THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS
The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan
2018-06-01
This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.
He, Yun-feng; Zhang, Wang-zhen; Kuang, Dan; Deng, Hua-xin; Li, Xiao-hai; Lin, Da-feng; Deng, Qi-fei; Huang, Kun; Wu, Tang-chun
2012-12-01
To explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers. Occupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively. The levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas. Urinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.
Zhu, Linli; Xu, Hui
2014-09-01
Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...
Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.
Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing
2015-03-01
The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C.
2018-01-01
Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.
Zhang, Xiaotao; Zhang, Li; Ruan, Yibin; Wang, Weiwei; Ji, Houwei; Wan, Qiang; Lin, Fucheng; Liu, Jian
2017-10-08
A method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons in cigarette filter was developed by isotope internal standard combined with gas chromatography-tandem mass spectrometry. The cigarette filters were extracted with dichloromethane, and the extract was filtered with 0.22 μm organic phase membrane. The samples were isolated by DB-5MS column (30 m×0.25 mm, 0.25 μm) and detected using multiple reaction monitoring mode of electron impact source under positive ion mode. The linearities of the 15 polycyclic aromatic hydrocarbons (acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, ben[ a ]anthracene, chrysene, benzo[ b ]fluoranthene, benzo[ k ]fluoranthene, benzo[ a ]pyrene, dibenzo[ a,h ]anthracene, benzo[ g,h,i ]perylene and indeno[1,2,3- c,d ]pyrene) were good, and the correlation coefficients ( R 2 ) ranged from 0.9914 to 0.9999. The average recoveries of the 15 polycyclic aromatic hydrocarbons were 81.6%-109.6% at low, middle and high spiked levels, and the relative standard deviations were less than 16%, except that the relative standard deviation of fluorene at the low spiked level was 19.2%. The limits of detection of the 15 polycyclic aromatic hydrocarbons were 0.02 to 0.24 ng/filter, and the limits of quantification were 0.04 to 0.80 ng/filter. The method is simple, rapid, accurate, sensitive and reproducible. It is suitable for the quantitative analysis of the 15 polycyclic aromatic hydrocarbons in cigarette filters.
Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan
2015-09-17
A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Marzi Khosrowshahi, Elnaz; Razmi, Habib
2018-02-08
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chung, N J; Cho, J Y; Park, S W; Park, B J; Hwang, S A; Park, T I
2008-08-01
The effects of domestic wastewater application on the translocation and accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and crops (rice, lettuce, and barley) were investigated by Wagner's pot experiment. In the soils and crops after domestic wastewater irrigation, high-molecular weight PAHs (5 to 6 ring) were not detected, but low-molecular weight PAHs (3 to 4 ring) were only detected at trace levels.
New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules
NASA Astrophysics Data System (ADS)
Burkhardt, Andrew Michael
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.
Liu, Qiying; Guo, Yuanming; Sun, Xiumei; Hao, Qing; Cheng, Xin; Zhang, Lu
2018-02-22
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound-assisted extraction and solid-phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n-hexane were used to achieve better results. The average recovery was 67-112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02-0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high-fat (fish, shrimp, crab, shellfish) biological samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa
2018-04-01
A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.
2010-08-06
In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-12-01
Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions
Coates, J.D.; Anderson, R.T.; Lovley, D.R.
1996-01-01
[14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.
Chemical quality of water, sediment, and fish in Mountain Creek Lake, Dallas, Texas, 1994-97
Van Metre, Peter C.; Jones, S.A.; Moring, J. Bruce; Mahler, B.J.; Wilson, Jennifer T.
2003-01-01
The occurrence, trends, and sources of numerous inorganic and organic contaminants were evaluated in Mountain Creek Lake, a reservoir in Dallas, Texas. The study, done in cooperation with the Southern Division Naval Facilities Engineering Command, was prompted by the Navy’s concern for potential off-site migration of contaminants from two facilities on the shore of Mountain Creek Lake, the Naval Air Station Dallas and the Naval Weapons Industrial Reserve Plant. Sampling of stormwater (including suspended sediment), lake water, bottom sediment (including streambed sediment), and fish was primarily in Mountain Creek Lake but also was in stormwater outfalls from the Navy facilities, nearby urban streams, and small streams draining the Air Station.Volatile organic compounds, predominantly solvents from the Reserve Plant and fuel-related compounds from the Air Station, were detected in stormwater from both Navy facilities. Fuel-related compounds also were detected in Mountain Creek Lake at two locations, one near the Air Station inlet where stormwater from a part of the Air Station enters the lake and one at the center of the lake. Concentrations of volatile organic compounds at the two lake sites were small, all less than 5 micrograms per liter.Elevated concentrations of cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, from 2 to 4 times concentrations at background sites and urban reference sites, were detected in surficial bottom sediments in Cottonwood Bay, near stormwater outfalls from the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, compared to background and urban reference sites, were detected in surficial sediments in Cottonwood Bay. Elevated concentrations of polycyclic aromatic hydrocarbons, indicative of urban sources, also were detected in Cottonwood Creek, which drains an urbanized area apart from the Navy facilities. Elevated concentrations of polychlorinated biphenyls were detected in two inlets near the Air Station shoreline. Polycyclic aromatic hydrocarbon and heavy metal concentrations near the Air Station shoreline were not elevated compared to urban reference sites.Much larger concentrations of selected heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were detected in deeper, older sediments than in surficial sediments in Cottonwood Bay. The decreases in concentrations coincide with changes in wastewater discharge practices at the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls also were detected in older sediments in the Air Station inlet.On the basis of dated sediment cores and contaminant discharge histories, contaminant accumulation rates in Cottonwood Bay were much greater historically than recently. Most heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls that accumulated in the central and eastern parts of Cottonwood Bay appear to have come from the west lagoon on the Reserve Plant. Treated sewage and industrial-process wastewater were discharged to the west lagoon from about 1941 to 1974. Estimated annual contaminant accumulation rates in Cottonwood Bay decreased by from 1 to 2 orders of magnitude after 1974, when most point-source discharges to the west lagoon ceased.Polychlorinated biphenyls were detected in 61 of 62 individual fish-tissue samples. The largest average concentrations were in eviscerated channel catfish and the smallest were in largemouth bass fillets. Polychlorinated biphenyl and selenium concentrations from analyses of this study were large enough to prompt the Texas State Department of Health to issue a fish-possession ban for Mountain Creek Lake in 1996.Suspended sediments in stormwater at the lagoon outfalls and at sites on Cottonwood Creek were sampled and analyzed for major and trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. The suspended sediments from the outfalls contained about the same mixture of heavy metals and organic compounds, in elevated concentrations compared to reference sites, as bottom sediments from the lagoons and surficial bottom sediments in Cottonwood Bay.Diagnostic ratios of polycyclic aromatic hydrocarbons indicate that uncombusted fuel sources contribute to older sediments and that pyrogenic sources of polycyclic aromatic hydrocarbons dominate recently deposited sediments in Cottonwood Bay and along the Air Station shoreline.
Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin
2016-10-01
Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polycyclic aromatic hydrocarbons in some grounded coffee brands.
Grover, Inderpreet Singh; Sharma, Rashmi; Singh, Satnam; Pal, Bonamali
2013-08-01
Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee.
Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro
2016-02-01
Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.
Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong
2010-07-01
Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.
Device for aqueous detection of nitro-aromatic compounds
Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.
1994-04-26
This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.
Device for aqueous detection of nitro-aromatic compounds
Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.
1994-01-01
This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.
Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent aromatic sensors and their methods of use
NASA Technical Reports Server (NTRS)
Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)
2012-01-01
Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.
Kamiński, M; Gilgenast, E; Przyjazny, A; Romanik, G
2006-07-28
The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.
Wang, ShuLing; Xu, Hui
2016-12-01
An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Preliminary determination of organic pollutants in agricultural fertilizers].
Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin
2005-05-01
Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ingredients for Life (Artist's Concept)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Artist's Conception Symbolically Represents Complex Organic Molecules This artist's conception symbolically represents complex organic molecules, known as polycyclic aromatic hydrocarbons, seen in the early universe. These large molecules, comprised of carbon and hydrogen, are considered among the building blocks of life. NASA's Spitzer Space Telescope is the first telescope to see polycyclic aromatic hydrocarbons so early -- 10 billion years further back in time than seen previously. Spitzer detected these molecules in galaxies when our universe was one-fourth of its current age of about 14 billion years. These complex molecules are very common on Earth. They form any time carbon-based materials are not burned completely. They can be found in sooty exhaust from cars and airplanes, and in charcoal broiled hamburgers and burnt toast. Polycyclic aromatic hydrocarbons are pervasive in galaxies like our own Milky Way, and play a significant role in star and planet formation.Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe
2018-06-01
The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.
Petroleum and individual polycyclic aromatic hydrocarbons
Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.
Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza
2017-09-01
A novel design of hollow-fiber liquid-phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol-gel technique, was developed for the pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid- and liquid-phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01-500 ng/mL and the limits of detection were in the range of 0.007-1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85-92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao
2015-01-01
An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya
2016-06-01
Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, G.; Colmsjoe, A.; Oestman, C.
1999-05-01
Quantitation of a variety of tetra-, penta-, and hexacyclic aromatic sulfur heterocycles (thiaarenes) in workplace air of an aluminum reduction plant has been made by help of gas chromatography with atomic emission detection (GC-AED). Personal exposure to those thiaarenes and to polycyclic aromatic hydrocarbons depending on work categories has been evaluated. Summarized concentrations of the thiaarenes investigated have been found to be 0.4--19.0 {micro}g/m{sup 3}. When using sulfur selective AED, samples could be analyzed without a prior separation of the thiaarenes from the PAH. The present data indicate a contribution of thiaarenes to the overall toxicity of coal tar pitchmore » volatiles in this work environment.« less
Besser, John M.; Schmitt, Christopher J.; Harshbarger, John C.; Peterman, Paul H.; Lebo, Jon A.
1991-01-01
Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with organic solvents to produce a crude extract, which was separated on alumina into two fractions: predominantly polycyclic aromatic hydrocarbons; and predominantly nitrogencontaining polycyclic aromatic compounds. Crude extracts were redissolved in acetone and analyzed by gas chromatography and gas chromatography-mass spectrometry. The acetone-redissolved crude extracts from the four industrialized sites contained 5.6–313.3 μg total polycyclic aromatic compounds/g sediment and 3.0–36.4 μg other compounds/g sediment. In addition to the typical EPA priority pollutants, a substantial amount (228.7 μg/g sediment) of alkyl-polycyclic-aromatic compounds was detected in sediments from one of the industrialized sites. Extracts from the reference site contained 1.55 μg total polycyclic aromatic compounds/ g sediment. Medaka (Oryzias latipes) were exposed to multiple pulse doses of acetone-redissolved extracts and fractions. Medaka were also exposed to a known carcinogen, methylazoxymethanol acetate, to verify that chemicals produced tumors in the test fish. Acetone-redissolved extracts and fractions from contaminated sediments were toxic to medaka. Fin erosion and non-neoplastic liver abnormalities were more prevalent in medaka after exposure to acetoneredissolved extracts and fractions from contaminated sediments. Neoplasms previously associated with chemical exposure in wild fishes were induced in medaka exposed to acetone-redissolved extracts and fractions from two of the contaminated sites, but not from the reference site or controls. These findings further support the hypothesis that chemical contaminants in sediments are involved in epizootics of neoplasms in wild fishes at contaminated sites.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.
2002-01-01
The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.
Amperometric Immunosensors for screening of Polycyclic Aromatic Hydrocarbons in water
NASA Astrophysics Data System (ADS)
Ahmad, A.; Paschero, A.; Moore, E.
2011-08-01
An amperometric immunosensor with low limit detection was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system was based on detecting the specific substance using an immunological reaction by measuring the chemical responses to specific antibodies. An integrated biochip with a three electrode system was fabricated. Gold was used as the working electrode with platinum was used as the counter electrode. A modified Ag/AgCl reference electrode was employed to enhance the stability of the immunosensors. Indirect competition enzyme-linked immunosorbent assay (ELISA) was carried out within the electrode using alkaline phosphatase (AP) as the labelled-enzyme. The system shows acceptable reproducibility and good stability. The immunosensor exhibited a wide linear response to PAHs. A limit of detection for this sensor was in the range of 1 to 10 ng ml-1 in aqueous sample.
NASA Astrophysics Data System (ADS)
Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang
2017-01-01
Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.
Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes
Reilly, Peter T. A.
2004-10-19
The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.
Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M
2016-08-31
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-07-01
An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I
2014-09-01
Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella
2013-02-01
Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, X; Xu, X; Cui, W; Xi, Z
2001-08-01
The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.
Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...
Veljković, Dušan Ž
2018-03-01
Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta
2018-04-14
Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation
NASA Astrophysics Data System (ADS)
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...
Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh
2017-07-01
The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings
NASA Astrophysics Data System (ADS)
Ucun, Fatih; Tokatlı, Ahmet
2015-02-01
In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.
NASA Astrophysics Data System (ADS)
Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang
2013-06-01
With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence
2014-09-01
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.
