranz, Mariano; García-Olmo, Damián
2017-01-01
AIM To assess KRAS G12D mutation detection by droplet digital PCR (ddPCR) in stool-derived DNA from colorectal cancer (CRC) patients. METHODS In this study, tumor tissue and stool samples were collected from 70 patients with stage I-IV CRC diagnosed by preoperative biopsy. KRAS mutational status was determined by pyrosequencing analysis of DNA obtained from formalin-fixed paraffin-embedded (FFPE) tumor tissues. The KRAS G12D mutation was then analyzed by ddPCR in FFPE tumors and stool-derived DNA from patients with this point mutation. Wild-type (WT) tumors, as determined by pyrosequencing, were included as controls; analysis of FFPE tissue and stool-derived DNA by ddPCR was performed for these patients as well. RESULTS Among the total 70 patients included, KRAS mutations were detected by pyrosequencing in 32 (45.71%), whereas 38 (54.29%) had WT tumors. The frequency of KRAS mutations was higher in left-sided tumors (11 located in the right colon, 15 in the left, and 6 in the rectum). The predominant point mutation was KRAS G12D (14.29%, n = 10), which was more frequent in early-stage tumors (I-IIA, n = 7). In agreement with pyrosequencing results, the KRAS G12D mutation was detected by ddPCR in FFPE tumor-derived DNA, and only a residual number of mutated copies was found in WT controls. The KRAS G12D mutation was also detected in stool-derived DNA in 80% of all fecal samples from CRC patients with this point mutation. CONCLUSION ddPCR is a reliable and sensitive method to analyze KRAS G12D mutation in stool-derived DNA from CRC patients, especially at early stages. This non-invasive approach is potentially applicable to other relevant biomarkers for CRC management. PMID:29093617
Kawada, Hitoshi; Higa, Yukiko; Futami, Kyoko; Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H N; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K; Appawu, Maxwell; Ohta, Nobuo; Suzuki, Takashi; Minakawa, Noboru
2016-06-01
Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.
Method for detecting point mutations in DNA utilizing fluorescence energy transfer
Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle
2001-01-01
A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-01-01
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions. PMID:25199907
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye
NASA Astrophysics Data System (ADS)
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-09-01
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye.
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-09-09
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.
Montagne, Louise; Derhourhi, Mehdi; Piton, Amélie; Toussaint, Bénédicte; Durand, Emmanuelle; Vaillant, Emmanuel; Thuillier, Dorothée; Gaget, Stefan; De Graeve, Franck; Rabearivelo, Iandry; Lansiaux, Amélie; Lenne, Bruno; Sukno, Sylvie; Desailloud, Rachel; Cnop, Miriam; Nicolescu, Ramona; Cohen, Lior; Zagury, Jean-François; Amouyal, Mélanie; Weill, Jacques; Muller, Jean; Sand, Olivier; Delobel, Bruno; Froguel, Philippe; Bonnefond, Amélie
2018-05-16
The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (n total = 145). CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Sensitive and reliable detection of Kit point mutation Asp 816 to Val in pathological material
Kähler, Christian; Didlaukat, Sabine; Feller, Alfred C; Merz, Hartmut
2007-01-01
Background Human mastocytosis is a heterogenous disorder which is linked to a gain-of-function mutation in the kinase domain of the receptor tyrosine kinase Kit. This D816V mutation leads to constitutive activation and phosphorylation of Kit with proliferative disorders of mast cells in the peripheral blood, skin, and spleen. Most PCR applications used so far are labour-intensive and are not adopted to daily routine in pathological laboratories. The method has to be robust and working on such different materials like archival formalin-fixed, paraffin-embedded tissue (FFPE) and blood samples. Such a method is introduced in this publication. Methods The Kit point mutation Asp 816 to Val is heterozygous which means a problem in detection by PCR because the wild-type allele is also amplified and the number of cells which bear the point mutation is in most of the cases low. Most PCR protocols use probes to block the wild-type allele during amplification with more or less satisfying result. This is why point-mutated forward primers were designed and tested for efficiency in amplification of the mutated allele. Results One primer combination (A) fits the most for the introduced PCR assay. It was able just to amplify the mutated allele with high specificity from different patient's materials (FFPE or blood) of varying quality and quantity. Moreover, the sensitivity for this assay was convincing because 10 ng of DNA which bears the point mutation could be detected in a total volume of 200 ng of DNA. Conclusion The PCR assay is able to deal with different materials (blood and FFPE) this means quality and quantity of DNA and can be used for high-througput screening because of its robustness. Moreover, the method is easy-to-use, not labour-intensive, and easy to realise in a standard laboratory. PMID:17900365
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.
Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko
2016-01-01
We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent.
Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier
2016-01-01
We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886
PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene
ERIC Educational Resources Information Center
Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan
2009-01-01
Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…
Familial Mediterranean fever associated pyrin mutations in Greece
Konstantopoulos, K; Kanta, A; Deltas, C; Atamian, V; Mavrogianni, D; Tzioufas, A; Kollainis, I; Ritis, K; Moutsopoulos, H
2003-01-01
Patients and methods: 62 patients fulfilling the Tel Hashomer diagnostic criteria for definite (33) or probable (29) FMF diagnosis were studied. Eight point mutations of pyrin gene were tested by standard methods. Of the 62 patients tested, 48 were Greek, four were Jewish, seven were Armenian, and three were Arab. Results: 42 patients were found to be homozygotes for pyrin mutations; 11 patients were found to carry only one of the tested mutations; in nine patients no mutations were detected. Conclusion: Molecular detection of pyrin gene mutations seems useful in confirming suspected cases, and in detecting asymptomatic cases, of Mediterranean fever in Greece. It may also be used as a screening tool within affected families. PMID:12695165
Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru
2016-01-01
Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries. PMID:27304430
Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute
NASA Astrophysics Data System (ADS)
Churkin, Alexander; Barash, Danny
2006-12-01
We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.
Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu
2015-01-01
The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410
Zinc finger point mutations within the WT1 gene in Wilms tumor patients.
Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D
1992-01-01
A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572
Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin
2011-03-15
Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.
CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma
Trøen, Gunhild; Warsame, Abdirashid; Delabie, Jan
2013-01-01
The mutation status of genes involved in the NF-κB signaling pathway in splenic marginal zone lymphoma was examined. DNA sequence analysis of four genes was performed: CD79A, CD79B, CARD11, and MYD88 that are activated through BCR signaling or Toll-like and interleukin signaling. A single point mutation was detected in the CD79B gene (Y196H) in one of ten SMZL cases. Additionally, one point mutation was identified in the MYD88 gene (L265P) in another SMZL case. No mutations were revealed in CD79A or CARD11 genes in these SMZL cases. Neither were mutations detected in these four genes studied in 13 control MZL samples. Interestingly, the two cases with mutations of CD79B and MYD88 showed increased numbers of immunoblasts spread among the smaller and typical marginal zone lymphoma cells. Although SMZL shows few mutations of NF-κB signaling genes, our results indicate that the presence of these mutations is associated with a higher histological grade. PMID:23378931
Ras mutations are rare in solitary cold and toxic thyroid nodules.
Krohn, K; Reske, A; Ackermann, F; Müller, A; Paschke, R
2001-08-01
Activation of ras proto-oncogenes as a result of point mutations is detectable in a significant percentage of most types of tumour. Similar to neoplasms of other organs, mutations of all three ras genes can be found in thyroid tumours. H-, K- and N-ras mutations have been detected in up to 20% of follicular adenomas and adenomatous nodules which were not functionally characterized. This raises the question as to whether ras mutations are specific for hypofunctional nodules and TSH receptor mutations for hyperfunctioning nodules. To investigate ras and TSH receptor mutations with respect to functional differentiation we studied 41 scintigraphically cold nodules and 47 toxic thyroid nodules. To address the likelihood of a somatic mutation we also studied the clonal origin of these tumours. Genomic DNA was extracted from nodular and surrounding tissue. Mutational hot spots in exons 1 and 2 of the H- and K-ras gene were PCR amplified and sequenced using big dye terminator chemistry. Denaturing gradient gel electrophoresis (DGGE) was used to verify sequencing results for the H-ras gene and to analyse the N-ras gene because its greater sensitivity in detecting somatic mutations. Clonality of nodular thyroid tissue was evaluated using X-Chromosome inactivation based on PCR amplification of the human androgen receptor locus. Monoclonal origin was detectable in 14 of 23 informative samples from cold thyroid nodules. In toxic thyroid nodules the frequency of clonal tissue was 20 in 30 informative cases. Only one point mutation could be found in the N-ras gene codon 61 (Gly to Arg) in a cold adenomatous nodule which was monoclonal. In toxic thyroid nodules no ras mutation was detectable. Our study suggests that ras mutations are rare in solitary cold and toxic thyroid nodules and that the frequent monoclonal origin of these tumours implies somatic mutations in genes other than H-, K- and N-ras.
Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes
2011-03-14
Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.
Jorge, Alexander A L; Souza, Silvia C; Nishi, Miriam Y; Billerbeck, Ana E; Libório, Débora C C; Kim, Chong A; Arnhold, Ivo J P; Mendonca, Berenice B
2007-01-01
The frequency of SHOX mutations in children with idiopathic short stature (ISS) has been found to be variable. We analysed the SHOX gene in children with ISS and Leri-Weill dyschondrosteosis (LWD) and evaluated the phenotypic variability in patients harbouring SHOX mutations. Sixty-three ISS, nine LWD children and 21 affected relatives. SHOX gene deletion was evaluated by fluorescence in situ hybridization (FISH), Southern blotting and segregation study of polymorphic marker. Point mutations were assessed by direct DNA sequencing. None of the ISS patients presented SHOX deletions, but two (3.2%) presented heterozygous point mutations, including the novel R147H mutation. However, when ISS patients were selected by sitting height : height ratio (SH/H) for age > 2 SD, mutation frequency detection increased to 22%. Eight (89%) LWD patients had SHOX deletions, but none had point mutations. Analysis of the other relatives in the families carrying SHOX mutations identified 14 children and 17 adult patients. A broad phenotypic variability was observed in all families regarding short stature severity and Madelung deformities. However, the presence of disproportional height, assessed by SH/H, was observed in all children and 82% of adult patients, being the most common feature in our patients with SHOX mutations. Patients with SHOX mutations present a broad phenotypic variability. SHOX mutations are very frequent in LWD (89%), in opposition to ISS (3.2%) in our cohort. The use of SH/H SDS as a selection criterion increases the frequency of SHOX mutation detection to 22% and should be used for selecting ISS children to undergo SHOX mutation molecular studies.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine. PMID:28542229
Turner, Andrew; Sasse, Jurgen; Varadi, Aniko
2016-10-19
Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.
Single-Molecule Counting of Point Mutations by Transient DNA Binding
NASA Astrophysics Data System (ADS)
Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan
2017-03-01
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.
Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian
2015-08-01
Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.
Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun
2010-01-01
Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.
Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki
2012-03-01
Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner. Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed. Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells. This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.
Rolling circle amplification detection of RNA and DNA
Christian, Allen T.; Pattee, Melissa S.; Attix, Cristina M.; Tucker, James D.
2004-08-31
Rolling circle amplification (RCA) has been useful for detecting point mutations in isolated nucleic acids, but its application in cytological preparations has been problematic. By pretreating cells with a combination of restriction enzymes and exonucleases, we demonstrate RCA in solution and in situ to detect gene copy number and single base mutations. It can also detect and quantify transcribed RNA in individual cells, making it a versatile tool for cell-based assays.
Gong, Jerald Z; Cook, James R; Greiner, Timothy C; Hedvat, Cyrus; Hill, Charles E; Lim, Megan S; Longtine, Janina A; Sabath, Daniel; Wang, Y Lynn
2013-11-01
Recurrent mutations in JAK2 and MPL genes are genetic hallmarks of BCR-ABL1-negative myeloproliferative neoplasms. Detection of JAK2 and MPL mutations has been incorporated into routine diagnostic algorithms for these diseases. This Special Article summarizes results from a nationwide laboratory survey of JAK2 and MPL mutation analysis. Based on the current practice pattern and the literature, this Special Article provides recommendations and guidelines for laboratory practice for detection of mutations in the JAK2 and MPL genes, including clinical manifestations for prompting the mutation analysis, current and recommended methodologies for testing the mutations, and standardization for reporting the test results. This Special Article also points to future directions for genomic testing in BCR-ABL1-negative myeloproliferative neoplasms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ
Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats
2015-01-01
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388
Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING
Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven
2003-01-01
TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384
Assessment of circulating copy number variant detection for cancer screening.
Molparia, Bhuvan; Nichani, Eshaan; Torkamani, Ali
2017-01-01
Current high-sensitivity cancer screening methods, largely utilizing correlative biomarkers, suffer from false positive rates that lead to unnecessary medical procedures and debatable public health benefit overall. Detection of circulating tumor DNA (ctDNA), a causal biomarker, has the potential to revolutionize cancer screening. Thus far, the majority of ctDNA studies have focused on detection of tumor-specific point mutations after cancer diagnosis for the purpose of post-treatment surveillance. However, ctDNA point mutation detection methods developed to date likely lack either the scope or analytical sensitivity necessary to be useful for cancer screening, due to the low (<1%) ctDNA fraction derived from early stage tumors. On the other hand, tumor-derived copy number variant (CNV) detection is hypothetically a superior means of ctDNA-based cancer screening for many tumor types, given that, relative to point mutations, each individual tumor CNV contributes a much larger number of ctDNA fragments to the overall pool of circulating free DNA (cfDNA). A small number of studies have demonstrated the potential of ctDNA CNV-based screening in select cancer types. Here we perform an in silico assessment of the potential for ctDNA CNV-based cancer screening across many common cancers, and suggest ctDNA CNV detection shows promise as a broad cancer screening methodology.
Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu
2018-03-12
In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.
Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas.
Murua Escobar, Hugo; Günther, Kathrin; Richter, Andreas; Soller, Jan T; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn
2004-01-01
Point mutations within ras proto-oncogenes, particularly within the mutational hot-spot codons 12, 13 and 61, are frequently detected in human malignancies and in different types of experimentally-induced tumours in animals. So far little is known about ras mutations in naturally occurring canine fibrosarcomas or K-ras mutations in canine melanomas. To elucidate whether ras mutations exist in these naturally occurring tumours in dogs, in the present study we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spots, making this the first study to investigate a large number of canine fibrosarcomas. None of the samples showed a K- or N-ras hot spot mutation. Thus, our data strongly suggest that ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated.
Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J
2017-09-01
Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.
Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei
2006-01-01
A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592
Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou
2017-01-01
Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259
Mutation testing in Treacher Collins Syndrome.
Ellis, P E; Dawson, M; Dixon, M J
2002-12-01
To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
Chen, Zhao; Moran, Kimberly; Richards-Yutz, Jennifer; Toorens, Erik; Gerhart, Daniel; Ganguly, Tapan; Shields, Carol L; Ganguly, Arupa
2014-03-01
Sporadic retinoblastoma (RB) is caused by de novo mutations in the RB1 gene. Often, these mutations are present as mosaic mutations that cannot be detected by Sanger sequencing. Next-generation deep sequencing allows unambiguous detection of the mosaic mutations in lymphocyte DNA. Deep sequencing of the RB1 gene on lymphocyte DNA from 20 bilateral and 70 unilateral RB cases was performed, where Sanger sequencing excluded the presence of mutations. The individual exons of the RB1 gene from each sample were amplified, pooled, ligated to barcoded adapters, and sequenced using semiconductor sequencing on an Ion Torrent Personal Genome Machine. Six low-level mosaic mutations were identified in bilateral RB and four in unilateral RB cases. The incidence of low-level mosaic mutation was estimated to be 30% and 6%, respectively, in sporadic bilateral and unilateral RB cases, previously classified as mutation negative. The frequency of point mutations detectable in lymphocyte DNA increased from 96% to 97% for bilateral RB and from 13% to 18% for unilateral RB. The use of deep sequencing technology increased the sensitivity of the detection of low-level germline mosaic mutations in the RB1 gene. This finding has significant implications for improved clinical diagnosis, genetic counseling, surveillance, and management of RB. © 2013 WILEY PERIODICALS, INC.
Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok
2016-04-15
Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular detection of mutations involved in Helicobacter pylori antibiotic resistance in Algeria.
Bachir, Meryem; Allem, Rachida; Benejat, Lucie; Tifrit, Abedelkarim; Medjekane, Meriem; Drici, Amine El-Mokhtar; Megraud, Francis; Douidi, Kara Turki
2018-05-11
In Algeria, there are limited data regarding the pattern of Helicobacter pylori primary antibiotic resistance. The aim of this study was to evaluate the primary resistance of H. pylori to clarithromycin, ciprofloxacin, tetracycline and rifampicin and to determine the molecular mechanisms involved in the resistance. Two hundred and seventy Algerian adults who had never received H. pylori treatment were enrolled in this study. Human biopsies were obtained for culture and antimicrobial susceptibility testing was performed by Etest for clarithromycin, ciprofloxacin, tetracycline and rifampicin. Real-time fluorescence resonance energy transfer (FRET)-PCR was also performed in all cases to assess primary clarithromycin resistance and point mutations involved, real-time PCR was used to detect mutations involved in tetracycline primary resistance and sequencing of the QRDR of gyrA was performed to detect mutations involved in quinolone resistance. No resistance to rifampicin was detected. Resistance to clarithromycin and ciprofloxacin was found in 29.7% and 17.9%, respectively. Results of real-time FRET-PCR showed that A2143G was the most frequent point mutation, A2142C was not found and 42 patients (15.5%) were infected by both resistant and susceptible genotypes. Only two isolates were resistant to tetracycline and exhibited an A926G mutation. Four mutations were found to be responsible for resistance to ciprofloxacin [N87K (44.73%), D91N (23.68%), N87I (18.42%) and D91G (7.89%)]. Local data regarding the primary resistance of H. pylori to clarithromycin, ciprofloxacin, tetracycline and rifampicin and the main genetic mutations involved in the resistance are necessary for a periodic evaluation of antibiotic consumption and new therapeutic strategies in Algeria.
Lu, Yin-ping; Cao, Wei; Hong, Mei; Zhu, Jian-fang; Liu, Zhao; Yang, Dong-liang
2008-10-01
To investigate the relationship between pre-core G1896A point mutation of hepatitis B virus (HBV) and safety of breast feeding. Serum and breast milk samples were collected from 62 pregnant women of HBV DNA positive/HBeAg negative. PCR-solid phase hybridization was used to detect the point mutation in pre-core region G1896A of HBV from pregnant women, and HBV DNA loads in sera and breast milk were determined by fluorescence quantitative PCR (FQ-PCR). The prevalence of point mutation was 61.3% (38/62) in 62 pregnant women with HBsAg positive/HBeAg negative. The positive rate of HBV DNA in breast milk of group with point mutation (28.9%) was similar to that of group without mutation (29.2%, chi2=0.0003, P>0.05). However, The positive rate of HBV DNA in breast milk of group with high HBV loads (56.0%) was significantly higher than that of group with low HBV loads (10.8%, chi2=14.79, P<0.01). The point mutation in pre-core region G1896A of HBV dose not affect the positive rate of HBV DNA in breast milk and higher HBV DNA loads in serum of pregnant women might increase the risk of mother-infant transmission.
Abstract
The mouse lymphoma assay (MLA) utilizing the Tk locus is widely used to identify chemical mutagens. The autosomal location of the Tk locus allows for the detection of a wide range of mutational events, from point mutations to chromosome alterations. However, the ...
Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.
Kim, Myeong Hee; Kang, So Young; Lee, Woo In
2017-05-01
The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017
Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.
Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A
2013-01-01
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.
Okumura, Akiko; Ozaki, Mamoru; Niida, Yo
2015-08-01
Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Heparanase mRNA expression and point mutation in hepatocellular carcinoma
Chen, Xiao-Peng; Liu, Yin-Bib; Rui, Jing; Peng, Shu-You; Peng, Cheng-Hong; Zhou, Zi-Yan; Shi, Liang-Hui; Shen, Hong-Wei; Xu, Bin
2004-01-01
AIM: To explore the expression of heparanase mRNA and point mutation in hepatocellular carcinoma (HCC). METHODS: Reverse transcription polymerase chain reaction was used to measure the expression of heparanase mRNA in the primary tumor tissues and surrounding liver tissues of 33 HCC patients. T-A cloning and sequencing were used to detect whether there was any mutation in the amplified PCR products. RESULTS: The expression of heparanase mRNA was positive in 16 primary tumor tissues of HCC, and the positive rate was 48.5%, which was significantly higher than that in the surrounding liver parenchyma (P < 0.01). The positive rate for heparanase gene in high-tendency to metastatic recurrence group (71.4%, 10/14) was obviously higher than that in low-tendency to metastatic recurrence group (31.6%, 6/19) (P = 0.023). The positive rate for heparanase gene in patients with metastatic recurrence during postoperative follow-up (78.6%, 11/14) was also significantly higher than that in those without metastatic recurrence (21.4%, 3/14) (P = 0.003). Sequence analysis of the HPA PCR products was made in 7 patients, and 2-point mutations were found in 4 patients, one of which was sense mutation, neither base insertion nor deletion was detected. The mutation rate was 57.1% (4/7). CONCLUSION: The expression rate of heparanase mRNA increases in HCC, and HPA mRNA may be one of the reliable markers for the metastatic activity gained by the liver tumor cells and could be used clinically in predicting metastatic recurrence of HCC. Point mutation may be one of the causes for enhanced heparanase mRNA expression. PMID:15334672
Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.
Cheng, J; Haas, M
1990-01-01
Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611
Molecular diagnosis of α-thalassemia in a multiethnic population.
Gilad, Oded; Shemer, Orna Steinberg; Dgany, Orly; Krasnov, Tanya; Nevo, Michal; Noy-Lotan, Sharon; Rabinowicz, Ron; Amitai, Nofar; Ben-Dor, Shifra; Yaniv, Isaac; Yacobovich, Joanne; Tamary, Hannah
2017-06-01
α-Thalassemia, one of the most common genetic diseases, is caused by deletions or point mutations affecting one to four α-globin genes. Molecular diagnosis is important to prevent the most severe forms of the disease. However, the diagnosis of α-thalassemia is complex due to a high variability of the genetic defects involved, with over 250 described mutations. We summarize herein the findings of genetic analyses of DNA samples referred to our laboratory for the molecular diagnosis of α-thalassemia, along with a detailed clinical description. We utilized a diagnostic algorithm including Gap-PCR, to detect known deletions, followed by sequencing of the α-globin gene, to identify known and novel point mutations, and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of rare or novel deletions. α-Thalassemia was diagnosed in 662 of 975 samples referred to our laboratory. Most commonly found were deletions (75.3%, including two novel deletions previously described by us); point mutations comprised 25.4% of the cases, including five novel mutations. Our population included mostly Jews (of Ashkenazi and Sephardic origin) and Muslim Arabs, who presented with a higher rate of point mutations and hemoglobin H disease. Overall, we detected 53 different genotype combinations causing a spectrum of clinical phenotypes, from asymptomatic to severe anemia. Our work constitutes the largest group of patients with α-thalassemia originating in the Mediterranean whose clinical characteristics and molecular basis have been determined. We suggest a diagnostic algorithm that leads to an accurate molecular diagnosis in multiethnic populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas.
Pang, Brendan; Durso, Mary B; Hamilton, Ronald L; Nikiforova, Marina N
2013-03-01
Point mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in many gliomas. The detection of IDH1 mutations becomes challenging on suboptimal glioma biopsies when a limited number of tumor cells is available for analysis. Coamplification at lower denaturing-polymerase chain reaction (COLD-PCR) is a PCR technique that deliberately lowers the denaturing cycle temperature to selectively favor amplification of mutant alleles, allowing for the sensitive detection of low-abundance mutations. We developed a novel COLD-PCR assay on the LightCycler platform (Roche, Applied Science, Indianapolis, IN), using post-PCR fluorescent melting curve analysis (FMCA) for the detection of mutant IDH1 with a detection limit of 1%. Thirty-five WHO grade I to IV gliomas and 9 non-neoplastic brain and spinal cord biopsies were analyzed with this technique and the results were compared with the conventional real-time PCR and the Sanger sequencing analysis. COLD-PCR/FMCA was able to detect the most common IDH1 R132H mutation and rare mutation types including R132H, R132C, R132L, R132S, and R132G mutations. Twenty-five glioma cases were positive for IDH1 mutations by COLD-PCR/FMCA, and 23 gliomas were positive by the conventional real-time PCR and Sanger sequencing. A pilocytic astrocytoma (PA I) and a glioblastoma multiforme (GBM IV) showed low-abundance IDH1 mutations detected by COLD-PCR/FMCA. The remaining 10 glioma and 9 non-neoplastic samples were negative by all the 3 methods. In summary, we report a novel COLD-PCR/FMCA method that provides rapid and sensitive detection of IDH1 mutations in formalin-fixed paraffin-embedded tissue and can be used in the clinical setting to assess the small brain biopsies.
Church, Jessica D.; Jones, Dana; Flys, Tamara; Hoover, Donald; Marlowe, Natalia; Chen, Shu; Shi, Chanjuan; Eshleman, James R.; Guay, Laura A.; Jackson, J. Brooks; Kumwenda, Newton; Taha, Taha E.; Eshleman, Susan H.
2006-01-01
The US Food and Drug Administration-cleared ViroSeq HIV-1 Genotyping System (ViroSeq) and other population sequencing-based human immunodeficiency virus type 1 (HIV-1) genotyping methods detect antiretroviral drug resistance mutations present in the major viral population of a test sample. These assays also detect some mutations in viral variants that are present as mixtures. We compared detection of the K103N nevirapine resistance mutation using ViroSeq and a sensitive, quantitative point mutation assay, LigAmp. The LigAmp assay measured the percentage of K103N-containing variants in the viral population (percentage of K103N). We analyzed 305 samples with HIV-1 subtypes A, C, and D collected from African women after nevirapine administration. ViroSeq detected K103N in 100% of samples with >20% K103N, 77.8% of samples with 10 to 20% K103N, 71.4% of samples with 5 to 10% K103N, and 16.9% of samples with 1 to 5% K103N. The sensitivity of ViroSeq for detection of K103N was similar for subtypes A, C, and D. These data indicate that the ViroSeq system reliably detects the K103N mutation at levels above 20% and frequently detects the mutation at lower levels. Further studies are needed to compare the sensitivity of different assays for detection of HIV-1 drug resistance mutations and to determine the clinical relevance of HIV-1 minority variants. PMID:16931582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proudnikov, D.; Kirillov, E.; Chumakov, K.
2000-01-01
This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less
Bidshahri, Roza; Attali, Dean; Fakhfakh, Kareem; McNeil, Kelly; Karsan, Aly; Won, Jennifer R; Wolber, Robert; Bryan, Jennifer; Hughesman, Curtis; Haynes, Charles
2016-03-01
A need exists for robust and cost-effective assays to detect a single or small set of actionable point mutations, or a complete set of clinically informative mutant alleles. Knowledge of these mutations can be used to alert the clinician to a rare mutation that might necessitate more aggressive clinical monitoring or a personalized course of treatment. An example is BRAF, a (proto)oncogene susceptible to either common or rare mutations in codon V600 and adjacent codons. We report a diagnostic technology that leverages the unique capabilities of droplet digital PCR to achieve not only accurate and sensitive detection of BRAF(V600E) but also all known somatic point mutations within the BRAF V600 codon. The simple and inexpensive two-well droplet digital PCR assay uses a chimeric locked nucleic acid/DNA probe against wild-type BRAF and a novel wild-type-negative screening paradigm. The assay shows complete diagnostic accuracy when applied to formalin-fixed, paraffin-embedded tumor specimens from metastatic colorectal cancer patients deficient for Mut L homologue-1. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Discovery of Genomic Breakpoints Affecting Breast Cancer Progression and Prognosis
2010-10-01
mutations compared to those detected by the 5Kbp method alone. Fosmid diTag method also reveals much higher proportion of gene fusions and truncations...observed highly similar structural mutational spectra affecting different sets of genes , pointing to similar histories of genomic instability against... mutations have been identified in non-BRCA1/2 multiethnic breast cancer cases (45,46), no truncating mutation of the RAP80 gene in breast cancer has
Duan, Yabing; Zhang, Xiaoke; Ge, Changyan; Wang, Yong; Cao, Junhong; Jia, Xiaojing; Wang, Jianxin; Zhou, Mingguo
2014-01-01
Resistance of Fusarium graminearum to carbendazim is caused by point mutations in the β2-tubulin gene. The point mutation at codon 167 (TTT → TAT, F167Y) occurs in more than 90% of field resistant isolates in China. To establish a suitable method for rapid detection of the F167Y mutation in F. graminearum, an efficient and simple method with high specificity was developed based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed and optimized to specially distinguish the F167Y mutation genotype. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue dye (HNB) was added prior to amplification, samples with DNA of the F167Y mutation developed a characteristic sky blue color after the reaction but those without DNA or with different DNA did not. Results of HNB staining method were reconfirmed by gel electrophoresis. The developed LAMP had good specificity, stability and repeatability and was suitable for monitoring carbendazim-resistance populations of F. graminearum in agricultural production. PMID:25403277
Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf
2017-01-01
The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.
Zimowski, Janusz G; Massalska, Diana; Holding, Mariola; Jadczak, Sylwia; Fidziańska, Elżbieta; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Kamińska, Anna; Zaremba, Jacek
2014-01-01
Duchenne/Becker muscular dystrophy (DMD/BMD) is a recessive, X-linked disorder caused by a mutation in the dystrophin gene. Deletions account for approximately 60-65% of mutations, duplications for 5-10%. The remaining cases are mainly point mutations. According to Monaco theory clinical form of the disease depends on maintaining or disrupting the reading frame. The purpose of the study was to determine frequency and location of deletions and duplications in the dystrophin gene, to determine the compliance between maintaining/disrupting the reading frame and clinical form of the disease and to check the effectiveness of MLPA (multiplex ligation-dependent probe amplification) in the detection of these mutations in hemizygous patients and heterozygous female carriers. The material is composed of combined results of molecular diagnosis carried out in years 2009-2012 in 180 unrelated patients referred with the diagnosis of DMD/BMD tested by use of MLPA. We identified 110 deletions, 22 duplication (in one patient two different duplications were detected) and 2 point mutations. Deletions involved mainly exons 45-54 and 3-21, whereas most duplications involved exons 3-18. The compliance with Monaco theory was 95% for deletions and 76% for duplications. Most of mutations in the dystrophin gene were localized in the hot spots - different for deletions and duplications. MLPA enabled their quick identification, exact localization and determination whether or not they maintained or disrupted the reading frame. MLPA was also effective in detection of deletions and duplications in female carriers. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K
2000-05-01
We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.
Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping
2011-08-15
Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.
Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O'Brien, Mary; Turner, Nicholas C; Popat, Sanjay; Downward, Julian
2015-01-01
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.
Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J.; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O’Brien, Mary; Turner, Nicholas C.; Popat, Sanjay; Downward, Julian
2015-01-01
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma. PMID:26413866
Chetta, M.; Drmanac, A.; Santacroce, R.; Grandone, E.; Surrey, S.; Fortina, P.; Margaglione, M.
2008-01-01
BACKGROUND: Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis. OBJECTIVES: To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene. PATIENTS/METHODS: We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency. RESULTS: Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH. CONCLUSIONS: cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients. PMID:20300295
Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7
Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.
2013-01-01
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095
He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua
2017-09-27
Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.
Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L
2018-06-01
To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki
2016-09-01
Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Thierry, Alain R
2016-01-01
Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.
Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.
Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J
2012-01-01
PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I
Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.
2012-01-01
Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625
Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C
2018-06-01
High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.
Ozen, Filiz; Ozdemir, Semra; Zemheri, Ebru; Hacimuto, Gizem; Silan, Fatma; Ozdemir, Ozturk
2013-02-01
The aim of the current study was to investigate the prevalence and predictive significance of the KRAS and BRAF mutations in Turkish patients with colorectal cancer (CRC). Totally, 53 fresh tumoral tissue specimens were investigated in patients with CRC. All specimens were obtained during routine surgery of patients who were histopathologically diagnosed and genotyped for common KRAS and BRAF point mutations. After DNA extraction, the target mutations were analyzed using the AutoGenomics INFINITI(®) assay, and some samples were confirmed by quantitative real-time polymerase chain reaction fluorescence melting curve analyses. KRAS mutations were found in 26 (49.05%) CRC samples. Twenty-seven samples (50.95%) had wild-type profiles for KRAS codon 12, 13, and 61 in the current cohort. In 17 (65.38%) samples, codon 12; in 7 (26.93%) samples, codon 13; and in 2 (7.69%) samples, codon 61 were found to be mutated, particularly in grade 2 of tumoral tissues. No point mutation was detected in BRAF codon Val600Glu for the studied CRC patients. Our study, based on a representative collection of human CRC tumors, indicates that KRAS gene mutations were detected in 49.05% of the samples, and the most frequent mutation was in the G12D codon. Results also showed that codons 12 and 13 of KRAS are relatively frequently without BRAF mutation in a CRC cohort from the Turkish population.
Breveglieri, Giulia; Travan, Anna; D’Aversa, Elisabetta; Cosenza, Lucia Carmela; Pellegatti, Patrizia; Guerra, Giovanni; Gambari, Roberto
2017-01-01
The β-thalassemias are genetic disorder caused by more than 200 mutations in the β-globin gene, resulting in a total (β0) or partial (β+) deficit of the globin chain synthesis. The most frequent Mediterranean mutations for β-thalassemia are: β039, β+IVSI-110, β+IVSI-6 and β0IVSI-1. Several molecular techniques for the detection of point mutations have been developed based on the amplification of the DNA target by polymerase chain reaction (PCR), but they could be labor-intensive and technically demanding. On the contrary, TaqMan® genotyping assays are a simple, sensitive and versatile method suitable for the single nucleotide polymorphism (SNP) genotyping affecting the human β-globin gene. Four TaqMan® genotyping assays for the most common β-thalassemia mutations present in the Mediterranean area were designed and validated for the genotype characterization of genomic DNA extracted from 94 subjects comprising 25 healthy donors, 33 healthy carriers and 36 β-thalassemia patients. In addition, 15 specimens at late gestation (21–39 gestational weeks) and 11 at early gestation (5–18 gestational weeks) were collected from pregnant women, and circulating cell-free fetal DNAs were extracted and analyzed with these four genotyping assays. We developed four simple, inexpensive and versatile genotyping assays for the postnatal and prenatal identification of the thalassemia mutations β039, β+IVSI-110, β+IVSI-6, β0IVSI-1. These genotyping assays are able to detect paternally inherited point mutations in the fetus and could be efficiently employed for non-invasive prenatal diagnosis of β-globin gene mutations, starting from the 9th gestational week. PMID:28235086
Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa
2012-01-01
Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp “hot-spot” region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests. PMID:22170905
Minh, Nghiem Ngoc; Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa
2012-03-01
Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp "hot-spot" region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests.
Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming
2011-01-01
JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.
Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia
2016-05-01
This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected.
Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San
2017-01-01
Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes.
Schweighardt, Becky; Wrin, Terri; Meiklejohn, Duncan A.; Spotts, Gerald; Petropoulos, Christos J.; Nixon, Douglas F.; Hecht, Frederick M.
2010-01-01
We analyzed immune responses in chronically HIV-infected individuals who took part in a treatment interruption (TI) trial designed for patients who initiated anti-retroviral therapy within 6 months of seroconversion. In the two subjects that exhibited the best viral control, we detected CD8+ T cell responses against 1-2 Gag epitopes during the early weeks of TI and a subsequent increase in the number of epitopes recognized by the later time points. Each of these subjects developed mutations within the epitopes targeted by the highest magnitude responses. In the subject with the worst viral control, we detected responses against two Gag epitopes throughout the entire TI and no Gag mutations. The magnitude of these responses increased dramatically with time, greatly exceeding those detected in the virologic controllers. The highest levels of contemporaneous autologous neutralizing antibody activity were detected in the virologic controllers, and a subsequent escape mutation developed within the envelope gene of one controller that abrogated the response. These data suggest that immune escape mutations are a sign of viral control during TI, and that the absence of immune escape mutations in the presence of high-levels of viral replication indicates the lack of an effective host immune response. PMID:19910798
Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru
2014-01-01
Background Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. Methodology/Principal Findings We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Conclusions/Significance Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti. PMID:25077956
Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru
2014-01-01
Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.
Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.
2016-01-01
Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650
Chen, Jian; Luo, Bi; Qi, Zhu; Huo, Pei-Dan; Zhang, Quan-Sheng; Wang, Hong
2010-06-01
This study was aimed to establish a method of PCR combination with PCR-RFLP for detecting the South-East Asian (SEA) deletion type alpha-thalassemia 1 and non-deletion mutation of Hb Constant Spring (CS), and to investigate the application value of this method. For the members of the families with alpha-thalassemia, SEA deletion mutation was detected by PCR, then the HbCS point mutation was screened by PCR-RFLP. The results indicated that 15 carriers with alpha-thalassemia (--(SEA)/) were found in 19 members from 7 families, and 2 families with genotype of --(SEA)/alpha(CS)alpha were screened out successfully. It is concluded that the PCR combination with PCR-RFLP is a simple, rapid, and reliable method for screening HbH disease with genotype of --(SEA)/alpha(CS)alpha.
Liao, Can; Tang, Hai-Shen; Li, Ru; Li, Dong-Zhi
2013-01-01
We report a novel α-globin gene point mutation detected during newborn screening for hemoglobinopathies. Sequence analyses identified a GTG>GCG substitution at codon 62 of the α1-globin gene. This mutation causes a silent α-thalassemia (α-thal).
Biomarker Detection Using NAPPA Tumor Antigen Arrays: EDRN Supplement — EDRN Public Portal
The overall goal of this project application for the EDRN set-aside funds is to focus our collaborative efforts to identify p53 mutation-specific antibody biomarkers in breast, prostate, and ovarian cancer. P53-specific gene mutations are frequent in multiple cancer types. Of the common solid tumors, p53 mutations have been identified in 50% of lung and ovarian cancers, 45% of colon cancers, 20% of breast cancers, and 10-30% of prostate cancers (The p53 Mutation Handbook, T. Soussi, http://p53/free/fr). The most common mutations vary from cancer to cancer, with 50 point mutations covering the 10 most common mutations for all major solid tumors
Rivera, B; González, S; Sánchez-Tomé, E; Blanco, I; Mercadillo, F; Letón, R; Benítez, J; Robledo, M; Capellá, G; Urioste, M
2011-04-01
Classical familial adenomatous polyposis (FAP) is characterized by the appearance of >100 colorectal adenomas. We screened the APC and MUTYH genes for mutations and evaluated the genotype-phenotype correlation in 136 Spanish classical FAP families. APC/MUTYH mutations were detected in 107 families. Sixty-four distinct APC point mutations were detected in 95 families of which all were truncating mutations. A significant proportion (39.6%) had not been previously reported. Mutations were spread over the entire coding region and great rearrangements were identified in six families. Another six families exhibited biallelic MUTYH mutations. No APC or MUTYH mutations were detected in 29 families. These APC/MUTYH-negative families showed clinical differences with the APC-positive families. A poor correlation between phenotype and mutation site was observed. Our results highlight that a broad approach in the genetic study must be considered for classical FAP due to involvement of both APC and MUTYH and the heterogeneous spectrum of APC mutations observed in this Spanish population. The scarcely consistent genotype-phenotype correlation does not allow making specific recommendations regarding screening and management. Differences observed in APC/MUTYH-negative families may reflect a genetic basis other than mutations in APC and MUTYH genes for FAP predisposition. © The Author 2010. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.
Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A
2015-01-01
Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.
Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S
2016-10-01
Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.
Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S
2016-01-01
Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637
Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus
2015-03-01
The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.
Gruber, Aurélia; Pacault, Mathilde; El Khattabi, Laila Allach; Vaucouleur, Nicolas; Orhant, Lucie; Bienvenu, Thierry; Girodon, Emmanuelle; Vidaud, Dominique; Leturcq, France; Costa, Catherine; Letourneur, Franck; Anselem, Olivia; Tsatsaris, Vassilis; Goffinet, François; Viot, Géraldine; Vidaud, Michel; Nectoux, Juliette
2018-04-25
To limit risks of miscarriages associated with invasive procedures of current prenatal diagnosis practice, we aim to develop a personalized medicine-based protocol for non-invasive prenatal diagnosis (NIPD) of monogenic disorders relying on the detection of paternally inherited mutations in maternal blood using droplet digital PCR (ddPCR). This study included four couples at risk of transmitting paternal neurofibromatosis type 1 (NF1) mutations and four couples at risk of transmitting compound heterozygous CFTR mutations. NIPD was performed between 8 and 15 weeks of gestation, in parallel to conventional invasive diagnosis. We designed specific hydrolysis probes to detect the paternal mutation and to assess the presence of cell-free fetal DNA by ddPCR. Analytical performances of each assay were determined from paternal sample, an then fetal genotype was inferred from maternal plasma sample. Presence or absence of the paternal mutant allele was correctly determined in all the studied plasma DNA samples. We report an NIPD protocol suitable for implementation in an experienced laboratory of molecular genetics. Our proof-of-principle results point out a high accuracy for early detection of paternal NF1 and CFTR mutations in cell-free DNA, and open new perspectives for extending the technology to NIPD of many other monogenic diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishigori, Chikako; Imamura, Sadao; Yagi, Takashi
1993-11-01
Xeroderma pigmentosum (XP) patients in Tunisia who belong to the genetic complementation group A (XPA) have milder skin symptoms than do Japanese XPA patients. Such difference in the clinical features might be caused by the difference in the site of mutation in the XP A-complementing (XPAC) gene. The purpose of this study is to identify the genetic alterations in the XPAC gene in the Tunisian XPA patients and to investigate the relationship between the clinical symptoms and the genetic alterations. Three sites of mutation in the XPAC gene have been identified in the Japanese XPA patients, and about 85% ofmore » them have a G [yields] C point mutation at the splicing acceptor site of intron 3. The authors found that six (86%) of seven Tunisian XPA patients had a nonsense mutation in codon 228 in exon 6, because of a CGA [yields] TGA point mutation, which can be detected by the HphI RFLP. This type of mutation is the same as those found in two Japanese XPA patients with mild clinical RFLP. Milder skin symptoms in the XPA patients in Tunisia than in those in Japan, despite mostly sunny weather and the unsatisfactory sun protection in Tunisia, should be due to the difference in the mutation site. 11 refs., 2 figs., 2 tabs.« less
Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A
2018-01-01
Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.
Detection of functional protein domains by unbiased genome-wide forward genetic screening.
Herzog, Mareike; Puddu, Fabio; Coates, Julia; Geisler, Nicola; Forment, Josep V; Jackson, Stephen P
2018-04-18
Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.
Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fon, E.A.; Sarrazin, J.; Rouleau, G.A.
Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119more » patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.« less
Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San
2017-01-01
Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes. PMID:28575107
McGuire, M C; Nogueira, C P; Bartels, C F; Lightstone, H; Hajra, A; Van der Spek, A F; Lockridge, O; La Du, B N
1989-01-01
A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. A polymorphic site near the C terminus of the coded region was detected, but neither allele at this locus segregated consistently with the atypical trait. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for all 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of 32P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. We conclude that the Asp-70----Gly mutation (acidic to neutral amino acid substitution) accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool. Images PMID:2915989
NASA Astrophysics Data System (ADS)
Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.
2015-05-01
Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.