NASA Astrophysics Data System (ADS)
Felemban, Shifa; Vazquez, Patricia; Dehnert, Jan; Goridko, Vadim; Tijero, Maria; Moore, Eric
2017-06-01
The work described in this manuscript focuses on how the integration of immunoassay techniques in combination with electrochemical detection can provide a portable and very accurate solution for detection of water pollutants that are detrimental for human health. In particular, we focus our work on the quantification of polycyclic aromatic hydrocarbons (PAHs) in polluted water. Our integrative approach facilitates a real-time detection of this family of organic compounds, by reducing the time of analysis to less than one hour. Additionally, the use of a lab-on-a-chip platform delivers a portable solution that could be used in situ. Optimization of a displacement assay that investigates the presence and concentration of Benzo[a]pyrene in water, allows with the miniaturization of the standard ELISA format into a highly accurate system that provides fast results. The limits of detection obtained are comparable to those of available state-of-the art tools, and achieve the values set by European Drinking Water Directive, 0.10ng/l, as the limit for PAHs in drinking water.
Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.
Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria
2015-01-01
The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.
Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures
Näslund Andréasson, Sara; Mahteme, Haile; Sahlberg, Bo; Anundi, Helena
2012-01-01
Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed. PMID:22685482
Rodil, Rosario; Schellin, Manuela; Popp, Peter
2007-09-07
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.
NASA Astrophysics Data System (ADS)
Rogacheva, Svetlana M.; Shipovskaya, Anna B.; Volkova, Elena V.; Khurshudyan, Grachia N.; Suska-Malawska, Malgorzata; Gubina, Tamara I.
2018-04-01
The spectral-kinetic characteristics of luminescence of 17 polycyclic aromatic hydrocarbons (PAH) sorbed from a "water-organic solvent" medium on cellulose diacetate (CDA) matrices were studied. A significant increase in the fluorescence signal on the CDA matrix was observed for 13 PAHs in comparison with aqueous solutions. The highest detection sensitivity was found for pyrene, benzo(a)pyrene, and benzo(k)fluoranthene. The fluorescence spectra of two PAH indicator pairs (anthracene-phenanthrene and pyrene-fluoranthene) used to control toxicant emission sources were studied with the simultaneous presence of isomers in the analyte, depending on the excitation wavelength. For both isomer pairs, it has been found that the spectra of their solid-state luminescence overlap insignificantly, the characteristic peaks do not coincide and do not overlap, the sensitivities of detection are close to each other, which makes it possible to consider this technique as promising to control PAH contamination sources.
Sato, Miki; Maeda, Yuki; Ishioka, Toshio; Harata, Akira
2017-11-20
The detection limits and photoionization thresholds of polycyclic aromatic hydrocarbons and their chlorides and nitrides on the water surface are examined using laser two-photon ionization and single-photon ionization, respectively. The laser two-photon ionization methods are highly surface-selective, with a high sensitivity for aromatic hydrocarbons tending to accumulate on the water surface in the natural environment due to their highly hydrophobic nature. The dependence of the detection limits of target aromatic molecules on their physicochemical properties (photoionization thresholds relating to excess energy, molar absorptivity, and the octanol-water partition coefficient) is discussed. The detection limit clearly depends on the product of the octanol-water partition coefficient and molar absorptivity, and no clear dependence was found on excess energy. The detection limits of laser two-photon ionization for these types of molecules on the water surface are formulated.
Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A
2017-08-15
The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.
Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Han; Telesco, Charles M.; Pantin, Eric
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. Thismore » poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.« less
Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula
NASA Astrophysics Data System (ADS)
Zhang, Han; Telesco, Charles M.; Hoang, Thiem; Li, Aigen; Pantin, Eric; Wright, Christopher M.; Li, Dan; Barnes, Peter
2017-07-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm commonly ascribed to the C-H and C-C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μm in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.
Yang, Ren-Jie; Shang, Li-Ping; Bao, Zhen-Bo; He, Jun; Deng, Hu; Liu, Yu-Le
2011-08-01
Abstract In the present paper, a technique of laser-induced fluorescence(LIF)for direct assay of polycyclic aromatic hydrocarbons(PAH) in soil was put forward. The research objective of this article is anthracene. The possibility of using LIF spectra to detect directly anthracene in soil was studied. Anthracene was detected in soil by AvaSpec-3648 Fiber Optic Spectrometer of thermoelectric refrigeration. The authors drew a conclusion that in the range of certain anthracene concentration(0.000 005-0.001 g x g(-1)), the intensity of LIF fluorescence is linear with anthracene concentration in soil, with a regression coefficient of 0. 929. This showed that direct assay of anthracene in soil was feasible by laser-induced fluorescence. The study is important to developing a new analytical technique of quantitative fluorescence detector which can be applied to the analysis of PAH in soil without pretreatment, and is significant to realization of real-time, in-line, in-situ measurement of PAH in soil.
Thiol/disulfide homeostasis in asphalt workers.
Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric
2016-09-02
The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.
Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito
2008-10-01
To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.
The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...
Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...
Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.
Dral, Pavlo O; Kivala, Milan; Clark, Timothy
2013-03-01
Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.
Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons
Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...
Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Bakes, E. L. O.
2000-01-01
We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.
Ncube, Somandla; Kunene, Phumlile; Tavengwa, Nikita T; Tutu, Hlanganani; Richards, Heidi; Cukrowska, Ewa; Chimuka, Luke
2017-09-01
A smart sorbent consisting of benzo[k]fluoranthene-imprinted and indeno[1 2 3-cd]pyrene-imprinted polymers mixed at 1:1 (w/w) was successfully screened from several cavity-tuning experiments and used in the isolation of polycyclic aromatic hydrocarbons from spiked solution. The polymer mixture showed high cross selectivity and affinity towards all the 16 US-EPA priority polycyclic aromatic hydrocarbons. The average extraction efficiency from a cyclohexane solution was 65 ± 13.3% (n = 16, SD). Batch adsorption and kinetic studies confirmed that the binding of polycyclic aromatic hydrocarbons onto the polymer particles resulted in formation of a monolayer and that the binding process was the rate limiting step. The imprinted polymer performance studies confirmed that the synthesized polymer had an imprinting efficiency of 103.9 ± 3.91% (n = 3, SD). A comparison of the theoretical number of cavities and the experimental binding capacity showed that the overall extent of occupation of the imprinted cavities in the presence of excess polycyclic aromatic hydrocarbons was 128 ± 6.45% (n = 3, SD). The loss of selectivity was estimated at 2.9% with every elution cycle indicating that the polymer can be re-used several times with limited loss of selectivity and sensitivity. The polymer combination has shown to be an effective adsorbent that can be used to isolate all the 16 US-EPA priority polycyclic aromatic hydrocarbons in solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Chunhe; Yao, Zhimin; Hu, Bin
2009-05-08
A "dumbbell-shaped" stir bar was proposed to prevent the friction loss of coating during the stirring process, and thus prolonged the lifetime of stir bars. The effects of the coating components, including polydimethylsiloxane (PDMS), beta-cyclodextrin (beta-CD) and divinylbenzene (DVB) were investigated according to an orthogonal experimental design, using three polycyclic aromatic hydrocarbons (PAHs) and four polycyclic aromatic sulfur heterocycles (PASHs) as model analytes. Four kinds of stir bars coated with PDMS, PDMS/beta-CD, PDMS/DVB and PDMS/beta-CD/DVB were prepared and their extraction efficiencies for the target compounds were compared. It was demonstrated that PDMS/beta-CD/DVB-coated stir bar showed the best affinity to the studied compounds. The preparation reproducibility of PDMS/beta-CD/DVB-coated stir bar ranged from 3.2% to 15.2% (n = 6) in one batch, and 5.2% to 13.4% (n = 6) among batches. The "dumbbell-shaped" stir bar could be used for about 40 times, which were 10 extractions more than a normal stir bar. The prepared PDMS/beta-CD/DVB-coated "dumbbell-shaped" stir bar was used for stir bar sorptive extraction (SBSE) of PAHs and PASHs and the desorbed solution was introduced into HPLC-UV for subsequent analysis. The limits of detection of the proposed method for seven target analytes ranged from 0.007 to 0.103 microg L(-1), the relative standard deviations were in the range of 6.3-12.9% (n = 6, c = 40 microg L(-1)), and the enrichment factors were 19-86. The proposed method was successfully applied to the analysis of seven target analytes in lake water and soil samples.
This presentation, Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series held on Feb. 11, 2015.
PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS
Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...
Organic composition of fogwater in the Texas-Louisiana gulf coast corridor
NASA Astrophysics Data System (ADS)
Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.
Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.
NASA Astrophysics Data System (ADS)
Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.
2014-07-01
Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oanh, N.T.K.; Reutergardh, L.B.; Dung, N.T.
Total suspended particulate matter in ambient air was sampled by high volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs), were measured by gas liquid chromatography with flame ionization and/or liquid solid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were compatible to those reported for residentialmore » areas in Bangkok, but higher than some western metropolitan areas.« less
Chien, Yi-Chi; Liang, Chenju; Liu, Shou-Heng; Yang, Shu-Hua
2010-07-01
This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 microg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.
Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank
2018-03-20
Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.
ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS
Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...
AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS
Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...
ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS
Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...
POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN
We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...
The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...
Polycyclic aromatic sulfur heterocycles (PASH) are common constituents of cigarette smoke, fossil fuel-derived materials, and their combustion byproducts. Many PASH are known mutagens and carcinogens. However, unlike their nonsulfur-containing counterparts, relatively little is k...
NASA Astrophysics Data System (ADS)
Estrada-Izquierdo, Irma; Sánchez-Espindola, Esther; Uribe-Hernández, Raúl; Ramón-Gallegos, Eva
2012-10-01
Each cigarette can generate 1149 ng of a mixture of 14 polycyclic aromatic hydrocarbons, of which there are a lot of information about its harmful effects on the environment and human health, they are considered mutagenic, teratogenic and carcinogenic. In this paper we tested ZnO:Mn2+ nanoparticles, attached to the filters of cigarettes. The first results showed that the filtration system was able to catch the Benzo(a)pyrene contained in cigarette smoke; but more tests are needed to quantify the efficiency with greater accuracy over other polycyclic aromatic hydrocarbons.
An improved RT-IPCR for detection of pyrene and related polycyclic aromatic hydrocarbons.
Meng, X Y; Li, Y S; Zhou, Y; Sun, Y; Qiao, B; Si, C C; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Qiu, H J; Liu, J Q
2016-04-15
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous homogeneous chemicals which are well known by carcinogens, mutagens and endocrine disorder. Here, an improved real-time immuno-PCR (RT-IPCR) was developed for detection of pyrene and its homologs in water samples. The PAHs in sample compete with pyrene-modified DNA to bind with monoclonal antibody (McAb) coated on PCR plate. The reporter DNA was exponentially amplified by real-time PCR instrument using Fast Start universal SYBR Green Master (ROX) kit. Only two reaction steps were needed to accomplish the detection. The assay had a good linear range from 5 pmol L(-1) to 5 nmol L(-1) with a detection limit of 3.5 pmol L(-1). For application assay, the average recoveries from tap water, lake water and mineral water were 98.4%, 98.2% and 99.7%, respectively which showed a good correlation (R(2)=0.9906) with those from GC-MS. The results indicated that the improved RT-IPCR seems to be a potential method for simple and ultrasensitive detection of pyrene and some homologues in environment water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Becker, Carol J.
2010-01-01
The U.S. Geological Survey worked in cooperation with the U.S. Environmental Protection Agency and the Kickapoo Tribe of Oklahoma on two separate reconnaissance projects carried out concurrently. Both projects entailed the use of passive samplers as a sampling methodology to investigate the detection of selected organic compounds at stream sites in jurisdictional areas of several tribes in central Oklahoma during January-February 2009. The focus of the project with the U.S. Environmental Protection Agency was the detection of pesticides and pesticide metabolites using Semipermeable Membrane Devices at five stream sites in jurisdictional areas of several tribes. The project with the Kickapoo Tribe of Oklahoma focused on the detection of pesticides, pesticide metabolites, polycyclic aromatic hydrocarbons, polychlorinated biphenyl compounds, and synthetic organic compounds using Semipermeable Membrane Devices and Polar Organic Chemical Integrative Samplers at two stream sites adjacent to the Kickapoo tribal lands. The seven stream sites were located in central Oklahoma on the Cimarron River, Little River, North Canadian River, Deep Fork, and Washita River. Extracts from SPMDs submerged at five stream sites, in cooperation with the U.S. Environmental Protection Agency, were analyzed for 46 pesticides and 6 pesticide metabolites. Dacthal, a pre-emergent herbicide, was detected at all five sites. Pendimethalin, also a pre-emergent, was detected at one site. The insecticides chlorpyrifos and dieldrin were detected at three sites and p,p'-DDE, a metabolite of the insecticide DDT, also was detected at three sites. SPMDs and POCIS were submerged at the upstream edge and downstream edge of the Kickapoo tribal boundaries. Both sites are downstream from the Oklahoma City metropolitan area and multiple municipal wastewater treatment plants. Extracts from the passive samplers were analyzed for 62 pesticides, 10 pesticide metabolites, 3 polychlorinated biphenyl compounds, 35 polycyclic aromatic hydrocarbons, and 49 synthetic organic compounds. Ten pesticides and four pesticide metabolites were detected at the upstream site and seven pesticides and four pesticide metabolites were detected at the downstream site. Pesticides detected at both sites were atrazine, chlorpyrifos, dacthal, dieldrin, metolachlor, pendimethalin, and trans-nonachlor. Additionally at the upstream site, heptachlor, pentachlorophenol, and prometon were detected. The pesticide metabolites p,p'-DDE, cis-chlordane, and trans-chlordane also were detected at both sites. Polychlorinated biphenyl compounds aroclor-1016/1242, aroclor-1254, and aroclor-1260 were detected at both sites. The upstream site had 16 polycyclic aromatic hydrocarbon detections and the downstream site had 8 detections. Because of chromatographic interference during analysis, a positive identification of 17 polycyclic aromatic hydrocarbons could not be made. Consequently, there may have been a greater number of these compounds detected at both sites. A total of 36 synthetic organic compounds were detected at the two sites adjacent to the Kickapoo tribal lands. The upstream site had 21 synthetic organic compound detections: three detergent metabolites, two fecal indicators, three flame retardants, seven industrial compounds, five compounds related to personal care products, and beta-sitosterol, a plant sterol. Fifteen synthetic organic compounds were detected at the downstream site and included: one fecal indicator, three flame retardants, six industrial compounds, and five compounds related to personal care products.