Xiao, Xianjin; Wu, Tongbo; Xu, Lei; Chen, Wei
2017-01-01
Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment. PMID:28201758
Determination of glucose in interstitial fluid by surface plasmon resonance biosensor
NASA Astrophysics Data System (ADS)
Huang, Fuxiang; Liu, Jin; Yu, Haixia; Zhang, Zengfu; Li, Dachao; Xu, Kexin
2008-02-01
The concentration of glucose in interstitial fluid determined by using the surface plasmon resonance (SPR) biosensor with chemical bonding D-Galactose/D-Glucose Binding Protein (GGBP) is proposed in this paper. D-Galactose/D-Glucose Binding Protein (GGBP), a kind of protein which has the ability to absorb the glucose specifically, is immobilized on the gold film of the SPR sensor to improve the sensitivity of glucose detecting. The GGBPs mutated at different points have different association abilities with glucose, which bring different measurement range and precision. So the selection of proteins is a critical problem of the determination of glucose by using SPR biosensor. Using different mutated GGBPs, the samples with different concentrations of glucose are measured in the experiment, and the prediction error and precision are discussed. Furthermore, the light intensity of sensor is instable, so the baseline of SPR responses is tracked and adjusted accordingly using the methods - fixing points and fixing areas' ratio. The experiment results show that GGBPs mutated at different points have its corresponding working curves and different measurement precision. In conclusion, the study is significant for the application of SPR biosensor to the minimally invasive diabetes testing and other detection of human body components.
The detection of large deletions or duplications in genomic DNA.
Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R
2002-11-01
While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.
Suh, James H; Schrock, Alexa B; Johnson, Adrienne; Lipson, Doron; Gay, Laurie M; Ramkissoon, Shakti; Vergilio, Jo-Anne; Elvin, Julia A; Shakir, Abdur; Ruehlman, Peter; Reckamp, Karen L; Ou, Sai-Hong Ignatius; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M
2018-03-14
In our recent study, of cases positive for epidermal growth factor receptor ( EGFR ) exon 19 deletions using comprehensive genomic profiling (CGP), 17/77 (22%) patients with prior standard of care (SOC) EGFR testing results available were previously negative for exon 19 deletion. Our aim was to compare the detection rates of CGP versus SOC testing for well-characterized sensitizing EGFR point mutations (pm) in our 6,832-patient cohort. DNA was extracted from 40 microns of formalin-fixed paraffin-embedded sections from 6,832 consecutive cases of non-small cell lung cancer (NSCLC) of various histologies (2012-2015). CGP was performed using a hybrid capture, adaptor ligation-based next-generation sequencing assay to a mean coverage depth of 576×. Genomic alterations (pm, small indels, copy number changes and rearrangements) involving EGFR were recorded for each case and compared with prior testing results if available. Overall, there were 482 instances of EGFR exon 21 L858R (359) and L861Q (20), exon 18 G719X (73) and exon 20 S768I (30) pm, of which 103 unique cases had prior EGFR testing results that were available for review. Of these 103 cases, CGP identified 22 patients (21%) with sensitizing EGFR pm that were not detected by SOC testing, including 9/75 (12%) patients with L858R, 4/7 (57%) patients with L861Q, 8/20 (40%) patients with G719X, and 4/7 (57%) patients with S768I pm (some patients had multiple EGFR pm). In cases with available clinical data, benefit from small molecule inhibitor therapy was observed. CGP, even when applied to low tumor purity clinical-grade specimens, can detect well-known EGFR pm in NSCLC patients that would otherwise not be detected by SOC testing. Taken together with EGFR exon 19 deletions, over 20% of patients who are positive for EGFR -activating mutations using CGP are previously negative by SOC EGFR mutation testing, suggesting that thousands of such patients per year in the U.S. alone could experience improved clinical outcomes when hybrid capture-based CGP is used to inform therapeutic decisions. This study points out that genomic profiling, as based on hybrid capture next-generation sequencing, can identify lung cancer patients with point mutation in epidermal growth factor receptor (EGFR) missed by standard molecular testing who can likely benefit from anti-EGFR targeted therapy. Beyond the specific findings regarding false-negative point mutation testing for EGFR, this study highlights the need for oncologists and pathologists to be cognizant of the performance characteristics of testing deployed and the importance of clinical intuition in questioning the results of laboratory testing. © AlphaMed Press 2018.
Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.
Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G
2017-11-15
The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.
Periodontal Pathogens in the Etiology of Pancreatic Cancer.
Öğrendik, Mesut
2017-03-01
Pancreatic cancer is the fourth leading cause of cancer-related deaths worldwide. Chronic pancreatitis is frequently observed in patients with pancreatic cancer, and a significant relationship between orodigestive cancer-related deaths and chronic periodontitis has been detected. Porphyromonas gingivalis , Tannerella forsythia , and Treponema denticola , collectively called the Red complex, are the major pathogens responsible for chronic periodontitis and secrete peptidylarginine deiminase. Anti- P. gingivalis antibodies titers are higher in pancreatic cancer patients than in healthy subjects. This review examines the association between oral bacteria and the etiology of pancreatic cancer. High rates of tumor suppressor gene p53 mutations, particularly p53 arginine mutations, were detected in pancreatic cancer patients. K-ras arginine mutations were detected in patients with pancreatic cancer. Oral bacteria peptidylarginine deiminases might lead to the p53 and K-ras point mutations by degrading arginine. Oral bacteria are likely to be responsible for the development of pancreatic cancer. If this hypothesis is true, it may reveal the real cause of pancreatic cancer, which is a fatal disease.
Zhu, Yuyou; Wang, Juan; Wu, Yuanbo; Wang, Guoping; Hu, Bai
2015-01-01
To investigate the genetic pathogenic causes of cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy (CADASIL) in two Chinese families, to provide the molecular basis for genetic counseling and antenatal diagnosis. The genetic mutation of gene NOTCH3 of propositus and family members was analyzed in these two CADASIL families by polymerase chain reaction and DNA sequencing technology directly. At the same time, the NOTCH3 gene mutation point of 100 healthy collators was detected, to explicit the pathogenic mutation by function prediction with Polyphen-2 and SIFT. Both propositus of the two families and patients with symptom were all accorded with the clinical features of CADASIL. It was shown by DNA sequencing that the 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] in gene NOTCH3 of propositus, 2 patients (II3, III7), and a presymptomatic patient (IV1) in Family I all had heterozygosity missense mutation; and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in gene NOTCH3 of the propositus, a patient (IV3) and two presymptomatic patients (IV5, 6) in Family II all had heterozygosity missense mutation; and no mutations were detected in the 100 healthy collators. It was indicated by analyzing the function prediction that the mutation of [c. 3043 T > A (p.Cys1015Ser)] and [c.316T > G, p. (Cys106Gly)] may both influence encoding protein in NOTCH3. By analysis of the conservatism of mutation point in each species, these two basic groups were highly conserved. The heterozygosity missense mutation of 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in NOTCH3 gene are the new pathogenic mutations of CADASIL, and enriches the mutation spectrum of NOTCH3 gene.
Spontaneous mutation during the sexual cycle of Neurospora crassa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watters, M.K.; Stadler, D.R.
The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less
Pinto, Pedro; Paulo, Paula; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Veiga, Isabel; Pinheiro, Manuela; Peixoto, Ana; Teixeira, Manuel R
2016-09-01
Molecular diagnosis of hereditary breast and ovarian cancer (HBOC) by standard methodologies has been limited to the BRCA1 and BRCA2 genes. With the recent development of new sequencing methodologies, the speed and efficiency of DNA testing have dramatically improved. The aim of this work was to validate the use of next-generation sequencing (NGS) for the detection of BRCA1/BRCA2 point mutations in a diagnostic setting and to study the role of other genes associated with HBOC in Portuguese families. A cohort of 94 high-risk families was included in the study, and they were initially screened for the two common founder mutations with variant-specific methods. Fourteen index patients were shown to carry the Portuguese founder mutation BRCA2 c.156_157insAlu, and the remaining 80 were analyzed in parallel by Sanger sequencing for the BRCA1/BRCA2 genes and by NGS for a panel of 17 genes that have been described as involved in predisposition to breast and/or ovarian cancer. A total of 506 variants in the BRCA1/BRCA2 genes were detected by both methodologies, with a 100 % concordance between them. This strategy allowed the detection of a total of 39 deleterious mutations in the 94 index patients, namely 10 in BRCA1 (25.6 %), 21 in BRCA2 (53.8 %), four in PALB2 (10.3 %), two in ATM (5.1 %), one in CHEK2 (2.6 %), and one in TP53 (2.6 %), with 20.5 % of the deleterious mutations being found in genes other than BRCA1/BRCA2. These results demonstrate the efficiency of NGS for the detection of BRCA1/BRCA2 point mutations and highlight the genetic heterogeneity of HBOC.
Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.
Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei
2009-06-26
Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.
Prevalence of ESR1 E380Q mutation in tumor tissue and plasma from Japanese breast cancer patients.
Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Sueta, Aiko; Tomiguchi, Mai; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka
2017-11-22
ESR1 mutations have attracted attention as a potentially important marker and treatment target in endocrine therapy-resistant breast cancer patients. The E380Q mutation, which is one of the ESR1 mutations, is associated with estradiol (E2) hypersensitivity, increased DNA binding to the estrogen response element, and E2-independent constitutive trans-activation activity, but its frequency in ESR1 mutations remains unknown. The present study aimed to investigate the E380Q mutation in comparison with the other representative ESR1 mutations. We screened a total of 62 patients (66 tumor tissues and 69 plasma cell-free DNA (cfDNA)) to detect ESR1 mutations (E380Q, Y537S, Y537N, Y537C, and D538G) using droplet-digital polymerase chain reaction. Plasma was collected at more than two points of the clinical course, in whom changes of ESR1 mutations under treatment were investigated. We detected ESR1 mutations in 21% (12/57) of MBCs. The E380Q ESR1 mutation was found in 16% (2/12) and the other ESR1 LBD mutations were five (41.6%) of Y537S, and four each (33.3%) of D538G, Y537N, and Y537C, in 12 ESR1 mutant breast cancer patients. Five tumors had multiple ESR1 mutations: three had double ESR1 mutations; Y537S/E380Q, Y37S/Y537C, and Y537S/D538G, and two had triple ESR1 mutations; Y537S/Y537N/D538G. In plasma cfDNA analysis, the E380Q mutation was not detected, but increases in other ESR1 mutations were detected in 46.2% (6/13) of MBC patients under treatment. We have shown that there are distinct populations of ESR1 mutations in metastatic tissue and plasma. Each ESR1 mutation may have different clinical significance, and it will be necessary to investigate them all.
A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution.
Markert, M L; Norby-Slycord, C; Ward, F E
1989-09-01
In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation in exon 11. This resulted in the amino acid substitution of a valine for an alanine at position 329 of the ADA protein. Sequence analysis revealed that this mutation created a new BalI restriction site. Using Southern analyses, we were able to directly screen individuals to determine the frequency of this mutation. By combining data on eight families followed at our institution with data on five other families reported in the literature, we established that five of 13 patients (seven of 22 alleles) with known or suspected point mutations have this defect. This mutation was found to be associated with three different ADA haplotypes. This argues against a founder effect and suggests that the mutation is very old. In summary, a conservative amino acid substitution is found in a high proportion of patients with ADA deficiency; this can easily be detected by Southern analysis.
Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations.
Scimone, Concetta; Bramanti, Placido; Alafaci, Concetta; Granata, Francesca; Piva, Francesco; Rinaldi, Carmela; Donato, Luigi; Greco, Federica; Sidoti, Antonina; D'Angelo, Rosalia
2017-02-01
Cerebral cavernous malformations (CCMs) are lesions affecting brain microvessels. The pathogenesis is not clearly understood. Conventional classification criterion is based on genetics, and thus, familial and sporadic forms can be distinguished; however, classification of sporadic cases with multiple lesions still remains uncertain. To date, three CCM causative genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. In our previous mutation screening, performed in a cohort of 95 Italian patients, with both sporadic and familial cases, we identified several mutations in CCM genes. This study represents further molecular screening in a cohort of 19 Italian patients enrolled by us in the few last years and classified into familial, sporadic and sporadic with multiple lesions cases. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect point mutations and large genomic rearrangements, respectively. Effects of detected mutations and single-nucleotide polymorphisms (SNPs) were evaluated by an in silico approach and by western blot analysis. A novel nonsense mutation in CCM1 and a novel missense mutation in CCM2 were detected; moreover, several CCM2 gene polymorphisms in sporadic CCM patients were reported. We believe that these data enrich the mutation spectrum of CCM genes, which is useful for genetic counselling to identify both familial and sporadic CCM cases, as early as possible.
Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki
2018-06-01
Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.
Aihara, Masamune; Yamamoto, Shigeru; Nishioka, Hiroko; Inoue, Yutaro; Hamano, Kimikazu; Oka, Masaaki; Mizukami, Yoichi
2012-06-15
G protein-coupled receptor 30/G protein estrogen receptor-1 (GPR30/GPER-1) is a novel membrane receptor for estrogen whose mRNA is expressed at high levels in estrogen-dependent cells such as breast cancer cell lines. However, mutations in GRP30 related to diseases remain unreported. To detect unknown mutations in the GPR30 open reading frame (ORF) quickly, the experimental conditions for high-resolution melting (HRM) analysis were examined for PCR primers, Taq polymerases, saturation DNA binding dyes, Mg(2+) concentration, and normalized temperatures. Nine known SNPs and 13 artificial point mutations within the GPR30 ORF, as well as single nucleotide variants in DNA extracted from subjects with breast cancers were tested under the optimal experimental conditions. The combination of Expand High Fidelity(PLUS) and SYTO9 in the presence of 2.0 mM MgCl(2) produced the best separation in melting curves of mutations in all regions of the GPR30 ORF. Under these experimental conditions, the mutations were clearly detected in both heterozygotes and homozygotes. HRM analysis of GPR30 using genomic DNA from subjects with breast cancers showed a novel single nucleotide variant, 111C>T in GPR30 and 4 known SNPs. The experimental conditions determined in this study for HRM analysis are useful for high throughput assays to detect unknown mutations within the GPR30 ORF. Copyright © 2012 Elsevier B.V. All rights reserved.
Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki
2015-01-01
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948
Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki
2015-01-01
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.
Effect of β-catenin alterations in the prognosis of patients with sporadic colorectal cancer.
Rafael, Sara; Veganzones, Silvia; Vidaurreta, Marta; de la Orden, Virginia; Maestro, Maria Luisa
2014-01-01
Wnt pathway activation represents a critical step in the etiology of most of colorectal cancer (CRC) and it is commonly due to mutations in the APC gene, which originates the loss of β-catenin regulatory function. It has been suggested that APC inactivation or β-catenin alteration have similar effects in tumor progression in CRC tumorigenesis. The aim of this study was to analyze the frequency of β-catenin gene mutation in patients with sporadic CRC and to determine its effect in prognosis. This was a prospective cohort study, which included 345 patients with sporadic CRC. β-Catenin gene mutations in exon 3 were detected by single strand conformation polymorphism (SSCP). Exon 3 deletion was studied by identifying differences in fragment length of specific amplification products. All the altered samples were confirmed by direct sequencing. In our population, point mutations were detected in 1.8% of the samples and 4.9% of the samples showed deletion. We observed association between exon 3 mutations and increased levels of Carcinoenbryonic Antigen (CEA). In these patients, clinically relevant improvement in overall survival was also observed. Frequency of point mutations in exon 3 β-catenin gene is low in our population. It would be interesting to increase the population size to test the clinically relevant influence in the prognosis found, and to test the relation of these events with Microsatellite Instabillity (MSI) pathway. If these findings were confirmed, β-catenin determination would help in the selection of patients with different prognosis.
Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun
2016-07-07
To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori.
Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun
2016-01-01
AIM: To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). METHODS: The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. RESULTS: The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. CONCLUSION: The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori. PMID:27433095
Taus, Álvaro; Camacho, Laura; Rocha, Pedro; Hardy-Werbin, Max; Pijuan, Lara; Piquer, Gabriel; López, Eva; Dalmases, Alba; Longarón, Raquel; Clavé, Sergi; Salido, Marta; Albanell, Joan; Bellosillo, Beatriz; Arriola, Edurne
2018-03-23
The assessment of epidermal growth factor receptor (EGFR) mutations is crucial for the management of patients with lung adenocarcinoma. Circulating tumor DNA (ctDNA)-based assessment offers advantages over tumor as a minimally invasive method able to capture tumor heterogeneity. Consecutive patients diagnosed with EGFR-mutant lung adenocarcinoma in tumor biopsy were included in this study. Plasma samples were obtained at different time points during the course of the disease. EGFR mutations in plasma were quantified using BEAMing (beads, emulsions, amplification, and magnetics) or digital PCR and were correlated with mutations in tumor and with radiologic response and progression. Two hundred twenty-one plasma samples from 33 patients were analyzed. EGFR mutations in plasma were detected in 83% of all patients and 100% of those with extrathoracic metastases. The dynamics of the EGFR mutation load predicted response in 93% and progression in 89% of cases well in advance of radiologic evaluation. Progression-free survival for patients in whom ctDNA was not detected in plasma during treatment was significantly longer than for those in whom ctDNA remained detectable (295 vs. 55 days; hazard ratio, 17.1; P < .001). The detection of EGFR mutations in ctDNA showed good correlation with that in tumor biopsy and predicted tumor response and progression in most patients. The liquid biopsy for ctDNA-based assessment of EGFR mutations is a reliable technique for diagnosis and follow-up in patients with EGFR-mutant lung adenocarcinoma in routine clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.
2018-01-01
Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biery, B.J.; Stein, D.E.; Goodman, S.I.
The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in themore » general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.« less
High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.
Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong
2017-12-01
High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriyama, Chisako; Tomita, Akihiro, E-mail: atomita@med.nagoya-u.ac.jp; Hoshino, Hideaki
2012-03-23
Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspirationmore » is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic/epigenetic analyses using PB circulating DNA can be a safer and painless alternative to using BM cells.« less
Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein
2016-10-01
Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Del Bo, Roberto; Bordoni, Andreina; Martinelli Boneschi, Filippo; Crimi, Marco; Sciacco, Monica; Bresolin, Nereo; Scarlato, Guglielmo; Comi, Giacomo Pietri
2002-10-15
The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes. Copyright 2002 Elsevier Science B.V.
[Clinical and genetic study of Wilson's disease in affected twins and siblings].
Cheng, Nan; Wang, Xun; Yu, Xuen; Zhou, Zhihua; Gao, Mingwei; Rao, Rao; Hu, Jiyuan; Yang, Renmin; Han, Yongzhu
2013-06-01
To study the clinical and genetic characteristics of twins and siblings affected with Wilson's disease (WD). Clinical data and blood samples were collected from the subjects after informed consent was obtained. Genomic DNA was extracted and potential mutations in the exons in ATP7B gene were detected with PCR-DNA sequencing. Short tandem repeat (STR) genotyping was performed to determine the zygosity of the twins. The 5 pairs of twins have all met the diagnostic criteria for WD. STR genotyping has confirmed that 4 pairs were monozygotic twins. 3 pairs of twins had an onset with liver symptoms, the other 2 had an onset with brain symptoms. ATP7B gene mutations were detected in 4 pairs of twins, which have all located in exons 8 and 13. A heterozygous p.R778W mutation in exon 8 and homozygous p.P992L mutation in exon 13 were detected in all patients from one family, whose parents have carried a heterozygous p.R778W mutation and p.P992L heterozygous mutation, respectively, which suggested loss of heterozygosity (LOH). In one family, no mutation was detected in all exons of the ATP7B gene in the patients and their parents. For a triplet, one female was with definite WD and brain symptoms at the onset, one male had subclinical type with WD, whilst another female was completely normal. The triplets and their mother have all carried a p.P992L heterozygous mutation . Above results have confirmed an important role for genetic factors in the pathogenesis of WD. In addition to point mutations, LOH is also involved in the pathogenesis for WD.
Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
Prykhozhij, Sergey V; Fuller, Charlotte; Steele, Shelby L; Veinotte, Chansey J; Razaghi, Babak; Robitaille, Johane M; McMaster, Christopher R; Shlien, Adam; Malkin, David; Berman, Jason N
2018-06-14
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Jeannot, Emmanuelle; Pogribny, Igor P.; Beland, Frederick A.; Rusyn, Ivan
2010-01-01
This study used tissue samples from male B6C3F1 mice treated with ethanol in drinking water (0, 2.5, or 5%) for 4 or 104 weeks. We tested whether chronic alcohol drinking promotes oxidative stress in the liver and characterized the mutation profile of spontaneous and ethanol-induced tumors. We show that ethanol does not cause detectable oxidative stress in the liver at any time point and acts by promoting H-ras mutated cells. PMID:21168264
Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer.
Malapelle, Umberto; Sirera, Rafael; Jantus-Lewintre, Eloísa; Reclusa, Pablo; Calabuig-Fariñas, Silvia; Blasco, Ana; Pisapia, Pasquale; Rolfo, Christian; Camps, Carlos
2017-03-01
The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.
Deftereos, Georgios; Finkelstein, Sydney D; Jackson, Sara A; Ellsworth, Eric M G; Krishnamurti, Uma; Liu, Yulin; Silverman, Jan F; Binkert, Candy R; Ujevich, Beth A; Mohanty, Alok
2014-04-01
Fine-needle aspiration (FNA) of pancreatic solid masses can be significantly impacted by sampling variation. Molecular analysis of tumor DNA can be an aid for more definitive diagnosis. The aim of this study was to evaluate how molecular analysis of the cell-free cytocentrifugation supernatant DNA can help reduce sampling variability and increase diagnostic yield. Twenty-three FNA smears from pancreatic solid masses were performed. Remaining aspirates were rinsed for preparation of cytocentrifuged slides or cell blocks. DNA was extracted from supernatant fluid and assessed for DNA quantity spectrophotometrically and for amplifiability by quantitative PCR (qPCR). Supernatants with adequate DNA were analyzed for mutations using PCR/capillary electrophoresis for a broad panel of markers (KRAS point mutation by sequencing, microsatellite fragment analysis for loss of heterozygosity (LOH) of 16 markers at 1p, 3p, 5q, 9p, 10q, 17p, 17q, 21q, and 22q). In selected cases, microdissection of stained cytology smears and/or cytocentrifugation cellular slides were analyzed and compared. In all, 5/23 samples cytologically confirmed as adenocarcinoma showed detectable mutations both in the microdissected slide-based cytology cells and in the cytocentrifugation supernatant. While most mutations detected were present in both microdissected slides and supernatant fluid specimens, the latter showed additional mutations supporting greater sensitivity for detecting relevant DNA damage. Clonality for individual marker mutations was higher in the supernatant fluid than in microdissected cells. Cytocentrifugation supernatant fluid contains levels of amplifiable DNA suitable for mutation detection and characterization. The finding of additional detectable mutations at higher clonality indicates that supernatant fluid may be enriched with tumor DNA. Molecular analysis of the supernatant fluid could serve as an adjunct method to reduce sampling variability and increase diagnostic yield, especially in cases with a high clinical suspicion for malignancy and limited number of atypical cells in the smears.
A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.
Zeng, Lingwen; Xiao, Zhuo
2017-01-01
A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed; Virk, Selene; Mikkelsen, Tom; Brat, Daniel; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew; Cohen, Mark; Van Meir, Erwin; Scarpace, Lisa; Lander, Eric; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill; Verhaak, Roel
2014-01-01
To evaluate evolutionary patterns of GBM recurrence, we analyzed whole genome sequencing (WGS) and multi-sector exome sequencing data from pairs of primary and posttreatment GBM. WGS on ten primary-recurrent pairs detected a median number of 12,214 mutations which we utilized to uncover clonal structures, by analyzing the distribution of mutation cellular frequencies (the fraction of tumor cells harboring a mutation). On average, 41 % of the mutations were shared by primary and recurrence. The majority of shared mutations were clonal in both primary and recurrence, but we also observed many clonal mutations that were uniquely detected in either the primary or the recurrence. This raises the intriguing possibility that major tumor clones in the primary tumor and disease relapse both evolved from a shared ancestral tumor cell population. At least one subclone was identified in the majority of WGS samples, and we observed groups of mutations that were at low cancer cell fractions in both primary and recurrence, suggesting that both subclones evolved from the same ancestral tumor cells separate from the major clone ancestral cells. To address the possibility that the lack of overlap between subsequent tumors was due to intratumoral heterogeneity, we analyzed exome sequencing from a second tumor sector of seven primary and six recurrent tumors. We found that the majority of "second biopsy" mutations were not conserved between time points, suggesting that intratumoral heterogeneity did not explain the large number of mutations uniquely detected in primary and recurrence. The limited overlap of mutations in primary and recurrence provides evidence for ancestral tumor cell populations that could not be eradicated by therapy, while offspring cell populations contained unique mutations, were selectively killed by treatment and could therefore no longer be detected after disease relapse. This study has provided new insights into patterns and dynamics of tumor evolution.
Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J
2010-10-15
Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.
Targeted next generation sequencing for molecular diagnosis of Usher syndrome.
Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M
2014-11-18
Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.
[Leigh syndrome caused by the mitochondrial DNA G14459A mutation in a Mexican family].
Gutiérrez, A; Saldaña-Martínez, A; García-Ramírez, R; Rayo-Mares, D; Carreras, M; López-Pérez, M J; Ruiz-Pesini, E; Montoya, J; Montiel-Sosa, J F
Leigh syndrome is a neurodegenerative and progressive disease that appears usually in childhood due to defects in nuclear or mitochondrial genome. The mutation G14459A in mitochondrial DNA has been associated previously to Leber hereditary optic neuropathy and recently to Leigh syndrome. A 10 months-old Mexican girl diagnosed of Leigh syndrome. Molecular-genetic studies detected the mutation G14459A in a percentage close to homoplasmy and in low heteroplasmy in her mother. The rest of the maternally related family members analyzed were negative. The G14459A mutation, although not very frequently associated to Leigh syndrome, should be analyzed in patients that do not present the most common point mutations.
Chen, Xuewei; Li, Fen; Chen, Anqi; Ma, Kangsheng; Liang, Pingzhuo; Liu, Ying; Song, Dunlun; Gao, Xiwu
2017-09-01
Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China. Copyright © 2016 Elsevier B.V. All rights reserved.
Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry
2013-01-01
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.
Binder, Gerhard; Renz, Alexandra; Martinez, Alicia; Keselman, Ana; Hesse, Volker; Riedl, Stefan W; Häusler, Gabriele; Fricke-Otto, Susanne; Frisch, Herwig; Heinrich, Juan Jorge; Ranke, Michael B
2004-09-01
SHOX mutations causing haploinsufficiency were reported in Leri-Weill dyschondrosteosis (LWD), which is characterized by mesomelic short stature and Madelung deformity of the wrists. The aim of this study was to determine the prevalence of SHOX mutations in LWD and to investigate the degree of growth failure in relation to mutation, sex, age of menarche, and wrist deformity. We studied 20 families with 24 affected children (18 females) and nine affected parents (seven females). All patients presented with bilateral Madelung deformity and shortening of the limbs. Height, sitting height, parental height, birth length, age of menarche, and presence of minor abnormalities were recorded. The degree of Madelung deformity was estimated by analysis of left hand radiographs. Microsatellite typing of the SHOX locus was used for detection of SHOX deletions and PCR direct sequencing for the detection of SHOX point mutations. In 14 of 20 families (70%), SHOX mutations were detected, with seven deletions (four de novo) and seven point mutations (one de novo). The latter included five missense mutations of the SHOX homeodomain, one nonsense mutation (E102X) truncating the whole homeodomain, and one point mutation (X293R) causing a C-terminal elongation of SHOX. Median age of the affected children was 13.4 yr (range, 6.1-18.3), mean height sd score (SDS) (sd in parentheses) was -2.85 (1.04), and mean sitting height/height ratio SDS was +3.06 (1.09). Mean birth length SDS was -0.59 (1.26). Growth failure occurred before school age. Height change during a median follow-up of 7.4 yr (range, 2.3-11.3) was insignificant with a mean change in height SDS of -0.10 (0.52). Mean height SDS of affected parents was -2.70 (0.85) vs. -0.91 (1.10) in unaffected parents. Height loss due to LWD was estimated calculating delta height defined by actual height SDS minus target height SDS of the unaffected parent(s). In the children, mean delta height SDS was -2.16 (1.06), the loss being greater in girls at -2.30 (1.02) than in boys at -1.72 (1.09) (P = 0.32). In patients with SHOX deletions, it was -2.14 (1.15) vs. -1.67 (0.73) for the SHOX point mutation group (P = 0.38). Mean delta height SDS was -2.26 (0.68) for the girls with early menarche (<12 yr) vs. -2.08 (0.91) for the other postmenarcheal girls (P = 0.72). Height loss in patients with radiologically severe wrist deformities in comparison with those having milder radiological signs was -2.81 (1.01) vs. -1.70 (1.04) (P = 0.03). GH treatment in five children during a median duration of 3.4 yr (range, 1.5-9.8 yr) with a median dosage of 0.23 mg/kg.wk (range, 0.14-0.25) resulted in a mean height SDS gain of +0.82 (0.34). In conclusion, SHOX defects were the main cause of LWD. Growth failure occurred during the first years of life with a mean height loss of 2.16 SDS whereas pubertal growth may only be mildly or not affected. Children with a severe degree of wrist deformity were significantly shorter than those with mild deformities. No statistically significant effects of type of mutation, age of menarche, or sex on height were observed. The effect of GH therapy varied between individuals and needs to be examined in controlled studies.
Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation.
Sue, C M; Mitchell, P; Crimmins, D S; Moshegov, C; Byrne, E; Morris, J G
1997-10-01
Fourteen patients from four unrelated families were studied to determine the prevalence of retinal pigmentary abnormalities associated with the MELAS A to G 3243 point mutation. Neurologic and ophthalmic examinations, retinal photography, pattern shift visual evoked potentials, and electroretinography were performed in all patients. Eight of the 14 patients had retinal pigmentary abnormalities characterized by symmetric areas of depigmentation involving predominantly the posterior pole and midperipheral retina. None of the patients had optic atrophy and only one patient with pigmentary retinal abnormalities had impaired visual acuity. None of the diabetic subjects (n = 6) had signs of diabetic retinopathy. Fluorescein angiography demonstrated mottled hyper- and hypofluorescent areas indicating multiple window defects in the retinal pigmentary epithelium. Visual evoked potentials showed delayed P100 responses in four of the eight patients with retinal pigmentary abnormalities. We conclude that there is a high prevalence of retinal pigmentary abnormalities in patients with MELAS A to G 3243 point mutation. These abnormalities are usually asymptomatic and best detected by retinal photography.
Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.
2001-01-01
Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889
Niemeyer, G; Trüb, P; Schinzel, A; Gal, A
1992-01-01
In a family with autosomal dominant retinitis pigmentosa, documented over six generations, a previously undescribed point mutation in the rhodopsin gene could be identified. The mutation found in the six affected members examined but in none of the controls, including healthy members of the family, was a point mutation in codon 347 predicting a substitution of the amino acid arginine for proline, designated Pro-347-Arg. Six affected members from two generations were examined clinically and with ganzfeld rod and cone electroretinography. The cone and, more dramatically, the rod electroretinograms were reduced to residual b-wave amplitudes or were non-detectable as early as ages 18 to 22 years. The Pro-347-Arg mutation resulted in a subjectively and clinically homogeneous phenotype: early onset of night blindness before age 11, relatively preserved usable visual fields until about age 30, blindness at ages 40 to 60, and change from an initial apparently sine pigmento to a hyperpigmented and atrophic fundus picture between 30 and 50 years of age.
Many private mutations originate from the first few divisions of a human colorectal adenoma.
Kang, Haeyoun; Salomon, Matthew P; Sottoriva, Andrea; Zhao, Junsong; Toy, Morgan; Press, Michael F; Curtis, Christina; Marjoram, Paul; Siegmund, Kimberly; Shibata, Darryl
2015-11-01
Intratumoural mutational heterogeneity (ITH) or the presence of different private mutations in different parts of the same tumour is commonly observed in human tumours. The mechanisms generating such ITH are uncertain. Here we find that ITH can be remarkably well structured by measuring point mutations, chromosome copy numbers, and DNA passenger methylation from opposite sides and individual glands of a 6 cm human colorectal adenoma. ITH was present between tumour sides and individual glands, but the private mutations were side-specific and subdivided the adenoma into two major subclones. Furthermore, ITH disappeared within individual glands because the glands were clonal populations composed of cells with identical mutant genotypes. Despite mutation clonality, the glands were relatively old, diverse populations when their individual cells were compared for passenger methylation and by FISH. These observations can be organized into an expanding star-like ancestral tree with co-clonal expansion, where many private mutations and multiple related clones arise during the first few divisions. As a consequence, most detectable mutational ITH in the final tumour originates from the first few divisions. Much of the early history of a tumour, especially the first few divisions, may be embedded within the detectable ITH of tumour genomes. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Sheikholeslami, M R; Jilani, I; Keating, M; Uyeji, J; Chen, K; Kantarjian, H; O'Brien, S; Giles, F; Albitar, M
2006-07-15
Lack of immunoglobulin heavy chain genes (IgV(H)) mutation in patients with chronic lymphocytic leukemia (CLL) is associated with rapid disease progression and shorter survival. The zeta-chain (T-cell receptor) associated protein kinase 70 kDa (ZAP-70) has been reported to be a surrogate marker for IgV(H) mutation status, and its expression in leukemic cells correlates with unmutated IgV(H). However, ZAP-70 detection by flow cytometry varies significantly dependant on the antibodies used, the method of performing the assay, and the condition of the cells in the specimen. The clinical value of ZAP-70 testing when samples are shipped under poorly controlled conditions is not known. Furthermore, testing in a research environment may differ from testing in a routine clinical laboratory. We validated an assay for ZAP-70 by comparing results with clinical outcome and the mutation status of the IgV(H). Using stored samples, we show significant correlation between ZAP-70 expression and clinical outcome as well as IgV(H) mutation at a cut-off point of 15%. While positive samples (>15% positivity) remain positive when kept in the laboratory environment for 48 h after initial testing, results obtained from samples from CLL patients tested after shipping at room temperature for routine testing showed no correlation with IgV(H) mutation status when 15% cut-off was used. In these samples, cut-point of 10% correlated with the IgV(H) mutation (P = 0.0001). This data suggests that although ZAP-70 positivity correlates with IgV(H) mutation status and survival, variations in sample handling and preparation may influence results. We show that IgV(H) mutation results, unlike ZAP-70 remain correlated with CD38 expression and beta-2 microglobulin in shipped samples, and ZAP-70 testing should not be used as the sole criterion for stratifying patients for therapy. (c) 2006 International Society for Analytical Cytology.
Carlin, Marcelo Paschoalete; Scherrer, Daniel Zanetti; De Tommaso, Adriana Maria Alves; Bertuzzo, Carmen Silvia; Steiner, Carlos Eduardo
2013-12-01
Glycogen storage disease (GSD) comprises a group of autosomal recessive disorders characterized by deficiency of the enzymes that regulate the synthesis or degradation of glycogen. Types Ia and Ib are the most prevalent; while the former is caused by deficiency of glucose-6-phosphatase (G6Pase), the latter is associated with impaired glucose-6-phosphate transporter, where the catalytic unit of G6Pase is located. Over 85 mutations have been reported since the cloning of G6PC and SLC37A4 genes. In this study, twelve unrelated patients with clinical symptoms suggestive of GSDIa and Ib were investigated by using genetic sequencing of G6PC and SLC37A4 genes, being three confirmed as having GSD Ia, and two with GSD Ib. In seven of these patients no mutations were detected in any of the genes. Five changes were detected in G6PC, including three known point mutations (p.G68R, p.R83C and p.Q347X) and two neutral mutations (c.432G > A and c.1176T > C). Four changes were found in SLC37A4: a known point mutation (p.G149E), a novel frameshift insertion (c.1338_1339insT), and two neutral mutations (c.1287G > A and c.1076-28C > T). The frequency of mutations in our population was similar to that observed in the literature, in which the mutation p.R83C is also the most frequent one. Analysis of both genes should be considered in the investigation of this condition. An alternative explanation to the negative results in this molecular study is the possibility of a misdiagnosis. Even with a careful evaluation based on laboratory and clinical findings, overlap with other types of GSD is possible, and further molecular studies should be indicated.
Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko
2013-01-01
A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.
Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice
Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K
2005-01-01
Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676
Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie
2016-01-01
In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.
Hashimoto, Masahiko; Barany, Francis; Xu, Feng; Soper, Steven A
2007-09-01
We have fabricated a flow-through biochip consisting of passive elements for the analysis of single base mutations in genomic DNA using polycarbonate (PC) as the substrate. The biochip was configured to carry out two processing steps on the input sample, a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) for scoring the presence of low abundant point mutations in genomic DNA. The operation of the device was demonstrated by detecting single nucleotide polymorphisms in gene fragments (K-ras) that carry high diagnostic value for colorectal cancers. The effect of carryover from the primary PCR on the subsequent LDR was investigated in terms of LDR yield and fidelity. We found that a post-PCR treatment step prior to the LDR phase of the assay was not essential. As a consequence, a thermal cycling microchip was used for a sequential PCR/LDR in a simple continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of the gene fragments from genomic DNA; (2) mixing of the resultant PCR product(s) with an LDR cocktail via a Y-shaped passive micromixer; and (3) ligation of two primers (discriminating primer that carried the complement base to the mutation locus being interrogated and a common primer) only when the particular mutation was present in the genomic DNA. We successfully demonstrated the ability to detect one mutant DNA in 1000 normal sequences with the integrated microfluidic system. The PCR/LDR assay using the microchip performed the entire assay at a relatively fast processing speed: 18.7 min for 30 rounds of PCR, 4.1 min for 13 rounds of LDR (total processing time = ca. 22.8 min) and could screen multiple mutations simultaneously in a multiplexed format. In addition, the low cost of the biochip due to the fact that it was fabricated from polymers using replication technologies and consisted of passive elements makes the platform amenable to clinical diagnostics, where one-time use devices are required to eliminate false positives resulting from carryover contamination.
Berginc, Gasper; Bracko, Matej; Ravnik-Glavac, Metka; Glavac, Damjan
2009-01-01
Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.
Laser desorption mass spectrometry for molecular diagnosis
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence
1996-04-01
Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.
Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui
2015-03-20
Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay. Copyright © 2015 Elsevier B.V. All rights reserved.
Screening for mutations in two exons of FANCG gene in Pakistani population.
Aymun, Ujala; Iram, Saima; Aftab, Iram; Khaliq, Saba; Nadir, Ali; Nisar, Ahmed; Mohsin, Shahida
2017-06-01
Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.
Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B
2016-09-28
A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced colorectal cancer (CRC), as well as targetable alterations in many other genes. This includes detection of a broad spectrum of activating KRAS alterations frequently missed by focused molecular hotspot testing, as well as other RAS/RAF pathway alterations, mutations shown to disrupt antibody binding, RTK activating point mutations, amplifications, and rearrangements, and activating alterations in downstream effectors including PI3K and MEK1. The use of CGP in clinical practice is critical to guide appropriate selection of targeted therapies for patients with advanced CRC. ©AlphaMed Press.
A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hui-Yong; Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070
2012-06-29
Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism ofmore » steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.« less
Thiart, R.; Scholtz, C.; Vergotine, J.; Hoogendijk, C.; de Villiers, J N. P; Nissen, H.; Brusgaard, K.; Gaffney, D.; Hoffs, M.; Vermaak, W; Kotze, M.
2000-01-01
In South Africa, the high prevalence of familial hypercholesterolaemia (FH) among Afrikaners, Jews, and Indians as a result of founder genes is in striking contrast to its reported virtual absence in the black population in general. In this study, the molecular basis of primary hypercholesterolaemia was studied in 16 Africans diagnosed with FH. DNA analysis using three screening methods resulted in the identification of seven different mutations in the coding region of the low density lipoprotein (LDLR) gene in 10 of the patients analysed. These included a 6 bp deletion (GCGATG) accounting for 28% of defective alleles, and six point mutations (D151H, R232W, R385Q, E387K, P678L, and R793Q) detected in single families. The Sotho patient with missense mutation R232W was also heterozygous for a de novo splicing defect 313+1G→A. Several silent mutations/polymorphisms were detected in the LDLR and apolipoprotein B genes, including a base change (g→t) at nucleotide position −175 in the FP2 LDLR regulatory element. This promoter variant was detected at a significantly higher (p<0.05) frequency in FH patients compared to controls and occurred in cis with mutation E387K in one family. Analysis of four intragenic LDLR gene polymorphisms showed that the same chromosomal background was identified at this locus in the four FH patients with the 6 bp deletion. Detection of the 6 bp deletion in Xhosa, Pedi, and Tswana FH patients suggests that it is an ancient mutation predating tribal separation approximately 3000 years ago. Keywords: apolipoprotein B; hypercholesterolaemia; low density lipoprotein receptor; mutation PMID:10882754
Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark
2014-01-01
Background Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. Methods The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. Results A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3′ region of cagA throughout the tree. Conclusions We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. PMID:24827414
Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark
2014-10-01
Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3' region of cagA throughout the tree. We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roa, B.B.; Warner, L.E.; Lupski, J.R.
1994-09-01
The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry themore » most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.« less
Arndt, Annette; Steinestel, Konrad; Rump, Alexis; Sroya, Manveer; Bogdanova, Tetiana; Kovgan, Leonila; Port, Matthias; Abend, Michael; Eder, Stefan
2018-04-06
Childhood radiation exposure has been associated with increased papillary thyroid carcinoma (PTC) risk. The role of anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related PTC remains unclear, but STRN-ALK fusions have recently been detected in PTCs from radiation exposed persons after Chernobyl using targeted next-generation sequencing and RNA-seq. We investigated ALK and RET gene rearrangements as well as known driver point mutations in PTC tumours from 77 radiation-exposed patients (mean age at surgery 22.4 years) and PTC tumours from 19 non-exposed individuals after the Chernobyl accident. ALK rearrangements were detected by fluorescence in situ hybridisation (FISH) and confirmed with immunohistochemistry (IHC); point mutations in the BRAF and RAS genes were detected by DNA pyrosequencing. Among the 77 tumours from exposed persons, we identified 7 ALK rearrangements and none in the unexposed group. When combining ALK and RET rearrangements, we found 24 in the exposed (31.2%) compared to two (10.5%) in the unexposed group. Odds ratios increased significantly in a dose-dependent manner up to 6.2 (95%CI: 1.1, 34.7; p = 0.039) at Iodine-131 thyroid doses >500 mGy. In total, 27 cases carried point mutations of BRAF or RAS genes, yet logistic regression analysis failed to identify significant dose association. To our knowledge we are the first to describe ALK rearrangements in post-Chernobyl PTC samples using routine methods such as FISH and IHC. Our findings further support the hypothesis that gene rearrangements, but not oncogenic driver mutations, are associated with ionizing radiation-related tumour risk. IHC may represent an effective method for ALK-screening in PTCs with known radiation aetiology, which is of clinical value since oncogenic ALK activation might represent a valuable target for small molecule inhibitors. © 2018 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.
Carrera, P; Barbieri, A M; Ferrari, M; Righetti, P G; Perego, M; Gelfi, C
1997-11-01
A quick diagnosis of the classic form of 21-hydroxylase deficiency (simple virilizing and salt wasting) is of great importance, especially for prenatal diagnosis and treatment in pregnancies at risk. A method for simultaneous detection of common point mutations in the P450c21 B gene is here proposed by combining a nested PCR amplification refractory mutation system (ARMS) with capillary zone electrophoresis (CZE) in sieving liquid polymers. In the first PCR, B genes are selectively amplified. In the nested reaction, ARMS-detected wild-type and mutated alleles are separately pooled and resolved by CZE. CZE is performed in coated capillaries in the presence of 30 g/L hydroxyethyl cellulose in the background electrolyte for size separation of the DNA analytes. For high-sensitivity detection the electrophoresis buffer contains the fluorescent dye SYBR Green I. Laser-induced fluorescence detection is obtained by excitation at 488 nm and signal collection at 520 nm. Specificity and reproducibility of the protocols were established by using samples from 75 Italian families with 21-hydroxylase deficiency already genotyped by allele-specific oligonucleotide hybridization or direct sequencing. Whereas dot-blot is time consuming because of the high number of hybridizations with radioactive probes, this present protocol is more rapid, giving sufficient separation on CZE after PCR reactions without preconcentration or desalting of samples.
Albrecht, Jennifer Coyne; Kotani, Akira; Lin, Jennifer S.; Soper, Steven A.; Barron, Annelise E.
2015-01-01
We demonstrate here the power and flexibility of free-solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild-type DNA. Here, four large drag-tags are used to achieve free-solution electrophoretic separation of 19 LDR products ranging in size from 42–66 nt that correspond to mutations in the K-ras oncogene. LDR-FSCE enabled electrophoretic resolution of these 19 LDR-FSCE products by CE in 13.5 minutes (E = 310 V/cm) and by microchip electrophoresis in 140 seconds (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free-solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR-FSCE products were separated in < 70 seconds with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K-ras mutations on integrated “sample-in/answer-out” devices with amplification, LDR, and detection all on one platform. PMID:23192597
Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy
NASA Astrophysics Data System (ADS)
Kühnemund, Malte; Wei, Qingshan; Darai, Evangelia; Wang, Yingjie; Hernández-Neuta, Iván; Yang, Zhao; Tseng, Derek; Ahlford, Annika; Mathot, Lucy; Sjöblom, Tobias; Ozcan, Aydogan; Nilsson, Mats
2017-01-01
Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies.
Gentilini, Fabio; Turba, Maria E
2014-01-01
A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.
[Identification of hepatitis B virus YMDD point mutation using peptide nucleic acid clamping PCR].
Zhang, Yingying; He, Haitang; Yang, Jie; Hou, Jinlin
2013-06-01
To establish a peptide nucleic acid clamping PCR assay for detecting hepatitis B virus (HBV) drug resistance mutation. RtM204I (ATT) mutant, rtM204V (GTG) mutant and rtM204 (ATG) wild-type plasmids mixed at different ratios were detected for mutations by PNA clamping PCR assay and direct sequencing, and the sensitivity and specificity of the two methods were compared. Serum samples from 85 patients with chronic HBV infection were detected for drug resistance using the two methods. The sensitivity of PNA-PCR assay was 0.001% in a 10(5)-fold excess of wild-type HBV DNA with a detection limit of 10(1) copies. The sensitivity of direct sequencing was 10% with a detection limit of 10(4) copies. Mutants were detected in 73 of the 85 serum samples (85.9%), including YIDD in 40 samples, YVDD in 23 samples, and YIDD+YVDD in 10 samples. The agreement of PNA-PCR assay with direct sequencing was only 40% (34/85, YIDD in 21 samples, YVDD in 11 samples, and YIDD+YVDD in 2 samples). Neither of the two methods yielded positive results for the negative control samples, suggesting their good specificity. PNA-PCR assay appears to be a more sensitive and rapid assay for detection of HBV genotypic resistance.
Sasaki, S; Nakamura, H; Tagami, T; Miyoshi, Y; Nogimori, T; Mitsuma, T; Imura, H
1993-05-01
Point mutations in the human T3 receptor-beta (TR beta) gene causing single amino acid substitutions have been identified in several different kindreds with generalized resistance to thyroid hormone. Until now, no study has been reported on the TR gene in cases of pituitary resistance (PRTH). In the present study, we analyzed the TR beta gene in a 30-yr-old Japanese female with PRTH. She exhibited clinical features of hyperthyroidism, elevated serum thyroid hormone levels accompanied by inappropriately increased secretion of TSH, mildly elevated basal metabolic rate, and increased urinary excretion of hydroxyproline. No pituitary tumor was detected. DNA fragments of exons 3-8 of the genomic TR beta gene were generated by the polymerase chain reaction and analyzed by a single stranded conformation polymorphism method. Exon 7 of the patient's TR beta gene showed an abnormal band, suggesting the existence of mutation(s). By subcloning and sequencing the DNA, a point mutation was identified in one allele at nucleotide 1297 (C to T), which altered the 333rd amino acid, arginine, to tryptophan. Neither of her apparently normal parents had any mutations of the TR beta gene. In vitro translation products of the mutant TR beta gene showed remarkably decreased T3-binding activity (Ka, 2.1 x 10(8) M-1; normal TR beta Ka, 1.1 x 10(10) M-1). Since the molecular defect detected in a patient with PRTH is similar to that seen in subjects with generalized resistance to thyroid hormone, both types of the syndrome may represent a continuous spectrum of the same etiological defect with variable tissue resistance to thyroid hormone.
Adrenal insufficiency in a child with MELAS syndrome.
Afroze, Bushra; Amjad, Nida; Ibrahim, Shahnaz H; Humayun, Khadija Nuzhat; Yakob, Yusnita
2014-11-01
Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) are established subgroups of mitochondrial encephalomyopathy. m.3243A>G a common point mutation is detected in tRNA in majority of patients with MELAS phenotype whereas m.8344A>G point mutation in tRNA is observed, in MERRF phenotype. Adrenal insufficiency has not been reported in mitochondrial disease, except in Kearns-Sayre Syndrome (KSS), which is a mitochondrial deletion syndrome. We report an unusual presentation in a five year old boy who presented with clinical phenotype of MELAS and was found to have m.8344A>G mutation in tRNA. Addison disease was identified due to hyperpigmentation of lips and gums present from early childhood. This is the first report describing adrenal insufficiency in a child with MELAS phenotype. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome.
Yang, Yan-ling; Sun, Fang; Zhang, Yao; Qian, Ning; Yuan, Yun; Wang, Zhao-xia; Qi, Yu; Xiao, Jiang-xi; Wang, Xiao-ying; Qi, Zhao-yue; Zhang, Yue-hua; Jiang, Yu-wu; Bao, Xin-hua; Qin, Jiong; Wu, Xi-ru
2006-03-05
Leigh syndrome is an inherited neurodegenerative disease that emerges in infancy and childhood and presents with a clinically heterogeneous variety of neuromuscular and non-neuromuscular disorders. It can result from the inheritance of mutations in either nuclear or mitochondrial DNA. In the current study, we performed a retrospective study in 65 patients in order to investigate the clinical and genetic characteristics of Leigh syndrome in Chinese patients. Sixty-five unrelated cases (35 men and 30 women) who were hospitalized in the past 12 years were reviewed. Diagnosis was based on both the clinical presentation and the characteristic neuropathologic findings of bilateral symmetric necrotizing lesions in the basal ganglia and brain stem as detected using cranial computed tomography (CT) scan or magnetic resonance imaging (MRI). The differential diagnosis of organic acidurias and fatty acid beta-oxidation defects were performed. Specific point mutations and deletions in mitochondrial DNA (T8993G, T8993C, T9176C, A8344G, A3243G) were screened by PCR-restriction analysis and Southern blot. The SURF1 gene was sequenced. Skeletal muscle biopsies were performed in 17 (26.2%) of the patients. The diagnosis was confirmed by autopsy in 6 (9.2%) patients. The patients had various forms of metabolic encephalomyopathy. Fifty-nine (90.8%) of the patients had the typical neuroradiological features of Leigh syndrome, including symmetrical necrotizing lesions scattered within the basal ganglia, thalamus and brain stem. Twenty (30.8%) patients were confirmed by genetic, biochemical analysis and autopsy. Specific point mutations in mitochondrial DNA were found in 5 cases (7.7%). Of these, the A8344G mutation was detected in 2 patients. The T8993G, T8993C, and A3243G point mutations were identified in 3 other patients, respectively. SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) families by DNA sequencing. A G604C mutation was identified in 6 (9.2%) patients. The genotypes of 52 patients remained unknown. Leigh syndrome presents as a diverse array of clinical features and can result from specific mutations in nuclear or mitochondrial DNA. In this study, SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) out of 65 patients with Leigh syndrome. It indicates that SURF1 mutations might be a common cause of Leigh syndrome in China. The etiology of Leigh syndrome in Chinese patients represents a persistent challenge to clinicians.
Randles, Lucy G; Dawes, Gwen J S; Wensley, Beth G; Steward, Annette; Nickson, Adrian A; Clarke, Jane
2013-01-01
Studying the effects of pathogenic mutations is more complex in multidomain proteins when compared with single domains: mutations occurring at domain boundaries may have a large effect on a neighbouring domain that will not be detected in a single-domain system. To demonstrate this, we present a study that utilizes well-characterized model protein domains from human spectrin to investigate the effect of disease-and non-disease-causing single point mutations occurring at the boundaries of human spectrin repeats. Our results show that mutations in the single domains have no clear correlation with stability and disease; however, when studied in a tandem model system, the disease-causing mutations are shown to disrupt stabilizing interactions that exist between domains. This results in a much larger decrease in stability than would otherwise have been predicted, and demonstrates the importance of studying such mutations in the correct protein context. PMID:23241237
Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie
2016-01-01
In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients. PMID:27416070
Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa.
García-García, Gema; Aller, Elena; Jaijo, Teresa; Aparisi, Maria J; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M
2014-01-01
The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.
Hersmus, Remko; Stoop, Hans; van de Geijn, Gert Jan; Eini, Ronak; Biermann, Katharina; Oosterhuis, J. Wolter; DHooge, Catharina; Schneider, Dominik T.; Meijssen, Isabelle C.; Dinjens, Winand N. M.; Dubbink, Hendrikus Jan; Drop, Stenvert L. S.; Looijenga, Leendert H. J.
2012-01-01
Activating c-KIT mutations (exons 11 and 17) are found in 10–40% of testicular seminomas, the majority being missense point mutations (codon 816). Malignant ovarian dysgerminomas represent ∼3% of all ovarian cancers in Western countries, resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease) and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in which mutational status of c-KIT might parallel the presence of TSPY. PMID:22937135
Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity
NASA Astrophysics Data System (ADS)
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
p53 inactivation in chewing tobacco-induced oral cancers and leukoplakias from India.
Saranath, D; Tandle, A T; Teni, T R; Dedhia, P M; Borges, A M; Parikh, D; Sanghavi, V; Mehta, A R
1999-05-01
The inactivation of p53 tumour suppressor gene vis-á-vis point mutation, overexpression and degradation due to Human Papilloma virus (HPV) 16/18 infection, was examined in chewing tobacco-associated oral cancers and oral leukoplakias from India. The analysis of mutations was assessed by polymerase chain reaction (PCR) with single strand conformation polymorphism (PCR-SSCP) of exons 5-9 on DNA from 83 oral cancer cases, and the mutations confirmed by direct nucleotide sequencing of the PCR products. p53 protein expression was evaluated by immunohistochemical analysis on paraffin-embedded sections of 62 representative oral cancer biopsies and 22 leukoplakias, using p53-specific monoclonal antibody DO-7. The presence of HPV16/18 was detected in the 83 oral cancer cases by PCR analysis using HPV L1 consensus sequences, followed by Southern hybridization with type-specific oligonucleotide probes. Forty-six per cent (38/83) of oral cancer tumours showed p53 alterations, with 17% (14/83) showing point mutations, 37% (23/62) with overexpression and 25% (21/83) with presence of HPV16 wherein the E6 HPV16 protein degrades p53. HPV18 was not detected in any of the samples. Ninety-two per cent concordance was observed between missense point mutations and overexpression of p53 protein. A significant correlation was not observed between p53 alterations in oral cancer and clinico-pathological profile of the patients. Twenty-seven per cent (6/22) of oral leukoplakias showed p53 overexpression. The overall p53 alterations in oral cancer tissues and oral lesions are comparable to data from the oral cancers reported in the Western countries with smoking and alcohol-associated oral cancers, and suggest a critical role for p53 gene in a significant proportion of oral cancers from India. The overexpression of p53 protein in leukoplakias may serve as a valuable biomarker for identifying individuals at high risk of transformation to malignant phenotype.
Vacca, Davide; Cancila, Valeria; Gulino, Alessandro; Lo Bosco, Giosuè; Belmonte, Beatrice; Di Napoli, Arianna; Florena, Ada Maria; Tripodo, Claudio; Arancio, Walter
2018-02-01
The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.
A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.
Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C
2015-09-01
Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Sierra, Ivana; Capriotti, Natalia; Fronza, Georgina; Mougabure-Cueto, Gastón; Ons, Sheila
2016-06-01
Point mutations in the voltage-gated sodium channel, the primary target of pyrethroid insecticides, have been associated with the resistance in Triatoma infestans, an important vector of Chagas' disease. Hence, the sustainability of vector control programs requires the implementation of resistance management strategies. We determined the sensitivity of the molecular assays previously designed for early resistance detection to be used in pooled samples from a wide area of the endemic region, and validated them for their routine use in control campaigns for the monitoring of insecticide resistance in T. infestans. Consequently, we used these methods to examine the distribution of resistance-associated mutations in the sodium channel gene in populations of T. infestans from the Argentinean and Bolivian Gran Chaco. The PASA and REA assays tested proved sensitive enough to detect kdr SNPs in pooled samples, indicating these assays are suitable for routine screening in insecticide resistance surveillance. Two geographically differentiated foci were detected in T. infestans populations from the Argentinean and Bolivian Gran Chaco, with populations on the Bolivian-Argentinean border carrying L1014F mutation, and those from the Argentinean Chaco carrying L925I mutation. In all highly resistant populations analyzed, one of both kdr mutations was present, and toxicological assays determined that all pyrethroid resistant populations analyzed herein were sensitive to fenitrothion. The principal cause of pyrethroid resistance in T. infestans from the Gran Chaco ecoregion is kdr mutations in the sodium channel. Different levels of resistance occur in different populations carrying identical mutation, suggesting the existence of contributory mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Coexistence of gastrointestinal stromal tumors and gastric adenocarcinomas.
Yan, Yan; Li, Ziyu; Liu, Yiqiang; Zhang, Lianhai; Li, Jiyou; Ji, Jiafu
2013-04-01
The purpose of this study is to detect the clinicopathology of gastrointestinal stromal tumors (GISTs) occurring synchronously with gastric adenocarcinomas and to unveil the potential underlying relationship between the synchronous GIST and gastric adenocarcinoma. This study included 15 patients with incidental GISTs found during operations for gastric adenocarcinoma and 30 patients who underwent gastrectomy for gastric cancer without discovering GIST between January 2005 and December 2010 at the Beijing Cancer Institute. We collected the clinicopathological data and analyzed the KIT/PDGFRA mutational status of GISTs, corresponding gastric adenocarcinoma specimens, and the normal tissue around the cancer lesions. Additionally, as a control group, the mutational status of the patients with gastric adenocarcinoma and no other tumors was assayed. Overall, 18 GISTs were found in 15 gastric adenocarcinoma patients. Multiple GIST lesions were found in three cases (20 %). The patients' age ranged from 46 to 85 years, with an average of 67.6 years. The average size of the GISTs was 0.85 cm. All mesenchymal lesions showed low proliferative activity, were of low or very low risk, and were identified as CD117-positive by immunostaining. In GIST lesions, mutations in KIT were detected in 7 out of 13 cases, and of these mutations, 6 were found in exon 11 (46.2 %), and 1 was found in exon 9 (7.7 %). A total of five deletions and one point mutation were in exon 11, and one insertion was in exon 9. Mutations were not detected in exon 17 or 13 of KIT. There was no remarkable mutation analyzed in the gastric adenocarcinoma lesions or normal tissues from either the test or control groups. Clinicopathological profiles and molecular analysis of KIT/PDGFRA showed no obvious relationship between gastric cancer and GISTs in tumor genesis, such as similar oncogene mutations.
Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy
Kühnemund, Malte; Wei, Qingshan; Darai, Evangelia; Wang, Yingjie; Hernández-Neuta, Iván; Yang, Zhao; Tseng, Derek; Ahlford, Annika; Mathot, Lucy; Sjöblom, Tobias; Ozcan, Aydogan; Nilsson, Mats
2017-01-01
Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies. PMID:28094784
Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda
2013-01-01
BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872
Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study
Roychowdhury, Sameek; Iyer, Matthew K.; Robinson, Dan R.; Lonigro, Robert J.; Wu, Yi-Mi; Cao, Xuhong; Kalyana-Sundaram, Shanker; Sam, Lee; Balbin, O. Alejandro; Quist, Michael J.; Barrette, Terrence; Everett, Jessica; Siddiqui, Javed; Kunju, Lakshmi P.; Navone, Nora; Araujo, John C.; Troncoso, Patricia; Logothetis, Christopher J.; Innis, Jeffrey W.; Smith, David C.; Lao, Christopher D.; Kim, Scott Y.; Roberts, J. Scott; Gruber, Stephen B.; Pienta, Kenneth J.; Talpaz, Moshe; Chinnaiyan, Arul M.
2012-01-01
Individual cancers harbor a set of genetic aberrations that can be informative for identifying rational therapies currently available or in clinical trials. We implemented a pilot study to explore the practical challenges of applying high-throughput sequencing in clinical oncology. We enrolled patients with advanced or refractory cancer who were eligible for clinical trials. For each patient, we performed whole-genome sequencing of the tumor, targeted whole-exome sequencing of tumor and normal DNA, and transcriptome sequencing (RNA-Seq) of the tumor to identify potentially informative mutations in a clinically relevant time frame of 3 to 4 weeks. With this approach, we detected several classes of cancer mutations including structural rearrangements, copy number alterations, point mutations, and gene expression alterations. A multidisciplinary Sequencing Tumor Board (STB) deliberated on the clinical interpretation of the sequencing results obtained. We tested our sequencing strategy on human prostate cancer xenografts. Next, we enrolled two patients into the clinical protocol and were able to review the results at our STB within 24 days of biopsy. The first patient had metastatic colorectal cancer in which we identified somatic point mutations in NRAS, TP53, AURKA, FAS, and MYH11, plus amplification and overexpression of cyclin-dependent kinase 8 (CDK8). The second patient had malignant melanoma, in which we identified a somatic point mutation in HRAS and a structural rearrangement affecting CDKN2C. The STB identified the CDK8 amplification and Ras mutation as providing a rationale for clinical trials with CDK inhibitors or MEK (mitogenactivated or extracellular signal–regulated protein kinase kinase) and PI3K (phosphatidylinositol 3-kinase) inhibitors, respectively. Integrative high-throughput sequencing of patients with advanced cancer generates a comprehensive, individual mutational landscape to facilitate biomarker-driven clinical trials in oncology. PMID:22133722
2014-01-01
Mutations in JAK2, MPL and CALR are highly relevant to the Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs). We performed high resolution melting analysis and Sanger sequencing together with T-A cloning to elucidate the unique mutation profile of these genes, in Chinese patients with MPNs. Peripheral blood DNA samples were obtained from 80 patients with polycythemia vera (PV), 80 patients with essential thrombocytosis (ET) and 50 patients with primary myelofibrosis (PMF). Ten PV patients were identified with diverse JAK2 exon 12 mutations. Five novel JAK2 Exon 12 mutation patterns (M532V/E543G, N533D, M535I/H538Y/K549I, E543G and D544N) were described. JAK2 V617F was detected in 140 samples (66 PV, 45 ET and 29 PMF). JAK2 Exon 12 mutations were prevalent (13%) and variable in the Chinese patients. Compared with PV patients with JAK2 V617F mutations, PV patients with JAK2 exon 12 mutations had an earlier median onset of disease (P = 0.0013). MPL W515L/K mutations were discerned in 4 ET and 3 PMF patients. Two kinds of CALR mutation, c. 1179_1230del and c. 1234_1235insTTGTC were detected in 20 ET and 16 PMF patients. A novel CALR mutation pattern (c. 1173_1223del/c. 1179_1230del) was identified in 2 PMF samples. In addition, 17 scattered point mutations in CALR c.1153 to c.1255 were also detected in 13 cases with CALR frame-shifting variations and 2 cases without CALR frame-shifting variations. Female patients showed a predisposition to CALR mutations (P = 0.0035). Chinese Ph-negative MPN patients have a unique mutation landscape in the common molecular markers of MPN diagnosis. Validation of the molecular diagnostic pipeline should be emphasized since there is a considerable ethnical diversity in the molecular profiles of Ph-negative MPNs. PMID:25023898
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, M.C.; Nogueira, C.P.; Bartels, C.F.
1989-02-01
A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for allmore » 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of {sup 32}P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. The authors conclude that the Asp-70 {yields} Gly mutation accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool.« less
Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie
2009-11-01
Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.
Whole-genome landscape of pancreatic neuroendocrine tumours.
Scarpa, Aldo; Chang, David K; Nones, Katia; Corbo, Vincenzo; Patch, Ann-Marie; Bailey, Peter; Lawlor, Rita T; Johns, Amber L; Miller, David K; Mafficini, Andrea; Rusev, Borislav; Scardoni, Maria; Antonello, Davide; Barbi, Stefano; Sikora, Katarzyna O; Cingarlini, Sara; Vicentini, Caterina; McKay, Skye; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; McLean, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wilson, Peter J; Anderson, Matthew J; Fink, J Lynn; Newell, Felicity; Waddell, Nick; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Wood, Scott; Xu, Qinying; Nagaraj, Shivashankar Hiriyur; Amato, Eliana; Dalai, Irene; Bersani, Samantha; Cataldo, Ivana; Dei Tos, Angelo P; Capelli, Paola; Davì, Maria Vittoria; Landoni, Luca; Malpaga, Anna; Miotto, Marco; Whitehall, Vicki L J; Leggett, Barbara A; Harris, Janelle L; Harris, Jonathan; Jones, Marc D; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Nagrial, Adnan M; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia; Rooman, Ilse; Toon, Christopher; Wu, Jianmin; Pinese, Mark; Cowley, Mark; Barbour, Andrew; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Lovell, Jessica A; Jamieson, Nigel B; Duthie, Fraser; Gingras, Marie-Claude; Fisher, William E; Dagg, Rebecca A; Lau, Loretta M S; Lee, Michael; Pickett, Hilda A; Reddel, Roger R; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Epari, Krishna; Nguyen, Nam Q; Zeps, Nikolajs; Falconi, Massimo; Simbolo, Michele; Butturini, Giovanni; Van Buren, George; Partelli, Stefano; Fassan, Matteo; Khanna, Kum Kum; Gill, Anthony J; Wheeler, David A; Gibbs, Richard A; Musgrove, Elizabeth A; Bassi, Claudio; Tortora, Giampaolo; Pederzoli, Paolo; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M
2017-03-02
The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.
[Leigh syndrome resulting from a de novo mitochondrial DNA mutation (T8993G)].
Playán, A; Solano-Palacios, A; González de la Rosa, J B; Merino-Arribas, J M; Andreu, A L; López-Pérez, M; Montoya, J
Several degenerative neurological diseases are caused by mutations in the mitochondrial gene coding for subunit 6 of the ATPase. Thus, NARP (neurogenic weakness, ataxia, and retinitis pigmentosa) and Leigh syndromes are associated to a T8993G mutation when the percentage of mutant mitochondrial DNA is low (60 90%) or high (>90%), respectively. Leigh syndrome is also caused by a second mutation in the same position T8993C. The patient, a boy that died at 6 months, had generalized hypotonia, psychomotor delay, hepatomegaly, choreic movements and hyporreflexia. MRI showed hypodensities in the basal ganglia and brain stem as well as hyperlactacidemia. Molecular genetic analysis of the mitochondrial DNA showed that the patient had the T8993G mutation in a percentage higher than 95%. No mutated DNA was detected in blood of the proband s mother, maternal aunt and grandmother. The point mutation T8993G may occur de novo, at high levels, causing neurodegenerative diseases.
LONG, YINGJIAO; ZHANG, CHENG; SU, LI; QUE, CHENGLI
2014-01-01
The purpose of this study was to investigate dihydropteroate synthase (DHPS) mutations and their clinical context in non-HIV-infected patients with Pneumocystis pneumonia (PCP). DHPS genes in respiratory samples collected from HIV-negative patients with PCP presented between January 2008 and April 2011 were amplified by polymerase chain reaction (PCR) and sequenced. Basic clinical data from the medical records of the patients were also reviewed. The most common point mutations, which result in Thr55Ala and Pro57Ser amino acid substitutions, were not detected in the Pneumocystis jirovecii sampled from the HIV-negative patients. Two other point mutations, which result in nonsynonymous mutation, Asp90Asn and Glu98Lys, were identified in P. jirovecii from two patients. Among the patients, the levels of lactate dehydrogenase (LDH), C-reactive protein (CRP) and plasma (1–3) β-D-glucan were elevated in 75, 92.31 and 42.86% of patients, respectively. The percentage of circulating lymphocytes was significantly lower in non-survivors than in survivors [4.2%, interquartile range (IQR) 2.4–5.85 versus 10.1%, IQR 5.65–23.4; P=0.019]. The neutrophil proportion in bronchoalveolar lavage fluid (BALF) was significantly higher in non-survivors than in survivors (49.78±27.67 versus 21.33±15.03%; P=0.047). Thirteen patients had received adjunctive corticosteroids (1 mg/kg/day prednisone equivalent) and nine (69.23%) of them eventually experienced treatment failure. No common DHPS gene mutations of P. jirovecii were detected in the HIV-negative PCP patients. However, other mutations did exist, the significance of which remains to be further identified. The elevation of neutrophil counts in BALF and reduction of the number of lymphocytes in peripheral blood may be associated with poor outcome. The efficacy of adjunctive steroid therapy in HIV-negative patients with P. jirovecii infection requires further investigation. PMID:25371739
Automated extraction and semantic analysis of mutation impacts from the biomedical literature
2012-01-01
Background Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually curating the rich and fast growing repository of biomedical literature is expensive and time-consuming. As a solution, text mining approaches have increasingly been deployed in the biomedical domain. While the detection of single-point mutations is well covered by existing systems, challenges still exist in grounding impacts to their respective mutations and recognizing the affected protein properties, in particular kinetic and stability properties together with physical quantities. Results We present an ontology model for mutation impacts, together with a comprehensive text mining system for extracting and analysing mutation impact information from full-text articles. Organisms, as sources of proteins, are extracted to help disambiguation of genes and proteins. Our system then detects mutation series to correctly ground detected impacts using novel heuristics. It also extracts the affected protein properties, in particular kinetic and stability properties, as well as the magnitude of the effects and validates these relations against the domain ontology. The output of our system can be provided in various formats, in particular by populating an OWL-DL ontology, which can then be queried to provide structured information. The performance of the system is evaluated on our manually annotated corpora. In the impact detection task, our system achieves a precision of 70.4%-71.1%, a recall of 71.3%-71.5%, and grounds the detected impacts with an accuracy of 76.5%-77%. The developed system, including resources, evaluation data and end-user and developer documentation is freely available under an open source license at http://www.semanticsoftware.info/open-mutation-miner. Conclusion We present Open Mutation Miner (OMM), the first comprehensive, fully open-source approach to automatically extract impacts and related relevant information from the biomedical literature. We assessed the performance of our work on manually annotated corpora and the results show the reliability of our approach. The representation of the extracted information into a structured format facilitates knowledge management and aids in database curation and correction. Furthermore, access to the analysis results is provided through multiple interfaces, including web services for automated data integration and desktop-based solutions for end user interactions. PMID:22759648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mebarki, F.; Forest, M.G.; Josso, N.
The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18more » with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.« less
The molecular basis of Canavan (Aspartoacylase deficiency) disease in European non-Jewish patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaag, A.; Anikster, Y.; Glustein, J.Z.
Canavan disease is an infantile neurodegenerative disease that is due to aspartoacylase deficiency. The disease has been reported mainly in Ashkenazi Jews but also occurs in other ethnic groups. Determination of enzymatic activity for carrier detection and prenatal diagnosis is considered unreliable. In the present study, nine mutations were found in the aspartoacylase gene of 19 non-Jewish patients. These included four point mutations (A305E [39.5% of the mutated alleles], C218X [15.8%], F2955 [2.6%], and G274R [5.3%]); four deletion mutations (827delGT [5.3%], 870del4 [2.6%], 566del7 [2.6%], and 527del6 [2.6%]); and one exon skip (527del108 [5.3%]). The A305E mutation is pan-European andmore » probably the most ancient mutation, identified in patients of Greek, Polish, Danish, French, Spanish, Italian, and British origin. In contrast, the G274R and 527del108 mutations were found only in patients of Turkish origin, and the C218X mutation was identified only in patients of Gypsy origin. Homozygosity for the A305E mutation was identified in patients with both the severe and the mild forms of Canavan disease. Mutations were identified in 31 of the 38 alleles, resulting in an overall detection rate of 81.6%. All nine mutations identified in non-Jewish patients reside in exons 4-6 of the aspartoacylase gene. The results would enable accurate genetic counseling in the families of 13 (68.4%) of 19 patients, in whom two mutations were identified in the aspartoacylase cDNA. 19 refs., 9 figs., 3 tabs.« less
Kidess-Sigal, Evelyn; Liu, Haiyan E; Triboulet, Melanie M; Che, James; Ramani, Vishnu C; Visser, Brendan C; Poultsides, George A; Longacre, Teri A; Marziali, Andre; Vysotskaia, Valentina; Wiggin, Matthew; Heirich, Kyra; Hanft, Violet; Keilholz, Ulrich; Tinhofer, Ingeborg; Norton, Jeffrey A; Lee, Mark; Sollier-Christen, Elodie; Jeffrey, Stefanie S
2016-12-20
Treatment of advanced colorectal cancer (CRC) requires multimodal therapeutic approaches and need for monitoring tumor plasticity. Liquid biopsy biomarkers, including CTCs and ctDNA, hold promise for evaluating treatment response in real-time and guiding therapeutic modifications. From 15 patients with advanced CRC undergoing liver metastasectomy with curative intent, we collected 41 blood samples at different time points before and after surgery for CTC isolation and quantification using label-free Vortex technology. For mutational profiling, KRAS, BRAF, and PIK3CA hotspot mutations were analyzed in CTCs and ctDNA from 23 samples, nine matched liver metastases and three primary tumor samples. Mutational patterns were compared. 80% of patient blood samples were positive for CTCs, using a healthy baseline value as threshold (0.4 CTCs/mL), and 81.4% of captured cells were EpCAM+ CTCs. At least one mutation was detected in 78% of our blood samples. Among 23 matched CTC and ctDNA samples, we found a concordance of 78.2% for KRAS, 73.9% for BRAF and 91.3% for PIK3CA mutations. In several cases, CTCs exhibited a mutation that was not detected in ctDNA, and vice versa. Complementary assessment of both CTCs and ctDNA appears advantageous to assess dynamic tumor profiles.
Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors.
Capper, David; Weissert, Susanne; Balss, Jörg; Habel, Antje; Meyer, Jochen; Jäger, Diana; Ackermann, Ulrike; Tessmer, Claudia; Korshunov, Andrey; Zentgraf, Hanswalter; Hartmann, Christian; von Deimling, Andreas
2010-01-01
Heterozygous point mutations of isocitrate dehydrogenase (IDH)1 codon 132 are frequent in grade II and III gliomas. Recently, we reported an antibody specific for the IDH1R132H mutation. Here we investigate the capability of this antibody to differentiate wild type and mutated IDH1 protein in central nervous system (CNS) tumors by Western blot and immunohistochemistry. Results of protein analysis are correlated to sequencing data. In Western blot, anti-IDH1R132H mouse monoclonal antibody mIDH1R132H detected a specific band only in mutated tumors. Immunohistochemistry of 345 primary brain tumors demonstrated a strong cytoplasmic and weaker nuclear staining in 122 cases. Correlation with direct sequencing of 186 cases resulted in consensus of 177 cases. Genetic retesting of cases with conflicting findings resulted in a match of 186/186 cases, with all discrepancies resolving in favor of immunohistochemistry. Intriguing is the ability of mIDH1R132H to detect single infiltrating tumor cells. The very high frequency and the distribution of this mutation among specific brain tumor entities allow the highly sensitive and specific discrimination of various tumors by immunohistochemistry, such as anaplastic astrocytoma from primary glioblastoma or diffuse astrocytoma World Health Organization (WHO) grade II from pilocytic astrocytoma or ependymoma. Noteworthy is the discrimination of the infiltrating edge of tumors with IDH1 mutation from reactive gliosis.
Hiatt, Joseph B; Pritchard, Colin C; Salipante, Stephen J; O'Roak, Brian J; Shendure, Jay
2013-05-01
The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10(-6) in cell lines and 2.6 × 10(-5) in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%-4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%-1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings.
Hiatt, Joseph B.; Pritchard, Colin C.; Salipante, Stephen J.; O'Roak, Brian J.; Shendure, Jay
2013-01-01
The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10−6 in cell lines and 2.6 × 10−5 in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%–4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%–1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings. PMID:23382536
Kawada, Hitoshi; Higa, Yukiko; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Thi Yen, Nguyen; Loan, Luu Lee; Sánchez, Rodrigo A. P.; Takagi, Masahiro
2009-01-01
Background Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam. Methods and Findings Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m. Conclusions The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to cause serious problems in the control of dengue fever in Vietnam. PMID:19806205
Lam, V M; Huang, W; Lam, S T; Yeung, C Y; Johnson, P H
1996-03-01
We describe here the use of denaturing gradient gel electrophoresis (DGGE) to detect the most common Chinese glucose-6-phosphate dehydrogenase (G6PD) variants, which are the single point mutations: G-->T at nt 1376, G-->A at 1388 both in exon 12 and A-->G at nt 95 in exon 02. In each case, the mutant allele resolves well from the normal allele(s). The distinct heteroduplex bands are characteristic of a particular genotype suggesting that this feature is very useful for identifying all heterozygous carriers for this and other X-linked diseases. When the analysis is extended to other exons, DGGE scans the gene and coupled with direct sequencing, it leads to the identification of new G6PD variation(s). With this approach, we identified a mutation in exon 9 which had not been reported in Hong Kong. Since DGGE can rapidly screen many unknown samples in one gel, this approach could be used to diagnose these G6PD mutations and to identify the at-risk for counselling.
Koeppel, Florence; Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic
2017-01-01
Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation.
Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic
2017-01-01
Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation. PMID:29161279
Automatic extraction of protein point mutations using a graph bigram association.
Lee, Lawrence C; Horn, Florence; Cohen, Fred E
2007-02-02
Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure and function. While many manually curated databases attempt to index point mutations, most experimentally generated point mutations and the biological impacts of the changes are described in the peer-reviewed published literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram method is different from other models for point mutation extraction in that it incorporates frequency and positional data of all terms in an article to drive the point mutation-protein association. Our method was tested on 589 articles describing point mutations from the G protein-coupled receptor (GPCR), tyrosine kinase, and ion channel protein families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring the association of words.
Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng
2017-03-08
K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS 2- by H 2 O 2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lishanski, A.; Ostrander, E.A.; Rine, J.
1994-03-29
An experimental strategy for detecting heterozygosity in genomic DNA has been developed based on preferential binding of Escherichia coli MutS protein to DNA molecules containing mismatched bases. The binding was detected by a gel mobility-shift assay. This approach was tested by using as a model the most commonly occurring mutations within the cystic fibrosis (CFTR) gene. Genomic DNA samples were amplified with 5{prime}-end-labeled primers that bracket the site of the {Delta}F508 3-bp deletion in exon 10 of the CFTR gene. The renatured PCR products from homozygotes produced homoduplexes; the PCR products from heterozygotes produced heteroduplexes and homoduplexes (1:1). MutS proteinmore » bound more strongly to heteroduplexes that correspond to heterozygous carriers of {Delta}F508 and contain a CTT or a GAA loop in one of the strands than to homoduplexes corresponding to homozygotes. The ability of MutS protein to detect heteroduplexes in PCR-amplified DNA extended to fragments {approximately} 500 bp long. The method was also able to detect carriers of the point mutations in exon 11 of the CFTR gene by a preferential binding of MutS to single-base mismatches in PCR-amplified DNA.« less
Chahar, Madhvi; Mishra, Neelima; Anvikar, Anup; Dixit, Rajnikant; Valecha, Neena
2017-01-01
Chloroquine (CQ) resistance in Plasmodium falciparum is determined by the mutations in the chloroquine resistance transporter (Pfcrt) gene. The point mutation at codon 76 (K76T), which has been observed in more than 91% of P. falciparum isolates in India, is the major determinant of CQ resistance. To overcome the limitations and challenges of traditional methods, in this investigation we developed an easy to use loop mediated isothermal amplification (LAMP) protocol for rapid detection of the K76T mutation associated with CQ resistance in P. falciparum with naked eye visualization. In- house designed primers were synthesized and optimized to specifically distinguish the CQ resistant mutants of P. falciparum. The LAMP reaction was optimal at 61 °C for 60 min and calcein dye was added prior to amplification to enable visual detection. We demonstrate the detection limit of <2 ng/μl respectively, supporting the high sensitivity of this calcein based LAMP method. To the best of our knowledge this is the first report on the establishment of an easy, reliable and cost effective LAMP assay for rapid and specific detection of highly CQ resistance in P. falciparum malaria. PMID:28134241
Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome
Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita
2009-01-01
Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655
Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome.
Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita
2009-01-01
To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.
Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander
2017-07-06
Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.
2015-01-01
Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020
Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma
2011-04-01
The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.
Kang, Hyo Jae; Hwangbo, Bin; Lee, Jin Soo; Kim, Moon Soo; Lee, Jong Mog; Lee, Geon-Kook
2016-01-01
Introduction Although the use of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is increasing for epidermal growth factor receptor (EGFR) testing in lung cancer, the discordance rate in EGFR mutations between lymph node (LN) samples obtained by EBUS-TBNA and primary tumor (PT) is not well known. Thus, we compared the EGFR mutation status of LN samples obtained by EBUS-TBNA and PTs to estimate the efficacy of using EBUS-TBNA specimens for EGFR testing in advanced, non-squamous, non-small cell lung cancer (NSCLC). Materials and Methods Using data of patients from the EBUS-TBNA database (N = 1914) obtained between January 2009 and January 2013, we identified 100 treatment-naïve, advanced, non-squamous NSCLC patients (stage 3 and 4) with matched LN specimens obtained by EBUS-TBNA and PT specimens. Of these, 74 patients with paired specimens were feasible for EGFR mutation analysis, which we performed using a direct sequencing method. Results Of the 74 cases, at least one major [exon 19 deleted (19del) and L858R] or minor (T790M, exon 20 insertion, and other point mutations) EGFR mutation was detected in 31 cases (41.9%), which included PT (n = 31, 41.9%) and LN (n = 28, 37.8%) specimens. Major mutations were detected in 25 PT (33.8%, 19del = 13, L858R = 12) and 22 LN (29.8%, 19del = 11, L858R = 11) specimens. The discordance rate in major mutations between matched PT and LN specimens was 4.1% (3/74). Among minor mutations, T790M was detected in LN specimen only in 2 cases with L858R in PT and LN. The discordance rate major and minor EGFR mutations combined between matched PT and LN specimens was 12% (9/74). Conclusions We observed a high concordance rate of major EGFR mutations between matched LN specimens sampled by EBUS-TBNA and PTs, suggesting that LN samples obtained by EBUS-TBNA from advanced non-squamous NSCLC patients are effective for use in EGFR mutation testing. PMID:27685950
[Sickle cell syndrome. Association between hemoglobin S and β thalassemia].
Gasparini, Nehuen P; Agriello, Evangelina E; Zanella, M J Lorena; Iommi, María P; Maradei, Juan; Sandoval, Marisa J
Sickle cell syndrome HbS/β thalassemia is an inheritable mendelian type disease where two affected alleles are simultaneously present, one from HbS (βS) and the other from β thalassemia. That situation is mainly linked to individuals who share African and Mediterranean ancestors. The mutation responsible for HbS is a point mutation, whereas for β thalassemia, there are more than 200 mutations that cause different degrees of deficiency synthesis of β globin chain, which justifies the clinical and genetic heterogeneity of this syndrome. It is presented a clinical case of a young adult man with limited resources that consulted by longstanding bone pain. The patient presented anemia with a marked microcytosis. Hemoglobin electrophoresis was performed, an abnormal peak in position of HbS and high HbA2 fraction were detected. These last results indicated two possible molecular alterations simultaneously, for this reason the molecular study was performed looking for the most common β thalassemia mutations in our population and, the point mutation responsible for S hemoglobinopathy. Clinical data and biochemical laboratory allowed the diagnosis of sickle cell syndrome. The molecular study confirmed the syndrome carrying mutations IVS-I nt 110 G > A, responsible for β thalassemia and, codon 6 A > T (GAG → GTG: Glu → Val) responsible for S hemoglobinophaty. Since it is a disease of high health impact, it is important to provide genetic counseling to the whole family.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com; Felhi, Rahma; Tabebi, Mouna
Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes ofmore » complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.« less
Burns, J. E.; Baird, M. C.; Clark, L. J.; Burns, P. A.; Edington, K.; Chapman, C.; Mitchell, R.; Robertson, G.; Soutar, D.; Parkinson, E. K.
1993-01-01
Using immunocytochemical and Western blotting techniques we have demonstrated the presence of abnormally high levels of p53 protein in 8/24 (33%) of human squamous cell carcinomas (SCC) and 9/18 (50%) of SCC cell lines. There was a correlation between the immunocytochemical results obtained with eight SCC samples and their corresponding cell lines. Direct sequencing of PCR-amplified, reverse transcribed, p53 mRNA confirmed the expression of point mutations in six of the positive cell lines and detected in-frame deletions in two others. We also detected two stop mutations and three out-of-frame deletions in five lines which did not express elevated levels of p53 protein. Several of the mutations found in SCC of the tongue (3/7) were in a region (codons 144-166) previously identified as being a p53 mutational hot spot in non-small cell lung tumours (Mitsudomi et al., 1992). In 11/13 cases only the mutant alleles were expressed suggesting loss or reduced expression of the wild type alleles in these cases. Six of the mutations were also detected in the SCCs from which the lines were derived, strongly suggesting that the mutations occurred, and were selected, in vivo. The 12th mutation GTG-->GGG (valine-->glycine) at codon 216 was expressed in line SCC-12 clone B along with an apparently normal p53 allele and is to our knowledge a novel mutation. Line BICR-19 also expressed a normal p53 allele in addition to one where exon 10 was deleted. Additionally 15 of the SCC lines (including all of those which did not show elevated p53 protein levels) were screened for the presence of human papillomavirus types 16 and 18 and were found to be negative. These results are discussed in relation to the pathogenesis of SCC and the immortalisation of human keratinocytes in vitro. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8390283
Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar
2017-04-03
BCR-ABL kinase domain (K D ) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-K D mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-K D . Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-K D mutation screening in late chronic phase CML patients for improved clinical management of disease.
Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa
García-García, Gema; Jaijo, Teresa; Aparisi, Maria J.; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M.
2014-01-01
Purpose The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. Methods The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. Results We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Conclusions Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures. PMID:25352746
New observations on maternal age effect on germline de novo mutations.