Wilson, Walter B; Costa, Andréia A; Wang, Huiyong; Dias, José A; Dias, Sílvia C L; Campiglia, Andres D
2012-07-06
The analytical performance of BEA - a commercial zeolite - is evaluated for the pre-concentration of fifteen Environmental Protection Agency - polycyclic aromatic hydrocarbons and their subsequent HPLC analysis in tap and lake water samples. The pre-concentration factors obtained with BEA have led to a method with excellent analytical figures of merit. One milliliter aliquots were sufficient to obtain excellent precision of measurements at the parts-per-trillion concentration level with relative standard deviations varying from 4.1% (dibenzo[a,h]anthracene) to 13.4% (pyrene). The limits of detection were excellent as well and varied between 1.1 (anthracene) and 49.9 ng L(-1) (indeno[1,2,3-cd]pyrene). The recovery values of all the studied compounds meet the criterion for regulated polycyclic aromatic hydrocarbons, which mandates relative standard deviations equal or lower than 25%. The small volume of organic solvents (100 μL per sample) and amount of BEA (2 mg per sample) makes sample pre-concentration environmentally friendly and cost effective. The extraction procedure is well suited for numerous samples as the small working volume (1 mL) facilitates the implementation of simultaneous sample extraction. These are attractive features when routine monitoring of numerous samples is contemplated. Copyright © 2012 Elsevier B.V. All rights reserved.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong
2017-03-03
Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...
Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...
ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY
An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...
DOT National Transportation Integrated Search
2012-06-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...
The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...
Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .
The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...
Establishing generic remediation goals for the polycyclic aromatic hydrocarbons: critical issues.
LaGoy, P K; Quirk, T C
1994-01-01
Polycyclic aromatic hydrocarbons (PAHs) were one of the first classes of compounds identified as carcinogens and are often chemicals of concern at hazardous waste sites. Remediation goals established by regulatory agencies for carcinogenic PAHs in soil are generally either risk based or based on the method detection limits. PAHs are products of incomplete combustion, are components of petroleum, and as such, are prevalent in the environment from both natural and anthropogenic sources. Background concentrations are often above risk- or detection limit-based criteria, and therefore these remediation goals are of limited practical use as target criteria. In addition, the approaches used to establish target criteria do not account for several factors that may produce over- or underestimates of risk associated with the PAHs. Because of the frequency with which these compounds are detected, it is imperative that reasonably achievable and practical remediation goals be established. This paper examines the various factors that contribute to over- and underestimates of risks associated with PAHs and presents an approach for establishing cleanup criteria that takes into account health risks, background concentrations, and achievability. Images p348-a PMID:7925174
NASA Astrophysics Data System (ADS)
Tsapin, A.; Jones, S.; Petkov, M.; Borchardt, D.; Anderson, M.
2017-03-01
A study was conducted to determine the efficacy of using silica aerogel to collect and concentrate ambient trace organics for spectroscopic analysis. Silica aerogel was exposed to atmospheres containing trace amounts of polycyclic aromatic and aliphatic hydrocarbons. The organics present were concentrated in the aerogels by factors varying from 10 to more than 1000 over the levels found in the atmospheres, depending on the specific organic present. Since silica aerogel is transparent over a wide range of optical and near infrared wavelengths, UV-induced fluorescence, Raman and infrared spectroscopies were used to detect and identify the organics collected by the aerogel. Measurements were conducted to determine the sensitivity of these spectroscopic methods for determining organics concentrated by aerogels and the effectiveness of this method for identifying systems containing multiple organic species. Polycyclic aromatic hydrocarbons (PAHs) were added to simulated Mars regolith and then vaporized by modest heating in the presence of aerogel. The aerogels adsorbed and concentrated the PAHs, which were detected by induced fluorescence and Raman and FTIR spectroscopies.
Obinaju, Blessing E; Martin, Francis L
2016-01-01
Fourier-transform infrared (FTIR) spectroscopy is an emerging technique to detect biochemical alterations in biological tissues, particularly changes due to sub-lethal exposures to environmental contaminants. We have previously shown the potential of attenuated total reflection FTIR (ATR-FTIR) spectroscopy to detect real-time exposure to contaminants in sentinel organisms as well as the potential to relate spectral alterations to the presence of specific environmental agents. In this study based in the Niger Delta (Nigeria), changes occurring in fish tissues as a result of polycyclic aromatic hydrocarbon (PAH) exposure at contaminated sites are compared to the infrared (IR) spectra of the tissues obtained from a relatively pristine site. Multivariate analysis revealed that PAH contamination could be occurring at the pristine site, based on the IR spectra and significant (P<0.0001) differences between sites. The study provides evidence of the IR spectroscopy techniques' sensitivity and supports their potential application in environmental biomonitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Dafeng; Xin, Chenglong; Li, Wei; Chen, Jindong; Li, Fenghua; Chu, Zunhua; Xiao, Peirui; Shao, Lijun
2015-09-01
This work studies on the quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in edible vegetable oils in Shandong, China. The concentrations of 15 PAHs in 242 samples were determined by high performance liquid chromatography coupled with fluorescence detection. The results indicated that the mean concentration of 15 PAHs in oil samples was 54.37 μg kg(-1). Low molecular weight PAH compounds were the predominant contamination. Especially, the carcinogenic benzo(a)pyrene (BaP) was detected at a mean concentration of 1.28 μg kg(-1), which was lower than the limit of European Union and China. A preliminary evaluation of human health risk assessment for PAHs was accomplished using BaP toxic equivalency factors and the incremental lifetime cancer risk (ILCR). The ILCR values for children, adolescents, adults, and seniors were all larger than 1 × 10(-6), indicating a high potential carcinogenic risk on the dietary exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determination of polycyclic aromatic hydrocarbons in kerosene and bio-kerosene soot.
Andrade-Eiroa, Auréa; Leroy, Valérie; Dagaut, Philippe; Bedjanian, Yuri
2010-03-01
Here we report a new, efficient and reliable analytical methodology for sensitive and selective quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in soot samples. The methodology developed is based on ultrasonic extraction of the soot-bound PAHs into small volumes of acetonitrile, purification of the extracts through C(18) Solid Phase Extraction (SPE) cartridges and analysis by Reverse Phase Liquid Chromatography (RPLC) with UV and fluorimetric detection. For the first time, we report the convenience of adapting the SPE procedure to the nature of the soot samples. As a matter of fact, extracts containing high percentage of unpolar material are recommended to be cleaned with acetone, whereas extracts poor in unpolar compounds can be efficiently cleaned with methanol. The method was satisfactorily applied to kerosene and bio-kerosene soot from atmospheric open diffusion flames (pool fires) and premixed flames achieving Quantification and Detection limits in the range ng mg(-1) soot and recoveries about 90% for most of the PAHs studied. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zare, Richard N.
2005-01-01
The work funded by this research grant includes four specific projects: (1) Mapping the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. (2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe laser-desorption laser-ionization mass spectrometry ( pL2MS) and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. (3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. (4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames.
Survey of chemical contaminants in the Hanalei River, Kaua'i, Hawai'i, 2001
Orazio, Carl E.; May, Thomas W.; Gale, Robert W.; Meadows, John C.; Brumbaugh, William G.; Echols, Kathy R.; Steiner, William W.M.; Berg, Carl J.
2007-01-01
The Hanalei River on the island of Kaua'i in Hawai'i was designated an American Heritage River in 1998, providing special attention to natural resource protection, economic revitalization, and historic and cultural preservation. Agricultural, urban, and tourism-related activities are potential sources of contamination within the Hanalei River watershed. The objective of this study was to measure certain persistent organic chemicals and elements in the Hanalei River.During a relatively low-flow period in December of 2001, samples of native Akupa sleeper fish (Eleotris sandwicensis), freshwater Asian clam (Corbicula fluminea), giant mud crab (Scylla serrata), surface water, and stream bed sediment were collected from a lower estuarine reach of the river near its mouth at Hanalei Bay and from an upper reach at the Hanalei National Wildlife Refuge. Samples were analyzed for residues of urban and agricultural chemicals including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and elements (including mercury, lead, cadmium, arsenic, and selenium). Organic contaminants were extracted from the samples with solvent, enriched, and then analyzed by gas chromatographic analysis with electron capture or mass spectrometric detection. Samples were acid-digested for semi-quantitative analysis for elements by inductively-coupled plasma-mass spectrometry and for quantitative analysis by atomic absorption spectrophotometry.Concentrations of organochlorine pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in biota, surface water, and bed sediment sampled from the Hanalei River ranged from nondetectable to very low levels. Polychlorinated biphenyls were below detection in all samples. Dieldrin, the only compound detected in the water samples, was present at very low concentrations of 1-2 nanograms per liter. Akupa sleeper fish and giant mud crabs from the lower reach ranged from 1 to 5 nanograms per gram (wet weight) dieldrin and from less than 0.3 to 2.1 nanograms per gram total chlordane. Concentrations of individual polycyclic aromatic hydrocarbons in the lower reach bed sediments ranged from less than 1 to 190 nanograms per gram (dry weight). Relative concentrations (patterns) of the polycyclic aromatic hydrocarbons in one portion of a sediment sample indicated combustion sources. Concentrations of elements in the surface water, biota, and sediment samples were below toxicity thresholds of ecological concern. In summary, concentrations of the organic contaminants and elements targeted by this study of the Hanalei River in 2001 were below U.S. Environmental Protection Agency probable adverse effects levels for aquatic organisms.
Profiling Jet Fuel on Neurotoxic Components With Comprehensive Two-Dimensional GC
2007-11-01
nitrogen gas to remove possible contaminants that might interfere in the GCxGC-ToF-MS analysis. The generated JP-8 vapor was lead through the...dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens Sulfur components Alkanes Figure 14...10.0 20.0 30.0 40.0 50.0 60.0 70.0 First dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
NASA Astrophysics Data System (ADS)
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Fuel quality combustion analysis
NASA Technical Reports Server (NTRS)
Naegeli, D. W.; Moses, C. A.
1979-01-01
A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.
PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT
Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...
The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...
This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity
Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks
Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...
Energy sources of polycyclic aromatic hydrocarbons. [Carcinogenicity of PAHs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M. R.
1977-01-01
Combustion is the predominant end-process by which fossil fuels are converted to energy. Combustion, particularly when inefficient, is also the primary technological source of polycyclic aromatic hydrocarbons (PAHs) released into the environment. The need for liquid fuels to supply the transportation industry and for nonpolluting fuels for heat and power generation provide the incentive to commercialize processes to convert coal to substitute natural gas and oil. These processes represent a potentially massive new source of environmental PAHs. Insuring an adequate supply of energy with minimum impact on the environment and on health is one of the most important, urgent, andmore » challenging goals currently facing science and technology. Polycyclic aromatic hydrocarbon related carcinogenesis is among the most important of possible occupational- and environmental-health impacts of much of the current and projected national energy base. An understanding of the relationship of polycyclic aromatic hydrocarbons (PAHs) to human cancer and a continued surveillance of energy sources for PAH content are necessary to minimize this impact.« less
Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván
2017-07-15
The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg -1 ) and fish (0.67μgg -1 ) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detecting the building blocks of aromatics
NASA Astrophysics Data System (ADS)
Joblin, Christine; Cernicharo, José
2018-01-01
Interstellar clouds are sites of active organic chemistry (1). Many small, gasphase molecules are found in the dark parts of the clouds that are protected from ultraviolet (UV) photons, but these molecules photodissociate in the external layers of the cloud that are exposed to stellar radiation (see the photo). These irradiated regions are populated by large polycyclic aromatic hydrocarbons (PAHs) with characteristic infrared (IR) emission features. These large aromatics are expected to form from benzene (C6H6), which is, however, difficult to detect because it does not have a permanent dipole moment and can only be detected via its IR absorption transitions against a strong background source (2). On page 202 of this issue, McGuire et al. (3) report the detection of benzonitrile (c-C6H5CN) with radio telescopes. Benzonitrile likely forms in the reaction of CN with benzene; from its observation, it is therefore possible to estimate the abundance of benzene itself.
Suzuki, Nobuo; Sato, Masayuki; Nassar, Hossam F; Abdel-Gawad, Fagr Kh; Bassem, Samah M; Yachiguchi, Koji; Tabuchi, Yoshiaki; Endo, Masato; Sekiguchi, Toshio; Urata, Makoto; Hattori, Atsuhiko; Mishima, Hiroyuki; Shimasaki, Youhei; Oshima, Yuji; Hong, Chun-Sang; Makino, Fumiya; Tang, Ning; Toriba, Akira; Hayakawa, Kazuichi
2016-08-01
We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts.
The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detect...