Wong, Wendy S W; Solomon, Benjamin D; Bodian, Dale L; Kothiyal, Prachi; Eley, Greg; Huddleston, Kathi C; Baker, Robin; Thach, Dzung C; Iyer, Ramaswamy K; Vockley, Joseph G; Niederhuber, John E
2016-01-19
Germline mutations are the source of evolution and contribute substantially to many health-related processes. Here we use whole-genome deep sequencing data from 693 parents-offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our estimate for the mutation rate per base pair per generation is 1.05 × 10(-8), well within the range of previous studies. We show that maternal age has a small but significant correlation with the total number of DNMs in the offspring after controlling for paternal age (0.51 additional mutations per year, 95% CI: 0.29, 0.73), which was not detectable in the smaller and younger parental cohorts of earlier studies. Furthermore, while the total number of DNMs increases at a constant rate for paternal age, the contribution from the mother increases at an accelerated rate with age.These observations have implications related to the incidence of de novo mutations relating to maternal age.
p53 mutation and expression in lymphoma.
Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.
1995-01-01
Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045
Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna
2017-12-12
The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.
Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina
2011-10-06
Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.
Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O; Decker, Christian; Preising, Markus N; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Charbel Issa, Peter; Holz, Frank G; Baig, Shahid M; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J
2013-01-01
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
Profiling tumour heterogeneity through circulating tumour DNA in patients with pancreatic cancer
Neal, Christopher P; Mistry, Vilas; Page, Karen; Dennison, Ashley R; Isherwood, John; Hastings, Robert; Luo, JinLi; Moore, David A; Howard, Pringle J; Miguel, Martins L; Pritchard, Catrin; Manson, Margaret; Shaw, Jacqui A
2017-01-01
The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed late so that surgery is rarely curative. Earlier detection could significantly increase the likelihood of successful treatment and improve survival. The aim of the study was to provide proof of principle that point mutations in key cancer genes can be identified by sequencing circulating free DNA (cfDNA) and that this could be used to detect early PDACs and potentially, premalignant lesions, to help target early effective treatment. Targeted next generation sequencing (tNGS) analysis of mutation hotspots in 50 cancer genes was conducted in 26 patients with PDAC, 14 patients with chronic pancreatitis (CP) and 12 healthy controls with KRAS status validated by digital droplet PCR. A higher median level of total cfDNA was observed in patients with PDAC (585 ng/ml) compared to either patients with CP (300 ng/ml) or healthy controls (175 ng/ml). PDAC tissue showed wide mutational heterogeneity, whereas KRAS was the most commonly mutated gene in cfDNA of patients with PDAC and was significantly associated with a poor disease specific survival (p=0.018). This study demonstrates that tNGS of cfDNA is feasible to characterise the circulating genomic profile in PDAC and that driver mutations in KRAS have prognostic value but cannot currently be used to detect early emergence of disease. Importantly, monitoring total cfDNA levels may have utility in individuals “at risk” and warrants further investigation. PMID:29152076
Atak, Zeynep Kalender; Gianfelici, Valentina; Hulselmans, Gert; De Keersmaecker, Kim; Devasia, Arun George; Geerdens, Ellen; Mentens, Nicole; Chiaretti, Sabina; Durinck, Kaat; Uyttebroeck, Anne; Vandenberghe, Peter; Wlodarska, Iwona; Cloos, Jacqueline; Foà, Robin; Speleman, Frank; Cools, Jan; Aerts, Stein
2013-01-01
RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.
Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi
2017-05-01
Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.
KRAS mutation testing in metastatic colorectal cancer
Tan, Cong; Du, Xiang
2012-01-01
The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers, and KRAS mutational status testing has been highlighted in recent years. The most frequent mutations in this gene, point substitutions in codons 12 and 13, were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies. Therefore, determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers. Currently, a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however, several challenges remain related to standardized and uniform testing, including the selection of tumor samples, tumor sample processing and optimal testing methods. Moreover, new testing strategies, in combination with the mutation analysis of BRAF, PIK3CA and loss of PTEN proposed by many researchers and pathologists, should be promoted. In addition, we recommend that microsatellite instability, a prognostic factor, be added to the abovementioned concomitant analysis. This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing. This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing. PMID:23066310
Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid
2007-09-01
Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.
Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca
2015-08-01
The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission.
Loss of ATM kinase activity leads to embryonic lethality in mice.
Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André
2012-08-06
Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.
Shima, Hirohito; Tanaka, Toshiaki; Kamimaki, Tsutomu; Dateki, Sumito; Muroya, Koji; Horikawa, Reiko; Kanno, Junko; Adachi, Masanori; Naiki, Yasuhiro; Tanaka, Hiroyuki; Mabe, Hiroyo; Yagasaki, Hideaki; Kure, Shigeo; Matsubara, Yoichi; Tajima, Toshihiro; Kashimada, Kenichi; Ishii, Tomohiro; Asakura, Yumi; Fujiwara, Ikuma; Soneda, Shun; Nagasaki, Keisuke; Hamajima, Takashi; Kanzaki, Susumu; Jinno, Tomoko; Ogata, Tsutomu; Fukami, Maki
2016-07-01
The etiology of idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD) in European patients is known to include SHOX mutations and copy-number variations (CNVs) involving SHOX and/or the highly evolutionarily conserved non-coding DNA elements (CNEs) flanking the gene. However, the frequency and types of SHOX abnormalities in non-European patients and the clinical importance of mutations in the CNEs remains to be clarified. Here, we performed systematic molecular analyses of SHOX for 328 Japanese patients with ISS or LWD. SHOX abnormalities accounted for 3.8% of ISS and 50% of LWD cases. CNVs around SHOX were identified in 16 cases, although the ~47 kb deletion frequently reported in European patients was absent in our cases. Probably damaging mutations and benign/silent substitutions were detected in four cases, respectively. Although CNE-linked substitutions were detected in 15 cases, most of them affected poorly conserved nucleotides and were shared by unaffected individuals. These results suggest that the frequency and mutation spectrum of SHOX abnormalities are comparable between Asian and European patients, with the exception of a European-specific downstream deletion. Furthermore, this study highlights the clinical importance and genetic heterogeneity of the SHOX-flanking CNVs, and indicates a limited clinical significance of point mutations in the CNEs.
Ghaber, Sidi M; Trabelsi, Nawel; Salem, Mohamed L; Haddad, Faten; Abba, Aminetou; Darragi, Imen; Abbes, Salem
2018-01-01
Unstable hemoglobins (Hbs) are a group of Hb disorders that could be the origin of chronic hemolytic anemia. Most of these disorders are caused by point mutations taking place in the globin genes and affecting the stability of the Hb molecule. They are inherited as autosomal dominant diseases and described worldwide. Herein we report a new observation of an unstable variant in the Mauritanian population. The patient was a young girl of Mauritanian origin. She presented with chronic hemolytic anemia with an unknown etiology after being referred to several medical centers. Laboratory investigations based on routine analyses, capillary electrophoresis (CE), cation exchange high performance liquid chromatography (HPLC) and DNA sequencing revealed an abnormal unstable Hb known as Hb Moscva [β24(B6)Gly→Asp (GGT>GAT), HBB: c.74G>A] that occurred as a de novo mutation newly detected in an African girl of Mauritanian origin.
[The factors involved in invasive ability of endometrial carcinoma cells].
Mori, Y; Mizuuchi, H; Sato, K; Okamura, N; Kudo, R
1994-06-01
The in vitro invasive ability, the expression of cell adhesion molecule E-cadherin, activity of matrix metalloproteinase (MMP) and K-ras point mutation were investigated in eight human endometrial carcinoma cell lines. 1) In vitro invasive abilities of endometrial carcinoma cell lines depend on the degree of cell differentiation and the origin of cell lines. A poorly-differentiated carcinoma cell line (NUE-1) and a cell line derived from metastatic lymph node (SNG-M) were more invasive than moderately-(HEC-1A, HEC-1BE) and well-differentiated (HEC-6, Ishikawa) cell lines. 2) Immunohistochemically, less or non-invasive cell lines expressed E-cadherin strongly, whereas a highly invasive cell line (NUE-1) expressed E-cadherin weakly. 3) When cultured on Matrigel-coated dishes, the tumor cells derived from moderately- and well-differentiated carcinoma aggregated with each other and did not invade Matrigel in the invasion assay. The aggregated cells expressed E-cadherin more strongly when cultured on Matrigel. 4) 72-kD gelatinase (MMP-2) was secreted in serum-free conditioned medium of all cell lines. In an invasive cell line (NUE-1,SNG-M), the activity of MMP-2 was stronger than in other cell lines. And the activity of 92-kDa gelatinase (MMP-9) was detected in most invasive cell line (NUE-1). 5) Point mutation of K-ras codon 12 was detected in four of eight (50%) cell lines by the PCR-RFLP method. The changes in the DNA sequence were identified, but K-ras point mutation was not correlated with in vitro invasiveness of the tumor cells.
Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O.; Decker, Christian; Preising, Markus N.; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Issa, Peter Charbel; Holz, Frank G.; Baig, Shahid M.; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y.; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S.; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J.
2013-01-01
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. PMID:24265693
Montesinos, Isabel; Delforge, Marie-Luce; Ajjaham, Farida; Brancart, Françoise; Hites, Maya; Jacobs, Frederique; Denis, Olivier
2017-01-01
The PneumoGenius® real-time PCR assay is a new commercial multiplex real-time PCR method, which detects the Pneumocystis mitochondrial ribosomal large subunit (mtLSU) and two dihydropteroate synthase (DHPS) point mutations. To evaluate the clinical performance of this new real-time PCR assay we tested 120 extracted DNA samples from bronchoalveolar lavage specimens. These set of extracted DNA samples had already tested positive for Pneumocystis and patients had been classified in probable and unlikely PCP in a previous study. To evaluate de accuracy of the DHPS mutant's identification, an "in house" PCR and sequencing was performed. The sensitivity and specificity of PneumoGenius® PCR in discriminating between probable and unlikely Pneumocystis pneumonia (PCP) were 70% and 82% respectively. PneumoGenius® PCR was able to genotype more samples than "in house" DHPS PCR and sequencing. The same DHPS mutations were observed by both methods in four patients: two patients with a single mutation in position 171 (Pro57Ser) and two patients with a double mutation in position 165 (Thr55Ala) and in position 171 (Pro57Ser). A low rate of P. jirovecii (4.5%) harboring DHPS mutations was found, comparable to rates observed in other European countries. The PneumoGenius® real-time PCR is a suitable real-time PCR for PCP diagnosis and detection of DHPS mutants. The added value of DHPS mutation identification can assist in understanding the role of these mutations in prophylaxis failure or treatment outcome. Copyright © 2016 Elsevier Inc. All rights reserved.
Riva, Francesca; Bidard, Francois-Clement; Houy, Alexandre; Saliou, Adrien; Madic, Jordan; Rampanou, Aurore; Hego, Caroline; Milder, Maud; Cottu, Paul; Sablin, Marie-Paule; Vincent-Salomon, Anne; Lantz, Olivier; Stern, Marc-Henri; Proudhon, Charlotte; Pierga, Jean-Yves
2017-03-01
In nonmetastatic triple-negative breast cancer (TNBC) patients, we investigated whether circulating tumor DNA (ctDNA) detection can reflect the tumor response to neoadjuvant chemotherapy (NCT) and detect minimal residual disease after surgery. Ten milliliters of plasma were collected at 4 time points: before NCT; after 1 cycle; before surgery; after surgery. Customized droplet digital PCR (ddPCR) assays were used to track tumor protein p53 ( TP53 ) mutations previously characterized in tumor tissue by massively parallel sequencing (MPS). Forty-six patients with nonmetastatic TNBC were enrolled. TP53 mutations were identified in 40 of them. Customized ddPCR probes were validated for 38 patients, with excellent correlation with MPS ( r = 0.99), specificity (≥2 droplets/assay), and sensitivity (at least 0.1%). At baseline, ctDNA was detected in 27/36 patients (75%). Its detection was associated with mitotic index ( P = 0.003), tumor grade ( P = 0.003), and stage ( P = 0.03). During treatment, we observed a drop of ctDNA levels in all patients but 1. No patient had detectable ctDNA after surgery. The patient with rising ctDNA levels experienced tumor progression during NCT. Pathological complete response (16/38 patients) was not correlated with ctDNA detection at any time point. ctDNA positivity after 1 cycle of NCT was correlated with shorter disease-free ( P < 0.001) and overall ( P = 0.006) survival. Customized ctDNA detection by ddPCR achieved a 75% detection rate at baseline. During NCT, ctDNA levels decreased quickly and minimal residual disease was not detected after surgery. However, a slow decrease of ctDNA level during NCT was strongly associated with shorter survival. © 2016 American Association for Clinical Chemistry.
Churkin, Alexander; Barash, Danny
2008-01-01
Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomatsu, Shunji; Fukuda, Seiji; Rezvi, Maruf
1995-09-01
Mucopolysaccharidosis IVA is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The recent isolation and characterization of cDNA and genomic sequences encoding GALNS has facilitated identification of the molecular lesions that cause MPS IVA. We identified a common missense mutation among Caucasian MPS IVA patients. The mutation was originally detected by SSCP, and successive sequencing revealed an A{yields}T transversion at nt 393. This substitution altered the isoleucine at position 113 to phenylalanine (I113F) in the 622 amino acid GALNS protein and was associated with a severe phenotype in a homozygote. Compound heterogzygotes with onemore » I113F-allele mutation have a wide range of clinical phenotypes. Transfection experiments in GALNS-deficient fibroblasts revealed that the mutation drastically reduces the enzyme activity of GALNS. Allele-specific oligonucleotide or SSCP analysis indicated that this mutation accounted for 22.5% (9/40) of unrelated MPS IVA chromosomes from 23 Caucasian patients, including 6 consanguineous cases. Of interest, the I1e 113{yields}Phe substitution occurred in only Caucasian MPS IVA patients and in none of the GALNS alleles of 20 Japanese patients. These findings identify a frequent missense mutation among MPS IVA patients of Caucasian ancestry that results in severe MPS IVA when homoallelic, and will facilitate molecular diagnosis of most such patients and identification of heterozygous carriers. In addition to this common mutation, 10 different point mutations and 2 small deletions were detected, suggesting allelic heterogeneity in GALNS gene. 32 refs., 2 figs., 3 tabs.« less
Ren, Lu; Deng, Lin-Hua; Zhang, Ri-Peng; Wang, Cheng-Dong; Li, De-Sheng; Xi, Li-Xin; Chen, Zhen-Rong; Yang, Rui; Huang, Jie; Zeng, Yang-Ru; Wu, Hong-Lin; Cao, San-Jie; Wu, Rui; Huang, Yong; Yan, Qi-Gui
2017-02-01
To detect drug resistance in Shigella obtained from the dung of the giant panda, explore the factors leading to drug resistance in Shigella, understand the characteristics of clustered, regularly interspaced, short, palindromic repeats (CRISPR), and assess the relationship between CRISPR and drug resistance. We collected fresh feces from 27 healthy giant pandas in the Giant Panda Conservation base (Wolong, China). We identified the strains of Shigella in the samples by using nucleotide sequence analysis. Further, the Kirby-Bauer paper method was used to determine drug sensitivity of the Shigella strains. CRISPR-associated protein genes cas1 and cas2 in Shigella were detected by polymerase chain reaction (PCR), and the PCR products were sequenced and compared. We isolated and identified 17 strains of Shigella from 27 samples, including 14 strains of Shigella flexneri, 2 strains of Shigella sonnei, and 1 strain of Shigella dysenteriae. Further, drug resistance to cefazolin, imipenem, and amoxicillin-clavulanic acid was identified as a serious problem, as multidrug-resistant strains were detected. Further, cas1 and cas2 showed different degrees of point mutations. The CRISPR system widely exists in Shigella and shares homology with that in Escherichia coli. The cas1 and cas 2 mutations contribute to the different levels of resistance. Point mutations at sites 3176455, 3176590, and 3176465 in cas1 (a); sites 3176989, 3176992, and 3176995 in cas1 (b); sites 3176156 and 3176236 in cas2 may affect the resistance of bacteria, cause emergence of multidrug resistance, and increase the types of drug resistance.
Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel
2007-01-01
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.
Prevalence of nine mutations among Jewish and non-Jewish Gaucher disease patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, M.; Tzuri, G.; Eyal, N.
1993-10-01
The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewis patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so farmore » among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS2+1 mutation constituted 2.26% of the disease alleles among Jewish Patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated [open quotes]RecNcil[close quotes] and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations-D409H and R463C- was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, is 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection. 33 refs, 3 figs., 4 tabs.« less
Agius, Rudi; Torchala, Mieczyslaw; Moal, Iain H.; Fernández-Recio, Juan; Bates, Paul A.
2013-01-01
Predicting the effects of mutations on the kinetic rate constants of protein-protein interactions is central to both the modeling of complex diseases and the design of effective peptide drug inhibitors. However, while most studies have concentrated on the determination of association rate constants, dissociation rates have received less attention. In this work we take a novel approach by relating the changes in dissociation rates upon mutation to the energetics and architecture of hotspots and hotregions, by performing alanine scans pre- and post-mutation. From these scans, we design a set of descriptors that capture the change in hotspot energy and distribution. The method is benchmarked on 713 kinetically characterized mutations from the SKEMPI database. Our investigations show that, with the use of hotspot descriptors, energies from single-point alanine mutations may be used for the estimation of off-rate mutations to any residue type and also multi-point mutations. A number of machine learning models are built from a combination of molecular and hotspot descriptors, with the best models achieving a Pearson's Correlation Coefficient of 0.79 with experimental off-rates and a Matthew's Correlation Coefficient of 0.6 in the detection of rare stabilizing mutations. Using specialized feature selection models we identify descriptors that are highly specific and, conversely, broadly important to predicting the effects of different classes of mutations, interface regions and complexes. Our results also indicate that the distribution of the critical stability regions across protein-protein interfaces is a function of complex size more strongly than interface area. In addition, mutations at the rim are critical for the stability of small complexes, but consistently harder to characterize. The relationship between hotregion size and the dissociation rate is also investigated and, using hotspot descriptors which model cooperative effects within hotregions, we show how the contribution of hotregions of different sizes, changes under different cooperative effects. PMID:24039569
Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.
Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T
1995-05-20
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.
Han, Kyudong; Lee, Tae Yoon; Nikitopoulos, Dimitris E.; Soper, Steven A.; Murphy, Michael C.
2011-01-01
Recognition of point mutations in the K-ras gene can be used for the clinical management of several types of cancers. Unfortunately, several assay and hardware concerns must be addressed to allow users not well-trained in performing molecular analyses the opportunity to undertake these measurements. To provide for a larger user-base for these types of molecular assays, a vertically-stacked microfluidic analyzer with a modular architecture and process automation was developed. The analyzer employed a primary PCR coupled to an allele-specific ligase detection reaction (LDR). Each functional device, including continuous flow thermal reactors for the PCR and LDR, passive micromixers and ExoSAP-IT® purification, was designed and tested. Individual devices were fabricated in polycarbonate using hot embossing and assembled using adhesive bonding for system assembly. The system produced LDR products from a DNA sample in ~1 h, an 80% reduction in time compared to conventional bench-top instrumentation. Purifying the post-PCR products with the ExoSAP-IT® enzyme led to optimized LDR performance minimizing false positive signals and producing reliable results. Mutant alleles in genomic DNA were quantified to the level of 0.25 ng of mutant DNA in 50 ng of wild-type DNA for a 25 μL sample, equivalent to DNA from 42 mutant cells. PMID:21771577
Long range dynamic effects of point-mutations trap a response regulator in an active conformation
Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John
2010-01-01
When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site. PMID:20828564
Jasik, Agnieszka; Reichert, Michal
2006-05-01
This study presents preliminary data on the polymorphism in the prion protein gene of Swiniarka sheep using temperature gradient gel electrophoresis (TGGE). Available data indicate that sensitivity to scrapie is associated with polymorphisms in three codons of prion protein gene: 136,154, and 171. The TGGE method was used to detect point mutations in these codons responsible for sensitivity or resistance to scrapie. This study revealed presence of an allele encoding valine (V) in codon 136, which is associated with high sensitivity to scrapie and occurred in the form of heterozygous allele together with alanine (AV). The highest variability was observed in codon 171, with presence of arginine (R) and glutamine (Q) in the homozygous (RR or QQ) as well as the heterozygous form (RQ). The results of examination of fifty sheep DNA samples with mutations in codons 136, 154, and 171 demonstrated that TGGE can be used as a simple and rapid method to detect mutations in the PrP gene of sheep. Several samples can be run at the same time, making TGGE ideal for the screening of large numbers of samples.
Ames Test to Detect Mutagenicity of 2-Alkylcyclobutanones: A Review.
Barbezan, Angélica B; Martins, Regiane; Bueno, Jennifer B; Villavicencio, Anna Lúcia C H
2017-07-01
Food irradiation is an effective and safe method for preservation and long-term storage, and it is approved for use in over 60 countries for various applications in a wide variety of food products. This process is performed by use of accelerated electron beams, X-rays, or gamma radiation ( 60 Co or 137 Cs). 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that have fatty acids (triglycerides) and are subjected to irradiation. Since the 1990s toxicological safety studies of 2-ACBs have been conducted extensively through synthetic compounds, then and tests to determine if the compounds have any mutagenic activity are strictly necessary. The Ames test was chosen by many researchers to assess the mutagenicity of 2-ACBs. The test uses distinct bacterial cell lines Salmonella typhimurium to detect point mutations at sites guanine-cytosine (G-C) and Escherichia coli to detect point mutations at sites adenine-thymine (A-T). This bibliographic research aims to bring together all the results obtained and a comparison and cell lines used, type of plates, and solvents. This research showed that no mutagenic activity was observed in any of the cell lines and concentrations evaluated by the works of authors, so the 2-ACBs compounds showed no mutagenic substance in concentrations detectable by the Ames test. © 2017 Institute of Food Technologists®.
Code of Federal Regulations, 2012 CFR
2012-04-01
... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...
Code of Federal Regulations, 2013 CFR
2013-04-01
... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...
Code of Federal Regulations, 2011 CFR
2011-04-01
... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...
Code of Federal Regulations, 2014 CFR
2014-04-01
... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...
The co-occurrence of driver mutations in chronic myeloproliferative neoplasms.
Boddu, Prajwal; Chihara, Dai; Masarova, Lucia; Pemmaraju, Naveen; Patel, Keyur P; Verstovsek, Srdan
2018-06-27
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by proliferation of one or more elements of the myeloid lineage. Key genetic aberrations include the BCR-ABL1 gene rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and JAK2/MPL/CALR aberrations in Philadelphia chromosome-negative MPNs. While thought to be mutually exclusive, occasional isolated reports of coexistence of BCR-ABL1 and JAK2, and JAK2 with MPL or CALR aberrations have been described. Given the paucity of data, clinical characteristics and outcome of patients harboring concurrent Philadelphia-positive and Philadelphia-negative mutations or dual Philadelphia-negative driver mutations have not been systematically evaluated, and their clinical relevance is largely unknown. It is difficult to determine the true relevance of co-existing driver mutations on outcomes given the rarity of its occurrence. In this case series, we describe those patients who had dual driver mutations detected at any point during the course of their disease and characterized their clinical and laboratory features, bone marrow pathology, and overall disease course.
Singh, O. P.; Dykes, C. L.; Sharma, G.; Das, M. K.
2015-01-01
Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis–polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. PMID:26336276
Sato, Akira; Takano, Takeshi; Hiramoto, Akiko; Naito, Tomoharu; Matsuda, Akira; Fukushima, Masakazu; Wataya, Yusuke; Kim, Hye-Sook
2017-08-01
A nucleosidic medicine, 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine [3'-ethynylcytidine (ECyd)], is a potent inhibitor of RNA polymerase I and shows anticancer activity to various human solid tumors in vitro and in vivo. ECyd is phosphorylated to 3'-ethyntlcytidine 5'-monophosphate by uridine/cytidine kinase 2 (UCK2) and subsequently further to diphosphate and triphosphate (3'-ethyntlcytidine 5'-diphosphate, 3'-ethyntlcytidine 5'-triphosphate). 3'-Ethyntlcytidine 5'-triphosphate is an active metabolite that can inhibit RNA polymerase I competitively, causing cancer cell death. Here, to identify the UCK2 mutation for detecting responder or nonresponder to ECyd, we investigated the relationship between point mutation of the UCK2 gene and response to ECyd in various human solid tumors. We identified several functional point mutations including the splice-site mutation of the UCK2 gene IVS5+5 G>A. In addition, we found that the IVS5+5 G>A variant generates an aberrant mRNA transcript, namely, truncated mRNA was produced and normal mRNA levels were markedly decreased in the ECyd-resistant cancer cell line HT1080. We concluded that these findings strongly suggest that the IVS5+5 G>A variant would affect the expression level of the UCK2 transcript, resulting in decreased sensitivity to ECyd.
Calmodulin point mutations affect Drosophila development and behavior.
Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K
1997-12-01
Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.
Calmodulin Point Mutations Affect Drosophila Development and Behavior
Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.
1997-01-01
Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836
Capriotti, Natalia; Mougabure-Cueto, Gastón; Rivera-Pomar, Rolando; Ons, Sheila
2014-01-01
Chagas' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil. The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species. In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field. The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas' disease transmission.
Capriotti, Natalia; Mougabure-Cueto, Gastón; Rivera-Pomar, Rolando; Ons, Sheila
2014-01-01
Background Chagas' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil. The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species. Methods and Findings In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field. Conclusions and Significance The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas' disease transmission. PMID:24466362
Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists.
Toy, Weiyi; Weir, Hazel; Razavi, Pedram; Lawson, Mandy; Goeppert, Anne U; Mazzola, Anne Marie; Smith, Aaron; Wilson, Joanne; Morrow, Christopher; Wong, Wai Lin; De Stanchina, Elisa; Carlson, Kathryn E; Martin, Teresa S; Uddin, Sharmeen; Li, Zhiqiang; Fanning, Sean; Katzenellenbogen, John A; Greene, Geoffrey; Baselga, José; Chandarlapaty, Sarat
2017-03-01
Recent studies have identified somatic ESR1 mutations in patients with metastatic breast cancer and found some of them to promote estrogen-independent activation of the receptor. The degree to which all recurrent mutants can drive estrogen-independent activities and reduced sensitivity to ER antagonists like fulvestrant is not established. In this report, we characterize the spectrum of ESR1 mutations from more than 900 patients. ESR1 mutations were detected in 10%, with D538G being the most frequent (36%), followed by Y537S (14%). Several novel, activating mutations were also detected (e.g., L469V, V422del, and Y537D). Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo Correspondingly, tumors driven by Y537S, but not D5358G, E380Q, or S463P, were less effectively inhibited by fulvestrant than more potent and bioavailable antagonists, including AZD9496. These data point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants. Significance: A diversity of activating ESR1 mutations exist, only some of which confer resistance to existing ER antagonists that might be overcome by next-generation inhibitors such as AZD9496. Cancer Discov; 7(3); 277-87. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 235 . ©2016 American Association for Cancer Research.
Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B
2017-02-01
Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.
Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations
Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.
2017-01-01
Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498
Liu, Hong-Mei; Cheng, Peng; Huang, Xiaodan; Dai, Yu-Hua; Wang, Hai-Fang; Liu, Li-Juan; Zhao, Yu-Qiang; Wang, Huai-Wei; Gong, Mao-Qing
2013-02-01
The present study aimed to investigate deltamethrin resistance in Culex pipiens pallens (C. pipiens pallens) mosquitoes and its correlation with knockdown resistance (kdr) mutations. In addition, mosquito‑resistance testing methods were analyzed. Using specific primers in polymerase chain reaction (PCR) and allele-specific (AS)-PCR, kdr gene sequences isolated from wild C. pipiens pallens mosquitoes were sequenced. Linear regression analysis was used to determine the correlation between the mutations and deltamethrin resistance. A kdr allelic gene was cloned and sequenced. Analysis of the DNA sequences revealed the presence of two point mutations at the L1014 residue in the IIS6 transmembrane segment of the voltage‑gated sodium channel (VGSC): L1014F, TTA→TTT, replacing a leucine (L) with a phenylalanine (F); L1014S, TTA→TCA, replacing leucine (L) with serine (S). Two alternative kdr-like mutations, L1014F and L1014S, were identified to be positively correlated with the deltamethrin-resistant phenotype. In addition a novel mutation, TCT, was identified in the VGSC of C. pipiens pallens. PCR and AS-PCR yielded consistent results with respect to mosquito resistance. However, the detection rate of PCR was higher than that of AS-PCR. Further studies are required to determine the specific resistance mechanism. PCR and AS-PCR demonstrated suitability for mosquito resistance field tests, however, the former method may be superior to the latter.
Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.
Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa
2016-09-01
A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons.
Cao, Binbin; Yan, Huifang; Guo, Mangmang; Xie, Han; Wu, Ye; Gu, Qiang; Xiao, Jiangxi; Shang, Jing; Yang, Yanling; Xiong, Hui; Niu, Zhengping; Wu, Xiru; Jiang, Yuwu; Wang, Jingmin
2016-01-01
Objective Megalencephalic leukoencephalopathy with subcortical cysts (MLC, OMIM 604004) is a rare neurological deterioration disease. We aimed to clarify clinical and genetic features of Chinese MLC patients. Methods Clinical information and peripheral venous blood of 20 patients and their families were collected, Sanger-sequencing and Multiple Ligation-dependent Probe Amplification were performed to make genetic analysis. Splicing-site mutation was confirmed with RT-PCR. UPD was detected by haplotype analysis. Follow-up study was performed through telephone for 27 patients. Results Out of 20 patients, macrocephaly, classic MRI features, motor development delay and cognitive impairment were detected in 20(100%), 20(100%), 17(85%) and 4(20%) patients, respectively. 20(100%) were clinically diagnosed with MLC. 19(95%) were genetically diagnosed with 10 novel mutations in MLC1, MLC1 and GlialCAM mutations were identified in 15 and 4 patients, respectively. Deletion mutation from exon4 to exon9 and a homozygous point mutation due to maternal UPD of chromosome22 in MLC1 were found firstly. c.598-2A>C in MLC1 leads to the skip of exon8. c.772-1G>C in MLC1 accounting for 15.5%(9/58) alleles in Chinese patients might be a founder or a hot-spot mutation. Out of 27 patients in the follow-up study, head circumference was ranged from 56cm to 61cm in patients older than 5yeas old, with a median of 57cm. Motor development delay and cognitive impairment were detected in 22(81.5%) and 5(18.5%) patients, respectively. Motor and cognitive deterioration was found in 5 (18.5%) and 2 patients (7.4%), respectively. Improvements and MRI recovery were first found in Chinese patients. Rate of seizures (45.5%), transient motor retrogress (45.5%) and unconsciousness (13.6%) after head trauma was much higher than that after fever (18.2%, 9.1%, 0%, respectively). Significance It’s a clinical and genetic analysis and a follow-up study for largest sample of Chinese MLC patients, identifying 10 novel mutations, expanding mutation spectrums and discovering clinical features of Chinese MLC patients. PMID:27322623
Panpradist, Nuttada; Beck, Ingrid A.; Chung, Michael H.; Kiarie, James N.; Frenkel, Lisa M.; Lutz, Barry R.
2016-01-01
Human immunodeficiency virus (HIV) is a chronic infection that can be managed by antiretroviral treatment (ART). However, periods of suboptimal viral suppression during lifelong ART can select for HIV drug resistant (DR) variants. Transmission of drug resistant virus can lessen or abrogate ART efficacy. Therefore, testing of individuals for drug resistance prior to initiation of treatment is recommended to ensure effective ART. Sensitive and inexpensive HIV genotyping methods are needed in low-resource settings where most HIV infections occur. The oligonucleotide ligation assay (OLA) is a sensitive point mutation assay for detection of drug resistance mutations in HIV pol. The current OLA involves four main steps from sample to analysis: (1) lysis and/or nucleic acid extraction, (2) amplification of HIV RNA or DNA, (3) ligation of oligonucleotide probes designed to detect single nucleotide mutations that confer HIV drug resistance, and (4) analysis via oligonucleotide surface capture, denaturation, and detection (CDD). The relative complexity of these steps has limited its adoption in resource-limited laboratories. Here we describe a simplification of the 2.5-hour plate-format CDD to a 45-minute paper-format CDD that eliminates the need for a plate reader. Analysis of mutations at four HIV-1 DR codons (K103N, Y181C, M184V, and G190A) in 26 blood specimens showed a strong correlation of the ratios of mutant signal to total signal between the paper CDD and the plate CDD. The assay described makes the OLA easier to perform in low resource laboratories. PMID:26751207
Adachi, Kaori
2014-03-01
At the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, we have been making an effort to establish a genetic testing facility that can provide the same screening procedures conducted worldwide. Direct Sequencing of PCR products is the main method to detect point mutations, small deletions and insertions. Multiplex Ligation-dependent Probe Amplification (MLPA) was used to detect large deletions or insertions. Expansion of the repeat was analyzed for triplet repeat diseases. Original primers were constructed for 41 diseases when the reported primers failed to amplify the gene. Prediction of functional effects of human nsSNPs (PolyPhen) was used for evaluation of novel mutations. From January 2000 to September 2013, a total of 1,006 DNA samples were subjected to genetic testing in the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University. The hospitals that requested genetic testing were located in 43 prefectures in Japan and in 11 foreign countries. The genetic testing covered 62 diseases, and mutations were detected in 287 out of 1,006 with an average mutation detection rate of 24.7%. There were 77 samples for prenatal diagnosis. The number of samples has rapidly increased since 2010. In 2013, the next-generation sequencers were introduced in our facility and are expected to provide more comprehensive genetic testing in the near future. Nowadays, genetic testing is a popular and powerful tool for diagnosis of many genetic diseases. Our genetic testing should be further expanded in the future.
Huang, Si-Qiang; Hu, Juan; Zhu, Guichi; Zhang, Chun-Yang
2015-03-15
Accurate identification of point mutation is particularly imperative in the field of biomedical research and clinical diagnosis. Here, we develop a sensitive and specific method for point mutation assay using exponential strand displacement amplification (SDA)-based surface enhanced Raman spectroscopy (SERS). In this method, a discriminating probe and a hairpin probe are designed to specifically recognize the sequence of human K-ras gene. In the presence of K-ras mutant target (C→T), the 3'-terminal of discriminating probe and the 5'-terminal of hairpin probe can be ligated to form a SDA template. Subsequently, the 3'-terminal of hairpin probe can function as a primer to initiate the SDA reaction, producing a large amount of triggers. The resultant triggers can further hybridize with the discriminating probes to initiate new rounds of SDA reaction, leading to an exponential amplification reaction. With the addition of capture probe-modified gold nanoparticles (AuNPs) and the Rox-labeled reporter probes, the amplified triggers can be assembled on the surface of AuNPs through the formation of sandwich hybrids of capture probe-trigger-reporter probe, generating a strong Raman signal. While in the presence of K-ras wild-type target (C), neither ligation nor SDA reaction can be initiated and no Raman signal is observed. The proposed method exhibits high sensitivity with a detection limit of 1.4pM and can accurately discriminate as low as 1% variant frequency from the mixture of mutant target and wild-type target. Importantly, this method can be further applied to analyze the mutant target in the spiked HEK293T cell lysate, holding great potential for genetic analysis and disease prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Nishihara, Eijun; Chen, Chun-Rong; Higashiyama, Takuya; Mizutori-Sasai, Yumiko; Ito, Mitsuru; Kubota, Sumihisa; Amino, Nobuyuki; Miyauchi, Akira; Rapoport, Basil
2010-11-01
Subclinical hyperthyroidism is usually associated with Graves' disease or toxic nodular goiter. Here we report a family with hereditary subclinical hyperthyroidism caused by a constitutively activating germline mutation of the thyrotropin receptor (TSHR) gene. The proband was a 64-year-old Japanese woman who presented with a thyroid nodule and was found to be euthyroid with a suppressed serum TSH. The nodule was not hot. Although antibodies to thyroid peroxidase and thyroglobulin antibodies were present, TSHR antibodies were not detected by TSH-binding inhibition or by bioassay. Two of her middle-aged sons, but not her daughter, also had subclinical hyperthyroidism without TSHR antibodies. Without therapy, the clinical condition of the affected individuals remained unchanged over 3 years without development of overt hyperthyroidism. A novel heterozygous TSHR point mutation causing a glutamic acid to lysine substitution at codon 575 (E575K) in the second extracellular loop was detected in the three family members with subclinical hyperthyroidism, but was absent in her one daughter with normal thyroid function. In vitro functional studies of the E575K TSHR mutation demonstrated a weak, but significant, increase in constitutive activation of the cAMP pathway. Although hereditary nonautoimmune overt hyperthyroidism is very rare, TSHR activating mutations as a cause of subclinical hyperthyroidism may be more common and should be considered in the differential diagnosis, especially if familial.
Miotke, Laura; Lau, Billy T; Rumma, Rowza T; Ji, Hanlee P
2014-03-04
In this study, we present a highly customizable method for quantifying copy number and point mutations utilizing a single-color, droplet digital PCR platform. Droplet digital polymerase chain reaction (ddPCR) is rapidly replacing real-time quantitative PCR (qRT-PCR) as an efficient method of independent DNA quantification. Compared to quantative PCR, ddPCR eliminates the needs for traditional standards; instead, it measures target and reference DNA within the same well. The applications for ddPCR are widespread including targeted quantitation of genetic aberrations, which is commonly achieved with a two-color fluorescent oligonucleotide probe (TaqMan) design. However, the overall cost and need for optimization can be greatly reduced with an alternative method of distinguishing between target and reference products using the nonspecific DNA binding properties of EvaGreen (EG) dye. By manipulating the length of the target and reference amplicons, we can distinguish between their fluorescent signals and quantify each independently. We demonstrate the effectiveness of this method by examining copy number in the proto-oncogene FLT3 and the common V600E point mutation in BRAF. Using a series of well-characterized control samples and cancer cell lines, we confirmed the accuracy of our method in quantifying mutation percentage and integer value copy number changes. As another novel feature, our assay was able to detect a mutation comprising less than 1% of an otherwise wild-type sample, as well as copy number changes from cancers even in the context of significant dilution with normal DNA. This flexible and cost-effective method of independent DNA quantification proves to be a robust alternative to the commercialized TaqMan assay.
Zhang, Y; Yang, B; Li, J; Liu, M; Liu, Z
2017-08-01
Insecticide resistance frequently results from target-site insensitivity, such as point mutations in acetylcholinesterases (AChEs) for resistance to organophosphates and carbamates. From a field-originated population of Nilaparvata lugens, a major rice pest, a resistant population (R9) was obtained by nine-generation continuous selection with chlorpyrifos. From the same field population, a relatively susceptible population (S9) was also constructed through rearing without any insecticides. Compared to the susceptible strain, Sus [medium lethal dose (LC 50 ) = 0.012 mg/l], R9 had a resistance ratio (RR) of 253.08-fold, whereas the RR of S9 was only 2.25-fold. Piperonyl butoxide and triphenyl phosphate synergized chlorpyrifos in R9 less than three-fold, indicating other important mechanisms for high resistance. The target-site insensitivity was supported by the key property differences of crude AChEs between R9 and S9. Compared to S9, three mutations (G119S, F331C and I332L) were detected in NlAChE1 from individuals of the R9 and field populations, but no mutation was detected in NlAChE2. G119S and F331C could decreased insecticide sensitivities in recombinant NlAChE1, whereas I332L took effect through increasing the influence of F331C on target insensitivity. F331C might be deleterious because of its influence on the catalytic efficiency of NlAChE1, whereas I332L would decrease these adverse effects and maintain the normal functions of AChEs. © 2017 The Royal Entomological Society.
NASA Astrophysics Data System (ADS)
Sentís, Gael; Bagan, Emilio; Calsamiglia, John; Chiribella, Giulio; Muñoz-Tapia, Ramon
2016-10-01
Sudden changes are ubiquitous in nature. Identifying them is crucial for a number of applications in biology, medicine, and social sciences. Here we take the problem of detecting sudden changes to the quantum domain. We consider a source that emits quantum particles in a default state, until a point where a mutation occurs that causes the source to switch to another state. The problem is then to find out where the change occurred. We determine the maximum probability of correctly identifying the change point, allowing for collective measurements on the whole sequence of particles emitted by the source. Then, we devise online strategies where the particles are measured individually and an answer is provided as soon as a new particle is received. We show that these online strategies substantially underperform the optimal quantum measurement, indicating that quantum sudden changes, although happening locally, are better detected globally.
Lázaro, C; Gaona, A; Lynch, M; Kruyer, H; Ravella, A; Estivill, X
1995-01-01
Neurofibromatosis type 1 (NF1) is caused by deletions, insertions, translocations, and point mutations in the NF1 gene, which spans 350 kb on the long arm of human chromosome 17. Although several point mutations have been described, large molecular abnormalities have rarely been characterized in detail. We describe here the molecular breakpoints of a 12-kb deletion of the NF1 gene, which is responsible for the NF1 phenotype in a kindred with two children affected because of germline mosaicism in the unaffected father, who has the mutation in 10% of his spermatozoa. The mutation spans introns 31-39, removing 12,021 nt and inserting 30 bp, of which 19 bp are a direct repetition of a sequence located in intron 31, just 4 bp before the 5' breakpoint. The 5' and 3' breakpoints contain the sequence TATTTTA, which could be involved in the generation of the deletion. The most plausible explanation for the mechanism involved in the generation of this 12-kb deletion is homologous/nonhomologous recombination. Since sperm of the father does not contain the corresponding insertion of the 12-kb deleted sequence, this deletion could have occurred within the NF1 chromosome through loop formation. RNA from lymphocytes of one of the NF1 patients showed similar levels of the mutated and normal transcripts, suggesting that the NF1-mRNA from mutations causing frame shifts of the reading frame or stop codons in this gene is not degraded during its processing. The mutation was not detected in fresh lymphocytes from the unaffected father by PCR analysis, supporting the case for true germ-line mosaicism. Images Figure 1 Figure 3 PMID:7485153
Baroni, María R; Bucci, Pamela; Giani, Rita N; Giusti, Antonela; Tedeschi, Fabian A; Salvatierra, Emiliano; Barbaglia, Yanina; Jimenez, Félix; Zalazar, Fabian E
2018-03-27
Helicobacter pylori is a gastric pathogen that is widely recognized as a causative agent of gastric disease. Its eradication is variable, mainly due to increased resistance to clarithromycin. Our objective was: to evaluate (i) if the biopsy specimen used for the rapid urease test is a useful sample to detect resistance to clarithromycin by PCR-RFLP and (ii) the distribution of A2142G and A2143G point mutations in the 23S rRNA gene, in relation to virulence factors in our region. Gastric specimens were collected from adult dyspeptic patients (n=141) and H. pylori was investigated by the rapid urease test, histopathological analysis and PCR for the hsp60 gene. Clarithromycin resistance was detected by PCR-RFLP in 62 H. pylori (+) paired biopsy specimens submitted to molecular analysis and the rapid urease test. H. pylori virulence factors were analyzed by multiplex PCR using specific primers for the cagA, vacA and babA2 genes. Thirteen out of 62 strains (20.9%) were resistant to clarithromycin: 6/13 (46.2%) harbored the A2143G mutation whereas 7/13 (53.8%) carried the A2142G point mutation. vacA m1s1 was the most frequent genotype among the resistant strains. In conclusion, the biopsy specimens used for the rapid urease test were suitable samples for clarithromycin resistance detection in patients infected with H. pylori, which became especially useful in cases where the number or size of the biopsies is limited. In addition, this is the first report of a molecular analysis for clarithromycin resistance performed directly from gastric biopsies in our region. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Ren, Lu; Deng, Lin-Hua; Zhang, Ri-Peng; Wang, Cheng-Dong; Li, De-Sheng; Xi, Li-Xin; Chen, Zhen-rong; Yang, Rui; Huang, Jie; Zeng, Yang-ru; Wu, Hong-Lin; Cao, San-Jie; Wu, Rui; Huang, Yong; Yan, Qi-Gui
2017-01-01
Abstract Background: To detect drug resistance in Shigella obtained from the dung of the giant panda, explore the factors leading to drug resistance in Shigella, understand the characteristics of clustered, regularly interspaced, short, palindromic repeats (CRISPR), and assess the relationship between CRISPR and drug resistance. Methods: We collected fresh feces from 27 healthy giant pandas in the Giant Panda Conservation base (Wolong, China). We identified the strains of Shigella in the samples by using nucleotide sequence analysis. Further, the Kirby-Bauer paper method was used to determine drug sensitivity of the Shigella strains. CRISPR-associated protein genes cas1 and cas2 in Shigella were detected by polymerase chain reaction (PCR), and the PCR products were sequenced and compared. Results: We isolated and identified 17 strains of Shigella from 27 samples, including 14 strains of Shigella flexneri, 2 strains of Shigella sonnei, and 1 strain of Shigella dysenteriae. Further, drug resistance to cefazolin, imipenem, and amoxicillin–clavulanic acid was identified as a serious problem, as multidrug-resistant strains were detected. Further, cas1 and cas2 showed different degrees of point mutations. Conclusion: The CRISPR system widely exists in Shigella and shares homology with that in Escherichia coli. The cas1 and cas 2 mutations contribute to the different levels of resistance. Point mutations at sites 3176455, 3176590, and 3176465 in cas1 (a); sites 3176989, 3176992, and 3176995 in cas1 (b); sites 3176156 and 3176236 in cas2 may affect the resistance of bacteria, cause emergence of multidrug resistance, and increase the types of drug resistance. PMID:28207509
de Sousa Dias, Miguel; Hernan, Imma; Delás, Barbara; Pascual, Beatriz; Borràs, Emma; Gamundi, Maria José; Mañé, Begoña; Fernández-San José, Patricia; Ayuso, Carmen
2015-01-01
Purpose This study aimed to test a newly devised cost-effective multiplex PCR assay for the molecular diagnosis of autosomal dominant retinitis pigmentosa (adRP), as well as the use of whole-exome sequencing (WES) to detect disease-causing mutations in adRP. Methods Genomic DNA was extracted from peripheral blood lymphocytes of index patients with adRP and their affected and unaffected family members. We used a newly devised multiplex PCR assay capable of amplifying the genetic loci of RHO, PRPH2, RP1, PRPF3, PRPF8, PRPF31, IMPDH1, NRL, CRX, KLHL7, and NR2E3 to molecularly diagnose 18 index patients with adRP. We also performed WES in affected and unaffected members of four families with adRP in whom a disease-causing mutation was previously not found. Results We identified five previously reported mutations (p.Arg677X in the RP1 gene, p.Asp133Val and p.Arg195Leu in the PRPH2 gene, and p.Pro171Leu and p.Pro215Leu in the RHO gene) and one novel mutation (p.Val345Gly in the RHO gene) representing 33% detection of causative mutations in our adRP cohort. Comparative WES analysis showed a new variant (p.Gly103Arg in the COL6A6 gene) that segregated with the disease in one family with adRP. As this variant was linked with the RHO locus, we sequenced the complete RHO gene, which revealed a deletion in intron 4 that encompassed all of exon 5 and 28 bp of the 3′-untranslated region (UTR). Conclusions The novel multiplex PCR assay with next-generation sequencing (NGS) proved effective for detecting most of the adRP-causing mutations. A WES approach led to identification of a deletion in RHO through detection of a new linked variant in COL6A6. No pathogenic variants were identified in the remaining three families. Moreover, NGS and WES were inefficient for detecting the complete deletion of exon 5 in the RHO gene in one family with adRP. Carriers of this deletion showed variable clinical status, and two of these carriers had not previously been diagnosed with RP. PMID:26321861
Exact Identification of a Quantum Change Point
NASA Astrophysics Data System (ADS)
Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon
2017-10-01
The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty—naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.
Exact Identification of a Quantum Change Point.
Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon
2017-10-06
The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty-naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.
Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.
Sieving, P A; Yashar, B M; Ayyagari, R
1999-01-01
X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage.
Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.
Sieving, P A; Yashar, B M; Ayyagari, R
1999-01-01
BACKGROUND AND PURPOSE: X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. METHODS: The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." RESULTS: The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. CONCLUSIONS: Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage. Images FIGURE 2A FIGURE 2B PMID:10703138
Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte
2012-01-01
Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.
Two Novel Mutations in the Aquaporin 2 Gene in a Girl with Congenital Nephrogenic Diabetes Insipidus
Cho, Su Jin; Zheng, Shou Huan; Cho, Hee Yeon; Ha, Il Soo; Choi, Yong
2005-01-01
Congenital nephrogenic diabetes insipidus (CNDI) is a rare inherited disorder characterized by insensitivity of the kidney to the antidiuretic effect of vasopressin. There are three inheritance patterns of CNDI: the X-linked recessive form associated with vasopressin V2 receptor gene mutations, and the autosomal recessive and dominant forms associated with aquaporin-2 gene (AQP2) mutations. The evaluation for polyuria and polydipsia in a one-month-old Korean girl revealed no response to vasopressin and confirmed the diagnosis of CNDI. Because the child was female without family history of CNDI, her disease was thought to be an autosomal recessive form. We analyzed the AQP2 gene and detected a compound heterozygous missense point mutation: 70Ala (GCC) to Asp (GAC) in exon 1 inherited from her father and 187Arg (CGC) to His (CAC) in exon 3 inherited from her mother. The first mutation is located within the first NPA motif of the AQP2 molecule and the second one right after the second NPA motif. This is the first report to characterize AQP2 mutations in Korean patients with autosomal recessive CNDI, and expands the spectrum of AQP2 mutations by reporting two novel mutation, 70Ala (GCC) to Asp (GAC) and 187Arg (CGC) to His (CAC). PMID:16361827
Liu, Bing; Li, Lei; Huang, Lixia; Li, Shaoli; Rao, Guanhua; Yu, Yang; Zhou, Yanbin
2017-01-01
Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDNA is still unknown. To assess a highly sensitive method, we evaluated the use of digital PCR in the detection of EGFR mutations in tumor tissue from 47 advanced lung adenocarcinoma patients through comparison with NGS and ARMS. We determined the degree of concordance between tumor tissue DNA and paired ctDNA and analyzed the mutation abundance relationship between them. Digital PCR and Proton had a high sensitivity (96.00% vs. 100%) compared with that of ARMS in the detection of mutations in tumor tissue. Digital PCR outperformed Proton in identifying more low abundance mutations. The ctDNA detection rate of digital PCR was 87.50% in paired tumor tissue with a mutation abundance above 5% and 7.59% in paired tumor tissue with a mutation abundance below 5%. When the DNA mutation abundance of tumor tissue was above 3.81%, it could identify mutations in paired ctDNA with a high sensitivity. Digital PCR will help identify alternative methods for detecting low abundance mutations in tumor tissue DNA and plasma ctDNA. PMID:28978074
Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert
2016-04-05
Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.
Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation
ZHANG, BO; XU, CHUN-WEI; SHAO, YUN; WANG, HUAI-TAO; WU, YONG-FANG; SONG, YE-YING; LI, XIAO-BING; ZHANG, ZHE; WANG, WEN-JING; LI, LI-QIONG; CAI, CONG-LI
2015-01-01
Early detection of epidermal growth factor receptor (EGFR) mutation, particularly EGFR T790M mutation, is of clinical significance. The aim of the present study was to compare the performances of amplification refractory mutation system-based quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital polymerase chain reaction (ddPCR) approaches in the detection of EGFR mutation and explore the feasibility of using ddPCR in the detection of samples with low mutation rates. EGFR gene mutations in plasmid samples with different T790M mutation rates (0.1–5%) and 10 clinical samples were detected using the ARMS-qPCR and ddPCR approaches. The results demonstrated that the ARMS-qPCR method stably detected the plasmid samples (6,000 copies) with 5 and 1% mutation rates, while the ddPCR approach reliably detected those with 5% (398 copies), 1% (57 copies), 0.5% (24 copies) and 0.1% (average 6 copies) mutation rates. For the 10 clinical samples, the results for nine samples by the ARMS-qPCR and ddPCR methods were consistent; however, the sample N006, indicated to be EGFR wild-type by ARMS-qPCR, was revealed to have a clear EGFR T790M mutation with seven copies of mutant alleles in a background of 6,000 wild-type copies using ddPCR technology. This study demonstrates the feasibility of applying the ddPCR system to detect EGFR mutation and identified the advantage of ddPCR in the detection of samples with a low EGFR mutation abundance, particularly the secondary EGFR T790M resistance mutation, which enables early diagnosis before acquired resistance to tyrosine kinase inhibitors becomes clinically detectable. PMID:25780439
Preudhomme, C; Warot-Loze, D; Roumier, C; Grardel-Duflos, N; Garand, R; Lai, J L; Dastugue, N; Macintyre, E; Denis, C; Bauters, F; Kerckaert, J P; Cosson, A; Fenaux, P
2000-10-15
The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In conclusion, these findings confirm the possibility of mutations of the Runt domain of the AML1 gene in leukemias, mainly in MoAML and in myeloid malignancies with acquired trisomy 21. AML1 mutations, in MoAML, involved both alleles and probably lead to nonfunctional AML1 protein. As AML1 protein regulates the expression of the myeloperoxidase gene, the relationship between AML1 mutations and Mo phenotype in AML will have to be further explored. (Blood. 2000;96:2862-2869)
A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost.
Han, Heping; Vila-Aiub, Martin M; Jalaludin, Adam; Yu, Qin; Powles, Stephen B
2017-12-01
A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shurong; Risques, Rosa Ana; Martin, George M.
2008-01-01
LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. Tomore » our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.« less
21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...
21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...
21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...
21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...
21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...
Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.
2012-01-01
Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219
Fu, Rongxin; Li, Qi; Wang, Ruliang; Xue, Ning; Lin, Xue; Su, Ya; Jiang, Kai; Jin, Xiangyu; Lin, Rongzan; Gan, Wupeng; Lu, Ying; Huang, Guoliang
2018-05-01
Interferometric imaging biosensors are powerful and convenient tools for confirming the existence of DNA monolayer films on silicon microarray platforms. However, their accuracy and sensitivity need further improvement because DNA molecules contribute to an inconspicuous interferometric signal both in thickness and size. Such weaknesses result in poor performance of these biosensors for low DNA content analyses and point mutation tests. In this paper, an interferometric imaging biosensor with weighted spectrum analysis is presented to confirm DNA monolayer films. The interferometric signal of DNA molecules can be extracted and then quantitative detection results for DNA microarrays can be reconstructed. With the proposed strategy, the relative error of thickness detection was reduced from 88.94% to merely 4.15%. The mass sensitivity per unit area of the proposed biosensor reached 20 attograms (ag). Therefore, the sample consumption per unit area of the target DNA content was only 62.5 zeptomoles (zm), with the volume of 0.25 picolitres (pL). Compared with the fluorescence resonance energy transfer (FRET), the measurement veracity of the interferometric imaging biosensor with weighted spectrum analysis is free to the changes in spotting concentration and DNA length. The detection range was more than 1µm. Moreover, single nucleotide mismatch could be pointed out combined with specific DNA ligation. A mutation experiment for lung cancer detection proved the high selectivity and accurate analysis capability of the presented biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Kennedy, Melissa A; Moore, Emily; Wilkes, Rebecca P; Citino, Scott B; Kania, Stephen A
2006-04-01
To analyze the 7a7b genes of the feline coronavirus (FCoV) of cheetahs, which are believed to play a role in virulence of this virus. Biologic samples collected during a 4-year period from 5 cheetahs at the same institution and at 1 time point from 4 cheetahs at different institutions. Samples were first screened for FCoV via a reverse transcription-PCR procedure involving primers that encompassed the 3'-untranslated region. Samples that yielded positive assay results were analyzed by use of primers that targeted the 7a7b open reading frames. The nucleotide sequences of the 7a7b amplification products were determined and analyzed. In most isolates, substantial deletional mutations in the 7a gene were detected that would result in aberrant or no expression of the 7a product because of altered reading frames. Although the 7b gene was also found to contain mutations, these were primarily point mutations resulting in minor amino acid changes. The coronavirus associated with 1 cheetah with feline infectious peritonitis had intact 7a and 7b genes. The data suggest that mutations arise readily in the 7a region and may remain stable in FCoV of cheetahs. In contrast, an intact 7b gene may be necessary for in vivo virus infection and replication. Persistent infection with FCoV in a cheetah population results in continued virus circulation and may lead to a quasispecies of virus variants.
SHARIFI-SARASIABI, Khojasteh; HAGHIGHI, Ali; KAZEMI, Bahram; TAGHIPOUR, Niloofar; MOJARAD, Ehsan Nazemalhosseini; GACHKAR, Latif
2016-01-01
In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment. PMID:27007559
Hellner, Karin; Miranda, Fabrizio; Fotso Chedom, Donatien; Herrero-Gonzalez, Sandra; Hayden, Daniel M; Tearle, Rick; Artibani, Mara; KaramiNejadRanjbar, Mohammad; Williams, Ruth; Gaitskell, Kezia; Elorbany, Samar; Xu, Ruoyan; Laios, Alex; Buiga, Petronela; Ahmed, Karim; Dhar, Sunanda; Zhang, Rebecca Yu; Campo, Leticia; Myers, Kevin A; Lozano, María; Ruiz-Miró, María; Gatius, Sónia; Mota, Alba; Moreno-Bueno, Gema; Matias-Guiu, Xavier; Benítez, Javier; Witty, Lorna; McVean, Gil; Leedham, Simon; Tomlinson, Ian; Drmanac, Radoje; Cazier, Jean-Baptiste; Klein, Robert; Dunne, Kevin; Bast, Robert C; Kennedy, Stephen H; Hassan, Bassim; Lise, Stefano; Garcia, María José; Peters, Brock A; Yau, Christopher; Sauka-Spengler, Tatjana; Ahmed, Ahmed Ashour
2016-08-01
Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC). The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE) cells. We identified frequent mutations involving a 40kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p<2(-16)), which was not found in patients without cancer (n=108). Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n=100), and common in BRCA1-BRCA2 mutation carriers (n=71) who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease. Copyright © 2016 The Ohio State University Wexner Medical Center. Published by Elsevier B.V. All rights reserved.
Datta, Sibnarayan; Banerjee, Arup; Chandra, Partha K; Chakraborty, Subhasis; Basu, Subir Kumar; Chakravarty, Runu
2007-11-01
In blood donors, HBV infection is detected by the presence of serum hepatitis B surface antigen (HBsAg). However, some mutations in the surface gene region may result in altered or truncated HBsAg that can escape from immunoassay-based diagnosis. Such diagnostic escape mutants pose a potential risk for blood transfusion services. In the present study, we report a blood donor seronegative for HBsAg and antiHBc, but positive for antiHBs who was HBV DNA positive by PCR. Sequencing of the HBsAg gene revealed presence of a point mutation (T-A) at 207th nucleotide of the HBsAg ORF, which resulted in a premature stop codon at position 69. This results in a truncated HBsAg gene lacking the entire 'a' determinant region. However, follow-up of the donor after 2 years revealed clearance of HBV DNA from the serum. The case illustrates an unusual mutation, which causes HBsAg negativity. The finding emphasizes the importance of molecular assays in reducing the possibility of HBV transmission through blood transfusion. However, developing more sensitive serological assays, capable of detecting HBV mutants, is an alternative to expensive and complex amplification-based assays for developing countries.
Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates
Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.
2015-01-01
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902
Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu
2017-10-27
Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Rui-min; Zhang, Ying; Yang, Xiao-hong; Lin, Xiang-quan
2012-12-01
Familial male-limited precocious puberty (FMPP) is due to constitutive activation of a mutant luteinizing hormone/choriogonadotropin receptor (LH/CGR) leading to elevated testosterone synthesis in testicular Leydig cells. In the present study, we have analyzed the LHCGR gene for members of a Chinese FMPP family. Physical examinations have included assessment of penile length, testicular volume and pubic hair. Bone age assessment, levels of testosterone and gonadotropin-releasing hormone (GnRH) stimulations tests were measured. DNA was extracted from blood samples of the proband and his parents using an QIAGEN Blood DNA Mini Kit. The 11 exons of LHCGR gene were amplified using an AmpliTaq PCR system, and the PCR products were sequenced using an ABI3130xl Genetic Analyzer. The affected boy was 3 year and 1 month old and showed typical clinical manifestation of peripheral precocious puberty. His height was 116.8cm (+5.1s) and Tanner stages were PH 2. Testicular volume was 8 mL bilaterally, penile was 8.5 cm × 2.5 cm. Basal testosterone was 2310 ng/L and bone age was 9 years. GnRH stimulation test revealed a prepubertal response to gonadotropin. The peak of LH was 2.66 IU/L, and the peak of FSH was 1.03 IU/L. Upon sequencing exon 11 of the LHCGR, a heterozygous point mutation of nucleotide 1703 from C to T was detected, which resulted in an amino acid transition from Ala (GCC) to Val (GTC) at position 568. Thus the mutation of LHCGR gene was confirmed to be constitutively active. After treating with aromatase inhibitors for half a year, the patient showed an increase in bone age and height by half a year and 4 cm, respectively. The same point mutation was detected in the patient's father, but did not have any influence on his puberty development. A novel point mutation of the LHCGR gene has been identified in a family affected with FMPP. The c.1703C>T mutant LHCGR was confirmed to be constitutively active, which has led to maturation and proliferation of Leydig cells. The variable phenotype within the family suggested variable expressivity of the disease.
Mencia-Trinchant, Nuria; Hu, Yang; Alas, Maria Antonina; Ali, Fatima; Wouters, Bas J; Lee, Sangmin; Ritchie, Ellen K; Desai, Pinkal; Guzman, Monica L; Roboz, Gail J; Hassane, Duane C
2017-07-01
The presence of minimal residual disease (MRD) is widely recognized as a powerful predictor of therapeutic outcome in acute myeloid leukemia (AML), but methods of measurement and quantification of MRD in AML are not yet standardized in clinical practice. There is an urgent, unmet need for robust and sensitive assays that can be readily adopted as real-time tools for disease monitoring. NPM1 frameshift mutations are an established MRD marker present in half of patients with cytogenetically normal AML. However, detection is complicated by the existence of hundreds of potential frameshift insertions, clonal heterogeneity, and absence of sequence information when the NPM1 mutation is identified using capillary electrophoresis. Thus, some patients are ineligible for NPM1 MRD monitoring. Furthermore, a subset of patients with NPM1-mutated AML will have false-negative MRD results because of clonal evolution. To simplify and improve MRD testing for NPM1, we present a novel digital PCR technique composed of massively multiplex pools of insertion-specific primers that selectively detect mutated but not wild-type NPM1. By measuring reaction end points using digital PCR technology, the resulting single assay enables sensitive and specific quantification of most NPM1 exon 12 mutations in a manner that is robust to clonal heterogeneity, does not require NPM1 sequence information, and obviates the need for maintenance of hundreds of type-specific assays and associated plasmid standards. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Vimberg, Vladimir; Cavanagh, Jorunn Pauline; Benada, Oldřich; Kofroňová, Olga; Hjerde, Erik; Zieglerová, Leona; Balíková Novotná, Gabriela
2018-03-01
We investigated the genetic basis of glycopeptide resistance in laboratory-derived strains of S. haemolyticus with emphasis on differences between vancomycin and teicoplanin. The genomes of two stable teicoplanin-resistant laboratory mutants selected on vancomycin or teicoplanin were sequenced and compared to parental S. haemolyticus strain W2/124. Only the two non-synonymous mutations, VraS Q289K and WalK V550L were identified. No other mutations or genome rearrangements were detected. Increased cell wall thickness, resistance to lysostaphin-induced lysis and adaptation of cell growth rates specifically to teicoplanin were phenotypes observed in a sequenced strain with the VraS Q289K mutation. Neither of the VraS Q289K and WalK V550L mutations was present in the genomes of 121S. haemolyticus clinical isolates. However, all but two of the teicoplanin resistant strains carried non-synonymous SNPs in vraSRTU and walKR-YycHIJ operons pointing to their importance for the glycopeptide resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Brammeld, Jonathan S; Petljak, Mia; Martincorena, Inigo; Williams, Steven P; Alonso, Luz Garcia; Dalmases, Alba; Bellosillo, Beatriz; Robles-Espinoza, Carla Daniela; Price, Stacey; Barthorpe, Syd; Tarpey, Patrick; Alifrangis, Constantine; Bignell, Graham; Vidal, Joana; Young, Jamie; Stebbings, Lucy; Beal, Kathryn; Stratton, Michael R; Saez-Rodriguez, Julio; Garnett, Mathew; Montagut, Clara; Iorio, Francesco; McDermott, Ultan
2017-04-01
Drug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases, this is the consequence of specific gene mutations that have the potential to be targeted to resensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here, we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We used an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug-resistant patients. © 2017 Brammeld et al.; Published by Cold Spring Harbor Laboratory Press.
Neoplasia of the ampulla of Vater. Ki-ras and p53 mutations.
Scarpa, A.; Capelli, P.; Zamboni, G.; Oda, T.; Mukai, K.; Bonetti, F.; Martignoni, G.; Iacono, C.; Serio, G.; Hirohashi, S.
1993-01-01
Eleven tumors of the ampulla of Vater (5 stage IV and 2 stage II adenocarcinomas, 1 stage II papillary carcinoma, 1 neuroendocrine carcinoma, and 2 adenomas, one with foci of carcinoma) were examined for Ki-ras and p53 gene mutations by single-strand conformation polymorphism analysis and direct sequencing of polymerase chain reaction-amplified DNA fragments. Ki-ras mutations were found in one adenocarcinoma and in the adenoma with foci of carcinoma, both involving mainly the intraduodenal bile duct component of the ampulla. Seven cases showed p53 gene mutations: four advanced-stage adenocarcinomas, the papillary carcinoma, the neuroendocrine carcinoma, and the adenoma with foci of carcinoma. Nuclear accumulation of p53 protein was immunohistochemically detected in the morphologically high-grade areas of the five cancers harboring a p53 gene missense point mutation. The adenomas, the two frame shift-mutated cancers, and the adenomatous and low-grade cancer areas of mutated carcinomas were immunohistochemically negative. Our data suggest that in ampullary neoplasia 1) p53 mutations are common abnormalities associated with the transformation of adenomas and low-grade cancers into morphologically high-grade carcinomas, and 2) Ki-ras mutations are relatively less frequent and might be restricted to tumors originating from the bile duct component of the ampulla. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8475992
Mutations in the XLRS1 gene in Thai families with X-linked juvenile retinoschisis.
Atchaneeyasakul, La-ongsri; Trinavarat, Adisak; Pituksung, Auengporn; Jinda, Worapoj; Thongnoppakhun, Wanna; Limwongse, Chanin
2010-01-01
To identify genetic mutations of the XLRS1 gene and to describe the ocular phenotypes in two unrelated Thai patients with X-linked juvenile retinoschisis. Ophthalmic examination, including best-corrected visual acuity and fundus examination and photography, was performed in all participants. Electroretinography (ERG) and optical coherence tomography were performed when possible. All six exons of the XLRS1 gene were amplified, and mutation screening was determined by denaturing high-performance liquid chromatography and DNA sequencing. Two point mutations were identified, a novel missense mutation c.378A > G (p.D126G) in exon 5 and a reported mutation c.637C > T (p.R213W) in exon 6. The first proband with the p.D126G mutation developed vitreous hemorrhage in both eyes at age 7 months. Foveal and peripheral schisis with several inner layer holes were detected in both eyes. The second proband with the p.R213W mutation developed slightly blurred vision at age 10 years. Fundus examination showed numerous fine white dots at the macula without foveal or peripheral schisis. Electronegative ERG results were documented in both probands. A novel p.D126G mutation appeared to be associated with a severe phenotype with vitreous hemorrhage developing in infancy. Both intra- and interfamilial clinical variabilities were recognized in our patients.
Malapelle, Umberto; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; Rosell, Rafael; Savic, Spasenija; Bihl, Michel; Bubendorf, Lukas; Salto-Tellez, Manuel; de Biase, Dario; Tallini, Giovanni; Hwang, David H; Sholl, Lynette M; Luthra, Rajyalakshmi; Weynand, Birgit; Vander Borght, Sara; Missiaglia, Edoardo; Bongiovanni, Massimo; Stieber, Daniel; Vielh, Philippe; Schmitt, Fernando; Rappa, Alessandra; Barberis, Massimo; Pepe, Francesco; Pisapia, Pasquale; Serra, Nicola; Vigliar, Elena; Bellevicine, Claudio; Fassan, Matteo; Rugge, Massimo; de Andrea, Carlos E; Lozano, Maria D; Basolo, Fulvio; Fontanini, Gabriella; Nikiforov, Yuri E; Kamel-Reid, Suzanne; da Cunha Santos, Gilda; Nikiforova, Marina N; Roy-Chowdhuri, Sinchita; Troncone, Giancarlo
2017-08-01
Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences. Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology. All laboratories using NGS (n = 11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P = .171) and 5% (P = .063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n = 2) showed lower concordance in terms of mutation detection and mutant AF quantification. Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational assays, and this could lead to better standardization of molecular cytopathology procedures. Cancer Cytopathol 2017;125:615-26. © 2017 American Cancer Society. © 2017 American Cancer Society.
Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela
2013-03-18
Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.
Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela
2013-01-01
Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position. PMID:23512835
Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre
2013-12-01
Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.
MutScan: fast detection and visualization of target mutations by scanning FASTQ data.
Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia
2018-01-22
Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.
The mouse lymphoma assay detects recombination, deletion, and aneuploidy.
Wang, Jianyong; Sawyer, Jeffrey R; Chen, Ling; Chen, Tao; Honma, Masamitsu; Mei, Nan; Moore, Martha M
2009-05-01
The mouse lymphoma assay (MLA) uses the thymidine kinase (Tk) gene of the L5178Y/Tk(+/-)-3.7.2C mouse lymphoma cell line as a reporter gene to evaluate the mutagenicity of chemical and physical agents. The MLA is recommended by both the United States Food and Drug Administration and the United States Environmental Protection Agency as the preferred in vitro mammalian cell mutation assay for genetic toxicology screening because it detects a wide range of genetic alterations, including both point mutations and chromosomal mutations. However, the specific types of chromosomal mutations that can be detected by the MLA need further clarification. For this purpose, three chemicals, including two clastogens and an aneugen (3'-azido-3'-deoxythymidine, mitomycin C, and taxol), were used to induce Tk mutants. Loss of heterozygosity (LOH) analysis was used to select mutants that could be informative as to whether they resulted from deletion, mitotic recombination, or aneuploidy. A combination of additional methods, G-banding analysis, chromosome painting, and a real-time PCR method to detect the copy number (CN) of the Tk gene was then used to provide a detailed analysis. LOH involving at least 25% of chromosome 11, a normal karyotype, and a Tk CN of 2 would indicate that the mutant resulted from recombination, whereas LOH combined with a karyotypically visible deletion of chromosome 11 and a Tk CN of 1 would indicate a deletion. Aneuploidy was confirmed using G-banding combined with chromosome painting analysis for mutants showing LOH at every microsatellite marker on chromosome 11. From this analysis, it is clear that mouse lymphoma Tk mutants can result from recombination, deletion, and aneuploidy.
Wong, Danny Ka-Ho; Tsoi, Ottilia; Huang, Fung-Yu; Seto, Wai-Kay; Fung, James; Lai, Ching-Lung
2014-01-01
Nucleoside/nucleotide analogue for the treatment of chronic hepatitis B virus (HBV) infection is hampered by the emergence of drug resistance mutations. Conventional PCR sequencing cannot detect minor variants of <20%. We developed a modified co-amplification at lower denaturation temperature-PCR (COLD-PCR) method for the detection of HBV minority drug resistance mutations. The critical denaturation temperature for COLD-PCR was determined to be 78°C. Sensitivity of COLD-PCR sequencing was determined using serially diluted plasmids containing mixed proportions of HBV reverse transcriptase (rt) wild-type and mutant sequences. Conventional PCR sequencing detected mutations only if they existed in ≥25%, whereas COLD-PCR sequencing detected mutations when they existed in 5 to 10% of the viral population. The performance of COLD-PCR was compared to conventional PCR sequencing and a line probe assay (LiPA) using 215 samples obtained from 136 lamivudine- or telbivudine-treated patients with virological breakthrough. Among these 215 samples, drug resistance mutations were detected in 155 (72%), 148 (69%), and 113 samples (53%) by LiPA, COLD-PCR, and conventional PCR sequencing, respectively. Nineteen (9%) samples had mutations detectable by COLD-PCR but not LiPA, while 26 (12%) samples had mutations detectable by LiPA but not COLD-PCR, indicating both methods were comparable (P = 0.371). COLD-PCR was more sensitive than conventional PCR sequencing. Thirty-five (16%) samples had mutations detectable by COLD-PCR but not conventional PCR sequencing, while none had mutations detected by conventional PCR sequencing but not COLD-PCR (P < 0.0001). COLD-PCR sequencing is a simple method which is comparable to LiPA and superior to conventional PCR sequencing in detecting minor lamivudine/telbivudine resistance mutations. PMID:24951803
MELAS syndrome in a patient with a point mutation in MTTS1.
Lindberg, C; Moslemi, A-R; Oldfors, A
2008-02-01
BACKGROUND, OBJECTIVE AND METHODS: We describe a female patient with a mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome. As a child, she developed epilepsy and stroke-like episodes giving cognitive impairment and ataxia but no hearing impairment. At the age of 44 years, she suffered a cerebral sinus thrombosis which was warfarin treated. One month later, she developed an episode of severe acidosis associated with encephalopathy and myelopathy. She was found to harbour a 7512T>C mutation in the mitochondrial encoded tRNA(Ser(UCN)) gene (MTTS1). The mutation load was 91% in muscle and 24% in blood. Enzyme histochemical analysis of the muscle tissue showed numerous cytochrome c oxidase (COX)-negative fibres. Restriction fragment length polymorphism (RFLP) analysis of single muscle fibres showed significantly higher level (median 97%, range: 94-99%) of the mutation in the COX-negative fibres compared with COX-positive fibres (median 36%, range: 12-91%), demonstrating the pathogenic effect of the mutation. Different levels of heteroplasmy (range 34-61%) were detected in hair shafts analysed by RFLP. This case adds to the spectrum of clinical presentations, i.e. sinus thrombosis, in patients having MTTS1 mutations.
[Liquid Biopsy: Detection of Molecular Markers for Treatment Decisions in Lung Cancer].
Brückl, W M; Wirtz, R M; Bertsch, T; Ficker, J H; Jung, A
2017-03-01
Personalized, individualized, targeted therapy has successfully found entrance in the palliative treatment of lung cancer as they enable a personalized and individualized strategy going ahead with biomarker testing. Due to the crescending amount of predictive molecular and immunhistochemical analyses at different time points during therapy the need for more and actual tumor tissue increases; however these samples cannot always be obtained without major discomfort for the patients. Therefore, analyses from blood, the so called "liquid biopsy", is an alternative or additional method. Activating mutations in the EGFR gene and the inhibitory mutation T790 M can already be detected from blood during clinical routine. This review presents the status of liquid biopsy for diagnosis, prognosis and as predictive parameter during the course of therapy in lung cancer and gives an outlook on future developments. © Georg Thieme Verlag KG Stuttgart · New York.
2009-01-01
Background One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. Conclusion This automated process allows laboratories to discover DNA variations in a short time and at low cost. PMID:19835634
Bennett, Richard R; Schneider, Hal E; Estrella, Elicia; Burgess, Stephanie; Cheng, Andrew S; Barrett, Caitlin; Lip, Va; Lai, Poh San; Shen, Yiping; Wu, Bai-Lin; Darras, Basil T; Beggs, Alan H; Kunkel, Louis M
2009-10-18
One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive.These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels.The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. This automated process allows laboratories to discover DNA variations in a short time and at low cost.
Batissoco, Ana Carla; Abreu-Silva, Ronaldo Serafim; Braga, Maria Cristina Célia; Lezirovitz, Karina; Della-Rosa, Valter; Alfredo, Tabith; Otto, Paulo Alberto; Mingroni-Netto, Regina Célia
2009-02-01
Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness. Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6-D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected c.167delT, p.Trp24X, p.Val37Ile, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro. Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27Ile, p.Met34Thr, p.Ala40Ala, and p.Gly160Ser. Two previously reported mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. The present study demonstrates that mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.
Chen, Chun-Rong; Higashiyama, Takuya; Mizutori-Sasai, Yumiko; Ito, Mitsuru; Kubota, Sumihisa; Amino, Nobuyuki; Miyauchi, Akira; Rapoport, Basil
2010-01-01
Background Subclinical hyperthyroidism is usually associated with Graves' disease or toxic nodular goiter. Here we report a family with hereditary subclinical hyperthyroidism caused by a constitutively activating germline mutation of the thyrotropin receptor (TSHR) gene. Methods The proband was a 64-year-old Japanese woman who presented with a thyroid nodule and was found to be euthyroid with a suppressed serum TSH. The nodule was not hot. Although antibodies to thyroid peroxidase and thyroglobulin antibodies were present, TSHR antibodies were not detected by TSH-binding inhibition or by bioassay. Two of her middle-aged sons, but not her daughter, also had subclinical hyperthyroidism without TSHR antibodies. Without therapy, the clinical condition of the affected individuals remained unchanged over 3 years without development of overt hyperthyroidism. Results A novel heterozygous TSHR point mutation causing a glutamic acid to lysine substitution at codon 575 (E575K) in the second extracellular loop was detected in the three family members with subclinical hyperthyroidism, but was absent in her one daughter with normal thyroid function. In vitro functional studies of the E575K TSHR mutation demonstrated a weak, but significant, increase in constitutive activation of the cAMP pathway. Conclusion Although hereditary nonautoimmune overt hyperthyroidism is very rare, TSHR activating mutations as a cause of subclinical hyperthyroidism may be more common and should be considered in the differential diagnosis, especially if familial. PMID:20929407
[Analysis of EML4-ALK gene fusion mutation in patients with non-small cell lung cancer].
Wang, Xuzhou; Chen, Weisheng; Yu, Yinghao
2015-02-01
Non-small cell lung cancer (NSCLC) is the main type of lung cancer, and the related locus mutation detection research has become a hot direction of molecular targeted therapy, studying on gene mutation status of echinodem microtubule associated protein like 4-Anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR), detecting the sensitivity of EML4-ALK gene fusion and gene mutation of EGFR. EML4-ALK gene fusion in 85 cases of paraffin embedded tumor tissue and adjacent lung tissue was detected with the application of immunohistochemistry (IHC), Scorpions amplification refractory mutation system (Scorpions ARMS) fluorescence quantitative PCR and fluorescence in situ hybridization (FISH) technology, and EGFR gene in 18, 19, 20 and 21 exon mutation status was detected with the application of ARMS method. In 115 cases of NSCLC, IHC showed 32 cases with ALK (D5F3) expression, the expression rate was 27.8%; ARMS showed 27 cases with EML4-ALK fusion gene mutation, the mutation detection rate was 23.5%; 53 cases were detected with EGFR mutation, the mutation rate was 46%. While FISH showed 23 cases with EML4-ALK fusion gene mutation, the detection rate was 20%, slightly lower than the ARMS detection results, suggesting that ARMS more sensitive. The application of IHC, ARMS fluorescence quantitative PCR and FISH technology can make a rapid and accurate evaluation of EML4-ALK gene fusion.
Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário
2017-10-03
A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.
Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A
1993-01-01
A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064
Li, Yingmei; Pan, Wenying; Connolly, Ian D.; Reddy, Sunil; Nagpal, Seema
2017-01-01
Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD. PMID:26961773
Venselaar, Hanka; Te Beek, Tim A H; Kuipers, Remko K P; Hekkelman, Maarten L; Vriend, Gert
2010-11-08
Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools. In this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the protein's 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (bio)medical researchers. We tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPE's results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.
2012-01-01
Background Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance. Methods A total of 75 P. falciparum blood samples were collected from different districts of Pahang state, Malaysia. Single nucleotide polymorphisms in pfcrt gene (codons 76, 271, 326, 356 and 371) and pfmdr1 gene (codons 86 and 1246) were analysed by using mutation-specific nested PCR and restriction fragment length polymorphism (PCR-RFLP) methods. Results Mutations of pfcrt K76T and pfcrt R371I were the most prevalent among pfcrt gene mutations reported by this study; 52% and 77%, respectively. Other codons of the pfcrt gene and the positions 86 and 1246 of the pfmdr1 gene were found mostly of wild type. Significant associations of pfcrt K76T, pfcrt N326S and pfcrt I356T mutations with parasitaemia were also reported. Conclusion The high existence of mutant pfcrt T76 may indicate the low susceptibility of P. falciparum isolates to CQ in Peninsular Malaysia. The findings of this study establish baseline data on the molecular markers of P. falciparum CQ resistance, which may help in the surveillance of drug resistance in Peninsular Malaysia. PMID:22853645
Mallik, Saurav; Das, Smita; Kundu, Sudip
2016-01-01
Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.
Vavrova, Eva; Kantorova, Barbara; Vonkova, Barbara; Kabathova, Jitka; Skuhrova-Francova, Hana; Diviskova, Eva; Letocha, Ondrej; Kotaskova, Jana; Brychtova, Yvona; Doubek, Michael; Mayer, Jiri; Pospisilova, Sarka
2017-09-01
The hotspot c.7541_7542delCT NOTCH1 mutation has been proven to have a negative clinical impact in chronic lymphocytic leukemia (CLL). However, an optimal method for its detection has not yet been specified. The aim of our study was to examine the presence of the NOTCH1 mutation in CLL using three commonly used molecular methods. Sanger sequencing, fragment analysis and allele-specific PCR were compared in the detection of the c.7541_7542delCT NOTCH1 mutation in 201 CLL patients. In 7 patients with inconclusive mutational analysis results, the presence of the NOTCH1 mutation was also confirmed using ultra-deep next generation sequencing. The NOTCH1 mutation was detected in 15% (30/201) of examined patients. Only fragment analysis was able to identify all 30 NOTCH1-mutated patients. Sanger sequencing and allele-specific PCR showed a lower detection efficiency, determining 93% (28/30) and 80% (24/30) of the present NOTCH1 mutations, respectively. Considering these three most commonly used methodologies for c.7541_7542delCT NOTCH1 mutation screening in CLL, we defined fragment analysis as the most suitable approach for detecting the hotspot NOTCH1 mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A new sensitive PCR assay for one-step detection of 12 IDH1/2 mutations in glioma.
Catteau, Aurélie; Girardi, Hélène; Monville, Florence; Poggionovo, Cécile; Carpentier, Sabrina; Frayssinet, Véronique; Voss, Jesse; Jenkins, Robert; Boisselier, Blandine; Mokhtari, Karima; Sanson, Marc; Peyro-Saint-Paul, Hélène; Giannini, Caterina
2014-06-02
Mutations in isocitrate dehydrogenase genes IDH1 or IDH2 are frequent in glioma, and IDH mutation status is a strong diagnostic and prognostic marker. Current IDH mutation screening is performed with an immunohistochemistry (IHC) assay specific for IDH1 R132H, the most common mutation. Sequencing is recommended as a second-step test for IHC-negative or -equivocal cases. We developed and validated a new real-time quantitative polymerase chain reaction (PCR) assay for single-step detection of IDH1 R132H and 11 rare IDH1/2 mutations in formalin-fixed paraffin-embedded (FFPE) glioma samples. Performance of the IDH1/2 PCR assay was compared to IHC and Sanger sequencing. The IDH1/2 PCR assay combines PCR clamping for detection of 7 IDH1 and 5 IDH2 mutations, and Amplification Refractory Mutation System technology for specific identification of the 3 most common mutations (IDH1 R132H, IDH1 R132C, IDH2 R172K). Analytical sensitivity of the PCR assay for mutation detection was <5% for 11/12 mutations (mean: 3.3%), and sensitivity for mutation identification was very high (0.8% for IDH1 R132H; 1.2% for IDH1 R132C; 0.6% for IDH2 R172K). Assay performance was further validated on 171 clinical glioma FFPE samples; of these, 147 samples met the selection criteria and 146 DNA samples were successfully extracted. IDH1/2 status was successfully obtained in 91% of cases. All but one positive IDH1 R132H-IHC cases were concordantly detected by PCR and 3 were not detected by sequencing. Among the IHC-negative cases (n = 72), PCR detected 12 additional rare mutations (10 IDH1, 2 IDH2). All mutations detected by sequencing (n = 67) were concordantly detected by PCR and 5/66 sequencing-negative cases were PCR-positive (overall concordance: 96%). Analysis of synthetic samples representative of the 11 rare IDH1/2 mutations detected by the assay produced 100% correct results. The new IDH1/2 PCR assay has a high technical success rate and is more sensitive than Sanger sequencing. Positive concordance was 98% with IHC for IDH1 R132H detection and 100% with sequencing. The PCR assay can reliably be performed on FFPE samples and has a faster turnaround time than current IDH mutation detection algorithms. The assay should facilitate implementation of a comprehensive IDH1/2 testing protocol in routine clinical practice.
Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E
2013-05-15
Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
von Schnakenburg, C; Rumsby, G
1997-06-01
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
von Schnakenburg, C; Rumsby, G
1997-01-01
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270
[Detection of gene mutation in glucose-6-phosphate dehydrogenase deficiency by RT-PCR sequencing].
Lyu, Rong-Yu; Chen, Xiao-Wen; Zhang, Min; Chen, Yun-Sheng; Yu, Jie; Wen, Fei-Qiu
2016-07-01
Since glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary hemolytic erythrocyte enzyme deficiency, most cases have single nucleotide mutations in the coding region, and current test methods for gene mutation have some missed detections, this study aimed to investigate the feasibility of RT-PCR sequencing in the detection of gene mutation in G6PD deficiency. According to the G6PD/6GPD ratio, 195 children with anemia of unknown cause or who underwent physical examination between August 2013 and July 2014 were classified into G6PD-deficiency group with 130 children (G6PD/6GPD ratio <1.00) and control group with 65 children (G6PD/6GPD ratio≥1.00). The primer design and PCR amplification conditions were optimized, and RT-PCR sequencing was used to analyze the complete coding sequence and verify the genomic DNA sequence in the two groups. In the G6PD-deficiency group, the detection rate of gene mutation was 100% and 13 missense mutations were detected, including one new mutation. In the control group, no missense mutation was detected in 28 boys; 13 heterozygous missense mutations, 1 homozygous same-sense mutation (C1191T) which had not been reported in China and abroad, and 14 single nucleotide polymorphisms of C1311T were detected in 37 girls. The control group showed a high rate of missed detection of G6PD deficiency (carriers) in the specimens from girls (35%, 13/37). RT-PCR sequencing has a high detection rate of G6PD gene mutation and a certain value in clinical diagnosis of G6PD deficiency.