The Early Detection of Pancreatic Cancer in the U. S. Military
2015-10-01
exhaust and cigarette smoke contribute to the higher rates of pancreatic cancer in military personnel. This heightened risk is due in part to the...elevated exposure to carcinogens present in diesel engine exhaust and cigarette smoke, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals...KEYWORDS: Pancreatic ductal adenocarcinoma, early detection, carcinogenesis, military, diesel engine exhaust, cigarette smoke, organoids. ACCOMPLISHMENTS
The Early Detection of Pancreatic Cancer in the U.S. Military
2015-10-01
exhaust and cigarette smoke contribute to the higher rates of pancreatic cancer in military personnel. This heightened risk is due in part to the...elevated exposure to carcinogens present in diesel engine exhaust and cigarette smoke, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals...KEYWORDS: Pancreatic ductal adenocarcinoma, early detection, carcinogenesis, military, diesel engine exhaust, cigarette smoke, organoids. ACCOMPLISHMENTS
Panne, U; Knöller, A; Kotzick, R; Niessner, R
2000-02-01
A fiber optical sensor system for the determination of polycyclic aromatic hydrocarbons (PAH) on aerosols by laser-induced, time-resolved fluorescence is combined with a thermodesorption device. The sensor system is based on an aerosol flow cell, which is fibre-optically coupled to a pulsed nitrogen laser for excitation and the detection system. Time-resolved fluorescence emission spectra are detected by a monochromator equipped with a photomultiplier and a fast digital storage oscilloscope. The analytical figures of merit of the thermodenuder are reported for benzo[a]pyrene, benzo[b]fluoranthene, and benzo[ghi]-perylene on ultrafine soot and NaCl aerosols. By thermodesorption of the PAH, problems due to quenching of the PAH fluorescence by the bulk aerosol material or excimer formation on the aerosol surface were avoided. For the PAH under study, the sensitivity was improved considerably and detection limits between 110 and 850 ng m(-3) were attained, while a response time of 2-3 min was achieved with the thermodenuder. A calibration for PAH on ultrafine soot and NaCl aerosols was established independent of the aerosol substrate.
A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...
Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...
EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
USDA-ARS?s Scientific Manuscript database
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...
Humans experience chronic cumulative trace-level exposure to mixtures of volatile, semi-volatile, and non-volatile polycyclic aromatic hydrocarbons (PAHs) present in the environment as by-products of combustion processes. Certain PAHs are known or suspected human carcinogens and ...
Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing
2016-01-05
There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. Copyright © 2015 Elsevier B.V. All rights reserved.
Leonard, J D; Hellou, J
2001-03-01
Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.
Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina.
Ngabe, B; Bidleman, T F; Scott, G I
2000-06-08
Stormwater runoff was collected in urbanized areas of South Carolina to investigate the levels and sources of polycyclic aromatic hydrocarbons (PAHs). Mean concentrations of total PAHs in runoff (sum(PAHs), 14 compounds), determined by gas chromatography-mass spectrometry, were 5590 ng/l in the city of Columbia and 282 ng/l in the coastal community of Murrells Inlet. Lower concentrations were found in estuarine water at Murrells Inlet (mean = 35 ng/l) and at undeveloped North Inlet estuary (13 ng/l). The PAH profiles in Columbia and Murrells Inlet runoff were similar to those of atmospheric particulate matter and unlike those in used crankcase oil. Examination of the aliphatic fraction of Columbia runoff samples by gas chromatography with flame ionization detection showed patterns that were more similar to used crankcase oil than to urban aerosols.
Electrochemical methods for monitoring of environmental carcinogens.
Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J
2001-04-01
The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.
The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...
Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.
We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...
In evaluating the risk posed by chemicals introduced into the environment, information
about their molecular mechanism of action provides a basis for extrapolating from the
laboratory to the environment. Polycyclic aromatic hydrocarbons (PAH) are a large class
of...
POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)
The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...
The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...
Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...
ERIC Educational Resources Information Center
Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.
2014-01-01
This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…
SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY
The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...
Abstract
Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...
PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS
The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...
POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL
Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...
THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING
The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...
The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... a Public Teleconference of the Science Advisory Board; Polycyclic Aromatic Hydrocarbon (PAH... Hydrocarbon (PAH) Mixtures Review Panel to discuss its draft report on EPA's Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures. DATES: The SAB PAH Mixtures...
ERIC Educational Resources Information Center
Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.
2004-01-01
A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.
The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens,...
The bioavailability of polycyclic aromatic hydrocarbons (PAHs) to benthic organisms is complicated by the variety of ways that they are introduced to coastal waters (dissolved, as nonaqueous phase liquids, and tightly bound to soot, coal, tire rubber, and eroded shale). In order ...
This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...
METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS
In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...
Subcritical water (hot water under enough pressure to maintain the liquid
state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides
from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were
used to determine conditions f...
NASA Astrophysics Data System (ADS)
Kaaijk, J.
1983-01-01
The chemical composition and the combustibility of the fog produced by a smoke generator were analyzed. Aliphatic hydrocarbons, including the n-alkanes C15-C21 are found. Polycyclic aromatic hydrocarbons are not detected. The smoke can not be ignited.
Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry.
Hayen, Heiko; Michels, Antje; Franzke, Joachim
2009-12-15
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better.
Iwegbue, Chukwujindu M A
2011-10-01
The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011
Ziccardi, M H; Gardner, I A; Denison, M S
2000-03-01
Polycyclic and halogenated aromatic hydrocarbons (PAHs/HAHs) are a diverse group of widespread and persistent environmental contaminants that can cause a variety of detrimental effects in vertebrates. As most available methods to detect these contaminants are expensive, labor and time intensive, and require large amounts of tissue for extraction and analysis, several rapid mechanistically based bioassay systems have been developed to detect these chemicals. Here we describe application and optimization of a recently developed recombinant mouse cell bioassay system that responds to both PAHs and HAHs with the rapid induction of firefly luciferase for the detection of these chemicals in whole serum samples. This chemically activated luciferase expression (CALUX) bioassay has been modified to allow rapid (4-h) and direct analysis of small volumes (25-50 microl) of whole serum in a 96-well microtiter plate format without the need for solvent extraction. This bioassay can detect as little as 10 parts per trillion of the most potent HAH, 2,3,7,8-TCDD, and is also sensitive to other HAHs and PAHs. The use of simple procedures corrects for interplate and intraplate variability and the Ah receptor dependence of the induction response is accounted for by use of the antagonist 4-amino-3-methoxyflavone.
Shi, Xiaofeng; Liu, Shu; Han, Xiaohong; Ma, Jun; Jiang, Yongchao; Yu, Guifeng
2015-05-01
In this study, a gold colloid solution whose parameters were optimized, and without any surfactants, was developed as a surface-enhanced Raman scattering (SERS) substrate for the detection of trace-level polycyclic aromatic hydrocarbons (PAHs). A gold colloid solution with 57 nm gold particles and pH 13 was prepared to be the SERS substrate. It had impressive enhancement that was two orders of magnitude higher than that of a gold colloid solution with 57 nm gold particles and without pH change (pH 6). Even with a compact field-based Raman spectrometer, naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were detected, with limits of detection at 6.8 nM, 3.4 nM, 1.8 nM, 0.68 nM (680 pM), and 0.44 nM (440 pM), respectively. The significant enhancement was ascribed to an electromagnetic mechanism and a charge-transfer mechanism. Quantitative analyses for these five PAHs in water were also performed. The SERS intensities of PAHs were found to have good linear dependence relations with the concentrations in low concentration. This high-sensitivity, easily prepared substrate offers a promising technology for the quantitative detection of trace-level PAHs.
Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)
NASA Astrophysics Data System (ADS)
Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.
2014-07-01
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.
The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by the filter-feeding soft-shell clam Mya arenaria was evaluated at three sites near Boston (MA, USA) by assessing the chemical activities of those hydrophobic organic compounds (H...
Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...
Role of sooty mold fungi in degradation of polycycllic aromatic hydrocarbons (PAHS) in soil
Venera A. Jouraeva; David L. Johnson; John P. Hassett; David J. Nowak; Natalia A. Shipunova; Dana Barbarossa
2006-01-01
The focus of this research was on elucidation of the role of deciduous tree ecosystems in accumulation of fine-particle-associated polycyclic aromatic hydrocarbons (PAHs) and heavy metals on leaves of deciduous trees. The studied species were Tilia x euchlora (frequently infested by sooty mold fungi) and Pyrus calleryana (...
USDA-ARS?s Scientific Manuscript database
Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...
On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...
Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...
As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...
USDA-ARS?s Scientific Manuscript database
A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated...
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous, anthropogenic chemicals found in the environment. In the present study, computational methods are used to evaluate their potential estrogenicity and the contribution chemicals in this class make to environmental e...
Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...
Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...
Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides
The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...
Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil
USDA-ARS?s Scientific Manuscript database
A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...
Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...
Ingestion of contaminated soil is an exposure pathway at approximately one-half of the Superfund sites in the United States. This study was designed to evaluate the impacts of aging in soil on the availability of polycyclic aromatic hydrocarbons (PAHs). Two coal tar (CT)-amended ...
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques
2015-03-11
i m u m ) Py/GC/MS: PVC 11 • Pyrolysis of PVC exclusively yield cyclic hydrocarbons – 24.3% benzyl derivatives and 75.6% polycyclic aromatic ...Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC” Bruzzoniti et al., Anal... aromatic hydrocarbons (PAH) – 42.3% hydrocarbons , 53.5% phenols, 4.7% nitrogen-containing O NH OH OH N DISTRIBUTION STATEMENT A. Approved for public
Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.
Ugochukwu, Uzochukwu C; Fialips, Claire I
2017-05-01
Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T
2015-02-01
The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
'No Organics' Zone Circles Pinwheel
NASA Technical Reports Server (NTRS)
2008-01-01
The Pinwheel galaxy, otherwise known as Messier 101, sports bright reddish edges in this new infrared image from NASA's Spitzer Space Telescope. Research from Spitzer has revealed that this outer red zone lacks organic molecules present in the rest of the galaxy. The red and blue spots outside of the spiral galaxy are either foreground stars or more distant galaxies. The organics, called polycyclic aromatic hydrocarbons, are dusty, carbon-containing molecules that help in the formation of stars. On Earth, they are found anywhere combustion reactions take place, such as barbeque pits and exhaust pipes. Scientists also believe this space dust has the potential to be converted into the stuff of life. Spitzer found that the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the Pinwheel galaxy, then quickly drop off and are no longer detected at its very outer rim. According to astronomers, there's a threshold at the rim where the organic material is being destroyed by harsh radiation from stars. Radiation is more damaging at the far reaches of a galaxy because the stars there have less heavy metals, and metals dampen the radiation. The findings help researchers understand how stars can form in these harsh environments, where polycyclic aromatic hydrocarbons are lacking. Under normal circumstances, the polycyclic aromatic hydrocarbons help cool down star-forming clouds, allowing them to collapse into stars. In regions like the rim of the Pinwheel as well as the very early universe stars form without the organic dust. Astronomers don't know precisely how this works, so the rim of the Pinwheel provides them with a laboratory for examining the process relatively close up. In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer's instruments were used in the study: the infrared array camera, the multiband imaging photometer and the infrared spectrograph.Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M
2017-08-05
The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles
NASA Astrophysics Data System (ADS)
Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam
2011-08-01
The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (< 2.5 μm) and coarse (2.5-10 μm) atmospheric particles in an urban and industrial area located in the Metropolitan Area of Porto Alegre (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.
Coupled LC-GC techniques for the characterisation of polycyclic aromatic compounds in fuel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askey, S.A.; Holden, K.M.L.; Bartle, K.D.
1995-12-31
Exposure to polycyclic aromatic compounds (PAC) has long been identified as of considerable environmental concern. Originating from both natural and anthropogenic sources, many PAC exhibit significant carcinogenic and mutagenic properties. Multi-dimensional chromatographic techniques which provide separation by virtue of chemical class (group-type) or by molecular mass greatly simplifies the analysis of inherently complex fuel materials. In this study, on-line LC-GC techniques in which high resolution gas chromatography (HPLC) have been investigated. Comprehensive characterisation of fuel feedstocks and post-pyrolysis and combustion products was achieved by coupling LC-GC to low resolution ion trap mass spectrometry (ITD-MS) and atomic emission detection (AED). Themore » identification of PAC in diesel and coal materials, as well as urban air and diesel exhaust particulate extracts has provided valuable insight into the source, formation and distribution of such compounds pre- and post processing.« less
Ke, Chang-Liang; Gu, Yang-Guang; Liu, Qi; Li, Liu-Dong; Huang, Hong-Hui; Cai, Nan; Sun, Zhi-Wei
2017-04-15
Concentrations of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were measured in 15 marine wild organism species from South China Sea. The concentration (dry weight) of 16 PAHs ranged from 94.88 to 557.87ng/g, with a mean of 289.86ng/g. The concentrations of BaP in marine species were no detectable. The composition of PAHs was characterized by the 2- and 3-ring PAHs in marine species, and NA, PHE and FA were the dominant constituents. PAHs isomeric ratios indicated PAHs mainly originated from grass, wood and coal combustion, and petroleum. The human health risk assessment based on the excess cancer risk (ECR) suggested the probability of PAHs posing carcinogenic risk to human beings with consumption of marine organisms were negligible (probability<1×10 -6 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2014-08-22
A solvent-free method is described for the determination of 10 volatile polycyclic aromatic hydrocarbons (PAHs), considered as priority pollutants by the EU, in different herbal infusions using headspace sorptive extraction (HSSE) and gas chromatography-mass spectrometry (GC-MS). The parameters affecting both the extraction and thermal desorption steps in the HSSE were optimized by means of Plackett-Burman designs. Ten millilitres of the herbal infusion was submitted to the HSSE preconcentration in the presence of salt for 4h at 88 °C. The use of d(10)-phenanthrene as internal standard not only improved the repeatability of the method but allowed quantification of the samples against external aqueous standards. Detection limits ranged between 11 and 26 ng L(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R
2017-04-01
Green technologies, such as phytoremediation, are effective for removing organic pollutants derived from oil and oil products, including polycyclic aromatic hydrocarbons (PAHs). Given the increasing popularity of these sustainable remediation techniques, methods based on fluorescence microscopy and multiphoton microscopy for the environmental monitoring of such pollutants have emerged in recent decades as effective tools for phytoremediation studies aimed at understanding the fate of these contaminants in plants. However, little is known about the cellular and molecular mechanisms involved in PAH uptake, responses and degradation by plants. Thus, the present study aimed to detect the location of pyrene, anthracene and phenanthrene using fluorescence microscopy techniques in shoots and roots of Medicago sativa L. (alfalfa) plants grown in artificially contaminated soil (150ppm PAHs) for 40days. Leaflet and root samples were then collected and observed under a fluorescence microscope to detect the presence of PAHs in various tissues. One important finding of the present study was intense fluorescence in the glandular secreting trichomes (GSTs) of plants grown in contaminated soil. These trichomes, with a previously unknown function, may be sites of PAH conjugation and degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toriba, Akira; Kuramae, Yayoi; Chetiyanukornkul, Thaneeya; Kizu, Ryoichi; Makino, Tsunehisa; Nakazawa, Hiroyuki; Hayakawa, Kazuichi
2003-01-01
A high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs) in human hair. Fifteen kinds of PAHs classified as priority pollutants by the US EPA were quantified with four perdeuterated PAHs as internal standards. After 50 mg hair samples were washed with n-hexane to remove external contamination of PAHs, the samples were digested in 2.5 M sodium hydroxide. The digests were extracted with n-hexane and then analyzed by HPLC. Eleven kinds of PAHs were identified in hair samples of 20 subjects, and 10 kinds of PAHs were eventually quantified using the internal standards. For anthracene, chrysene and benzo[k]fluoranthene, significant differences were observed between smokers and non-smokers. Although benzo[b]fluoranthene, dibenz[a,h]anthracene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene were observed in the particulates of indoor and outdoor air, they were not detected in all hair samples. The analysis of PAHs in human hair should be useful as a new biomarker to evaluate the exposure to PAHs.
Wang, Weina; Ma, Ruiyang; Wu, Qiuhua; Wang, Chun; Wang, Zhi
2013-06-07
In this paper, a magnetic microsphere-confined graphene adsorbent (Fe3O4@SiO2-G) was fabricated and used for the extraction of five polycyclic aromatic hydrocarbons (fluorene, anthracene, phenanthrene, fluoranthene and pyrene) from environmental water samples prior to high performance liquid chromatography with fluorescence detection. The Fe3O4@SiO2-G was characterized by various instrumental methods. Various experimental parameters that could affect the extraction efficiencies, such as the amount of Fe3O4@SiO2-G, the pH and ionic strength of sample solution, the extraction time and the desorption conditions, were investigated. Due to the high surface area and excellent adsorption capacity of the Fe3O4@SiO2-G, satisfactory extraction can be achieved with only 15mg of the adsorbent per 250mL solution and 5min extraction. Under the optimum conditions, a linear response was observed in the concentration range of 5-1500ngL(-1) for fluorene, 2.5-1500ngL(-1) for anthracene and 15-1500ngL(-1) for phenanthrene, fluoranthene and pyrene, with the correlation coefficients (r) ranging from 0.9897 to 0.9961. The limits of detection (S/N=3) of the method were between 0.5 and 5.0ngL(-1). The relative standard deviations (RSDs) were less than 5.6%. The recoveries of the method were in the range between 83.2% and 108.2%. The results indicated that this graphene-based magnetic nanocomposite had a great adsorptive ability toward the five polycyclic aromatic hydrocarbons from environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Manzano, Carlos A; Marvin, Chris; Muir, Derek; Harner, Tom; Martin, Jonathan; Zhang, Yifeng
2017-05-16
The aromatic fractions of snow, lake sediment, and air samples collected during 2011-2014 in the Athabasca oil sands region were analyzed using two-dimensional gas chromatography following a nontargeted approach. Commonly monitored aromatics (parent and alkylated-polycyclic aromatic hydrocarbons and dibenzothiophenes) were excluded from the analysis, focusing mainly on other heterocyclic aromatics. The unknowns detected were classified into isomeric groups and tentatively identified using mass spectral libraries. Relative concentrations of heterocyclic aromatics were estimated and were found to decrease with distance from a reference site near the center of the developments and with increasing depth of sediments. The same heterocyclic aromatics identified in snow, lake sediments, and air were observed in extracts of delayed petroleum coke, with similar distributions. This suggests that petroleum coke particles are a potential source of heterocyclic aromatics to the local environment, but other oil sands sources must also be considered. Although the signals of these heterocyclic aromatics diminished with distance, some were detected at large distances (>100 km) in snow and surface lake sediments, suggesting that the impact of industry can extend >50 km. The list of heterocyclic aromatics and the mass spectral library generated in this study can be used for future source apportionment studies.
Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Valcárcel, M
2014-06-06
In this article, the easy synthesis of magnetic nanoparticles-nylon 6 composite is presented, characterized and applied in the microextraction field. The one-step synthesis of the composite is performed by a solvent changeover playing with the different solubility of the polymeric network in formic acid and water. The new material has been characterized by different techniques including infrared spectroscopy, transmission and scanning microscopy. The extraction performance of the composite under a dispersive micro solid phase extraction format has been evaluated by determining four polycyclic aromatic hydrocarbons (benzo[b]fluoranthene, fluoranthene, indeno[1,2,3-cd]pyrene and phenanthrene) in water using ultra performance liquid chromatography (UPLC) combined with photo diode array detection. The developed methodology allows the determination of the analytes with limits of detection in the range from 0.05 μg/L (benzo[b]fluoranthene) to 0.58 μg/L (phenanthrene). The repeatability of the method was better than 6.9% at the limit of quantification level. The relative recoveries varied in the interval 80-111%. Copyright © 2014 Elsevier B.V. All rights reserved.
Garcia, Laura Pereira; Gomes, Fernanda M L; Tfouni, Silvia; Vicente, Eduardo; Savi, Geovana D; Santos, Karolina; Scussel, Vildes M
2017-03-01
A total of 13 polycyclic aromatic hydrocarbons (PAHs) were surveyed in dry whole soybeans (Glycine max L.) sold for human consumption. The analysed samples were commercialised in vegetarian shops and food stores in Southern Brazil regions. The determination of PAHs levels was carried out by high performance liquid chromatography (HPLC)with fluorescence detection. PAHs were present in 89.7% of the samples. Chrysene (Chy) and 5 methyl chrysene (5MeChy) were the main PAHs detected (76.9% and 71.8%, respectively) followed by dibenzo(ai)pyrene (DaiP), however in a much less percentage of samples (23.1%). Apart from those PAHs, also benzo(a)antracene (BaA), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF) and benzo(a)pyrene(BaP) were found. The ΣPAH levels in the positive samples ranged from 0.80 to 38.78 µg kg -1 , with exception of one sample that reached 204.46 µg kg -1 (ΣPAHs of six compounds). Despite the present contamination there are no maximum limits set for PAHs in soybeans.
Polycyclic aromatic hydrocarbons in Italian preserved food products in oil.
Sannino, Anna
2016-06-01
A method based on gas chromatography/ tandem mass spectrometry was used to assess levels of 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in 48 preserved food products in oil including foods such as vegetables in oil, fish in oil and oil-based sauces obtained from the Italian market. The benzo[a]pyrene concentrations ranged from <0.04 to 0.40 µg kg(-1), and 72.9% of the samples showed detectable levels of this compound. The highest contamination level was observed for chrysene with three additional PAHs (benzo[a]anthracene, benzo[b]fluoranthene and benzo[c]fluorene) giving mean values higher than the mean value for benzo[a]pyrene. Chrysene was detected in all the samples at concentrations ranging from 0.07 to 1.80 µg kg(-1) (median 0.31 µg kg(-1)). The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene), for which the maximum tolerable limit has been set by Commission Regulation (EU) No. 835/2011, varied between 0.10 and 2.94 µg kg(-1).
Ji, Wenhua; Zhang, Mingming; Duan, Wenjuan; Wang, Xiao; Zhao, Hengqiang; Guo, Lanping
2017-11-15
Phytic acid-stabilized Fe 3 O 4 -graphene oxide (GOPA@Fe 3 O 4 ) was assembled by microwave-enhanced hydrothermal synthesis and super-amphipathicity was demonstrated by measurement of dynamic oil and water contact angles. GOPA@Fe 3 O 4 was used as a sorbent for enrichment of eight polycyclic aromatic hydrocarbons (PAHs) from vegetable oils by magnetic solid-phase extraction (MSPE). The extraction-desorption factors were systematically investigated and, under optimum conditions, the super-amphiphilic sorbent achieved wide linear ranges (0.2-200ngg -1 ), satisfactory precision (3.44-6.64% for intra-day and 5.39-8.41% for inter-day) and low limits of detection (LODs, 0.06-0.15ngg -1 ) for PAHs. Excellent recoveries (85.6-102.3%) for spiked PAHs were obtained with genuine vegetable oil samples. These results indicate that MSPE using GOPA@Fe 3 O 4 as the sorbent, coupled with high performance liquid chromatography (HPLC), is an efficient and simple method for the detection of low concentrations of PAHs in vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jjunju, Fred P M; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K; Taylor, Stephen; Cooks, R Graham
2015-02-01
Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[k]fluoranthene, dibenz[a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.
Silva, Simone Alves da; Torres, Elizabeth A F da Silva; Almeida, Adriana Palma de; Sampaio, Geni Rodrigues
2018-04-15
This study aimed at evaluating the polycyclic aromatic hydrocarbons (PAHs) contamination of commercial vegetable oils and examined the identity through the fatty acids profiles. Coconut, safflower, evening primrose, and linseed oils marketed in São Paulo (Brazil) were investigated totaling 69 samples. Four PAHs, benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were detected in 96% of the samples at individual levels ranging from not detected to 14.99 μg kg -1 . Chrysene was the abundant hydrocarbon found among all types of oils, with the highest median values. The results of the fatty acid profiles revealed that 43% showed different profiles according to the ones on their labels, with a higher incidence of adulteration of evening primrose oils. The maximum tolerable limits by European Regulation No. 835/2011 were exceeded for BaP in 12%, and for total 4 PAHs in 28%, with a greater contribution of adulterated samples. Copyright © 2017. Published by Elsevier Ltd.
Kenneth M. Brooks
2004-01-01
Occasionally, creosote-treated railroad ties need to be replaced, sometimes in sensitive environments such as wetlands. To help determine if this is detrimental to the surrounding environment, more information is needed on the extent and pattern of creosote, or more specifically polycyclic aromatic hydrocarbon (PAH), migration from railroad ties and what effects this...
The method for extracting and preparing urine samples for analysis of hydroxy-polycyclic aromatic hydrocarbons, pentachlorophenol and 2,4-D is summarized in this SOP. It covers the extraction, concentration and methylation of samples that are to be analyzed by gas chromatography/...
Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...
Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite
NASA Technical Reports Server (NTRS)
Becker, L.; Bunch, T. E.
1997-01-01
In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).
Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brasholz, Malte
2017-08-21
Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR
Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...
Polycyclic aromatic hydrocarbons (PAHs) were analyzed as adsorbates on borosilicate glass at levels from 40 pg (5.5 pg mm-2) to 7
g (1
Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health
Mahler, B.J.; Van Metre, P.C.
2011-01-01
Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.
Ariyasena, Thiloka C; Poole, Colin F
2014-09-26
Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.
1999-01-01
Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.
Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and thereforemore » at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.« less
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, Louis J.
2003-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role aromatic materials play in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbon molecules (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry - are recognized throughout the Universe. In this paper, we will examine the current state of the interstellar PAH model and its utility as a diagnostic tool to derive insight into the nature of the interstellar PAH population. As an example of this application, we will examine the results of our recent spectroscopic studies of polycyclic aromatic nitrogen heterocycles (PANHs)-PAHs with an atom of nitrogen substituted into the aromatic skeleton-and discuss a possible tracer of such species amongst the interstellar PAH emission bands in the latest observational data.
Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T
2018-01-01
When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu
2018-04-01
In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hayakawa, Kazuichi; Tang, Ning; Nagato, Edward Gou; Toriba, Akira; Sakai, Shigekatsu; Kano, Fumio; Goto, Sumio; Endo, Osamu; Arashidani, Kei-Ichi; Kakimoto, Hitoshi
2018-02-01
Total suspended particulate matter (TSP) was collected during the summer and winter in five Japanese cities spanning Hokkaido to Kyushu (Sapporo, Kanazawa, Tokyo, Sagamihara and Kitakyushu) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) and benzo[a]pyrene (BaP), were identified using high-performance liquid chromatography (HPLC) with fluorescence detection. Two nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (1-NP) and 6-nitrobenzo[a]pyrene (6-NBaP), were identified by HPLC with chemiluminescence detection. A comparison of PAH and NPAH concentrations and [NPAH]/[PAH] ratios such as [1-NP]/[Pyr] and [6-NBaP]/[BaP] revealed the following characteristics in the five cities: (1) In Sapporo, Kanazawa, Tokyo and Sagamihara, the concentrations of PAHs and NPAHs were high at the beginning of the sampling period and then steadily decreased, with NPAHs decreasing faster than PAHs. The large initial [1-NP]/[Pyr] ratios suggest that the major contributor was automobiles but subsequent decreases in this ratio suggest decreased automobile contributions. (2) By contrast, PAH concentrations in Kitakyushu did not decrease during the sampling period, though concentrations of NPAHs decreased. The consistently smaller [1-NP]/[Pyr] ratio and larger [6-NBaP]/[BaP] ratio in Kitakyushu suggests that the major contributor of PAHs was not automobiles but iron manufacturing which uses a large amount of coal. The sudden increase in atmospheric PAH concentrations in the winter of 2014 may also be due to iron manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.