Asaka, Shiho; Yoshizawa, Akihiko; Nakata, Rie; Negishi, Tatsuya; Yamamoto, Hiroshi; Shiina, Takayuki; Shigeto, Shohei; Matsuda, Kazuyuki; Kobayashi, Yukihiro; Honda, Takayuki
2018-01-01
The detection of epidermal growth factor receptor (EGFR) mutations is necessary for the selection of suitable patients with non-small cell lung cancer (NSCLC) for treatment with EGFR tyrosine kinase inhibitors. Cytology specimens are known to be suitable for EGFR mutation detection, although tissue specimens should be prioritized; however, there are limited studies that examine the utility of bronchial lavage fluid (BLF) in mutation detection. The purpose of the present study was to investigate the utility of BLF specimens for the detection of EGFR mutations using a conventional quantitative EGFR polymerase chain reaction (PCR) assay. Initially, quantification cycle (Cq) values of cell pellets, cell-free supernatants and cell blocks obtained from three series of 1% EGFR mutation-positive lung cancer cell line samples were compared for mutation detection. In addition, PCR analysis of BLF specimens obtained from 77 consecutive NSCLC patients, detecting EGFR mutations was validated, and these results were compared with those for the corresponding formalin-fixed paraffin-embedded (FFPE) tissue specimens obtained by surgical resection or biopsy of 49 of these patients. The Cq values for mutation detection were significantly lower in the cell pellet group (average, 29.58) compared with the other groups, followed by those in cell-free supernatants (average, 34.15) and in cell blocks (average, 37.12) for all three series (P<0.05). Mutational status was successfully analyzed in 77 BLF specimens, and the results obtained were concordant with those of the 49 matching FFPE tissue specimens. Notably, EGFR mutations were even detected in 10 cytological specimens that contained insufficient tumor cells. EGFR mutation testing with BLF specimens is therefore a useful and reliable method, particularly when sufficient cancer cells are not obtained. PMID:29399190
Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S
2017-07-01
Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic microsatellite marker panel simplifies identification and selection of informative markers for linkage-based PGD of HEMA. Informative markers can also be easily co-amplified with mutation-containing F8 amplicons for combined mutation detection and linkage analysis. © 2017 International Society on Thrombosis and Haemostasis.
Wang, Xiaoguang; Wang, Jingshuai; Chen, Fei; Zhong, Zhengxiang; Qi, Lifeng
2018-01-01
The present study aimed to investigate the feasibility and effectiveness of detecting K-ras mutation by using magnetic nanoparticles in fecal samples of patients with pancreatic cancer at different stages. The novel methodology of K-ras mutation detection was compared to the existing methodology of cancer antigen (CA)19-9 examination. Patients with pancreatic cancer (n=88), pancreatic benign diseases who displayed chronic pancreatitis (n=35), pancreatic mucinous cyst neoplasms (n=10) and pancreatic serous cyst (n=9) admitted to the Department of Surgery, Jiaxing Second Hospital were enrolled in the present study. Fecal samples were collected from all patients, DNA was extracted and magnetic nanoprobe was then used to detect K-ras mutation. The results obtained using the novel magnetic nanoprobe detection technique showed a K-ras mutation rate of 81.8% (72/88) in the patients with pancreatic cancer and 18.5% (10/54) in patients with pancreatic benign diseases. In patients with pancreatic cancer, the K-ras mutation rate was comparable in stages I + IIA and IIB + III + IV (78.9 vs. 84.0%; P>0.05). The sensitivity and specificity of K-ras mutation for detection of pancreatic cancer was 81.8 and 81.5%, respectively. Sixty-eight pancreatic cancer patients had >37 U/ml CA99 with a sensitivity and specificity for pancreatic cancer detection of 77.3 and 77.8%, which was not significantly lower than detection by the fecal K-ras mutations (P>0.05). Combinational detection of fecal K-ras mutations and serum CA19-9 significantly increased the sensitivity regarding pancreatic cancer detection to 97.7% (P<0.05), while the specificity was not enhanced (80.9%; P>0.05) compared with fecal K-ras mutations or CA19-9 alone. The findings showed that the magnetic nanoprobe is able to detect fecal K-ras mutations in different stages of pancreatic cancer, with comparable sensitivity and specificity to CA19-9 examination for differentiating pancreatic cancer. Furthermore, combined detection of CA19-9 and K-ras mutations has enhanced sensitivity compared with CA19-9 alone.
Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus
NASA Astrophysics Data System (ADS)
Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.
2014-09-01
An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.
Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique
2005-06-01
Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.
Clinical and molecular survey in 124 Chinese patients with Leigh or Leigh-like syndrome.
Zhang, Y; Yang, Y L; Sun, F; Cai, X; Qian, N; Yuan, Y; Wang, Z X; Qi, Y; Xiao, J X; Wang, X Y; Zhang, Y H; Jiang, Y W; Qin, J; Wu, X R
2007-04-01
Leigh syndrome is the most common mitochondrial disorder in children characterized by necrotic lesions in the central nervous system. Both mitochondrial DNA (mtDNA) and nuclear DNA defects in the mitochondrial respiratory chain can lead to this disease. To characterize the clinical and genetic traits of Leigh or Leigh-like syndrome patients in China, 124 unrelated cases were collected between 1992 and 2005. Seventy-seven cases (62.1%) met the typical criteria of Leigh syndrome, including symmetrical bilateral abnormal signals in the basal ganglia, thalamus and brain stem, etc. Other cases (37.9%) belonged to Leigh-like syndrome with atypical clinical or radiological manifestations. Late-onset patients accounted for 20.2%, which is more than previously reported. Movement disorder was the most common symptoms in our patients. Thirty-two patients (25.8%) were confirmed to carry mutant genes. Among them, six cases (4.8%) have been demonstrated to have point mutations in mitochondrial DNA. Two separate patients were detected to have mutations on A8344G and A3243G. The T8993G point mutation was identified in one patient and T8993C in one other patient. SURF1 mutations associated with cytochrome-c oxidase deficiency were identified in 25 patients (20.2%). Four unreported variations have been identified in SURF1 gene from three patients. G604C was found in 22 patients. Only one patient had C214T mutation in the pyruvate dehydrogenase E1alpha subunit gene. In the remaining 92 patients (74.2%), a specific molecular dysfunction or underlying metabolic abnormality could not be identified.
Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies
Kortüm, F.; Chyrek, M.; Fuchs, S.; Albrecht, B.; Gillessen-Kaesbach, G.; Mütze, U.; Seemanova, E.; Tinschert, S.; Wieczorek, D.; Rosenberger, G.; Kutsche, K.
2011-01-01
Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24, respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT, no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy. PMID:22570643
Zhang, Zhifang; Zhu, Zengrong; Ma, Zhonghua; Li, Hongye
2009-05-31
Sixty-five isolates of Pencillium digitatum (Pers.:Fr) Sacc., a causative agent of green mold of postharvest citrus, were collected from various locations in Zhejiang province in 2000, 2005 and 2006, and assayed for their sensitivity to the quinone outside inhibitor (QoI) fungicide azoxystrobin. The results showed that azoxystrobin is highly effective against P. digitatum, in vitro, and that the effective concentrations resulting in reduction of conidial germination and mycelial growth by 50% (EC(50)) averaged 0.0426 microg/ml and 0.0250 microg/ml, respectively. Twenty-eight azoxystrobin-resistant mutants were obtained by UV mutagenesis and subsequent selection on medium amended with azoxystrobin (12 microg/ml) and salicylhydroxamic acid. All obtained mutants were highly resistant to azoxystrobin and their resistance was genetically stable. Analysis of the cytochrome b gene structure of P. digitatum (Pdcyt b) showed the absence of type I intron in the first hot spot region of mutation. These results indicate that P. digitatum is likely to evolve high levels of resistance to azoxystrobin after its application. Analysis of partial sequences of Pdcyt b from both the azoxystrobin-sensitive parental isolate and the 28 azoxystrobin-resistant mutants revealed that a point mutation, which leads to the substitution at code 143 of alanine for glycine (G143A), is responsible for the observed azoxystrobin resistance in the laboratory mutants. Based on this point mutation, two allele-specific PCR primers were designed and optimized for allele-specific PCR detection of azoxystrobin-resistant isolates of P. digitatum.
Yu, Jiang-Yong; Yu, Si-Fan; Wang, Shu-Hang; Bai, Hua; Zhao, Jun; An, Tong-Tong; Duan, Jian-Chun; Wang, Jie
2016-03-21
Epidermal growth factor receptor (EGFR) mutations, including a known exon 19 deletion (19 del) and exon 21 L858R point mutation (L858R mutation), are strong predictors of the response to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment in lung adenocarcinoma. However, whether patients carrying EGFR 19 del and L858R mutations exhibit different responsiveness to EGFR-TKIs and what are the potential mechanism for this difference remain controversial. This study aimed to investigate the clinical outcomes of EGFR-TKI treatment in patients with EGFR 19 del and L858R mutations and explore the genetic heterogeneity of tumors with the two mutation subtypes. Of 1127 patients with advanced lung adenocarcinoma harboring EGFR 19 del or L858R mutations, 532 received EGFR-TKI treatment and were included in this study. EGFR 19 del and L858R mutations were detected by using denaturing high-performance liquid chromatography (DHPLC). T790M mutation, which is a common resistant mutation on exon 20 of EGFR, was detected by amplification refractory mutation system (ARMS). Next-generation sequencing (NGS) was used to explore the genetic heterogeneity of tumors with EGFR 19 del and L858R mutations. Of the 532 patients, 319 (60.0%) had EGFR 19 del, and 213 (40.0%) had L858R mutations. The patients with EGFR 19 del presented a significantly higher overall response rate (ORR) for EGFR-TKI treatment (55.2% vs. 43.7%, P = 0.017) and had a longer progression-free survival (PFS) after first-line EGFR-TKI treatment (14.4 vs. 11.4 months, P = 0.034) compared with those with L858R mutations. However, no statistically significant difference in overall survival (OS) was observed between the two groups of patients. T790M mutation status was analyzed in 88 patients before EGFR-TKI treatment and 134 after EGFR-TKI treatment, and there was no significant difference in the co-existence of T790M mutation with EGFR 19 del and L858R mutations before EGFR-TKI treatment (5.6% vs. 8.8%, P = 0.554) or after treatment (24.4% vs. 35.4%, P = 0.176). In addition, 24 patients with EGFR 19 del and 19 with L858R mutations were analyzed by NGS, and no significant difference in the presence of multiple somatic mutations was observed between the two genotypes. Patients with EGFR 19 del exhibit longer PFS and higher ORR compared with those with L858R mutations. Whether the heterogeneity of tumors with EGFR 19 del and L858R mutations contribute to a therapeutic response difference needs further investigation.
Sarkar, F H; Valdivieso, M; Borders, J; Yao, K L; Raval, M M; Madan, S K; Sreepathi, P; Shimoyama, R; Steiger, Z; Visscher, D W
1995-12-01
The p53 tumor suppressor gene has been found to be altered in almost all human solid tumors, whereas K-ras gene mutations have been observed in a limited number of human cancers (adenocarcinoma of colon, pancreas, and lung). Studies of mutational inactivation for both genes in the same patient's sample on non-small-cell lung cancer have been limited. In an effort to perform such an analysis, we developed and compared methods (for the mutational detection of p53 and K-ras gene) that represent a modified and universal protocol, in terms of DNA extraction, polymerase chain reaction (PCR) amplification, and nonradioisotopic PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, which is readily applicable to either formalin-fixed, paraffin-embedded tissues or frozen tumor specimens. We applied this method to the evaluation of p53 (exons 5-8) and K-ras (codon 12 and 13) gene mutations in 55 cases of non-small-cell lung cancer. The mutational status in the p53 gene was evaluated by radioisotopic PCR-SSCP and compared with PCR-SSCP utilizing our standardized nonradioisotopic detection system using a single 6-microns tissue section. The mutational patterns observed by PCR-SSCP were subsequently confirmed by PCR-DNA sequencing. The mutational status in the K-ras gene was similarly evaluated by PCR-SSCP, and the specific mutation was confirmed by Southern slot-blot hybridization using 32P-labeled sequence-specific oligonucleotide probes for codons 12 and 13. Mutational changes in K-ras (codon 12) were found in 10 of 55 (18%) of non-small-cell lung cancers. Whereas adenocarcinoma showed K-ras mutation in 33% of the cases at codon 12, only one mutation was found at codon 13. As expected, squamous cell carcinoma samples (25 cases) did not show K-ras mutations. Mutations at exons 5-8 of the p53 gene were documented in 19 of 55 (34.5%) cases. Ten of the 19 mutations were single nucleotide point mutations, leading to amino acid substitution. Six showed insertional mutation, and three showed deletion mutations. Only three samples showed mutations of both K-ras and p53 genes. We conclude that although K-ras and p53 gene mutations are frequent in non-small-cell lung cancer, mutations of both genes in the same patient's samples are not common. We also conclude that this universal nonradioisotopic method is superior to other similar methods and is readily applicable to the rapid screening of large numbers of formalin-fixed, paraffin-embedded or frozen samples for the mutational analysis of multiple genes.
Naghib, M; Kheirkhah, B; Mohebbi, R; Sadeg, L
2017-08-15
Bacterial infections play a significant role in causing or intensifying the attacks in MS and there are reports based on the interference of Mycoplasma with a global distribution. Mycoplasma causes autoimmune attacks by imitating the host cell membrane, which is a way of resistance to antibiotics. The purpose of this study was to evaluate the molecular identification of mutations causing resistance to tetracycline in Mycoplasma isolated from MS patients. A total number of 32 cerebrospinal fluid samples and 48 urinal fluid samples were collected from MS patients. The samples were enriched in 7 PPLO broth for one night and continuous cultivation in agar PPLO and PPLO broth for one week. DNA was extracted, and then nested PCR and Doublex PCR were used for bacteria genus identification and the presence of potential tetracycline-resistant alleles (rrs4 and rrs3), respectively. A total number of 12 samples created colonies. However, only 5 samples (1 cerebrospinal fluid and 4 urinal samples) were detected to be Mycoplasma. The urinal samples showed the desired alleles and were tetracycline-resistant. By sequencing the PCR products, it was shown that these alleles have mutated in various points. Based on the results it seems that the resistant mutated Mycoplasma can be detected in MS patients in our population and may be considered as a risk factor for the disease.
Recurrent and founder mutations in the PMS2 gene
Tomsic, Jerneja; Senter, Leigha; Liyanarachchi, Sandya; Clendenning, Mark; Vaughn, Cecily P.; Jenkins, Mark A.; Hopper, John L.; Young, Joanne; Samowitz, Wade; de la Chapelle, Albert
2012-01-01
Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However some mutations are observed repeatedly, across individuals not known to be related, due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations, one (c.903G>T) a probable founder, and one (c.1A>G) where founder mutation status could not be evaluated. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. PMID:22577899
Recurrent and founder mutations in the PMS2 gene.
Tomsic, J; Senter, L; Liyanarachchi, S; Clendenning, M; Vaughn, C P; Jenkins, M A; Hopper, J L; Young, J; Samowitz, W; de la Chapelle, A
2013-03-01
Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. © 2012 John Wiley & Sons A/S.
Hara, Kieko; Saito, Tsuyoshi; Hayashi, Takuo; Yimit, Alkam; Takahashi, Michiko; Mitani, Keiko; Takahashi, Makoto; Yao, Takashi
2015-09-01
Appendiceal mucinous tumors (AMTs) are classified as low-grade appendiceal mucinous neoplasms (LAMNs) or mucinous adenocarcinomas (MACs), although their carcinogenesis is not well understood. As somatic activating mutations of GNAS are considered to be characteristic of LAMNs while TP53 mutations have been shown to be specific to MACs, MACs are unlikely to result from transformation of LAMNs. However, emerging evidence also shows the presence of GNAS mutations in MACs. We examined 16 AMTs (11 LAMNs and 5 MACs) for genetic alterations of GNAS, KRAS, BRAF, TP53, CTNNB1, and TERT promoter in order to elucidate the possibility of a shared genetic background in the two tumor types. Extensive histological examination revealed the presence of a low-grade component in all cases of MAC. GNAS mutations were detected in two LAMNs and in one MAC, although the GNAS mutation in this MAC was a nonsense mutation (Q227X) expected not to be activating mutation. TP53 mutations were detected in three LAMNs; they were frequently detected in MACs. KRAS mutations were detected in three LAMNs and three MACs, and CTNNB1 mutations were detected in two LAMNs. KRAS mutation and activating mutation of GNAS occurred exclusively in AMTs. BRAF and TERT mutations were not detected. Overexpression of p53 was observed in only two MACs, and p53 immunostaining clearly discriminated the high-grade lesion from a low-grade component in one. These findings suggest that p53 overexpression plays an important role in the carcinogenesis of AMTs and that, in addition to mutations of GNAS, KRAS and TP53 alterations might be shared by AMTs, thus providing evidence for the possible progression of LAMNs to MAC. Copyright © 2015 Elsevier GmbH. All rights reserved.
Tatematsu, Tsutomu; Suzuki, Ayumi; Oda, Risa; Sakane, Tadashi; Kawano, Osamu; Haneda, Hiroshi; Moriyama, Satoru; Sasaki, Hidefumi; Nakanishi, Ryoichi
2017-01-01
Background A gatekeeper T790M mutation is thought to cause resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment. The detection of a 2nd mutation is important for planning the next therapy when patients acquire resistance to the first line EGFR-TKI. Methods We used a competitive allele-specific polymerase chain reaction (CAST-PCR) to analyze the incidence and clinical significance of T790M mutations in 153 lung adenocarcinomas with EGFR-activating mutations. To increase the sensitivity and specificity of the detection of T790M mutations, we subjected 20 of the 153 cases to a digital PCR. The genomic DNAs were extracted from frozen, surgically resected tumor tissue specimens. Results The CAST-PCR detected T790M mutations in 45 (29.4%) of the 153 cases. The analytical sensitivity in the detection T790M mutations was 0.13–2.65% (average 0.27%, median 0.20%). In contrast, the digital PCR, detected T790M mutations in 8 (40%) out of 20 cases. Conclusions Our study shows that the pretreatment incidence of T790M mutation was less than that reported in previous studies. In order to clinically use pretreatment EGFR T790M mutation identification method, we should clarify the adequate methods and tissue preserved status. PMID:28932544
Li, Xiaodong; Liu, Yan; Xin, Shaojie; Ji, Dong; You, Shaoli; Hu, Jinhua; Zhao, Jun; Wu, Jingjing; Liao, Hao; Zhang, Xin-Xin; Xu, Dongping
2017-06-01
The study aimed to investigate the association of prevalent genotypes in China (HBV/C and HBV/B) with HBV drug-resistant mutations. A total of 13,847 nucleos(t)ide analogue (NA)-treated patients with chronic HBV infection from North China were enrolled. HBV genotypes and resistant mutations were determined by direct sequencing and confirmed by clonal sequencing if necessary. HBV/B, HBV/C, and HBV/D occupied 14.3%, 84.9%, and 0.8% across the study population, respectively. NA usage had no significant difference between HBV/B- and HBV/C-infected patients. Lamivudine-resistant mutations were more frequently detected in HBV/C-infected patients, compared with HBV/B-infected patients (31.67% vs. 25.26%, p < 0.01). Adefovir- and entecavir-resistant mutation detection rates were similar, but the mutational pattern was different between the two genotypes. For adefovir-resistant mutations, HBV/C-infected patients had a higher detection rate of rtA181 V (HBV/C 5.29% vs. HBV/B 1.36%, p < 0.01) and a lower detection rate of rtN236T (2.70% vs. 6.54%, p < 0.01). For entecavir-resistant mutations, HBV/C-infected patients had a higher detection rate of rtM204 V/I+T184 substitution or S202G/C (3.66% vs. 2.16%, p < 0.01) and a lower detection rate of rtM204 V/I+M250 V/I/L substitution (0.67% vs. 1.46%, p < 0.01). Multidrug-resistant mutations (defined as coexistence of mutation to nucleoside and nucleotide analogues) were detected in 104 patients. HBV/C-infected patients had a higher detection rate of multidrug-resistant mutation than HBV/B-infected patients (0.83% vs. 0.35%, p < 0.05). The study for the first time clarified that HBV/C-infected patients had a higher risk to develop multidrug-resistant mutations, compared with HBV/B-infected patients; and HBV/C- and HBV/B-infected patients had different inclinations in the ETV-resistant mutational pattern.
PTEN/MMAC1 Mutations in Hepatocellular Carcinomas: Somatic Inactivation of Both Alleles in Tumors
Kawamura, Naoki; Nagai, Hisaki; Bando, Koichi; Koyama, Masaaki; Matsumoto, Satoshi; Tajiri, Takashi; Onda, Masahiko; Fujimoto, Jiro; Ueki, Takahiro; Konishi, Noboru; Shiba, Tadayoshi
1999-01-01
Allelic loss of loci on chromosome 10q occurs frequently in hepatocellular carcinomas. Somatic mutations of the PTEN/MMAC1 gene on this chromosome at 10q23 were recently identified in sporadic cancers of the uterus, brain, prostate and breast. To investigate the potential role of PTEN/MMAC1 gene in the genesis of hepatocellular carcinomas, we examined 96 tumors for allelic loss on 10q and also for subtle mutations anywhere within the coding region of PTEN/MMAC1 gene. Allelic loss was identified in 25 of the 89 (27%) tumors that were informative for polymorphic markers in the region. Somatic mutations were identified in five of those tumors: three frameshift mutations, a 1‐bp insertion at codon 83–84 in exon 4 and two 4‐bp deletions, both at codon 318–319 in exon 8; two C‐to‐G transversion mutation, both at ‐9 bp from the initiation codon in the 5’non‐coding region of exon 1. No missense mutation was observed in this panel of tumors. In most of the informative tumors carrying intragenic mutations of one allele, we were able to detect loss of heterozygosity as well. These findings suggest that two alleles of the PTEN/MMAC1 gene may be inactivated by a combination of intragenic point mutation on one allele and loss of chromosomal material on the other allele in some of these tumors. PMID:10363579
Pairwise contact energy statistical potentials can help to find probability of point mutations.
Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S
2017-01-01
To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi
2016-03-17
Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.
Pack, S D; Zbar, B; Pak, E; Ault, D O; Humphrey, J S; Pham, T; Hurley, K; Weil, R J; Park, W S; Kuzmin, I; Stolle, C; Glenn, G; Liotta, L A; Lerman, M I; Klausner, R D; Linehan, W M; Zhuang, Z
1999-11-01
von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited cancer syndrome predisposing to a variety of tumor types that include retinal hemangioblastomas, hemangioblastomas of the central nervous system, renal cell carcinomas, pancreatic cysts and tumors, pheochromocytomas, endolymphatic sac tumors, and epididymal cystadenomas [W. M. Linehan et al., J. Am. Med. Assoc., 273: 564-570, 1995; E. A. Maher and W. G. Kaelin, Jr., Medicine (Baltimore), 76: 381-391, 1997; W. M. Linehan and R. D. Klausner, In: B. Vogelstein and K. Kinzler (eds.), The Genetic Basis of Human Cancer, pp. 455-473, McGraw-Hill, 1998]. The VHL gene was localized to chromosome 3p25-26 and cloned [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. Germline mutations in the VHL gene have been detected in the majority of VHL kindreds. The reported frequency of detection of VHL germline mutations has varied from 39 to 80% (J. M. Whaley et al., Am. J. Hum. Genet., 55: 1092-1102, 1994; Clinical Research Group for Japan, Hum. Mol. Genet., 4: 2233-2237, 1995; F. Chen et al., Hum. Mutat., 5: 66-75, 1995; E. R. Maher et al., J. Med. Genet., 33: 328-332, 1996; B. Zbar, Cancer Surv., 25: 219-232, 1995). Recently a quantitative Southern blotting procedure was found to improve this frequency (C. Stolle et al., Hum. Mutat., 12: 417-423, 1998). In the present study, we report the use of fluorescence in situ hybridization (FISH) as a method to detect and characterize VHL germline deletions. We reexamined a group of VHL patients shown previously by single-strand conformation and sequencing analysis not to harbor point mutations in the VHL locus. We found constitutional deletions in 29 of 30 VHL patients in this group using cosmid and P1 probes that cover the VHL locus. We then tested six phenotypically normal offspring from four of these VHL families: two were found to carry the deletion and the other four were deletion-free. In addition, germline mosaicism of the VHL gene was identified in one family. In sum, FISH was found to be a simple and reliable method to detect VHL germline deletions and practically useful in cases where other methods of screening have failed to detect a VHL gene abnormality.
Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni
2016-09-01
Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.
Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia
Mkulama, Mtawa AP; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano
2008-01-01
Background In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. Methods A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Results Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. Conclusion This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll. PMID:18495008
Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia.
Mkulama, Mtawa A P; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano
2008-05-21
In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll.
Lamy, Pierre-Jean; Castan, Florence; Lozano, Nicolas; Montélion, Cécile; Audran, Patricia; Bibeau, Frédéric; Roques, Sylvie; Montels, Frédéric; Laberenne, Anne-Claire
2015-07-01
The detection of the BRAF V600E mutation in melanoma samples is used to select patients who should respond to BRAF inhibitors. Different techniques are routinely used to determine BRAF status in clinical samples. However, low tumor cellularity and tumor heterogeneity can affect the sensitivity of somatic mutation detection. Digital PCR (dPCR) is a next-generation genotyping method that clonally amplifies nucleic acids and allows the detection and quantification of rare mutations. Our aim was to evaluate the clinical routine performance of a new dPCR-based test to detect and quantify BRAF mutation load in 47 paraffin-embedded cutaneous melanoma biopsies. We compared the results obtained by dPCR with high-resolution melting curve analysis and pyrosequencing or with one of the allele-specific PCR methods available on the market. dPCR showed the lowest limit of detection. dPCR and allele-specific amplification detected the highest number of mutated samples. For the BRAF mutation load quantification both dPCR and pyrosequencing gave similar results with strong disparities in allele frequencies in the 47 tumor samples under study (from 0.7% to 79% of BRAF V600E mutations/sample). In conclusion, the four methods showed a high degree of concordance. dPCR was the more-sensitive method to reliably and easily detect mutations. Both pyrosequencing and dPCR could quantify the mutation load in heterogeneous tumor samples. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung
2017-01-01
Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388
Distortion in the spacer region of Pm during activation of middle transcription of phage Mu.
Artsimovitch, I; Kahmeyer-Gabbe, M; Howe, M M
1996-01-01
Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point. Images Fig. 2 Fig. 3 Fig. 4 PMID:8790343
Thistlethwaite, William A; Moses, Linda M; Hoffbuhr, Kristen C; Devaney, Joseph M; Hoffman, Eric P
2003-05-01
Rett syndrome is a neurodevelopmental disorder that affects females almost exclusively, and in which eight common point mutations on the X-linked MeCP2 gene are knows to cause over 70% of mutation-positive cases. We explored the use of a novel platform to detect the eight common mutations in Rett syndrome patients to expedite and simplify the process of identification of known genotypes. The Nanogen workstation consists of a two-color assay based on electric hybridization and thermal discrimination, all performed on an electronically active NanoChip. This genotyping platform was tested on 362 samples of a pre-determined genotype, which had been previously identified by a combination of DHPLC (denaturing high performance liquid chromatography) and direct sequencing. This genotyping technique proved to be rapid, facile, and displayed a specificity of 100% with 3% ambiguity. In addition, we present consecutive testing of seven mutations on a single pad of the NanoChip. This was accomplished by tagging down two amplimers together and serially hybridizing for seven different loci, allowing us to genotype samples for seven of the eight common Rett mutations on a single pad. This novel method displayed the same level of specificity and accuracy as the single amplimer reactions, and proved to be faster and more economical.
Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li
2009-03-01
The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.
Singh, O P; Dykes, C L; Sharma, G; Das, M K
2015-01-01
Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Warner, Jeremy L; Rioth, Matthew J; Mandl, Kenneth D; Mandel, Joshua C; Kreda, David A; Kohane, Isaac S; Carbone, Daniel; Oreto, Ross; Wang, Lucy; Zhu, Shilin; Yao, Heming; Alterovitz, Gil
2016-07-01
Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical interpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations. Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)® PCM, visualizes genomic information in real time, comparing a patient's diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the Health Level Seven® Fast Healthcare Interoperability Resources (FHIR)® standard; otherwise, the prototype is a normal SMART on FHIR app. The PCM prototype can rapidly present a visualization that compares a patient's somatic genomic alterations against a distribution built from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important feedback about the prototype's strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to include cancer specimens with multiple mutations. PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel with external knowledge bases. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Garcia-Montero, Andres C; Jara-Acevedo, Maria; Alvarez-Twose, Ivan; Teodosio, Cristina; Sanchez-Muñoz, Laura; Muñiz, Carmen; Muñoz-Gonzalez, Javier I; Mayado, Andrea; Matito, Almudena; Caldas, Carolina; Morgado, Jose M; Escribano, Luis; Orfao, Alberto
2016-02-11
Multilineage involvement of bone marrow (BM) hematopoiesis by the somatic KIT D816V mutation is present in a subset of adult indolent systemic mastocytosis (ISM) patients in association with a poorer prognosis. Here, we investigated the potential involvement of BM mesenchymal stem cells (MSCs) from ISM patients by the KIT D816V mutation and its potential impact on disease progression and outcome. This mutation was investigated in highly purified BM MSCs and other BM cell populations from 83 ISM patients followed for a median of 116 months. KIT D816V-mutated MSCs were detected in 22 of 83 cases. All MSC-mutated patients had multilineage KIT mutation (100% vs 30%, P = .0001) and they more frequently showed involvement of lymphoid plus myeloid BM cells (59% vs 22%; P = .03) and a polyclonal pattern of inactivation of the X-chromosome of KIT-mutated BM mast cells (64% vs 0%; P = .01) vs other multilineage ISM cases. Moreover, presence of KIT-mutated MSCs was associated with more advanced disease features, a greater rate of disease progression (50% vs 17%; P = .04), and a shorter progression-free survival (P ≤ .003). Overall, these results support the notion that ISM patients with mutated MSCs may have acquired the KIT mutation in a common pluripotent progenitor cell, prior to differentiation into MSCs and hematopoietic precursor cells, before the X-chromosome inactivation process occurs. From a clinical point of view, acquisition of the KIT mutation in an earlier BM precursor cell confers a significantly greater risk for disease progression and a poorer outcome. © 2016 by The American Society of Hematology.
PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.
The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called themore » protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.« less
Soverini, Simona; De Benedittis, Caterina; Castagnetti, Fausto; Gugliotta, Gabriele; Mancini, Manuela; Bavaro, Luana; Machova Polakova, Katerina; Linhartova, Jana; Iurlo, Alessandra; Russo, Domenico; Pane, Fabrizio; Saglio, Giuseppe; Rosti, Gianantonio; Cavo, Michele; Baccarani, Michele; Martinelli, Giovanni
2016-08-02
Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal responders with no treatment changes. DS enables a larger window of detection of emerging BCR-ABL1 KD mutations predicting for an impending relapse. A 'Warning' response may represent a rational trigger, besides 'Failure', for DS-based mutation screening in CML patients undergoing second-line TKI therapy.
Wood-Bouwens, Christina; Lau, Billy T; Handy, Christine M; Lee, HoJoon; Ji, Hanlee P
2017-09-01
We describe a single-color digital PCR assay that detects and quantifies cancer mutations directly from circulating DNA collected from the plasma of cancer patients. This approach relies on a double-stranded DNA intercalator dye and paired allele-specific DNA primer sets to determine an absolute count of both the mutation and wild-type-bearing DNA molecules present in the sample. The cell-free DNA assay uses an input of 1 ng of nonamplified DNA, approximately 300 genome equivalents, and has a molecular limit of detection of three mutation DNA genome-equivalent molecules per assay reaction. When using more genome equivalents as input, we demonstrated a sensitivity of 0.10% for detecting the BRAF V600E and KRAS G12D mutations. We developed several mutation assays specific to the cancer driver mutations of patients' tumors and detected these same mutations directly from the nonamplified, circulating cell-free DNA. This rapid and high-performance digital PCR assay can be configured to detect specific cancer mutations unique to an individual cancer, making it a potentially valuable method for patient-specific longitudinal monitoring. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Sloane, Hillary S; Landers, James P; Kelly, Kimberly A
2016-07-01
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário
2017-01-01
A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564
An exon 4 mutation identified in the majority of South African familial hypercholesterolaemics.
Kotze, M J; Warnich, L; Langenhoven, E; du Plessis, L; Retief, A E
1990-01-01
The prevalence of familial hypercholesterolaemia (FH) is significantly higher in the Afrikaans speaking population (Afrikaners) of South Africa than reported in most other populations. A founder gene effect has been proposed to explain the high FH frequency, implying that the same low density lipoprotein (LDL) receptor gene defect is present in the majority of affected Afrikaners. By using DNA amplification and sequence determination, we have detected a point mutation in DNA from two Afrikaner FH homozygotes. A cytosine to guanine base substitution at nucleotide position 681 of the LDL receptor cDNA results in an amino acid change from aspartic acid to glutamic acid at residue 206 in the cysteine rich ligand binding domain of the LDL receptor. Since three previously mapped transport deficient alleles of the LDL receptor were also traced to cysteine rich repeats of the protein, these results suggest that the mutation is responsible for the receptor defective mutation predominantly found in Afrikaner FH homozygotes. The mutation gives rise to an additional DdeI restriction site in DNA of affected subjects and segregation of the mutation with the disease was confirmed in five large Afrikaner FH families. We predict that 65% of affected South African Afrikaners carry this particular base substitution. Amplification of genomic DNA, using the polymerase chain reaction method, and restriction enzyme analysis now permit accurate diagnosis of the mutation in subjects with FH. Images PMID:2352257
Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.
Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo
2018-04-01
Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Chakravorty, Soumitesh; Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M; Davidow, Amy; Denkinger, Claudia M; Persing, David; Kwiatkowski, Robert; Jones, Martin; Alland, David
2017-08-29
The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and specificity with pulmonary samples, its sensitivity has been lower with smear-negative pulmonary samples and extrapulmonary samples. In addition, the prediction of rifampin resistance (RIF-R) in paucibacillary samples and for a few rpoB mutations has resulted in both false-positive and false-negative results. The present study is the first demonstration of the design features and operational characteristics of an improved Xpert Ultra assay. This study also shows that the Ultra format overcomes many of the known shortcomings of Xpert. The new assay should significantly improve TB detection, especially in patients with paucibacillary disease, and provide more-reliable detection of RIF-R. Copyright © 2017 Chakravorty et al.
[Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].
Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli
2017-08-10
To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.
Tu, Michael; Chia, David; Wei, Fang; Wong, David
2016-01-21
Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed.
Tu, Michael; Chia, David; Wei, Fang; Wong, David
2015-01-01
Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed. PMID:26645892
NASA Astrophysics Data System (ADS)
Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian
2014-05-01
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.
The Epidemiology of Leber Hereditary Optic Neuropathy in the North East of England
Man, P. Y. W.; Griffiths, P. G.; Brown, D. T.; Howell, N.; Turnbull, D. M.; Chinnery, P. F.
2003-01-01
We performed the first population-based clinical and molecular genetic study of Leber hereditary optic neuropathy (LHON) in a population of 2,173,800 individuals in the North East of England. We identified 16 genealogically unrelated families who harbor one of the three primary mitochondrial DNA (mtDNA) mutations that cause LHON. Two of these families were found to be linked genetically to a common maternal founder. A de novo mtDNA mutation (G3460A) was identified in one family. The minimum point prevalence of visual failure due to LHON within this population was 3.22 per 100,000 (95% CI 2.47–3.97 per 100,000), and the minimum point prevalence for mtDNA LHON mutations was 11.82 per 100,000 (95% CI 10.38–13.27 per 100,000). These results indicate that LHON is not rare but has a population prevalence similar to autosomally inherited neurological disorders. The majority of individuals harbored only mutant mtDNA (homoplasmy), but heteroplasmy was detected in ∼12% of individuals. Overall, however, ∼33% of families with LHON had at least one heteroplasmic individual. The high incidence of heteroplasmy in pedigrees with LHON raises the possibility that a closely related maternal relative of an index case may not harbor the mtDNA mutation, highlighting the importance of molecular genetic testing for each maternal family member seeking advice about their risks of visual failure. PMID:12518276
Li, Xuefei; Zhou, Caicun
2017-01-01
Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024
Du, J; Wang, Z; Yang, L; Di, J; Zhang, J G; Wang, T Y; Liu, D G
2018-01-23
Objective: To evaluate the consistency in detection of T790M mutation of epidermal growth factor receptor gene (EGFR) in plasma and tumor samples of patients with lung adenocarcinoma. Methods: The tumor tissues or cytological specimens of 12 patients with operable lung adenocarcinoma(stage Ⅰ-ⅢA) and 100 patients with advanced stage ⅢB-Ⅳ lung adenocarcinoma were collected, among which 11 patients showed acquired resistance for gefitinib (11/100). In the same period, peripheral blood samples were collected from all patients and 50 healthy volunteers. Amplification refractory mutation system (ARMS) was used to detect EGFR mutations in tumor specimens. Next Generation Sequencing(NGS) based circulating single-molecule amplification and resequencing technology (cSMART)was performed to quantitatively detect the EGFR mutations in circulating tumor DNA (ctDNA) from plasma specimens. Results: The sensitivity, specificity and concordance rate of EGFR T790M mutation between plasma and tissue specimens from 100 advanced stage patients were 50.0%, 72.9% and 72.0%, respectively. For L858R mutation and exon 19 deletion mutations, the above mentioned sensitivity, specificity and concordance rate were 91.7%, 100.0%, and 98.0%, as well as 79.2%, 100.0% and 95.0%, respectively. The L858R mutation and exon 19 deletion mutations were not detected in plasma of 50 healthy volunteers, whereasT790M mutation(1.0±0.0 copies) was found in 7 individuals(7/50, 14.0%). Similarly, in 12 resectable patients, 4 (4/12, 33.3%) T790M mutations were found in plasma (1.2±0.2 copies), but no L858R mutation and 19 exon deletion mutations. In comparison, 28.0% of patients with advanced lung adenocarcinoma (28/100)had detectable T790M mutation in plasma with copy numbers (34.0±22.7 copies). Furthermore, the copy numbers of T790M were 268.2±119.9 in plasma of 5 cases with acquired gefitinib-resistance. Conclusions: In patients with advanced stages of lung adenocarcinoma, the detection of T790M mutation in plasma and tumor specimens is low. The T790M mutation also exists in the plasma of some healthy controls, suggesting that T790M mutation participates in EGFR signaling pathway and it might function in healthy population.
Oh, Hye-Seon; Kwon, Hyemi; Park, Suyeon; Kim, Mijin; Jeon, Min Ji; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae; Choi, Jene
2018-01-01
Background The BRAFV600E mutation is the most common genetic alteration identified in papillary thyroid carcinoma (PTC). Because of its costs effectiveness and sensitivity, direct Sanger sequencing has several limitations. The aim of this study was to evaluate the efficiency of immunohistochemistry (IHC) as an alternative method to detect the BRAFV600E mutation in preoperative and postoperative tissue samples. Methods We evaluated 71 patients who underwent thyroid surgery with the result of direct sequencing of the BRAFV600E mutation. IHC staining of the BRAFV600E mutation was performed in 49 preoperative and 23 postoperative thyroid specimens. Results Sixty-two patients (87.3%) had PTC, and of these, BRAFV600E was confirmed by direct sequencing in 57 patients (91.9%). In 23 postoperative tissue samples, the BRAFV600E mutation was detected in 16 samples (70%) by direct sequencing and 18 samples (78%) by IHC. In 24 fine needle aspiration (FNA) samples, BRAFV600E was detected in 18 samples (75%) by direct sequencing and 16 samples (67%) by IHC. In 25 core needle biopsy (CNB) samples, the BRAFV600E mutation was detected in 15 samples (60%) by direct sequencing and 16 samples (64%) by IHC. The sensitivity and specificity of IHC for detecting the BRAFV600E mutation were 77.8% and 66.7% in FNA samples and 99.3% and 80.0% in CNB samples. Conclusion IHC could be an alternative method to direct Sanger sequencing for BRAFV600E mutation detection both in postoperative and preoperative samples. However, application of IHC to detect the BRAFV600E mutation in FNA samples is of limited value compared with direct sequencing. PMID:29388401
Pinheiro, L; Franco, S; Adagu, I S; Rosa, R; Rosário, V E; Warhurst, D C
2003-01-01
Isolates of Plasmodium falciparum from three areas of West Africa were recovered from cryopreservation and their chloroquine-sensitivity were determined in vitro. Of the 90 samples studied, 60 were from Guinea-Bissau (30Resistant/30Sensitive), 15 were from S. Tomé and Príncipe (11Resistant/4Sensitive) and 15 were from Angola (11Resistant/4Sensitive). All the isolates were sensitive to mefloquine. Using the polymerase chain reaction/restriction fragment length polymorphism technique (PCR/RFLP) it was possible to detect two mutations in the pfmdr1 gene, often associated with chloroquine-resistance. 66% of the samples from Guiné-Bissau showed a correlation with chloroquine-resistance while 73% of the samples from São Tomé and Angola altogether had the 86Tyr mutation. The present study on West African isolates and clones showed, for the first time, the presence of a double point mutation in the pfmdr1 gene one being found, up to now, only in South America isolates of Plasmodium falciparum.
Mutation detection using automated fluorescence-based sequencing.
Montgomery, Kate T; Iartchouck, Oleg; Li, Li; Perera, Anoja; Yassin, Yosuf; Tamburino, Alex; Loomis, Stephanie; Kucherlapati, Raju
2008-04-01
The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/). Copyright 2008 by John Wiley & Sons, Inc.
Janku, F; Huang, H J; Fujii, T; Shelton, D N; Madwani, K; Fu, S; Tsimberidou, A M; Piha-Paul, S A; Wheler, J J; Zinner, R G; Naing, A; Hong, D S; Karp, D D; Cabrilo, G; Kopetz, E S; Subbiah, V; Luthra, R; Kee, B K; Eng, C; Morris, V K; Karlin-Neumann, G A; Meric-Bernstam, F
2017-03-01
Cell-free DNA (cfDNA) from plasma offers easily obtainable material for KRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy. Samples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with a KRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care. Eighty-eight patients (73%) had KRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) had KRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% of KRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P = 0.001). Multiplex detection of KRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutant KRASG12/G13 in cfDNA corresponded with shorter survival. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Do, Hongdo; Dobrovic, Alexander
2009-01-01
Background Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations. We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Results Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions. LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. Conclusion LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations. PMID:19811662
Do, Hongdo; Dobrovic, Alexander
2009-10-08
Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions.LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations.
Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios
2011-01-19
Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.
Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios
2011-01-01
Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808
McCutchen-Maloney, Sandra L.
2002-01-01
Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sruewing, J.P.; Brody, L.C.; Erdos, M.R.