2012-01-01
The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in water samples; beta-sitosterol (a plant sterol), estrone, and 4-tert-octylphenol (an alkylphenol) were the most commonly detected endocrine active chemicals in bottom-sediment samples. The greater detection frequency of chemicals in bottom-sediment samples compared to the detection frequency in water samples indicates that bottom sediment is an important sink for chemicals of emerging concern. At least one polycyclic aromatic hydrocarbon was detected in every sample; and in most samples, all nine polycyclic aromatic hydrocarbons included in analyses were detected. Bottom sediment collected from Superior Bay had the most polycyclic aromatic hydrocarbon detections of the sediment sampling locations.
Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
NASA Astrophysics Data System (ADS)
Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing
2017-05-01
Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.
Electron energy loss spectra of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Keller, John W.; Coplan, M. A.; Goruganthu, R.
1992-01-01
A survey of the electron energy-loss spectroscopy is reported of gas-phase polycyclic aromatic hydrocarbon (PAH) molecules consisting of up to seven rings where the study is limited to the more thermodynamically stable pericondensed systems. The aim of this work is to obtain absorption profiles (proportional to the oscillator strengths) from the visible to the soft X-ray region near 30 eV.
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA a...
Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...
Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.
Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P
2015-01-01
Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants. Observed associations between high cord adducts and reduced IQ were significant only among the group of children whose mothers reported high material hardship. These results indicate the need for a multifaceted approach to prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup
NASA Astrophysics Data System (ADS)
Sabbah, Hassan; Bonnamy, Anthony; Papanastasiou, Dimitris; Cernicharo, Jose; Martín-Gago, Jose-Angel; Joblin, Christine
2017-07-01
We developed a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) that combines laser desorption/ionization techniques with ion trap mass spectrometry. We report here on the ability of the apparatus to detect aromatic species in complex materials of astrophysical interest and characterize their structures. A limit of detection of 100 femto-grams has been achieved using pure polycyclic aromatic hydrocarbon (PAH) samples, which corresponds to 2 × 108 molecules in the case of coronene (C24H12). We detected the PAH distribution in the Murchison meteorite, which is made of a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene and its methylated derivatives in this sample.
Smith, Heather D; McKay, Christopher P; Duncan, Andrew G; Sims, Ronald C; Anderson, Anne J; Grossl, Paul R
2014-01-01
We discuss fluorescence as a method to detect polycyclic aromatic hydrocarbons and other organic molecules, as well as minerals on the surface of Mars. We present an instrument design that is adapted from the ChemCam instrument which is currently on the Mars Science Lander Rover Curiosity and thus most of the primary components are currently flight qualified for Mars surface operations, significantly reducing development costs. The major change compared to ChemCam is the frequency multipliers of the 1064 nm laser to wavelengths suitable for fluorescence excitation (266 nm, 355 nm, and 532 nm). We present fluorescence spectrum for a variety of organics and minerals relevant to the surface of Mars. Preliminary results show minerals already known on Mars, such as perchlorate, fluoresce strongest when excited by 355 nm. Also we demonstrate that polycyclic aromatic hydrocarbons, such as those present in Martian meteorites, are highly fluorescent at wavelengths in the ultraviolet (266 nm, 355 nm), but not as much in the visible (532 nm). We conclude that fluorescence can be an important method for Mars applications and standoff detection of organics and minerals. The instrument approach described in this paper builds on existing hardware and offers high scientific return for minimal cost for future missions.
2014-01-01
We discuss fluorescence as a method to detect polycyclic aromatic hydrocarbons and other organic molecules, as well as minerals on the surface of Mars. We present an instrument design that is adapted from the ChemCam instrument which is currently on the Mars Science Lander Rover Curiosity and thus most of the primary components are currently flight qualified for Mars surface operations, significantly reducing development costs. The major change compared to ChemCam is the frequency multipliers of the 1064 nm laser to wavelengths suitable for fluorescence excitation (266 nm, 355 nm, and 532 nm). We present fluorescence spectrum for a variety of organics and minerals relevant to the surface of Mars. Preliminary results show minerals already known on Mars, such as perchlorate, fluoresce strongest when excited by 355 nm. Also we demonstrate that polycyclic aromatic hydrocarbons, such as those present in Martian meteorites, are highly fluorescent at wavelengths in the ultraviolet (266 nm, 355 nm), but not as much in the visible (532 nm). We conclude that fluorescence can be an important method for Mars applications and standoff detection of organics and minerals. The instrument approach described in this paper builds on existing hardware and offers high scientific return for minimal cost for future missions. PMID:25057291
Dominikowska, Justyna; Palusiak, Marcin
2011-07-07
The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011
Wicker, A Paige; Carlton, Doug D; Tanaka, Kenichiro; Nishimura, Masayuki; Chen, Vivian; Ogura, Tairo; Hedgepeth, William; Schug, Kevin A
2018-06-01
On-line supercritical fluid extraction - supercritical fluid chromatography - mass spectrometry (SFE-SFC-MS) has been applied for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil. The purpose of this study was to develop and validate the first on-line SFE-SFC-MS method for the quantification of PAHs in various types of soil. By coupling the sample extraction on-line with chromatography and detection, sample preparation is minimized, diminishing sample loss and contamination, and significantly decreasing the required extraction time. Parameters for on-line extraction coupled to chromatographic analysis were optimized. The method was validated for concentrations of 10-1500 ng of PAHs per gram of soil in Certified Reference Material (CRM) sediment, clay, and sand with R 2 ≥ 0.99. Limits of detection (LOD) were found in the range of 0.001-5 ng/g, and limits of quantification (LOQ) in the range of 5-15 ng/g. The method developed in this study can be effectively applied to the study of PAHs in the environment, and may lay the foundation for further applications of on-line SFE-SFC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.
Kendirci, Perihan; Icier, Filiz; Kor, Gamze; Onogur, Tomris Altug
2014-06-01
Effects of infrared cooking on polycyclic aromatic hydrocarbon (PAH) formation in ohmically pre-cooked beef meatballs were investigated. Samples were pre-cooked in a specially designed-continuous type ohmic cooking at a voltage gradient of 15.26V/cm for 92s. Infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.706, 5.678, 8.475kW/m(2)), application distances (10.5, 13.5, 16.5cm) and application durations (4, 8, 12min). PAHs were analyzed by using high performance liquid chromatography (HPLC) equipped with a fluorescence detector. The total PAH levels were detected to be between 4.47 and 64μg/kg. Benzo[a] pyrene (B[a]P) and PAH4 (sum of B[a]P, chrysene (Chr), benzo[a]anthracene (B[a]A) and benzo[b]fluoranthene (B[b]F)) levels detected in meatballs were below the EC limits. Ohmic pre-cooking followed by infrared cooking may be regarded as a safe cooking procedure of meatballs from a PAH contamination point of view. Copyright © 2014 Elsevier Ltd. All rights reserved.
Waidyanatha, Suramya; Zheng, Yuxin; Rappaport, Stephen M
2003-05-06
Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.
On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.
Gutiérrez-Valencia, Tania M; García de Llasera, Martha P
2017-05-15
A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min
2017-12-01
An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stockton, Amanda M; Chiesl, Thomas N; Scherer, James R; Mathies, Richard A
2009-01-15
The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.
Anomalous microwave emission from spinning nanodiamonds around stars
NASA Astrophysics Data System (ADS)
Greaves, J. S.; Scaife, A. M. M.; Frayer, D. T.; Green, D. A.; Mason, B. S.; Smith, A. M. S.
2018-06-01
Several interstellar environments produce anomalous microwave emission (AME), with brightness peaks at tens-of-gigahertz frequencies1. The emission's origins are uncertain; rapidly spinning nanoparticles could emit electric-dipole radiation2, but the polycyclic aromatic hydrocarbons that have been proposed as the carrier are now found not to correlate with Galactic AME signals3,4. The difficulty is in identifying co-spatial sources over long lines of sight. Here, we identify AME in three protoplanetary disks. These are the only known systems that host hydrogenated nanodiamonds5, in contrast with the very common detection of polycyclic aromatic hydrocarbons6. Using spectroscopy, the nanodiamonds are located close to the host stars, at physically well-constrained temperatures7. Developing disk models8, we reproduce the emission with diamonds 0.75-1.1 nm in radius, holding ≤1-2% of the carbon budget. Ratios of microwave emission to stellar luminosity are approximately constant, allowing nanodiamonds to be ubiquitous, but emitting below the detection threshold in many star systems. This result is compatible with the findings of similar-sized diamonds within Solar System meteorites9. As nanodiamond spectral absorption is seen in interstellar sightlines10, these particles are also a candidate for generating galaxy-scale3 AME.
Li, Xin; Kaattari, Stephen L; Vogelbein, Mary A; Vadas, George G; Unger, Michael A
2016-03-01
Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC 50 values between 1.68-31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.
2004-01-01
Polycyclic aromatic hydrocarbons (PAHs) are believed to be the most abundant and widespread class of organic compounds in the universe, having been observed in emission towards energetic regions and absorption towards colder ones.We will present IR spectra of PAHs and their cations in H20 ice measured in the laboratory in the hopes that this will facilitate the detection of these features in the interstellar medium.
Wang, Huiyong; Yu, Shenjiang; Campiglia, Andres D
2009-02-15
A unique method for screening polycyclic aromatic hydrocarbons in drinking water samples is reported. Water samples (500 microl) are mixed and centrifuged with 950 microl of a commercial solution of 20 nm gold nanoparticles for pollutants extraction. The precipitate is treated with 2 microl of 1-pentanethiol and 48 microl of n-octane, and the supernatant is then analyzed via laser-excited time-resolved Shpol'skii spectroscopy. Fifteen priority pollutants are directly determined at liquid helium temperature (4.2 K) with the aid of a cryogenic fiber-optic probe. Unambiguous pollutant determination is carried out via spectral and lifetime analysis. Limits of detection are at the parts-per-trillion level. Analytical recoveries are similar to those obtained via high-performance liquid chromatography. The simplicity of the experimental procedure, use of microliters of organic solvent, short analysis time, selectivity, and excellent analytical figures of merit demonstrate the advantages of this environmentally friendly approach for routine analysis of numerous samples.
Tunable molecular plasmons in polycyclic aromatic hydrocarbons.
Manjavacas, Alejandro; Marchesin, Federico; Thongrattanasiri, Sukosin; Koval, Peter; Nordlander, Peter; Sánchez-Portal, Daniel; García de Abajo, F Javier
2013-04-23
We show that chemically synthesized polycyclic aromatic hydrocarbons (PAHs) exhibit molecular plasmon resonances that are remarkably sensitive to the net charge state of the molecule and the atomic structure of the edges. These molecules can be regarded as nanometer-sized forms of graphene, from which they inherit their high electrical tunability. Specifically, the addition or removal of a single electron switches on/off these molecular plasmons. Our first-principles time-dependent density-functional theory (TDDFT) calculations are in good agreement with a simpler tight-binding approach that can be easily extended to much larger systems. These fundamental insights enable the development of novel plasmonic devices based upon chemically available molecules, which, unlike colloidal or lithographic nanostructures, are free from structural imperfections. We further show a strong interaction between plasmons in neighboring molecules, quantified in significant energy shifts and field enhancement, and enabling molecular-based plasmonic designs. Our findings suggest new paradigms for electro-optical modulation and switching, single-electron detection, and sensing using individual molecules.
Obinaju, Blessing E; Graf, Carola; Halsall, Crispin; Martin, Francis L
2015-06-01
Petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) are a pollution issue in the Niger Delta region due to oil industry activities. PAHs were measured in the water column of the Ovia River with concentrations ranging from 0.1 to 1055.6 ng L(-1). Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy detected alterations in tissues of the African catfish (Heterobranchus bidorsalis) from the region showed varying degrees of statistically significant (P<0.0001, P<0.001, P<0.05) changes to absorption band areas and shifts in centroid positions of peaks. Alteration patterns were similar to those induced by benzo[a]pyrene in MCF-7 cells. These findings have potential health implications for resident local communities as H. bidorsalis constitutes a key nutritional source. The study provides supporting evidence for the sensitivity of infrared spectroscopy in environmental studies and supports their potential application in biomonitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.
Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping Sun; Panuwat Taerakul; Linda K. Weavers
Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAHmore » concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.« less
Saito, E; Tanaka, N; Miyazaki, A; Tsuzaki, M
2014-06-15
The concentration and particle size distribution of 19 major polycyclic aromatic hydrocarbons (PAHs) emitted by thermal cooking were investigated. Corn, trout, beef, prawns, and pork were selected for grilling. The PAHs in the oil mist emitted when the food was grilled were collected according to particle size range and analysed by GC/MS. Much higher concentrations of PAHs were detected in the oil mist emitted by grilled pork, trout, and beef samples, which were rich in fat. The main components of the cooking exhaust were 3- and 4-ring PAHs, regardless of food type. The particle size distribution showed that almost all the PAHs were concentrated in particles with diameters of <0.43 μm. For pork, the toxic equivalent of benzo[a]pyrene accounted for 50% of the PAHs in particles with diameters of <0.43 μm. From these results, we estimated that >90% of the PAHs would reach the alveolar region of the lungs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of heavy metals and polycyclic aromatic hydrocarbons in honeys from different origins.
Corredera, Lourdes; Bayarri, Susana; Pérez-Arquillué, Consuelo; Lázaro, Regina; Molino, Francisco; Herrera, Antonio
2014-03-01
A survey of honey samples from different geographical and botanical origins, including some samples collected from a fire-affected area in Spain, was conducted to assess their content of heavy metals and polycyclic aromatic hydrocarbons (PAHs). The levels of the determined toxic elements (Pb, Cd, As, and Sn) were low and were in the range of those reported by other studies. In our work the total amount of heavy metals and Pb was higher in dark honeys than in pale honeys. In the collected samples, no detectable levels of the 15 PAHs studied were found. The obtained data served to assess the levels of heavy metals and PAHs in honey samples from different geographical and environmental origins and to contribute to the scarce data about pollutant content of this matrix. In light of these results, the analyzed samples do not pose any serious concern to human health, and the data obtained in this study could serve to contribute to the establishment of specific maximum limits for honey.
Ribeiro, Angelo Morgado; da Rocha, Camila Coimbra Martins; Franco, Caroline Fernandes Jaegger; Fontana, Luiz Francisco; Pereira Netto, Annibal D
2012-12-01
Polycyclic aromatic hydrocarbons (PAHs) were determined in water samples collected in two streams and a lake located at Niteroi City, Rio de Janeiro State, Brazil between October 2008 and September 2009. Samples were extracted using liquid-liquid extraction and analyzed using high performance liquid chromatography with fluorescence detection. The limits of quantification were sufficiently low to accomplish PAH determination below the maximum concentration levels established by the Brazilian (50 ng/L) and USEPA legislations, with recoveries larger than 81.6%. Phenanthrene, fluoranthene, pyrene and benz[a]anthracene predominated among PAHs. Total concentrations of PAHs were well correlated with rainfall indicating a possible role of runoff to local pollution of water by PAHs and showed a seasonal variation in wet and dry seasons. Our results highlight the contribution of the widespread streams located around Guanabara Bay to the PAH burden found in its waters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C
1988-01-01
The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204
Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran
2013-01-01
Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505
Grasso, Giuseppe; Calcagno, Marzia; Rapisarda, Alessandro; D'Agata, Roberta; Spoto, Giuseppe
2017-06-01
The analytical methods that are usually applied to determine the compositions of inks from ancient manuscripts usually focus on inorganic components, as in the case of iron gall ink. In this work, we describe the use of atmospheric pressure/matrix-assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of the organic carbonaceous components of inks used in handwritten parts of ancient books for the first time. Large polycyclic aromatic hydrocarbons (L-PAH) were identified in situ in the ink of XVII century handwritten documents. We prove that it is possible to apply MALDI-MS as a suitable microdestructive diagnostic tool for analyzing samples in air at atmospheric pressure, thus simplifying investigations of the organic components of artistic and archaeological objects. The interpretation of the experimental MS results was supported by independent Raman spectroscopic investigations. Graphical abstract Atmospheric pressure/MALDI mass spectrometry detects in situ polycyclic aromatic hydrocarbons in the carbonaceous ink of XVII century manuscripts.
Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng
2014-10-01
Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.
Zou, Yonghong; Wang, Lixia; Christensen, Erik R
2015-10-01
This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). Copyright © 2015. Published by Elsevier Ltd.
Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv
2014-05-15
The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. Copyright © 2014 Elsevier B.V. All rights reserved.
Mottier, P; Parisod, V; Turesky, R J
2000-04-01
A method is described for the analysis of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by the USA EPA in meat sausages grilled under common barbecue practices. Quantification was done by GC-MS using perdeuterated internal standards (IS). Validation was done by spiking the matrix at the 0.5 and 1.0 microg/kg levels. The average of expected values ranged from 60 to 134% (median 84%) at the 0.5 microg/kg level and from 69 to 121% (median 96%) at the 1.0 microg/kg level. The median of the limits of detection and quantification were 0.06 and 0.20 microg/kg, respectively, for a 4-g test portion. The carcinogenic PAHs were below the quantification limit in all products except one lamb sausage. Comparison of estimates when either 1, 5, or 16 perdeuterated PAHs were used as IS showed that the most accurate determination of PAHs required that each compound be quantified against its corresponding perdeuterated analogue.
Particulate polycyclic aromatic hydrocarbons (PAH) in the atmosphere of Bizerte city, Tunisia.
Ben Hassine, S; Hammami, B; Ben Ameur, W; El Megdiche, Y; Barhoumi, B; Driss, M R
2014-09-01
The particle-phase concentrations of polycyclic aromatic hydrocarbons (PAH) were determined in 13 air samples collected in an urban area of Bizerte (Tunisia) during 2009-2010. Atmospheric particulate samples were extracted by ultrasonic bath and analyzed by high-performance liquid chromatography with fluorescence detection. PAH were found in all the analyzed air samples and the most abundant compounds were pyrene, fluoranthene, benzo[g,h,i]perylene, benzo[b]fluoranthene, chrysene and benzo[a]pyrene. ∑14-PAH concentrations ranging from 9.38 to 44.81 ng m(-3) with mean value of 25.39 ng m(-3). PAH diagnostic ratio source analysis revealed gasoline and diesel vehicular emissions as major sources. The mean total benzo[a]pyrene toxicity equivalent calculated for samples was 3.66 ng m(-3) and the mean contribution of the carcinogenic potency of benzo[a]pyrene was determined to be 55.8 %. Concentrations of particulate PAH in Bizerte city atmosphere were approximately eight times greater than sampled at a nearby rural site.
Miyake, Yuichi; Tokumura, Masahiro; Wang, Qi; Amagai, Takashi; Horii, Yuichi
2017-11-01
Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence time<2sec), followed a pseudo-first-order kinetics model. An Arrhenius plot revealed that the activation energy and frequency factor of the decomposition of HBCD by combustion were 14.2kJ/mol and 1.69sec -1 , respectively. During combustion, 11 brominated polycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m 3 ) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion. Copyright © 2017. Published by Elsevier B.V.
Lloyd-Jones, G; Lau, P C
1997-01-01
Homologs of the glutathione S-transferase (GST)-encoding gene were identified in a collection of aromatic hydrocarbon-degrading Sphingomonas spp. isolated from New Zealand, Antarctica, and the United States by using PCR primers designed from the GST-encoding gene of Sphingomonas paucimobilis EPA505. Sequence analysis of PCR fragments generated from these isolates and of the GST gene amplified from DNA extracted from polycyclic aromatic hydrocarbon (PAH)-contaminated soil revealed a high degree of conservation, which may make the GST-encoding gene a potentially useful marker for PAH-degrading bacteria. PMID:9251217
NASA Astrophysics Data System (ADS)
Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi
2017-03-01
Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.
NASA Astrophysics Data System (ADS)
Kan, R.; Kaosol, T.; Tekasakul, P.; Tekasakul, S.
2017-09-01
Determination of particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) emitted from co-pelletization combustion of lignite and rubber wood sawdust in a horizontal tube furnace is investigated using High Performance Liquid Chromatography with coupled Diode Array and Fluorescence Detection (HPLC-DAD/FLD). The particle-bound PAHs based on the mass concentration and the toxicity degree are discussed in the different size ranges of the particulate matters from 0.07-11 μm. In the present study, the particle-bound PAHs are likely abundant in the fine particles. More than 70% of toxicity degree of PAHs falls into PM1.1 while more than 80% of mass concentration of PAHs falls into PM2.5. The addition of lignite amount in the co-pelletization results in the increasing concentration of either 4-6 aromatic ring PAHs or high molecular weight PAHs. The high contribution of 4-6 aromatic ring PAHs or high molecular weight PAHs in the fine particles should be paid much more attention because of high probability of human carcinogenic. Furthermore, the rubber wood sawdust pellets emit high mass concentration of PAHs whereas the lignite pellets emit high toxicity degree of PAHs. By co-pelletized rubber wood sawdust with lignite (50% lignite pellets) has significant effect to reduce the toxicity degree of PAHs by 70%.
Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, Alexander G. G. M.
1995-01-01
We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.
Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake
NASA Astrophysics Data System (ADS)
Zhang, Guizhai; Diao, Youjiang
2018-06-01
Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.
Monitoring of vapor phase polycyclic aromatic hydrocarbons
Vo-Dinh, Tuan; Hajaligol, Mohammad R.
2004-06-01
An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.
Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.
Sanches, S; Leitão, C; Penetra, A; Cardoso, V V; Ferreira, E; Benoliel, M J; Crespo, M T Barreto; Pereira, V J
2011-09-15
The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm(2), anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Babić, J.; Vidaković, S.; Škaljac, S.; Kartalović, B.; Ljubojević, D.; Ćirković, M.; Teodorović, V.
2017-09-01
Smoking techniques have been progressively improved and different procedures have been developed in different regions for treating fish. In these times, the technology is mainly used for enrichment of fish with specific taste and odour, to extend the shelf-life of these perishable products and appearance required widely on the market. A lot of chemical contaminants such as polycyclic aromatic hydrocarbons (PAHs) are formed during the combustion of fuel in the smoking process. PAHs are a group of compounds that have been the subject of great concern in the recent years due to their toxic, mutagenic and/or carcinogenic potentials to humans. These fact can have a significant impact on the acceptance of these products by consumers. In this review article, the objective is to describe factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.; Gatchell, M.; Stockett, M. H.
2014-06-14
We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effectivemore » initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.« less
Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics
Karami, Sara; Boffetta, Paolo; Brennan, Paul; Stewart, Patricia A.; Zaridze, David; Matveev, Vsevolod; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.; Sobotka, Roman; Chow, Wong-Ho; Rothman, Nathaniel; Moore, Lee E.
2011-01-01
Objective To investigate whether occupational exposure to polycyclic aromatic hydrocarbons and certain plastic monomers increased renal cell carcinomas (RCC) risk. Methods Unconditional logistic regression was used to calculate RCC risk in relation to exposure. Results No association between RCC risk and having ever been occupationally exposed to any polycyclic aromatic hydrocarbons or plastics was observed. Duration of exposure and average exposure also showed no association with risk. Suggestive positive associations between RCC risk and cumulative exposure to styrene (P-trend = 0.02) and acrylonitrile (P-trend = 0.06) were found. Cumulative exposure to petroleum/gasoline engine emissions was inversely associated with risk (P-trend = 0.02). Conclusions Results indicate a possible association between occupational styrene and acrylonitrile exposure and RCC risk. Additional studies are needed to replicate findings, as this is the first time these associations have been reported and they may be due to chance. PMID:21270648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Wren; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk
2016-03-01
The influence of polycyclic aromatic nitrogen heterocycles (PANHs), which have been suggested as contributors to the interstellar IR emission bands, on interstellar emission features is difficult to constrain because their infrared characteristics are strongly similar to those for polycyclic aromatic hydrocarbons (PAHs). One possible solution is to seek a means of visualizing the presence of PANHs that provides information that is distinct from that for PAHs. Although PANHs and PAHs have similar infrared characteristics in many settings, this relationship may not be universally maintained. We have used in situ high-pressure synchrotron-source Fourier transform infrared spectroscopy to determine that the responsesmore » of two representative molecules, acridine and anthracene, differ at high pressures (>ca. 1 GPa). Because there are a number of high-pressure environments that can be remotely observed by infrared spectroscopy, they represent a potential to glimpse the distribution of PANHs across the cosmos.« less
Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabbah, Hassan; Bonnamy, Anthony; Joblin, Christine
We developed a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) that combines laser desorption/ionization techniques with ion trap mass spectrometry. We report here on the ability of the apparatus to detect aromatic species in complex materials of astrophysical interest and characterize their structures. A limit of detection of 100 femto-grams has been achieved using pure polycyclic aromatic hydrocarbon (PAH) samples, which corresponds to 2 × 10{sup 8} molecules in the case of coronene (C{sub 24}H{sub 12}). We detected the PAH distribution in the Murchison meteorite, which is made of a complex mixture of extraterrestrialmore » organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene and its methylated derivatives in this sample.« less
NASA Astrophysics Data System (ADS)
Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise
2017-02-01
A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.
Wang, Fuxin; Zheng, Juan; Qiu, Junlang; Liu, Shuqin; Chen, Guosheng; Tong, Yexiang; Zhu, Fang; Ouyang, Gangfeng
2017-01-18
Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core-shell TiO 2 @C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO 2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO 2 and good adsorption property of the amorphous carbon coating, the core-shell TiO 2 @C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO 2 @C fiber obtained gas chromatography responses 3-8 times higher than those obtained by the commercial 100 μm PDMS and 1-9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4-7.1 ng L -1 with wider linearity in the range of 10-2000 ng L -1 . Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core-shell TiO 2 @C fiber.
Hornewer, Nancy J.
2014-01-01
Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.
Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf
2018-05-01
A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.
Galano, Annia
2007-03-08
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.