Genetic epidemiological evidence suggests that mutations in BRCA1 may be responsible for approximately one half of early onset familial breast cancer and the majority of familial breast/ovarian cancer. The recent cloning of BRCA1 allows for the direct detection of mutations, but the feasibility of presymptomatic screening for cancer susceptibility is unknown. We analyzed genomic DNA from one affected individual from each of 24 families with at least three cases of ovarian or breast cancer, using SSCP assays. Variant SSCP bands were subcloned and sequenced. Allele-specific oligonucleotide hybridization was used to verify sequence changes and to screen DNA from control individuals.more » Six frameshift and two missense mutations were detected in 10 different families. A frameshift mutation was detected in a male proband affected with both breast and prostate cancer. A 40-bp deletion was detected in a patient who developed intra-abdominal carcinomatosis 1 year after prophylactic oophorectomy. Mutations were detected throughout the gene, and only one was detected in more than a single family. These results provide further evidence that inherited breast and ovarian cancer can occur as a consequence of a wide array of BRCA1 mutations. These results suggests that development of a screening test for BRCA1 mutations will be technically challenging. The finding of a mutation in a family with male breast cancer, not previously thought to be related to BRCA1, also illustrates the potential difficulties of genetic counseling for individuals known to carry mutations. 37 refs., 1 fig., 1 tab.« less
Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael
2018-04-06
Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.
Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael
2018-01-01
Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood (“liquid biopsy”) is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection. PMID:29719623
Satouchi, Miyako; Tanaka, Hiroshi; Yoshioka, Hiroshige; Shimokawaji, Tadasuke; Mizuno, Keiko; Takeda, Koji; Yoshino, Ichiro; Seto, Takashi; Kurata, Takayasu; Tashiro, Naoki; Hagiwara, Koichi
2017-09-01
Detection of epidermal growth factor receptor (EGFR) gene mutations is essential in deciding therapeutic strategy in non-small cell lung cancer (NSCLC) patients at initial diagnosis. Moreover, in EGFR mutation-positive (EGFRm) NSCLC patients, re-biopsy at disease progression to clarify resistance mechanisms is also important. However, collecting histology samples is often difficult because of inaccessibility and invasiveness. In some cases, only cytology samples can be collected, and studies have reported that cytology samples are appropriate for EGFR gene mutation testing. The cobas ® EGFR Mutation Test (Roche Molecular Systems Inc., Branchburg, New Jersey, USA) is approved as a companion diagnostic for osimertinib, a third-generation EGFR-tyrosine kinase inhibitor approved in Japan. However, it is not clear whether the EGFR T790M mutation can be detected in cytology samples using this test. The primary objective of this study was to assess concordance of EGFR T790M gene mutation detection between histology and matched cytology samples using the cobas ® EGFR Mutation Test. We conducted a multicenter, observational study in Japan. Overall, 41 EGFRm NSCLC patients who had both histology and cytology samples collected at the same time at re-biopsy and with the results of EGFR mutation test using histology samples were enrolled. The EGFR mutation status of both sample types was tested using the cobas ® EGFR Mutation Test and the concordance rates were calculated. The EGFR T790M mutation detection rate in histology and cytology samples was 42.5% and 37.5%, respectively. The overall percent agreement between the histology and cytology samples was 91.7%. These data demonstrate that the cobas ® EGFR Mutation Test can detect the EGFR T790M mutation in both cytology and histology samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
MASA syndrome is caused by mutations in the neural cell adhesion gene, L1CAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, C.E.; Wang, Y.; Schroer, R.J.
1994-09-01
The MASA syndrome is a recessive X-linked disorder characterized by Mental retardation, Adducted thumbs, Shuffling gait and Aphasia. Recently we found that MASA in one family was likely caused by a point mutation in exon 6 of the L1CAM gene. This gene has also been shown to be involved in X-linked hydrocephalus (HSAS). We have screened 60 patients with either sporadic HSAS or MASA as well as two additional families with MASA. For the screening, we initially utilized 3 cDNA probes for the L1CAM gene. In one of the MASA families, K8310, two affected males were found to have anmore » altered BglII band. The band was present in their carrier mother but not in their normal brothers. This band was detected by the entire cDNA probe as well as the cDNA probe for 3{prime} end of the gene. Analysis of the L1CAM sequence indicated the altered BglII site is distal to the exon 28 but proximal to the punative poly A signal site. It is hypothesized that this point mutation alters the stability of the L1CAM mRNA. This is being tested using cell lines established from the two affected males.« less
Oran, Paul E.; Trenchevska, Olgica; Nedelkov, Dobrin; Borges, Chad R.; Schaab, Matthew R.; Rehder, Douglas S.; Jarvis, Jason W.; Sherma, Nisha D.; Shen, Luhui; Krastins, Bryan; Lopez, Mary F.; Schwenke, Dawn C.; Reaven, Peter D.; Nelson, Randall W.
2014-01-01
Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications. PMID:24664114
Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola
2015-01-01
BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267
Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells
Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.
2014-01-01
Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137
Jackson, Jennifer B; Choi, Daniel S; Luketich, James D; Pennathur, Arjun; Ståhlberg, Anders; Godfrey, Tony E
2016-03-01
Tumor-specific mutations can be identified in circulating, cell-free DNA in plasma or serum and may serve as a clinically relevant alternative to biopsy. Detection of tumor-specific mutations in the plasma, however, is technically challenging. First, mutant allele fractions are typically low in a large background of wild-type circulating, cell-free DNA. Second, the amount of circulating, cell-free DNA acquired from plasma is also low. Even when using digital PCR (dPCR), rare mutation detection is challenging because there is not enough circulating, cell-free DNA to run technical replicates and assay or instrument noise does not easily allow for mutation detection <0.1%. This study was undertaken to improve on the robustness of dPCR for mutation detection. A multiplexed, preamplification step using a high-fidelity polymerase before dPCR was developed to increase total DNA and the number of targets and technical replicates that can be assayed from a single sample. We were able to detect multiple cancer-relevant mutations within tumor-derived samples down to 0.01%. Importantly, the signal/noise ratio was improved for all preamplified targets, allowing for easier discrimination of low-abundance mutations against false-positive signal. Furthermore, we used this protocol on clinical samples to detect known, tumor-specific mutations in patient sera. This study provides a protocol for robust, sensitive detection of circulating tumor DNA for future clinical applications. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Ürel-Demir, Gizem; Simsek-Kiper, Pelin Ozlem; Akgün-Doğan, Özlem; Göçmen, Rahşan; Wang, Zheng; Matsumoto, Naomichi; Miyake, Noriko; Utine, Gülen Eda; Nishimura, Gen; Ikegawa, Shiro; Boduroglu, Koray
2018-06-08
Spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type, is a rare autosomal recessive disorder of the skeleton characterized by disproportionate short stature with narrow chest and dysmorphic facial features. The skeletal manifestations include platyspondyly, short flared ribs, short tubular bones with abnormal metaphyses and epiphyses, severe brachydactyly, and premature stippled calcifications in the cartilage. The abnormal calcifications are so distinctive as to point to the definitive diagnosis. However, they may be too subtle to attract diagnostic attention in infancy. Homozygous variants in DDR2 cause this disorder. We report on a 5-year-old girl with the classic phenotype of SMED, SL-AC in whom a novel homozygous nonsense mutation in DDR2 was detected using exome sequencing.
Sequencing Structural Variants in Cancer for Precision Therapeutics.
Macintyre, Geoff; Ylstra, Bauke; Brenton, James D
2016-09-01
The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours. In this review we survey the landscape of 'actionable' structural variants in cancer and identify promising detection strategies based on massively-parallel sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gámez-Díaz, Laura; Sigmund, Elena C; Reiser, Veronika; Vach, Werner; Jung, Sophie; Grimbacher, Bodo
2018-01-01
The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.
Wang, Peilu; Bahreini, Amir; Gyanchandani, Rekha; Lucas, Peter C.; Hartmaier, Ryan J.; Watters, Rebecca J.; Jonnalagadda, Amruth R.; Trejo Bittar, Humberto E.; Berg, Aaron; Hamilton, Ronald L.; Kurland, Brenda F.; Weiss, Kurt R.; Mathew, Aju; Leone, Jose Pablo; Davidson, Nancy E; Nikiforova, Marina N.; Brufsky, Adam M.; Ambros, Tadeu F.; Stern, Andrew M.; Puhalla, Shannon L.; Lee, Adrian V.; Oesterreich, Steffi
2015-01-01
Purpose Given the clinical relevance of ESR1 mutations as potential drivers of resistance to endocrine therapy, this study used sensitive detection methods to determine the frequency of ESR1 mutations in primary and metastatic breast cancer, and in cell free DNA (cfDNA). Patients and Methods Six ESR1 mutations (K303R, S463P, Y537C, Y537N, Y537S, D538G) were assessed by digital droplet PCR (ddPCR), with lower limits of detection of 0.05% to 0.16%, in primary tumors (n=43), bone (n=12) and brain metastases (n=38), and cfDNA (n=29). Correlations between ESR1 mutations in metastatic lesions and single (1 patient) or serial blood draws (4 patients) were assessed. Results ESR1 mutations were detected for D538G (n=13), Y537S (n=3) and Y537C (n=1), and not for K303R, S463P or Y537N. Mutation rates were 7.0% (3/43 primary tumors), 9.1% (1/11 bone metastases), 12.5% (3/24 brain metastases), and 24.1% (7/29 cfDNA). Two patients showed polyclonal disease with more than one ESR1 mutation. Mutation allele frequencies were 0.07% to 0.2% in primary tumors, 1.4% in bone metastases, 34.3 to 44.9% in brain metastases, and 0.2% to 13.7% in cfDNA. In cases with both cfDNA and metastatic samples (n=5), mutations were detected in both (n=3) or in cfDNA only (n=2). Treatment was associated with changes in ESR1 mutation detection and allele frequency. Conclusions ESR1 mutations were detected at very low allele frequencies in some primary breast cancers, and at high allele frequency in metastases, suggesting that in some tumors rare ESR1 mutant clones are enriched by endocrine therapy. Further studies should address if sensitive detection of ESR1 mutations in primary breast cancer and in serial blood draws may be predictive for development of resistant disease. PMID:26500237
Wang, Peilu; Bahreini, Amir; Gyanchandani, Rekha; Lucas, Peter C; Hartmaier, Ryan J; Watters, Rebecca J; Jonnalagadda, Amruth R; Trejo Bittar, Humberto E; Berg, Aaron; Hamilton, Ronald L; Kurland, Brenda F; Weiss, Kurt R; Mathew, Aju; Leone, Jose Pablo; Davidson, Nancy E; Nikiforova, Marina N; Brufsky, Adam M; Ambros, Tadeu F; Stern, Andrew M; Puhalla, Shannon L; Lee, Adrian V; Oesterreich, Steffi
2016-03-01
Given the clinical relevance of ESR1 mutations as potential drivers of resistance to endocrine therapy, this study used sensitive detection methods to determine the frequency of ESR1 mutations in primary and metastatic breast cancer, and in cell-free DNA (cfDNA). Six ESR1 mutations (K303R, S463P, Y537C, Y537N, Y537S, D538G) were assessed by digital droplet PCR (ddPCR), with lower limits of detection of 0.05% to 0.16%, in primary tumors (n = 43), bone (n = 12) and brain metastases (n = 38), and cfDNA (n = 29). Correlations between ESR1 mutations in metastatic lesions and single (1 patient) or serial blood draws (4 patients) were assessed. ESR1 mutations were detected for D538G (n = 13), Y537S (n = 3), and Y537C (n = 1), and not for K303R, S463P, or Y537N. Mutation rates were 7.0% (3/43 primary tumors), 9.1% (1/11 bone metastases), 12.5% (3/24 brain metastases), and 24.1% (7/29 cfDNA). Two patients showed polyclonal disease with more than one ESR1 mutation. Mutation allele frequencies were 0.07% to 0.2% in primary tumors, 1.4% in bone metastases, 34.3% to 44.9% in brain metastases, and 0.2% to 13.7% in cfDNA. In cases with both cfDNA and metastatic samples (n = 5), mutations were detected in both (n = 3) or in cfDNA only (n = 2). Treatment was associated with changes in ESR1 mutation detection and allele frequency. ESR1 mutations were detected at very low allele frequencies in some primary breast cancers, and at high allele frequency in metastases, suggesting that in some tumors rare ESR1-mutant clones are enriched by endocrine therapy. Further studies should address whether sensitive detection of ESR1 mutations in primary breast cancer and in serial blood draws may be predictive for development of resistant disease. See related commentary by Gu and Fuqua, p. 1034. ©2015 American Association for Cancer Research.
Jurkowska, Monika; Gos, Aleksandra; Ptaszyński, Konrad; Michej, Wanda; Tysarowski, Andrzej; Zub, Renata; Siedlecki, Janusz A; Rutkowski, Piotr
2015-01-01
The study compares detection rates of oncogenic BRAF mutations in a homogenous group of 236 FFPE cutaneous melanoma lymph node metastases, collected in one cancer center. BRAF mutational status was verified by two independent in-house PCR/Sanger sequencing tests, and the Cobas® 4800 BRAF V600 Mutation Test. The best of two sequencing approaches returned results for 230/236 samples. In 140 (60.9%), the mutation in codon 600 of BRAF was found. 91.4% of all mutated cases (128 samples) represented p.V600E. Both Sanger-based tests gave reproducible results although they differed significantly in the percentage of amplifiable samples: 230/236 to 109/143. Cobas generated results in all 236 cases, mutations changing codon V600 were detected in 144 of them (61.0%), including 5 not amplifiable and 5 negative in the standard sequencing. However, 6 cases positive in sequencing turned out to be negative in Cobas. Both tests provided us with the same BRAF V600 mutational status in 219 out of 230 cases with valid results (95.2%). The total BRAF V600 mutation detection rate didn't differ significantly between the two methodological approaches (60.9% vs. 61.0%). Sequencing was a reproducible method of V600 mutation detection and more powerful to detect mutations other than p.V600E, while Cobas test proved to be less susceptible to the poor DNA quality or investigator's bias. The study underlined an important role of pathologists in quality assurance of molecular diagnostics.
Stenhouse, Steven A; Plernsub, Suriya; Yanola, Jintana; Lumjuan, Nongkran; Dantrakool, Anchalee; Choochote, Wej; Somboon, Pradya
2013-08-30
Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such exposure. However, resistance in some populations cannot be explained due to kdr mutations and indicates that other resistance mechanisms are operating. The presence of this mutation alone does not fully explain the resistance phenotype we see among Thai Ae. aegypti populations.
Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin
2017-01-01
Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816
Point mutations which should not be overlooked in Hb H disease.
Farashi, Samaneh; Bayat, Nooshin; Vakili, Shadi; Faramarzi Garous, Negin; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita
2016-01-01
Hb H disease is an alpha-thalassemia (α-thal) syndrome characterized by chronic hemolytic anemia that occurs when three of total four α-globin genes lost their function due to completely deletions or different kind of mutations. We here described 66 patients who have been diagnosed for Hb H disease during the last five years in our center. The genotypes involving point mutations present more severe phenotype than deletional forms that make them of primary important to health management. Hb H subjects carry different α-globin genotypes including deletional and non-deletional mutations showing heterogenous clinical manifestations. The Hb H patients presenting a wide range of phenotype carried different deletional, non-deletional mutations or compound heterozygosity of them. We emphasize the importance of some point mutations responsible for more severe form of Hb H disease in Iranian population and the necessity for consideration of prenatal diagnosis (PND) in high-risk couples.
Haynes, Christopher A; Guerra, Stephanie L; Fontana, Jessalyn C; DeJesús, Víctor R
2013-09-23
Hemoglobinopathies are mutations resulting in abnormal globin chain structure; some have clinically significant outcomes such as anemia or reduced lifespan. Five β-globin mutations are (c.20A>T, p.E6V), (c.19G>A, p. E6K), (c.79G>A, p.E26K), (c.364G>C, p.E121Q), and (c.364G>A, p.E121K), resulting in HbS (sickle-cell hemoglobin), HbC, HbE, HbD-Los Angeles, and HbO-Arab, respectively. One α-globin mutation is (c.[207C>G or 207C>A], p.N68K), resulting in HbG-Philadelphia. HPLC-ESI-MS/MS analysis of dried-blood spot (DBS) punches from newborns extracted with a trypsin-containing solution provides greater than 90% coverage of α-, β-, and γ-globin amino acid sequences. Because the (c.20A>T, p.E6V), (c.19G>A, p. E6K), (c.79G>A, p.E26K), (c.364G>C, p.E121Q), (c.364G>A, p.E121K), and (c.[207C>G or 207C>A], p.N68K) mutations generate globin peptides with novel amino acid sequences, detecting one of these peptides in DBS extracts is indicative of the presence of a hemoglobinopathy in the newborn. The method described here can distinguish normal β-globin peptides from the mutant HbS, HbC, HbE, HbD-Los Angeles and HbO-Arab peptides, as well as normal α-globin peptide from the mutant HbG-Philadelphia peptide, allowing the identification of unaffected heterozygotes such as HbAS, and of compound heterozygotes such as HbASG-Philadelphia. This HPLC-ESI-MS/MS analytical approach provides information that is not available from traditional hemoglobin analyses such as isoelectric focusing and HPLC-UV. It is also capable of determining the amino acid sequence of hemoglobin peptides, potentially allowing the detection of numerous hemoglobinopathies resulting from point mutations. Published by Elsevier B.V.
Molecular basis for the Kallmann syndrome-linked fibroblast growth factor receptor mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman, Ryan D.; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy
Highlights: Black-Right-Pointing-Pointer The structural basis of the Kallmann syndrome is elucidated. Black-Right-Pointing-Pointer Kallmann syndrome mutation (A168S) induces a subtle conformational change(s). Black-Right-Pointing-Pointer Structural interactions mediated by beta-sheet G are most perturbed. Black-Right-Pointing-Pointer Ligand (FGF)-receptor interaction(s) is completely abolished by Kallmann mutation. Black-Right-Pointing-Pointer Kallmann mutation directly affects the FGF signaling process. -- Abstract: Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associatedmore » KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. {sup 1}H-{sup 15}N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.« less
Sinville, Rondedrick; Coyne, Jennifer; Meagher, Robert J.; Cheng, Yu-Wei; Barany, Francis; Barron, Annelise; Soper, Steven A.
2010-01-01
We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide “drag-tags” onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently-labeled LDR/drag-tagged (LDR-dt) products in a multiplexed, single-tube format with mutant:wild-type ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a poly(methylmethacrylate), PMMA, microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the electroosmotic flow (EOF). Typical analysis times for LDR-dt conjugates were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40. PMID:19053073
Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe
2015-01-01
KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes
Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia
2013-01-01
DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893
Aleksandrov, I D; Afanas'eva, K P; Aleksandrova, M V; Lapidus, I L
2012-01-01
The screening of PCR-detected DNA alterations in 9 spontaneous and 59 gamma-ray-, neutron - or neutron + gamma-ray-induced Drosophila vestigial (vg) gene/"point" mutations was carried out. The detected patterns of existence or absence of either of 16 overlapping fragments into which vg gene (15.1 kb, 8 exons, 7 introns) was divided enable us to subdivide all mutants into 4 classes: (i) PCR+ (40.7%) without the detected changes; (ii) "single-site" (33.9%) with the loss of a single fragment; (iii) partial detections (15.2%) as a loss of 2-9 adjacent fragments and (iv) "cluster" mutants (10.2%) having 2-3 independent changes of(ii) and/or (iii) classes. All spontaneous mutants except one were found to be classified as (ii) whereas radiation-induced mutants are represented by all 4 classes whose interrelation is determined by the dose and radiation quality. In particular, the efficacy of neutrons was found to be nine times as large as that of gamma-rays under the "cluster" mutant induction. Essentially, the distribution of DNA changes along the gene is uneven. CSGE-assay of PCR+-exon 3 revealed DNA heteroduplexes in 5 out of 17 PCR+-mutants studied, 2 of which had small deletions (5 and 11 b) and 3 others made transitions (A --> G) as shown by the sequencing. Therefore, gamma-rays and neutrons seem to be significant environmental agents increasing the SNP risk for the population through their action on the germ cells. The results obtained are also discussed within the framework of the track structure theory and the notion of quite different chromatin organization in somatic and germ cells.
Byers, Richard; Hornick, Jason L; Tholouli, Eleni; Kutok, Jeffery; Rodig, Scott J
2012-01-01
IDH1 mutations are present but are uncommon in acute myeloid leukemia (AML) and although prognostically favorable in gliomas their clinical significance in AML is unclear. Some have associated IDH1 mutations with inferior outcome, whereas others found no association with prognosis. Complicating these analyses is the need to sequence IDH1 from leukemic blasts, which is technically challenging and not yet routine. Mutation-specific antibodies enable robust, cost-effective detection of mutations in routine biopsy samples. Immunohistochemistry for the R132H mutation-specific antibody was performed in a tissue microarray containing 159 cases of AML, detecting the R132H mutation in 7 cases (4.4%). Positivity was associated with intermediate risk cytogenetics. Our results demonstrate an association between the R132H IDH1 mutation and intermediate risk cytogenetics in AML, suggesting that R132H IDH1 mutation may be associated with improved clinical outcome and demonstrate the feasibility of using mutation-specific antibodies to genotype and subclassify AML.
Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P.; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G.; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M.; Davidow, Amy; Denkinger, Claudia M.; Persing, David; Kwiatkowski, Robert; Jones, Martin
2017-01-01
ABSTRACT The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. PMID:28851844
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Donglai; Wang, Chu; Hora, Bhavna
Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less
Liu, Donglai; Wang, Chu; Hora, Bhavna; ...
2017-10-10
Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less
2013-01-01
Background BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation. Methods A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to those of direct sequencing. Serial dilutions of BRAF mutant cell line (SNU-790) were used to calculate limit of detection (LOD). Results BRAF mutations were detected in 119 (74.8%) PTCs by STA fragment analysis. In direct sequencing, BRAF mutations were observed in 118 (74.2%) cases. The results of STA fragment analysis had high correlation with those of direct sequencing (p < 0.00001, κ = 0.98). The LOD of STA fragment analysis and direct sequencing was 6% and 12.5%, respectively. In PTCs with pT3/T4 stages, BRAF mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, BRAF mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, BRAF mutation was more frequent in PTCs with extrathyroidal invasion than tumors without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). To prepare and run the reactions, direct sequencing required 450 minutes while STA fragment analysis needed 290 minutes. Conclusions STA fragment analysis is a simple and sensitive method to detect BRAF V600 mutations in formalin-fixed paraffin-embedded clinical samples. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5684057089135749 PMID:23883275
Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen
2014-02-01
To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost and equipment. (2) The frequency of the KRAS mutation is correlated with gender. BRAF mutation is correlated with primary tumor site, TNM stage, histological types and histological grades.(3) BRAF gene mutation is an independent prognostic marker for colorectal carcinomas.
Dong, Chongmei; Vincent, Kate; Sharp, Peter
2009-12-04
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.
Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl
2015-12-01
To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun
2014-06-01
To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.
The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer
Wei, Fang; Wong, David T.; Su, Wu-Chou
2015-01-01
The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936
Wang, Baojun; Li, Xintao; Zhang, Xu; Ma, Xin; Chen, Luyao; Zhang, Yu; Lyu, Xiangjun; Tang, Yuzhe; Huang, Qingbo; Gao, Yu; Fan, Yang; Ouyang, Jinzhi
2015-01-01
Abstract Recently somatic mutations of KCNJ5, ATP1A1, ATP2B3, and CACNA1D have been identified in patients with aldosterone-producing adenoma (APA). The present study sequenced the DNA in the tissues and blood samples from Chinese patients with APA for KCNJ5, ATP1A1, ATP2B3, and CACNA1D gene mutations. Among the 114 patients, 86 (75.4%) were identified with KCNJ5 somatic mutations, including 3 previously reported (G151R, L168R, T158A) and 2 other unreported mutations. One patient presented with both a point mutation (E147) and an insertion mutation, whereas another had a 36-base duplication, G153_G164dup. No mutation of ATP1A1 and ATP2B3 in the known hotspots was identified and only 1 male patient was detected with a novel CACNA1D mutation, V748I. Unlike other studies, male and female patients had similar KCNJ5 mutation rates (76.9% vs 74.2%). Mutation carriers were younger and had lower preoperative potassium level, whereas male (but not female) mutation carriers had higher preoperative plasma aldosterone concentration and preoperative blood pressures. Mutation carriers also had higher LV mass index (LVMI) than nonmutation carriers. After surgery, LVMI improved significantly in the KCNJ5 mutation group but not in the nonmutation group. The mRNA expression of KCNJ5, CYP11B2, and ATP2B3 was higher in the KCNJ5-mutated APA tissues. Functional characterization of the 2 novel KCNJ5 mutations showed that they were associated with decreased proliferation, membrane depolarization, elevated secretion of aldosterone, and increased expression of CYP11B1 and CYP11B2. In conclusion, Chinese APA patients appear to have a high frequency of somatic KCNJ5 mutation. Mutation prevalence rates are similar among men and women and 2 novel mutations are identified. KCNJ5-mutated patients benefit more from surgical resection of APA than nonmutated patients. PMID:25906099
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Ito, Masaoki; Miyata, Yoshihiro; Hirano, Shoko; Kimura, Shingo; Irisuna, Fumiko; Ikeda, Kyoko; Kushitani, Kei; Tsutani, Yasuhiro; Ueda, Daisuke; Tsubokawa, Norifumi; Takeshima, Yukio; Okada, Morihito
2017-12-12
Small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung are classified as variants of endocrine carcinoma and subdivided into pure or combined type. Clinical benefit of target therapy has not been established in these tumors. This study aimed to compare genetic and clinicopathological features between SCLC and LCNEC or pure and combined types, and explore the possibility of target therapy using next-generation sequencing. In 13 SCLC and 22 LCNEC cases, 72 point mutations, 19 deletions, and 3 insertions were detected. As therapeutically targetable variants, mutations in EGFR (L858R), KRAS (G12D, G12A, G12V), and PIK3CA (E545K) were detected in 5 cases. The case harboring EGFR mutation showed response to EGFR-tyrosine kinase inhibitor. However, there are no clinicopathological features associated with therapeutically targetable cases. And there was no significant genetic feature between SCLC and LCNEC or pure and combined types. In conclusion, although patients with SCLC and LCNEC may benefit from target therapy, they were not identifiable by clinicopathologic background. And there was not significant genetic difference between SCLC and LCNEC, including between pure and combined types. Classifying SCLC and LCNEC in same category is reasonable. However, distinguishing the pure type from combined type was not validated. Comprehensive genetic analysis should be performed to detect targetable variants in any type of SCLC and LCNEC.
Pyrosequencing for Microbial Identification and Characterization
Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.
2013-01-01
Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536
Pyrosequencing for microbial identification and characterization.
Cummings, Patrick J; Ahmed, Ray; Durocher, Jeffrey A; Jessen, Adam; Vardi, Tamar; Obom, Kristina M
2013-08-22
Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns.
Oral bacteria in pancreatic cancer: mutagenesis of the p53 tumour suppressor gene
Öğrendik, Mesut
2015-01-01
Carcinoma of exocrine pancreas is the fourth leading cause of cancer deaths, worldwide. The prevalence of this disease is very high in patients with chronic pancreatitis. Orodigestive cancers are frequently seen in patients with periodontitis. These findings suggest that this type of cancer may have some bacterial origins. This study hypothesizes that the peptidyl arginine deaminase (PAD) enzymes found in oral bacteria may be responsible for the p53 point mutations that occur in patients with pancreatic cancer. Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Treponema denticola possess the PAD enzyme, and p53 arginine mutations have been detected in patients with pancreatic cancer. Moreover, the Pro allele p53Arg72-Pro is a risk factor for the development of this cancer. Anti-P. gingivalis antibody titers have been found to be higher in patients with pancreatic cancer as compared to healthy controls. The hypothesis in question can be tested if the DNA of P. gingivalis or the antibodies against P. gingivalis can be detected in patients with the p53 arginine mutation.If this hypothesis is true, it could reveal the real cause of pancreatic cancer, which is a fatal disease. Further studies are necessary in order to confirm this hypothesis. PMID:26617937
KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control
Le Calvez-Kelm, Florence; Foll, Matthieu; Wozniak, Magdalena B.; Delhomme, Tiffany M.; Durand, Geoffroy; Chopard, Priscilia; Pertesi, Maroulio; Fabianova, Eleonora; Adamcakova, Zora; Holcatova, Ivana; Foretova, Lenka; Janout, Vladimir; Vallee, Maxime P.; Rinaldi, Sabina; Brennan, Paul; McKay, James D.; Byrnes, Graham B.; Scelo, Ghislaine
2016-01-01
The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series. PMID:27705932
Shoja, Yalda; Kermanpur, Ahmad; Karimzadeh, Fathallah
2018-08-15
In this present work we made a novel, fast, selective and sensitive electrochemical genobiosensor to detection of EGFR exon 21 point mutation based on two step electropolymerization of Ni(II)-oxytetracycline conducting metallopolymer nanoparticles (Ni-OTC NPs) on the surface of pencil graphite electrode (PGE) which was modified by reduced graphene oxide/carboxyl functionalized ordered mesoporous carbon (rGO/f-OMC) nanocomposite. ssDNA capture probe with amine groups at the5' end which applied as recognition element was immobilized on the rGO/f-OMC/PGE surface via the strong amide bond. Ni-OTC metallopolymer NPs were electropolymerized to rGO/ssDNA-OMC/PGE surface and then hybridization fallows through the peak current change in differential pulse voltammetry (DPV) using Ni-OTC NPs as a redox label. The biosensor was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), FT-IR spectroscopy, energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry and Nitrogen adsorption-desorption analysis. The Ni-OTC current response verified only the complementary sequence indicating a significant reduction current signal in comparison to single point mismatched and non-complementary and sequences. Under optimal conditions, the prepared biosensor showed long-term stability (21 days) with a wide linear range from 0.1 µM to 3 µM with high sensitivity (0.0188 mA/µM) and low detection limit (120 nM). Copyright © 2018 Elsevier B.V. All rights reserved.
Sárosi, Veronika; Balikó, Zoltán; Smuk, Gábor; László, Terézia; Szabó, Mariann; Ruzsics, István; Mezősi, Emese
2016-10-01
In the last decades new therapeutic drugs have been developed for the treatment of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) significantly increase the progression free survival (PFS) of patients with NSCLC carrying epidermal growth factor receptor (EGFR) mutations. This type of lung cancer occurs mainly among non-smoking women and Asian origin. However, the new ESMO guideline recommends EGFR mutation analysis in every patient with NSCLC, because in patients with activating EGFR mutation, TKIs should be considered as first line therapy. In our recent work, we analyzed data of patients with EGFR-mutant adenocarcinoma from January 2009. The number of patients investigated was 446, among them 44 cases were positive for EGFR mutation. The ratio of positive cases was 9.86 % that is lower than the average mutation rate in Europe and much lower than that found in Asia. The exon 19 deletion was detected in 61.4 % of the patients, while L858R point mutation in exon 21 was observed in 34.1 % of them. In one subject, both exon 19 and 21 mutations were present simultaneously. A rare mutation located in exon 21 was found in another patient. TKI therapy was conducted in 38 patients. The disease control rate by TKI therapy was 85.7 %; primary resistance was documented in five subjects. Non-smoking patients with EGFR mutant adenocarcinoma had the highest benefit from TKI treatment. Our data support the recommendation that EGFR mutation status should be defined in all cases of locally advanced or metastatic lung adenocarcinoma.
PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato
Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes
2009-01-01
Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at kdr locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped. PMID:19594947
Masunaga, Nanae; Kagara, Naofumi; Motooka, Daisuke; Nakamura, Shota; Miyake, Tomohiro; Tanei, Tomonori; Naoi, Yasuto; Shimoda, Masafumi; Shimazu, Kenzo; Kim, Seung Jin; Noguchi, Shinzaburo
2018-01-01
We aimed to develop a highly sensitive method to detect ESR1 mutations in cell-free DNA (cfDNA) using next-generation sequencing with molecular barcode (MB-NGS) targeting the hotspot segment (c.1600-1713). The sensitivity of MB-NGS was tested using serially diluted ESR1 mutant DNA and then cfDNA samples from 34 patients with metastatic breast cancer were analyzed with MB-NGS. The results of MB-NGS were validated in comparison with conventional NGS and droplet digital PCR (ddPCR). MB-NGS showed a higher sensitivity (0.1%) than NGS without barcode (1%) by reducing background errors. Of the cfDNA samples from 34 patients with metastatic breast cancer, NGS without barcode revealed seven mutations in six patients (17.6%) and MB-NGS revealed six additional mutations including three mutations not reported in the COSMIC database of breast cancer, resulting in total 13 ESR1 mutations in ten patients (29.4%). Regarding the three hotspot mutations, all the patients with mutations detected by MB-NGS had identical mutations detected by droplet digital PCR (ddPCR), and mutant allele frequency correlated very well between both (r = 0.850, p < 0.01). Moreover, all the patients without these mutations by MB-NGS were found to have no mutations by ddPCR. In conclusion, MB-NGS could successfully detect ESR1 mutations in cfDNA with a higher sensitivity of 0.1% than conventional NGS and was considered as clinically useful as ddPCR.
[Identification of an ideal noninvasive method to detect A3243G gene mutation in MELAS syndrome].
Ma, Yi-nan; Fang, Fang; Yang, Yan-ling; Zhang, Ying; Wang, Song-tao; Xu, Yu-feng; Pei, Pei; Yuan, Yun; Bu, Ding-fang; Qi, Yu
2008-12-16
To identify a better non-invasive method to detect the carrier of mitochondrial A3243G mutation, a cause of mitochondrial encephalopathy-lactic acidosis-stroke like episode (MELAS) syndrome. DNA was extracted from the peripheral blood, urine, hair follicle, and saliva of 25 MELAS syndrome patients carrying A3243G mutation and their mothers and other maternal relatives, 33 persons in number, and the muscle tissues from 5 patients obtained by biopsy. A3243G mutation was detected by PCR-RFLP method, and the A3243G mutation ratio was identified by measuring the density of each band and calculation with the software AlphaEase 5.0. A3243G mutations were detected in all tissues of the 25 MELAS patients. The A3243G mutation ratio in urine was 62% +/- 9%, significantly higher than that in the blood [(36% +/- 10%), t = -11.13, P < 0.01]. A3243G mutations were detected in at least one tissue of the 28 maternal relatives. The A3243G mutation rates in their urine samples was 33.0% (5.0% - 70.4%), significantly higher than that in their blood samples [8.0% (0 - 33.3%), z = -4.197, P < 0.01]. There was no significant difference in A3243G mutation ratio among the samples of hair follicle, saliva, and blood. The A3243G mutation ratio in urine is significantly higher than those in blood samples of the patients and their maternal relatives. A noninvasive method, A3243G mutation ratio analysis of urine is superior to that in blood.
Bihl, Michel P; Hoeller, Sylvia; Andreozzi, Maria Carla; Foerster, Anja; Rufle, Alexander; Tornillo, Luigi; Terracciano, Luigi
2012-03-01
Targeting the epidermal growth factor receptor (EGFR) is a new therapeutic option for patients with metastatic colorectal or lung carcinoma. However, the therapy efficiency highly depends on the KRAS mutation status in the given tumour. Therefore a reliable and secure KRAS mutation testing is crucial. Here we investigated 100 colorectal carcinoma samples with known KRAS mutation status (62 mutated cases and 38 wild type cases) in a comparative manner with three different KRAS mutation testing techniques (Pyrosequencing, Dideoxysequencing and INFINITI) in order to test their reliability and sensitivity. For the large majority of samples (96/100, 96%), the KRAS mutation status obtained by all three methods was the same. Only two cases with clear discrepancies were observed. One case was reported as wild type by the INFINITI method while the two other methods detected a G13C mutation. In the second case the mutation could be detected by the Pyrosequencing and INFINITI method (15% and 15%), while no signal for mutation could be observed with the Dideoxysequencing method. Additional two unclear results were due to a detection of a G12V with the INFINITI method, which was below cut-off when repeated and which was not detectable by the other two methods and very weak signals in a G12V mutated case with the Dideoxy- and Pyroseqencing method compared to the INFINITI method, respectively. In summary all three methods are reliable and robust methods in detecting KRAS mutations. INFINITI, however seems to be slightly more sensitive compared to Dideoxy- and Pyrosequencing.
Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia
Gómez-Gutiérrez, Alberto; Díaz-Dussán, Natalia Andrea; Noguera-Santamaría, María Claudia; Díaz-Rincón, Diego; Casas-Gómez, María Consuelo
2017-01-01
Abstract Introduction: The risk of developing breast and ovarian cancer is higher in families that carry mutations in BRCA1 or BRCA2 genes, and timely mutation detection is critical. Objective: To identify the presence of mutations in the Colombian population and evaluate two testing strategies. Methods: From a total universe of 853 individual blood samples referred for BRCA1 and BRCA2 typing, 256 cases were analyzed by complete direct sequencing of both genes in Myriad Genetics, and the remaining 597 cases were studied by partial sequencing based on founder mutations in a PCR test designed by ourselves ("Profile Colombia"). Results: We found 107 patients carrying deleterious mutations in this group of patients, 69 (64.5%) located in BRCA1, and 38 (35.5%) in BRCA2. Overall, we detected 39 previously unreported mutations in Colombia (22 in BRCA1 and 17 in BRCA2) and only 4 out of the 6 previously reported founder mutations. Sixty four out of 597 patients (10.7%) studied by "Profile Colombia" showed mutations in BRCA1 or BRCA2, and 41/256 patients (16%) showed mutations by complete BRCA1-BRCA2 sequencing. Conclusions: The spectrum of 44 different mutations in Colombia as detected in our study is broader than the one previously reported for this country. "Profile Colombia" is a useful screening test to establish both founder and new mutations (detection rate of 10.7%) in cases with family history of breast cancer. Complete sequencing shows a detection rate of 16.0%, and should complement the study of the genetic basis of this disease. PMID:29021639
Boonstra, Pieter A; Ter Elst, Arja; Tibbesma, Marco; Bosman, Lisette J; Mathijssen, Ron; Atrafi, Florence; van Coevorden, Frits; Steeghs, Neeltje; Farag, Sheima; Gelderblom, Hans; van der Graaf, Winette T A; Desar, Ingrid M E; Maier, Jacqueline; Overbosch, Jelle; Suurmeijer, Albert J H; Gietema, Jourik; Schuuring, Ed; Reyners, Anna K L
2018-03-02
Gastrointestinal stromal tumors (GISTs) are characterized by oncogenic KIT mutations that cluster in two exon 11 hotspots. The aim of this study was to develop a single, sensitive, quantitative digital droplet PCR (ddPCR) assay for the detection of common exon 11 mutations in both GIST tumor tissue and in circulating tumor DNA (ctDNA) isolated from GIST patients' plasma. A ddPCR assay was designed using two probes that cover both hotspots. Available archival FFPE tumor tissue from 27 consecutive patients with known KIT exon 11 mutations and 9 randomly selected patients without exon 11 mutations were tested. Plasma samples were prospectively collected in a multicenter bio-databank from December 2014. ctDNA was analyzed of 22 patients with an exon 11 mutation and a baseline plasma sample. The ddPCR assay detected the exon 11 mutation in 21 of 22 tumors with exon 11 mutations covered by the assay. Mutations in ctDNA were detected at baseline in 13 of 14 metastasized patients, but in only 1 of 8 patients with localized disease. In serial plasma samples from 11 patients with metastasized GIST, a decrease in mutant droplets was detected during treatment. According to RECIST 1.1, 10 patients had radiological treatment response and one patient stable disease. A single ddPCR assay for the detection of multiple exon 11 mutations in ctDNA is a feasible, promising tool for monitoring treatment response in patients with metastasized GIST and should be further evaluated in a larger cohort.
X-linked Alport syndrome caused by splicing mutations in COL4A5.
Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto
2014-11-07
X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.
Tsartsianidou, V; Triantafillidou, D; Karaiskou, N; Tarantili, P; Triantafillidis, G; Georgakis, E; Triantafyllidis, A
2017-05-01
Caseins are widely used for species identification of dairy products. Isoelectric focusing (IEF) of para-κ-casein peptide is used as the official German method for the differentiation between caprine (isoform A) and ovine (isoform B) dairy products, based on their different isoelectric points. The discrimination between Greek goat and ewe dairy products using IEF has, however, been shown to be problematic because of the existence of the ewe isoform in milk from Greek indigenous dairy goats. This could be due to nucleotide polymorphisms within the goat κ-casein gene of Greek indigenous breeds, which alter the isoelectric point of the para-κ-casein peptide and lead to false positive results. Previous DNA analysis of the goat κ-casein gene has shown high levels of polymorphism; however, no such information is available for Greek indigenous dairy goats. Therefore, 87 indigenous dairy goats were sequenced at exon IV of κ-casein gene. In total, 9 polymorphic sites were detected. Three nonsynonymous point mutations were identified, which change the isoelectric point of the goat para-κ-casein peptide so that it appears identical to that of the ewe peptide. Ten composite genotypes were reconstructed and 6 of them included the problematic point mutations. For the verification of genetic results, IEF was carried out. Both goat and ewe patterns appeared in the problematic genotypes. The frequency of these genotypes could be characterized as moderate (0.23) to high (0.60) within Greek indigenous breeds. However, this is not an issue restricted to Greece, as such genotypes have been detected in various non-Greek goat breeds. In conclusion, IEF based on the official German method is certainly inappropriate for ovine and caprine discrimination concerning Greek dairy goat products, and consequently a new method should be established. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Application of COLD-PCR for improved detection of KRAS mutations in clinical samples.
Zuo, Zhuang; Chen, Su S; Chandra, Pranil K; Galbincea, John M; Soape, Matthew; Doan, Steven; Barkoh, Bedia A; Koeppen, Hartmut; Medeiros, L Jeffrey; Luthra, Rajyalakshmi
2009-08-01
KRAS mutations have been detected in approximately 30% of all human tumors, and have been shown to predict response to some targeted therapies. The most common KRAS mutation-detection strategy consists of conventional PCR and direct sequencing. This approach has a 10-20% detection sensitivity depending on whether pyrosequencing or Sanger sequencing is used. To improve detection sensitivity, we compared our conventional method with the recently described co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) method, which selectively amplifies minority alleles. In COLD-PCR, the critical denaturation temperature is lowered to 80 degrees C (vs 94 degrees C in conventional PCR). The sensitivity of COLD-PCR was determined by assessing serial dilutions. Fifty clinical samples were used, including 20 fresh bone-marrow aspirate specimens and the formalin-fixed paraffin-embedded (FFPE) tissue of 30 solid tumors. Implementation of COLD-PCR was straightforward and required no additional cost for reagents or instruments. The method was specific and reproducible. COLD-PCR successfully detected mutations in all samples that were positive by conventional PCR, and enhanced the mutant-to-wild-type ratio by >4.74-fold, increasing the mutation detection sensitivity to 1.5%. The enhancement of mutation detection by COLD-PCR inversely correlated with the tumor-cell percentage in a sample. In conclusion, we validated the utility and superior sensitivity of COLD-PCR for detecting KRAS mutations in a variety of hematopoietic and solid tumors using either fresh or fixed, paraffin-embedded tissue.
Auguste, Aurélie; Bessière, Laurianne; Todeschini, Anne-Laure; Caburet, Sandrine; Sarnacki, Sabine; Prat, Jaime; D'angelo, Emanuela; De La Grange, Pierre; Ariste, Olivier; Lemoine, Fréderic; Legois, Bérangère; Sultan, Charles; Zider, Alain; Galmiche, Louise; Kalfa, Nicolas; Veitia, Reiner A
2015-12-01
Juvenile granulosa cell tumors (JGCTs) of the ovary are pediatric neoplasms representing 5% of all granulosa cell tumors (GCTs). Most GCTs are of adult type (AGCTs) and bear a mutation in the FOXL2 gene. The molecular basis of JGCTs is poorly understood, although mutations in the GNAS gene have been reported. We have detected in-frame duplications within the oncogene AKT1 in >60% of the JGCTs studied. Here, to evaluate the functional impact of these duplications and the existence of potential co-driver alterations, we have sequenced the transcriptome of four JGCTs and compared them with control transcriptomes. A search for gene variants detected only private alterations probably unrelated with tumorigenesis, suggesting that tandem duplications are the best candidates to underlie tumor formation in the absence of GNAS alterations. We previously showed that the duplications were specific to JGCTs. However, the screening of eight AGCTs samples without FOXL2 mutation showed the existence of an AKT1 duplication in one case, also having a stromal luteoma. The analysis of RNA-Seq data pinpointed a series of differentially expressed genes, involved in cytokine and hormone signaling and cell division-related processes. Further analyses pointed to the existence of a possible dedifferentiation process and suggested that most of the transcriptomic dysregulation might be mediated by a limited set of transcription factors perturbed by AKT1 activation. Finally, we show that commercially available AKT inhibitors can modulate the in vitro activity of various mutated forms. These results shed light on the pathogenesis of JGCTs and provide therapeutic leads for a targeted treatment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tester, David J.; Benton, Amber J.; Train, Laura; Deal, Barbara; Baudhuin, Linnea M.; Ackerman, Michael J.
2010-01-01
Long QT Syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for three cardiac ion channel alpha-subunits (LQT1-3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. Here, we set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes among unrelated patients who were mutation-negative following point mutation analysis of LQT1-12-susceptibility genes. Forty-two unrelated clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification (MLPA), a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA-MLPA LQTS Kit from MRC-Holland was used to analyze the three major LQTS-associated genes: KCNQ1, KCNH2, and SCN5A and the two minor genes: KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2/42 (4.8%, CI, 1.7–11%) unrelated patients. A deletion of KCNQ1 exon 3 was identified in a 10 year-old Caucasian boy with a QTc of 660 milliseconds (ms), a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17 year-old Caucasian girl with a QTc of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, since nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. PMID:20920651
Detection of MPL mutations by a novel allele-specific PCR-based strategy.
Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L
2013-11-01
MPL mutation testing is recommended in patients with suspected primary myelofibrosis or essential thrombocythemia who lack the JAK2 V617F mutation. MPL mutations can occur at allelic levels below 15%, which may escape detection by commonly used mutation screening methods such as Sanger sequencing. We developed a novel multiplexed allele-specific PCR assay capable of detecting most recurrent MPL exon 10 mutations associated with primary myelofibrosis and essential thrombocythemia (W515L, W515K, W515A, and S505N) down to a sensitivity of 2.5% mutant allele. Test results were reviewed from 15 reference cases and 1380 consecutive specimens referred to our laboratory for testing. Assay performance was compared to Sanger sequencing across a series of 58 specimens with MPL mutations. Positive cases consisted of 45 with W515L, 6 with S505N, 5 with W515K, 1 with W515A, and 1 with both W515L and S505N. Seven cases had mutations below 5% that were undetected by Sanger sequencing. Ten additional cases had mutation levels between 5% and 15% that were not consistently detected by sequencing. All results were easily interpreted in the allele-specific test. This assay offers a sensitive and reliable solution for MPL mutation testing. Sanger sequencing appears insufficiently sensitive for robust MPL mutation detection. Our data also suggest the relative frequency of S505N mutations may be underestimated, highlighting the necessity for inclusion of this mutation in MPL test platforms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Glushkova, Maria; Dimova, Petia; Yordanova, Iglika; Todorov, Tihomir; Tourtourikov, Ivan; Mitev, Vanyo; Todorova, Albena
2018-02-01
Von Hippel-Lindau syndrome is an autosomal-dominant disease characterized by the formation of various tumours and cysts in many different parts of the body. Von Hippel-Lindau syndrome is caused by VHL gene mutations leading to production of impaired tumor suppressor Von Hippel-Lindau syndrome protein or its complete absence. To study five patients with clinically suspected Von Hippel-Lindau syndrome, who were referred for molecular genetic testing. Sanger sequencing of the coding regions of the VHL gene. Five clinically relevant germline mutations were detected. One of the pathogenic variants has not been previously reported. This novel mutation is a complex mutation event combining a duplication and an indel, rearranging exon 3 of the VHL gene - c. [516_517dupGTCAAGCCT; 532_542delCTGGACATCGTinsATTA], p. (Glu173Serfs*4). Overall, our results showed that the diagnosis of Von Hippel-Lindau syndrome in our country is difficult most probably because of its heterogeneous clinical manifestation and insufficient knowledge on the diagnostic criteria for the disease. From genetic point of view our results add some novel data on the mutation profile of the VHL gene. In order to prove or revise the diagnosis, early genetic testing is strongly recommended in affected patients and their family members to ensure appropriate follow-up and treatment of the malignancies.
First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome
Beygo, J.; Buiting, K.; Seland, S.; Lüdecke, H.-J.; Hehr, U.; Lich, C.; Prager, B.; Lohmann, D.R.; Wieczorek, D.
2012-01-01
Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1. PMID:22712005
First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.
Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D
2012-01-01
Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.
Shackelford, Rodney E.; Whitling, Nicholas A.; McNab, Patricia; Japa, Shanker
2012-01-01
Activating point mutations in codons 12, 13, and 61 of the KRAS proto-oncogene are common in colorectal, non–small cell lung, pancreatic, and thyroid cancers. Constitutively activated KRAS mutations are strongly associated with a resistance to anti–epidermal growth factor receptor (EGFR) therapies, such as panitumumab and cetuximab used for treating metastatic colorectal carcinoma and EGFR tyrosine inhibitors used for advanced non–small cell lung cancers. Since anti-EGFR therapies are costly and may exert deleterious effects on individuals without activating mutations, KRAS mutation testing is recommended prior to the initiation of anti-EGFR therapy for these malignancies. The goal of this review is to summarize the KRAS mutation testing methods. Testing is now routinely requested in the clinical practice to provide data to assign the most appropriate anticancer chemotherapy for each given patient. Review of the most relevant literature was performed. Several areas were considered: ordering of the test, selection of the sample to be tested, and review of the testing methodologies. We found that several different methods are used for clinical KRAS mutation testing. Each of the methodologies is described, and information is provided about their performance, cost, turnaround times, detection limits, sensitivities, and specificities. We also provided “tips” for the appropriate selection and preparation of the sample to be tested. This is an important aspect of KRAS testing for clinical use, as the results of the test will affect clinical decisions with consequences for the patient. PMID:23264846
Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host
Timp, Winston; Feinberg, Andrew P.
2015-01-01
Although at the genetic level cancer is caused by diverse mutations, epigenetic modifications are characteristic of all cancers, from apparently normal precursor tissue to advanced metastatic disease, and these epigenetic modifications drive tumour cell heterogeneity. We propose a unifying model of cancer in which epigenetic dysregulation allows rapid selection for tumour cell survival at the expense of the host. Mechanisms involve both genetic mutations and epigenetic modifications that disrupt the function of genes that regulate the epigenome itself. Several exciting recent discoveries also point to a genome-scale disruption of the epigenome that involves large blocks of DNA hypomethylation, mutations of epigenetic modifier genes and alterations of heterochromatin in cancer (including large organized chromatin lysine modifications (LOCKs) and lamin-associated domains (LADs)), all of which increase epigenetic and gene expression plasticity. Our model suggests a new approach to cancer diagnosis and therapy that focuses on epigenetic dysregulation and has great potential for risk detection and chemoprevention. PMID:23760024
The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression.
Espiritu, Shadrielle Melijah G; Liu, Lydia Y; Rubanova, Yulia; Bhandari, Vinayak; Holgersen, Erle M; Szyca, Lesia M; Fox, Natalie S; Chua, Melvin L K; Yamaguchi, Takafumi N; Heisler, Lawrence E; Livingstone, Julie; Wintersinger, Jeff; Yousif, Fouad; Lalonde, Emilie; Rouette, Alexandre; Salcedo, Adriana; Houlahan, Kathleen E; Li, Constance H; Huang, Vincent; Fraser, Michael; van der Kwast, Theodorus; Morris, Quaid D; Bristow, Robert G; Boutros, Paul C
2018-05-03
The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance. Copyright © 2018 Elsevier Inc. All rights reserved.
Zsurka, Gábor; Kraytsberg, Yevgenia; Kudina, Tatiana; Kornblum, Cornelia; Elger, Christian E; Khrapko, Konstantin; Kunz, Wolfram S
2005-08-01
Experimental evidence for human mitochondrial DNA (mtDNA) recombination was recently obtained in an individual with paternal inheritance of mtDNA and in an in vitro cell culture system. Whether mtDNA recombination is a common event in humans remained to be determined. To detect mtDNA recombination in human skeletal muscle, we analyzed the distribution of alleles in individuals with multiple mtDNA heteroplasmy using single-cell PCR and allele-specific PCR. In all ten individuals who carried a heteroplasmic D-loop mutation and a distantly located tRNA point mutation or a large deletion, we observed a mixture of four allelic combinations (tetraplasmy), a hallmark of recombination. Twelve of 14 individuals with closely located heteroplasmic D-loop mutation pairs contained a mixture of only three types of mitochondrial genomes (triplasmy), consistent with the absence of recombination between adjacent markers. These findings indicate that mtDNA recombination is common in human skeletal muscle.
Jeong, Ji Hun; Park, Soon Ho; Park, Mi Jung; Kim, Moon Jin; Kim, Kyung Hee; Park, Pil Whan; Seo, Yiel Hea; Lee, Jae Hoon; Park, Jinny; Hong, Junshik
2013-01-01
Background N-ras mutations are one of the most commonly detected abnormalities of myeloid origin. N-ras mutations result in a constitutively active N-ras protein that induces uncontrolled cell proliferation and inhibits apoptosis. We analyzed N-ras mutations in adult patients with AML at a particular institution and compared pyrosequencing analysis with a direct sequencing method for the detection of N-ras mutations. Methods We analyzed 90 bone marrow samples from 83 AML patients. We detected N-ras mutations in codons 12, 13, and 61 using the pyrosequencing method and subsequently confirmed all data by direct sequencing. Using these methods, we screened the N-ras mutation quantitatively and determined the incidence and characteristic of N-ras mutation. Results The incidence of N-ras mutation was 7.2% in adult AML patients. The patients with N-ras mutations showed significant higher hemoglobin levels (P=0.022) and an increased incidence of FLT3 mutations (P=0.003). We observed 3 cases with N-ras mutations in codon 12 (3.6%), 2 cases in codon 13 (2.4%), and 1 case in codon 61 (1.2%). All the mutations disappeared during chemotherapy. Conclusions There is a low incidence (7.2%) of N-ras mutations in AML patients compared with other populations. Similar data is obtained by both pyrosequencing and direct sequencing. This study showed the correlation between the N-ras mutation and the therapeutic response. However, pyrosequencing provides quantitative data and is useful for monitoring therapeutic responses. PMID:23667841
Redondo, Javier Jareño; Keller, Peter M; Zbinden, Reinhard; Wagner, Karoline
2018-01-01
In this study we evaluated the commercially available LightMix® RT-PCR assay for Helicobacter pylori detection and identification of clarithromycin (CLR) resistance in culture and clinical specimens (gastric biopsies and stool). The H. pylori LightMix® RT-PCR detects a 97bp long fragment of the 23S rRNA gene and allows the identification of 3 distinct point mutations conferring CLR resistance via melting curve analysis. The performance of the H. pylori LightMix® RT-PCR was evaluated using a set of 60 H. pylori strains showing phenotypical CLR susceptibility or CLR resistance (Minimum inhibitory concentrations from 0.016 to 256mg/L). We found high concordance (95%) between phenotypical CLR resistance screening by E-Test® and the Lightmix® RT-PCR. Discrepant results were verified by sequencing of the 23S rRNA gene that always confirmed the results obtained by Lightmix® RT-PCR. Furthermore, H. pylori was detected in clinical biopsy and stool specimens by Lightmix® RT-PCR that identified the correct H. pylori genotype. The LightMix® RT-PCR is an accurate, sensitive and easy to use test for H. pylori and CLR resistance detection and can therefore be readily implemented in any diagnostic laboratory. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Lerman, B B; Dong, B; Stein, K M; Markowitz, S M; Linden, J; Catanzaro, D F
1998-01-01
Idiopathic ventricular tachycardia is a generic term that describes the various forms of ventricular arrhythmias that occur in patients without structural heart disease and in the absence of the long QT syndrome. Many of these tachycardias are focal in origin, localize to the right ventricular outflow tract (RVOT), terminate in response to beta blockers, verapamil, vagal maneuvers, and adenosine, and are thought to result from cAMP-mediated triggered activity. DNA was prepared from biopsy samples obtained from myocardial tissue from a patient with adenosine-insensitive idiopathic ventricular tachycardia arising from the RVOT. Genomic sequences of the inhibitory G protein Galphai2 were determined after amplification by PCR and subcloning. A point mutation (F200L) in the GTP binding domain of the inhibitory G protein Galphai2 was identified in a biopsy sample from the arrhythmogenic focus. This mutation was shown to increase intracellular cAMP concentration and inhibit suppression of cAMP by adenosine. No mutations were detected in Galphai2 sequences from myocardial tissue sampled from regions remote from the origin of tachycardia, or from peripheral lymphocytes. These findings suggest that somatic cell mutations in the cAMP-dependent signal transduction pathway occurring during myocardial development may be responsible for some forms of idiopathic ventricular tachycardia. PMID:9637720
Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.
Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi
2017-01-01
Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.
A universal array-based multiplexed test for cystic fibrosis carrier screening.
Amos, Jean A; Bridge-Cook, Philippa; Ponek, Victor; Jarvis, Michael R
2006-01-01
Cystic fibrosis is a multisystem autosomal recessive disorder with high carrier frequencies in caucasians and significant, but lower, carrier frequencies in other ethnicities. Based on technology that allows high detection of mutations in caucasians and significant detection in other ethnic groups, the American College of Medical Genetics (ACMG) and American College of Obstetricians and Gynecologists (ACOG) have recommended pan-ethnic cystic fibrosis carrier screening for all reproductive couples. This paper discusses carrier screening using the Tag-It multiplex mutation platform and the Cystic Fibrosis Mutation Detection Kit. The Tag-It cystic fibrosis assay is a multiplexed genotyping assay that detects a panel of 40 cystic fibrosis transmembrane conductance regulator mutations including the 23 mutations recommended by the ACMG and ACOG for population screening. A total of 16 additional mutations detected by the Tag-It cystic fibrosis assay may also be common. The assay method is described in detail, and its performance in a genetics reference laboratory performing high-volume cystic fibrosis carrier screening is assessed.
Cystic fibrosis carrier screening in a North American population.
Zvereff, Val V; Faruki, Hawazin; Edwards, Marcia; Friedman, Kenneth J
2014-07-01
The aim of this study was to compare the mutation frequency distribution for a 32-mutation panel and a 69-mutation panel used for cystic fibrosis carrier screening. Further aims of the study were to examine the race-specific detection rates provided by both panels and to assess the performance of extended panels in large-scale, population-based cystic fibrosis carrier screening. Although genetic screening for the most common CFTR mutations allows detection of nearly 90% of cystic fibrosis carriers, the large number of other mutations, and their distribution within different ethnic groups, limits the utility of general population screening. Patients referred for cystic fibrosis screening from January 2005 through December 2010 were tested using either a 32-mutation panel (n = 1,601,308 individuals) or a 69-mutation panel (n = 109,830). The carrier frequencies observed for the 69-mutation panel study population (1/36) and Caucasian (1/27) and African-American individuals (1/79) agree well with published cystic fibrosis carrier frequencies; however, a higher carrier frequency was observed for Hispanic-American individuals (1/48) using the 69-mutation panel as compared with the 32-mutation panel (1/69). The 69-mutation panel detected ~20% more mutations than the 32-mutation panel for both African-American and Hispanic-American individuals. Expanded panels using race-specific variants can improve cystic fibrosis carrier detection rates within specific populations. However, it is important that the pathogenicity and the relative frequency of these variants are confirmed.
Brief report: EGFR L858M/L861Q cis mutations confer selective sensitivity to afatinib
Saxon, Jamie A.; Sholl, Lynette M.; Jänne, Pasi A.
2017-01-01
Introduction Tyrosine kinase inhibitors (TKIs) have been developed to treat patients with epidermal growth factor receptor (EGFR)-mutant lung cancers. However, the therapeutic efficacy of TKIs in patients with uncommon EGFR mutations remains unclear. Methods Next-generation sequencing was performed on a patient’s lung adenocarcinoma tumor sample, revealing rare combined in cis (on the same allele) EGFR mutations. Stable Ba/F3 and NIH-3T3 cell lines harboring the mutations were established to investigate the effect of first, second, and third generation EGFR TKIs on cell proliferation by MTS assay and EGFR phosphorylation by Western blotting. Results EGFR L858M/L861Q mutations in cis were detected in a non-small cell lung cancer patient’s tumor. The patient demonstrated primary resistance to erlotinib and was subsequently treated with afatinib, which caused tumor regression. In in vitro studies, first and third generation TKIs exhibited a decreased capacity to prevent EGFR phosphorylation and inhibit cell proliferation in EGFR L858M/L861Q cells compared to cells harboring the common EGFR L858R point mutation. In contrast, afatinib treatment reduced proliferation and inhibited EGFR phosphorylation in L858M/L861Q and L858R mutant cells at similar concentrations. Conclusions Afatinib may be a beneficial therapeutic option for a subset of lung cancer patients with rare EGFR mutations in their tumors. Understanding how uncommon mutations affect protein structure and TKI binding will be important for identifying effective targeted therapies for these patients. PMID:28088511
Molecular methods for the detection of mutations.
Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A
2000-01-01
We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.
Mancini, Irene; Santucci, Claudio; Sestini, Roberta; Simi, Lisa; Pratesi, Nicola; Cianchi, Fabio; Valanzano, Rosa; Pinzani, Pamela; Orlando, Claudio
2010-01-01
Fast and reliable tests to detect mutations in human cancers are required to better define clinical samples and orient targeted therapies. KRAS mutations occur in 30–50% of colorectal cancers (CRCs) and represent a marker of clinical resistance to cetuximab therapy. In addition, the BRAF V600E is mutated in about 10% of CRCs, and the development of a specific inhibitor of mutant BRAF kinase has prompted a growing interest in BRAFV600E detection. Traditional methods, such as PCR and direct sequencing, do not detect low-level mutations in cancer, resulting in false negative diagnoses. In this study, we designed a protocol to detect mutations of KRAS and BRAFV600E in 117 sporadic CRCs based on coamplification at lower denaturation temperature PCR (COLD-PCR) and high-resolution melting (HRM). Using traditional PCR and direct sequencing, we found KRAS mutations in 47 (40%) patients and BRAFV600E in 10 (8.5%). The use of COLD-PCR in apparently wild-type samples allowed us to identify 15 newly mutated CRCs (10 for KRAS and 5 for BRAFV600E), raising the percentage of mutated CRCs to 48.7% for KRAS and to 12.8% for BRAFV600E. Therefore, COLD-PCR combined with HRM permits the correct identification of less represented mutations in CRC and better selection of patients eligible for targeted therapies, without requiring expensive and time-consuming procedures. PMID:20616366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Qing-lin; Xu, Jia; Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
2012-07-13
Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related genemore » with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.« less
A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Juanjuan; Yuan, Yimin; Lin, Bing
2012-03-23
Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressivemore » visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.« less
McInerney-Leo, Aideen M; Marshall, Mhairi S; Gardiner, Brooke; Coucke, Paul J; Van Laer, Lut; Loeys, Bart L; Summers, Kim M; Symoens, Sofie; West, Jennifer A; West, Malcolm J; Paul Wordsworth, B; Zankl, Andreas; Leo, Paul J; Brown, Matthew A; Duncan, Emma L
2013-01-01
Osteogenesis imperfecta (OI) and Marfan syndrome (MFS) are common Mendelian disorders. Both conditions are usually diagnosed clinically, as genetic testing is expensive due to the size and number of potentially causative genes and mutations. However, genetic testing may benefit patients, at-risk family members and individuals with borderline phenotypes, as well as improving genetic counseling and allowing critical differential diagnoses. We assessed whether whole exome sequencing (WES) is a sensitive method for mutation detection in OI and MFS. WES was performed on genomic DNA from 13 participants with OI and 10 participants with MFS who had known mutations, with exome capture followed by massive parallel sequencing of multiplexed samples. Single nucleotide polymorphisms (SNPs) and small indels were called using Genome Analysis Toolkit (GATK) and annotated with ANNOVAR. CREST, exomeCopy and exomeDepth were used for large deletion detection. Results were compared with the previous data. Specificity was calculated by screening WES data from a control population of 487 individuals for mutations in COL1A1, COL1A2 and FBN1. The target capture of five exome capture platforms was compared. All 13 mutations in the OI cohort and 9/10 in the MFS cohort were detected (sensitivity=95.6%) including non-synonymous SNPs, small indels (<10 bp), and a large UTR5/exon 1 deletion. One mutation was not detected by GATK due to strand bias. Specificity was 99.5%. Capture platforms and analysis programs differed considerably in their ability to detect mutations. Consumable costs for WES were low. WES is an efficient, sensitive, specific and cost-effective method for mutation detection in patients with OI and MFS. Careful selection of platform and analysis programs is necessary to maximize success. PMID:24501682
Krug, A K; Enderle, D; Karlovich, C; Priewasser, T; Bentink, S; Spiel, A; Brinkmann, K; Emenegger, J; Grimm, D G; Castellanos-Rizaldos, E; Goldman, J W; Sequist, L V; Soria, J -C; Camidge, D R; Gadgeel, S M; Wakelee, H A; Raponi, M; Noerholm, M; Skog, J
2018-01-01
Abstract Background A major limitation of circulating tumor DNA (ctDNA) for somatic mutation detection has been the low level of ctDNA found in a subset of cancer patients. We investigated whether using a combined isolation of exosomal RNA (exoRNA) and cell-free DNA (cfDNA) could improve blood-based liquid biopsy for EGFR mutation detection in non-small-cell lung cancer (NSCLC) patients. Patients and methods Matched pretreatment tumor and plasma were collected from 84 patients enrolled in TIGER-X (NCT01526928), a phase 1/2 study of rociletinib in mutant EGFR NSCLC patients. The combined isolated exoRNA and cfDNA (exoNA) was analyzed blinded for mutations using a targeted next-generation sequencing panel (EXO1000) and compared with existing data from the same samples using analysis of ctDNA by BEAMing. Results For exoNA, the sensitivity was 98% for detection of activating EGFR mutations and 90% for EGFR T790M. The corresponding sensitivities for ctDNA by BEAMing were 82% for activating mutations and 84% for T790M. In a subgroup of patients with intrathoracic metastatic disease (M0/M1a; n = 21), the sensitivity increased from 26% to 74% for activating mutations (P = 0.003) and from 19% to 31% for T790M (P = 0.5) when using exoNA for detection. Conclusions Combining exoRNA and ctDNA increased the sensitivity for EGFR mutation detection in plasma, with the largest improvement seen in the subgroup of M0/M1a disease patients known to have low levels of ctDNA and poses challenges for mutation detection on ctDNA alone. Clinical Trials NCT01526928 PMID:29216356
Costa, Flávia C.; Fedosyuk, Halyna; Chazelle, Allen M.; Neades, Renee Y.; Peterson, Kenneth R.
2012-01-01
Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the −566 GATA motif of the Aγ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of Aγ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the −566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1–mediated repressor complex was disrupted by the −566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting −566 Aγ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis. PMID:23284307
Costa, Flávia C; Fedosyuk, Halyna; Chazelle, Allen M; Neades, Renee Y; Peterson, Kenneth R
2012-01-01
Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of (A)γ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting -566 (A)γ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis.
El-Heliebi, Amin; Hille, Claudia; Laxman, Navya; Svedlund, Jessica; Haudum, Christoph; Ercan, Erkan; Kroneis, Thomas; Chen, Shukun; Smolle, Maria; Rossmann, Christopher; Krzywkowski, Tomasz; Ahlford, Annika; Darai, Evangelia; von Amsberg, Gunhild; Alsdorf, Winfried; König, Frank; Löhr, Matthias; de Kruijff, Inge; Riethdorf, Sabine; Gorges, Tobias M; Pantel, Klaus; Bauernhofer, Thomas; Nilsson, Mats; Sedlmayr, Peter
2018-03-01
Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices. © 2017 American Association for Clinical Chemistry.
Muhammad, Raj; Shakeel, Muhammad; Rehman, Shoaib U; Lodhi, Muhammad A
2017-03-01
β-Thalassemia (β-thal) is the most prevalent hereditary blood disorder in Pakistan with a carrier rate of 5.0-8.0%. The homozygous affected children require frequent blood transfusions for their survival. This autosomal recessive disease can only be prevented through awareness programs, carrier screening, mutation detection, genetic counseling and prenatal diagnosis (PND). The present study aimed to determine the prevalence of various mutations causing β-thal and also to detect carriers of these mutations in families living in the Mardan Division, Khyber Pakhtunkhwa (KP) Province, Pakistan. The study was conducted at the Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan. Blood samples of β-thalassemic families were collected from various transfusion centers in Mardan Division. Using the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) technique, all samples were analyzed for the six most common mutations causing β-thal in this area. Six different mutant primers for the detection of different mutations were used. The most common mutations detected in thalassemic patients were frameshift codons (FSC) 8/9 (+G) (HBB: c.27_28insG), codons 41/42 (-TTCT) (HBB: c.126_129delCTTT), and IVS-I-5 (G>C) (HBB: c.92+5G>C). The predominant mutation for carrying the mutant genes for β-thal were FSC 8/9, IVS-I-5, codons 41/42, IVS-I-1. It was also found that 66.7% of marriages were consanguineous. The FSC 8/9 mutation was found to be the most common β-thal mutation with a frequency of 44.4%. This research project provides a strong incentive for the establishment of large scale mutation detection and PND services in the Mardan Division.
Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl
2018-02-01
The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong
2007-09-07
We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher ratesmore » of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.« less
Eshleman, James R.; Norris, Alexis L.; Sadakari, Yoshihiko; Debeljak, Marija; Borges, Michael; Harrington, Colleen; Lin, Elaine; Brant, Aaron; Barkley, Thomas; Almario, J. Alejandro; Topazian, Mark; Farrell, James; Syngal, Sapna; Lee, Jeffrey H.; Yu, Jun; Hruban, Ralph H.; Kanda, Mitsuro; Canto, Marcia Irene; Goggins, Michael
2014-01-01
BACKGROUND & AIMS Pancreatic imaging can identify neoplastic cysts but not microscopic neoplasms. Mutation analysis of pancreatic fluid following secretin stimulation might identify microscopic neoplasias in the pancreatic duct system. We determined the prevalence of mutations in KRAS and GNAS genes in pancreatic juice from subjects undergoing endoscopic ultrasound for suspected pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms, or pancreatic adenocarcinoma. METHODS Secretin-stimulated juice samples were collected from the duodenum of 272 subjects enrolled in Cancer of the Pancreas Screening studies; 194 subjects were screened because of a family history of, or genetic predisposition to, pancreatic cancer and 78 were evaluated for pancreatic cancer (n=30) or other disorders (controls: pancreatic cysts, pancreatitis, or normal pancreata, n=48). Mutations were detected by digital high-resolution melt-curve analysis and pyrosequencing. The number of replicates containing a mutation determined the mutation score. RESULTS KRAS mutations were detected in pancreatic juice from larger percentages of subjects with pancreatic cancer (73%) or undergoing cancer screening (50%) than controls (19%) (P=.0005). A greater proportion of patients with pancreatic cancer had at least 1 KRAS mutation detected 3 or more times (47%) than screened subjects (21%) or controls (6%, P=.002). Among screened subjects, mutations in KRAS (but not GNAS) were found in similar percentages of patients with or without pancreatic cysts. However, a greater proportion of patients over 50 ys old had KRAS mutations (54.6%) than younger patients (36.3%) (P=.032); the older subjects also more mutations in KRAS (P=.02). CONCLUSIONS Mutations in KRAS are detected in pancreatic juice from the duodenum of 73% of patients with pancreatic cancer, and 50% of asymptomatic individuals with a high risk for pancreatic cancer. However, KRAS mutations are detected in pancreatic juice from 19% of controls. Mutations detected in individuals without pancreatic abnormalities, based on imaging analyses, likely arise from small PanIN lesions. ClinicalTrials.gov no: NCT00438906 and NCT00714701 PMID:25481712
Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.
Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter
2007-12-01
Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.
Lupini, Laura; Moretti, Anna; Bassi, Cristian; Schirone, Alessio; Pedriali, Massimo; Querzoli, Patrizia; Roncarati, Roberta; Frassoldati, Antonio; Negrini, Massimo
2018-03-12
Approximately 70% of breast cancers (BCs) express estrogen receptor alpha (ERα) and are treated with endocrine therapy. However, the effectiveness of this therapy is limited by innate or acquired resistance in approximately one-third of patients. Activating mutations in the ESR1 gene that encodes ERα promote critical resistance mechanisms. Here, we developed a high sensitivity approach based on enhanced-ice-COLD-PCR for detecting ESR1 mutations. The method produced an enrichment up to 100-fold and allowed the unambiguous detection of ESR1 mutations even when they consisted of only 0.01% of the total ESR1 allelic fraction. After COLD-PCR enrichment, methods based on next-generation sequencing or droplet-digital PCR were employed to detect and quantify ESR1 mutations. We applied the method to detect ESR1 mutations in circulating free DNA from the plasma of 56 patients with metastatic ER-positive BC. Fifteen of these patients were found to have ESR1 mutations at codons 536-538. This study demonstrates the utility of the enhanced-ice-COLD-PCR approach for simplifying and improving the detection of ESR1 tumor mutations in liquid biopsies. Because of its high sensitivity, the approach may potentially be applicable to patients with non-metastatic disease.
Winn-Deen
1998-12-01
Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.
Pitfalls and caveats in BRCA sequencing.
Bellosillo, Beatriz; Tusquets, Ignacio
2006-01-01
Between 5 and 10% of breast cancer cases are considered to result from hereditary predisposition. Germ-line mutations in BRCA1 and BRCA2 are responsible for an inherited predisposition of breast and ovarian cancer. Direct nucleotide sequencing is considered the gold standard technique for mutation detection for genes such as BRCA1 and BRCA2. In many laboratories that analyze BRCA1 and BRCA2, previous to direct sequencing, screening techniques to identify sequence variants in the PCR amplicons are performed. The mutations detected in these genes may be frameshift mutations (insertions or deletions), nonsense mutations, or missense mutations. The clinical interpretation of the mutation as the cause of the disease may be difficult to establish in the case of missense mutations. Only in 30-70% of the families in which a hereditary component is suspected, a mutation in BRCA1 and/or BRCA2 is detected. Negative results may be due to: wrong selection of the proband; mutations in the regulatory portion of the genes; gene silencing due to epigenetic phenomena; or large genomic rearrangements that produce deletions of whole exons. Another possibility that explains the lack of detection of alterations in BRCA1 or BRCA2 is the presence of mutations in undiscovered genes or in genes that interact with BRCA1 and/or BRCA2, which may be low-penetrance genes, like CHEK2.
Pfarr, Nicole; Darb-Esfahani, Silvia; Leichsenring, Jonas; Taube, Eliane; Boxberg, Melanie; Braicu, Ioana; Jesinghaus, Moritz; Penzel, Roland; Endris, Volker; Noske, Aurelia; Weichert, Wilko; Schirmacher, Peter; Denkert, Carsten; Stenzinger, Albrecht
2017-10-01
Brenner tumors (BT) are rare ovarian tumors encompassing benign, borderline, and malignant variants. While the histopathology of BTs and their clinical course is well described, little is known about the underlying genetic defects. We employed targeted next generation sequencing to analyze the mutational landscape in a cohort of 23 BT cases (17 benign, 2 borderline, and 4 malignant) and 3 ovarian carcinomas with transitional cell histology (TCC). Copy number variations (CNV) were validated by fluorescence in-situ hybridization (FISH) and quantitative PCR-based copy number assays. Additionally, we analyzed the TERT promotor region by conventional Sanger sequencing. We identified 25 different point mutations in 23 of the analyzed genes in BTs and 10 mutations in 8 genes in TCCs. About 57% percent of mutations occurred in genes involved in cell cycle control, DNA repair, and epigenetic regulation processes. All TCC cases harbored TP53 mutations whereas all BTs were negative and none of the mutations observed in BTs were present in TCCs. CNV analysis revealed recurrent MDM2 amplifications in 3 out of 4 of the malignant BT cases with one case harboring a concomitant amplification of CCND1. No mutations were observed in the TERT promoter region in BTs and TCCs, which is mutated in about 50%-75% of urothelial carcinoma and in 16% of ovarian clear-cell carcinomas. In conclusion, our study highlights distinct genetic features of BTs, and detection of the triplet phenotype MDM2 amplification/TP53 wt/TERT wt may aid diagnosis of malignant BT in difficult cases. Moreover, selected genetic lesions may be clinically exploitable in a metastatic setting. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staedtler, F.; Locher, F.; Sreenan, G.
1997-10-01
In order to evaluate the in vivo genotoxic potential of three putative genotoxic mouse liver carcinogens, high doses of 4-chloro-o-phenylenediamine, 2-nitro-p-phenylenediamine and 2, 4-diaminotoluene were tested short term in the Big Blue{reg_sign} transgenic mouse mutation assay. Small statistically significant increases in the lacI mutant frequencies in the liver by factors 1.7 to 2.0 were found. A representative number of 347 lacI mutants isolated from liver tissue of male and female animals were analyses by DNA sequencing. The mutational spectra were examined with the Adams-Skopek algorithm. The spontaneous mutational spectra from untreated male and female animals were similar and consistent withmore » spectral Big Blue{reg_sign} control data stored in the lacI database. Most of the background mutations were located in the 5{prime} portion of the coding region of the lacI gene. Single base substitutions were most prominent. G:C to A:T transitions and G:C to T:A transversions occurred predominatly and were preferentially located at CpG sites. Despite the increases observed in the mutant frequencies of the treated animals, the corresponding mutational spectra did not differ from the controls. However, it is possible that certain classes of point mutations were substantially increased but not detected due to the limited number of sequenced mutants. In two animals treated with 2, 4- diaminotoluene unusually high mutant frequencies and the multiple occurrence of certain mutations in the liver was observed. From one of these animals six lacI mutants isolated from colon tissue were all different. Since 2, 4-diaminotoluene was shown to induce liver cell proliferation these results may reflect clonal expansion of single mutated liver cells.« less
Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C
2001-11-01
Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.
Bethanis, Sotirios; Koutsodontis, George; Palouka, Theodosia; Avgoustis, Christos; Yannoukakos, Drakoulis; Bei, Thalia; Papadopoulos, Savas; Linos, Dimitrios; Tsagarakis, Stylianos
2007-01-01
Multiple endocrine neoplasia type 2A (MEN2A) is a syndrome of familial neoplasias characterized by medullary thyroid carcinoma (MTC), pheochromocytoma and hyperplasia of the parathyroid glands. RET protooncogene mutations are responsible for MEN 2A. Mutations in exons 10 or 11 have been identified in more than 96% of patients with MEN 2A. We herein report for the first time a patient with MEN 2A harboring a mutation (Gly(533)Cys) in exon 8. A 66-year old male patient was referred to our department for bilateral adrenal nodules. The patient's family history was remarkable in that his mother had pheochromocytoma. Biochemical evaluation and findings of the magnetic resonance imaging of the adrenals were compatible with the diagnosis of bilateral pheochromocytomas. The patient underwent laparoscopic bilateral adrenalectomy and histological examination confirmed the preoperative diagnosis of pheochromocytoma. Absence of phenotypic characteristics of VHL or NF1 and elevated calcitonin levels both basal and post pentagastrin stimulation, raised the possibility of MEN 2A syndrome. Total thyroidectomy was performed and histological examination showed the presence of MTC. Direct sequencing of exon 8 from the patient's genomic DNA revealed the mutation c.1,597G-->T (Gly533Cys). Although this missense point mutation has been associated with familial MTC (FMTC), to the best of our knowledge mutations in exon 8 have not previously been identified in patients with MEN 2A. In conclusion, in patients with clinical suspicion of MEN 2A syndrome, analysis of RET exon 8 should be considered when the routine evaluation of MEN 2A-associated mutations is negative. Furthermore, patients with FMTC and exon 8 mutations should also be screened for pheochromocytoma.
Pitfalls in the molecular genetic diagnosis of Leber hereditary optic neuropathy (LHON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, D.R.; Neufeld, M.J.
1993-10-01
Pathogenetic mutations in mtDNA are found in the majority of patients with Leber hereditary optic neuropathy (LHON), and molecular genetic techniques to detect them are important for diagnosis. A false-positive molecular genetic error has adverse consequences for the diagnosis of this maternally inherited disease. The authors found a number of mtDNA polymorphisms that occur adjacent to known LHON-associated mutations and that confound their molecular genetic detection. These transition mutations occur at mtDNA nt 11779 (SfaNI site loss, 11778 mutation), nt 3459 (BsaHI site loss, 3460 mutation), nt 15258 (AccI site loss, 15257 mutation), nt 14485 (mismatch primer Sau3AI site loss,more » 14484 mutation), and nt 13707 (BstNI site loss, 13708 mutation). Molecular genetic detection of the most common pathogenetic mtDNA mutations in LHON, using a single restriction enzyme, may be confounded by adjacent polymorphisms that occur with a false-positive rate of 2%-7%. 19 refs.« less
Ma, Zhonghua; Yoshimura, Michael A.; Michailides, Themis J.
2003-01-01
Low and high levels of resistance to the benzimidazole fungicides benomyl and thiophanate-methyl were observed in field isolates of Monilinia fructicola, which is the causative agent of brown rot of stone fruit. Isolates that had low levels of resistance (hereafter referred to as LR isolates) and high levels of resistance (hereafter referred to as HR isolates) were also cold and heat sensitive, respectively. Results from microsatellite DNA fingerprints showed that genetic identities among the populations of sensitive (S), LR, and HR isolates were very high (>0.96). Analysis of DNA sequences of the β-tubulin gene showed that the LR isolates had a point mutation at codon 6, causing a replacement of the amino acid histidine by tyrosine. Codon 198, which encodes a glutamic acid in S and LR isolates, was converted to a codon for alanine in HR isolates. Based on these point mutations in the β-tubulin gene, allele-specific PCR assays were developed for rapid detection of benzimidazole-resistant isolates of M. fructicola from stone fruit. PMID:14660360
Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.
Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte
2018-02-01
Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.
[Myofibroma/myofibromatosis: a clinicopathologic analysis of 9 cases].
Fu, Y; Guan, W Y; Wu, H Y; Wu, H Y; Fan, Z W; Ye, Q; Meng, F Q
2018-01-08
Objective: To investigate the clinical and histological features, diagnosis and differential diagnosis of myofibroma/myofibromatosis. Methods: The clinical data and pathology features of nine cases of myofibroma/myofibromatosis were collected from August 2011 to November 2016 in Affiliated Drum Tower Hospital, Nanjing University Medical School and Children's Hospital of Nanjing Medical University. Immunohistochemistry(IHC), PDGFRB molecular analysis and ETV6-NTRK3 gene fusion were performed and relevant literature reviewed. Results: There were 7 males and 2 females, with age ranging from 3 days to 18 years (mean 5 years). The tumors were located in head and neck (eight cases) and trunk (one case). Clinically, the tumors presented as freely movable nodules. Microscopically, they appeared biphasic with alternating light- and dark-staining areas. The light-staining area consisted mainly of plump myoid spindle cells with eosinophilic cytoplasm arranged in nodules, short fascicles, or whorls.The dark-staining area was composed of round or polygonal cells with slightly hyperchromatic nuclei or small spindle cells arranged around a distinct hemangiopericytoma-like vascular pattern. IHC showed the tumor cells in the light-staining area were strongly positive for vimentin and SMA, while cells in dark-staining area were strongly positive for vimentin, and weakly for SMA. Tumor cells were negative for desmin, S-100 protein, h-Caldesmon, CD34 and STAT6. Analysis of PDGFRB mutations was performed in seven cases. Two cases showed 12 exon point mutation c. 1681 c>T(p.R561C), one case showed 14 exon point mutation c. 1998C>G (p.N666K). ETV6-NTRK3 gene fusion was not detected by fluorescence in situ hybridization in four patients under three years old. All cases were followed for 6 to 68 months, with two recurrences. Conclusions: Myofibroma/myofibromatosis is an uncommon benign myofibroblastic tumor of infancy and childhood. The tumor can appear biphasic, and may show PDGFRB point mutation which is of potential diagnostic value.
Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT
2009-01-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539
Somatic diversification of chicken immunoglobulin light chains by point mutations.
Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I
1990-04-01
The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J-C lambda intron (where C = constant).
Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease.
Krall, Paola; Pineda, Cristina; Ruiz, Patricia; Ejarque, Laia; Vendrell, Teresa; Camacho, Juan Antonio; Mendizábal, Santiago; Oliver, Artur; Ballarín, José; Torra, Roser; Ars, Elisabet
2014-02-01
Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients. Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases. Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86%. The screening of five exons (58, 32, 34, 36, 37) yielded a 54% chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76%. The c.9689delA mutation was present in 17 (34%) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases. Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.
Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro
2017-07-01
Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomatsu, S.; Hori, T.; Nakashima, Y.
1994-09-01
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) formore » Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.« less
Osaki, Takako; Mabe, Katsuhiro; Zaman, Cynthia; Yonezawa, Hideo; Okuda, Masumi; Amagai, Kenji; Fujieda, Shinji; Goto, Mitsuhide; Shibata, Wataru; Kato, Mototsugu; Kamiya, Shigeru
2017-10-01
To prevent Helicobacter pylori infection in the younger generation, it is necessary to investigate the prevalence of antibiotic-resistant H. pylori. The aim of this study was to evaluate the method of PCR-based sequencing to detect clarithromycin (CAM) resistance-associated mutations using fecal samples as a noninvasive method. DNA extracted from fecal specimens and isolates from gastric biopsy specimens were collected from patients with H. pylori infection. Antibiotic resistance to CAM was analyzed by molecular and culture methods. The detection rates of CAM resistance-associated mutations (A2142C or A2143G) were compared before and after eradication therapy. With CAM resistance of H. pylori evaluated by antibiotic susceptibility test as a gold standard, the sensitivity and the specificity of gene mutation detection from fecal DNA were 80% and 84.8%, respectively. In contrast, using DNA of isolated strains, the sensitivity and the specificity were 80% and 100%. Of the seven cases in which eradication was unsuccessful by triple therapy including CAM, CAM-resistant H. pylori, and resistance-associated mutations were detected in three cases, CAM-resistant H. pylori without the mutation was detected in two patients, and resistance-associated mutation was only detected in one patient. PCR-based sequencing to detect CAM resistance-associated mutations using isolates or fecal samples was useful for finding antibiotic-resistant H. pylori infection. Although the specificity of the detection from fecal samples compared with antibiotic susceptibility testing was lower than that from isolates, this fecal detection method is suitable especially for asymptomatic subjects including children. Further improvement is needed before clinical application. © 2017 John Wiley & Sons Ltd.