Pavanello, S; Pulliero, A; Lai, A; Gaiardo, A; Mastrangelo, G; Clonfero, E
2005-01-01
[Anti-B[a]PDE-DNA formation in lymphomonocytes of humans environmentally exposed to polycyclic aromatic hydrocarbons] We are currently evaluating anti-benzo[a]pyrenediolepoxide-(B[a]PDE)-DNA adduct levels in lymphomonocytes of humans exposed to polycyclic aromatic hydrocarbons (PAHs) to validate this indicator of biologically effective dose in a surrogate tissue. The study protocol (October 2002-June 2005) implies: (a) a signed informed consent by each participant; (b) recruitment of 600 Padua municipal workers during visits at our outpatient clinic; (c) administration of a questionnaire regarding non occupational sources of PAH (B[a]P) exposure; (d) collection of blood (15 ml) and urine (200 ml) samples. Anti-B[a]PDE-DNA adduct levels in lymphomonocytes are detected by HPLC-fluorescence analysis. To date, 438 subjects have been examined (age range 20-62 years; 52% males). We found that: (i) anti-B[a]PDE-DNA adduct levels are significantly lower than those we previously found in coke-oven workers (N=95) occupationally exposed to high levels of PAHs (1.51 +/- 2.68 versus 4.07 +/- 3.78 anti-B[a]PDE-adduct/10(8) nucleotides, p < 0.001; 37% versus 97% positive subjects with > or =1 adduct/10(8) nucleotides; p < 0.001); (ii) smokers (23%) have significantly higher adduct levels than non smokers (p < 0.001); iii) non smokers who consume PAH-rich meals > or =52 times/year (142 subjects, 42%) have significantly increased adduct levels than those <52 times/year (p < 0.01). Dietary and smoking habits did not influence the occupationally-induced adduct levels in coke-oven workers. This is the first study that examines anti-B[a]PDE-DNA adduct levels in a large cohort showing that anti-B[a]PDE-DNA adducts can be detected in humans environmentally exposed to low doses of PAH (B[a]P and are modulated by smoke and dietary habits.
Kappell, Anthony D.; Wei, Yin; Newton, Ryan J.; Van Nostrand, Joy D.; Zhou, Jizhong; McLellan, Sandra L.; Hristova, Krassimira R.
2014-01-01
The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are primed for PAH degradation. PMID:24847320
NASA Technical Reports Server (NTRS)
Zare, Richard N.
1998-01-01
Perhaps the best way to summarize the past three-year grant period is to cite the publications and present a brief synopsis of each: 1. "Indigenous Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains." Bulk C-12/C-13 isotope ratios observed in some graphite grains extracted from primitive meteorites point strongly to a circumstellar origin. By applying our technique of microprobe two-step laser desorption laser ionization mass spectrometry ((mu)L(sup 2)MS) to individual circumstellar graphite grains we have measured the C-12/C-13 isotope ratio of various polycyclic aromatic hydrocarbons (PAHS) found in these grains. 2. "Deuterium Enrichments in Cluster IDPS," Large enrichments in the D/H isotope ratios in IDPs likely arise from the preservation of presolar molecules. 3. "Evidence for thermalization of surface-disorder molecules at heating rates of 10(exp 8) K/s". A careful study of the ((mu)L(sup 2)MS) of aniline-d(sub 7) from a single-crystal surface (0001) of sapphire (al2O3) shows that all measured properties are consistent with a thermal mechanism for desorption. 4. "Search for past life on Mars; possible relic biogenic activity in Martian meteorite ALH 84001. The authors examined the Martian meteorite ALH 84001 and found several lines of evidence compatible with existence of past primitive (single-cell) life on early Mars. 5. "Microprobe two-step laser mass spectrometry as an analytical tool for meteorite samples". THis paper presents a comprehensive review of (mu)L(sup 2)MS and how this technique can be applied to meteoritic samples. 6. "Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites". The C-12/C-13 isotope ratios were measured for PAHs in a total of 89 spherical graphite grains. 7. "Observation of indigenous polycyclic aromatic hydrocarbons in "Giant" carbonaceous antarctic micrometeorites." The (mu)L(sup 2)MS method was used to establish the nature and distribution of PAHs in fragments of fifteen (approx. 200 microns) carbonaceous antarctic micrometeorites (AMMs). 8. "Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH 84001" We have undertaken additional contamination studies of ALH 84001.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine
2018-02-02
A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.
2006-01-01
Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.
Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho
2015-01-12
The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo
2016-02-01
Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.
Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina
2016-08-15
Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes.
Drug, Eyal; Landesman-Milo, Dalit; Belgorodsky, Bogdan; Ermakov, Natalia; Frenkel-Pinter, Moran; Fadeev, Ludmila; Peer, Dan; Gozin, Michael
2011-03-21
Increasing exposure of biological systems to large amounts of polycyclic aromatic hydrocarbons is of great public concern. Organisms have an array of biological defense mechanisms, and it is believed that mucosal gel (which covers the respiratory system, the gastrointestinal tract, etc.) provides an effective chemical shield against a range of toxic materials. However, in this work, we demonstrate, for the first time, that, upon complexation of polyaromatic hydrocarbons with mucins, enhanced bioavailability and, therefore, toxicity are obtained. This work was aimed to demonstrate how complexation of various highly hydrophobic polycyclic aromatic hydrocarbons with representative mucin glycoprotein could lead to the formation of previously undescribed materials, which exhibit increased toxicity versus pristine polycyclic aromatic hydrocarbons. In the present work, we show that a representative mucin glycoprotein, bovine submaxillary mucin, has impressive and unprecedented capabilities of binding and solubilizing water-insoluble materials in physiological solution. The complexes formed between the mucin and a series of polycyclic aromatic hydrocarbons were comprehensively characterized, and their toxicity was evaluated by both in vivo and in vitro assays. In addition, the bioavailability and membrane-penetration capabilities were tested using an internalization assay. Our results provide, for the first time, evidence of an unknown route by which hydrophobic materials may achieve higher bioavailability, penetrating some of the biological defense systems, in the form of water-soluble complexes with mucosal proteins.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A
2016-04-15
A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.
Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere
NASA Technical Reports Server (NTRS)
Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.
2013-01-01
In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
NASA Astrophysics Data System (ADS)
Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim
2017-09-01
Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.
Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze
2008-08-01
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.
Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze
2008-01-01
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously. PMID:18445026
A Sandwich ELISA for Adducts of Polycyclic Aromatic Hydrocarbons with Human Serum Albumin1
Chung, Ming Kei; Riby, Jacques; Li, He; Iavarone, Anthony T.; Williams, Evan R.; Zheng, Yuxin; Rappaport, Stephen M.
2010-01-01
Adducts of benzo[α]pyrene-diolepoxide (BPDE)2 with blood nucleophiles have been used as biomarkers of exposure to polycyclic aromatic hydrocarbons (PAHs). The most popular such assay is a competitive ELISA which employs monoclonal antibody 8E11 to detect benzo[α]pyrene tetrols following hydrolysis of BPDE adducts from lymphocyte DNA or human serum albumin (HSA). Here we use 8E11 as the capture antibody in a sandwich ELISA to detect BPDE-HSA adducts directly in 1 mg samples of HSA or 20 μL of serum/plasma. The assay employs an anti-HSA antibody for detection, which is amplified by an avidin/biotinylated horseradish peroxidase complex. The sandwich ELISA has advantages of specificity and simplicity and is about 10 times more sensitive than the competitive ELISA. To validate the assay, HSA samples were assayed from three populations with known high (coke-oven workers), medium (steel-factory control workers), and low (volunteer subjects) PAH exposures (n = 30). The respective geometric mean levels of BPDE-HSA adducts, i.e., 67.8, 14.7 and 1.93 ng/mg HSA (1,010, 220 and 28.9 fmol BPDE equivalents/mg HSA), were significantly different (p < 0.05). The sandwich ELISA will be useful for screening PAH exposures in large epidemiologic studies and can be extended to other adducts for which capture antibodies are available. PMID:20083082
Magnetic Beads-based Bioelectrochemical Immunoassay of Polycyclic Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ying-Ying; Liu, Guodong; Wai, Chien M.
2007-07-01
A simple, rapid, and sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) has been developed to detect polycyclic aromatic hydrocarbons (PAHs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PAH-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PAH (HRP-PAH). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreaction among PAH-antibody-coated MBs, PAH analyte, and HRP-PAH. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing 3, 3´, 5, 5´-more » tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) for electrochemical detection. The voltammetric characteristics of the substrate were investigated, and the reduction peak current of TMB was used to quantify the concentration of PAH. The different parameters, including the amount of HRP-PAH conjugates, the enzyme catalytic reaction time, and the pH of the supporting electrolyte that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 50 pg mL-1 was obtained under optimum experimental conditions. The performance of this bioelectrochemical magnetic immunoassay was successfully evaluated with tap water spiked with PAHs, indicating that this convenient and sensitive technique offers great promise for decentralized environmental applications.« less
Dhananjayan, V.; Muralidharan, S.
2013-01-01
This study provides information on the current status of contamination by polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) in the tissues of endangered White-backed Vulture Gyps bengalensis in India. Chemical analyses revealed detectable amounts of PAHs, PCBs, and OCPs. Concentration ranges of ∑PAHs, ∑PCBs, and ∑OCPs in tissues were 60–2037 ng/g, 30–5790 ng/g, and 3.2–5836 ng/g wet weight, respectively. 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′-DDE) concentrations ranged from below detectable level to 599 ng/g wet weight, representing more than 90% of the total dichlorodiphenyltrichloroethane (DDT). Among the various OCPs analyzed, p,p′-DDE was detected most frequently. All the contaminants recorded show higher accumulation in liver than other tissues. Levels of contaminants measured in the tissues of vulture are comparable with the levels documented in a number of avian species and are lower than those reported to have caused deleterious effects. Although no threat is expected from the current level of contamination, the presence of varying levels of contaminants and their additive or synergistic toxicity is a cause of concern to vultures. Values reported in this study can serve as guideline for future research. PMID:24288666
Vásquez, Valeria; Báez, María E; Bravo, Manuel; Fuentes, Edwar
2013-09-01
Seven heavy polycyclic aromatic hydrocarbons (PAHs) of concern on the US Environmental Protection Agency priority pollutant list (benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]-pyrene) were simultaneously analyzed in extra virgin olive oil. The analysis is based on the measurement of excitation-emission matrices on nylon membrane and processing of data using unfolded partial least-squares regression with residual bilinearization (U-PLS/RBL). The conditions needed to retain the PAHs present in the oil matrix on the nylon membrane were evaluated. The limit of detection for the proposed method ranged from 0.29 to 1.0 μg kg(-1), with recoveries between 64 and 78 %. The predicted U-PLS/RBL concentrations compared favorably with those measured using high-performance liquid chromatography with fluorescence detection. The proposed method was applied to ten samples of edible oil, two of which presented PAHs ranging from 0.35 to 0.63 μg kg(-1). The principal advantages of the proposed analytical method are that it provides a significant reduction in time and solvent consumption with a similar limit of detection as compared with chromatography.
Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi
2016-05-10
Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Adegoke, Oluwasesan; Forbes, Patricia B C
2016-01-01
Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Rochman, Chelsea M.; Manzano, Carlos; Hentschel, Brian T.; Massey Simonich, Staci L.; Hoh, Eunha
2014-01-01
Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9 and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene) while most increased (2-methylanthracene and all parent PAHs (PPAHs) except fluorene and fluoranthene), suggesting PS debris is a source and sink for PAHs. When comparing sorbed concentrations of PPAHs on PS to the five most common polymers (polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)), PS sorbed greater concentrations than PP, PET and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8-200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion. PMID:24341360
Rochman, Chelsea M; Manzano, Carlos; Hentschel, Brian T; Simonich, Staci L Massey; Hoh, Eunha
2013-12-17
Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9, and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene), while most increased [2-methylanthracene and all parent PAHs (PPAHs), except fluorene and fluoranthene], suggesting that PS debris is a source and sink for PAHs. When sorbed concentrations of PPAHs on PS are compared to the five most common polymers [polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)], PS sorbed greater concentrations than PP, PET, and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8 to 200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion.
Claudio, Caroline Vieira; Ribeiro, Renata Perfeito; Martins, Júlia Trevisan; Marziale, Maria Helena Palucci; Solci, Maria Cristina; Dalmas, José Carlos
2017-01-01
ABSTRACT Objective: analyze the concentration of polycyclic aromatic hydrocarbons in electrocautery smoke in operating rooms and the use of personal protective equipment by the intraoperative team when exposed to hydrocarbons. Method: exploratory and cross-sectional field research conducted in a surgery center. Gases were collected by a vacuum suction pump from a sample of 50 abdominal surgeries in which an electrocautery was used. A form was applied to identify the use of personal protective equipment. Gases were analyzed using chromatography. Descriptive statistics and Spearman's test were used to treat data. Results: there were 17 (34%) cholecystectomies with an average duration of 136 minutes, while the average time of electrocautery usage was 3.6 minutes. Airborne hydrocarbons were detected in operating rooms in 100% of the surgeries. Naphthalene was detected in 48 (96.0%) surgeries and phenanthrene in 49 (98.0%). The average concentration of these compounds was 0.0061 mg/m3 and a strong correlation (0.761) was found between them. The intraoperative teams did not use respirator masks such as the N95. Conclusion: electrocautery smoke produces gases that are harmful to the health of the intraoperative team, which is a concern considering the low adherence to the use of personal protective equipment. PMID:28301033
Lacorte, S; Quintana, J; Tauler, R; Ventura, F; Tovar-Sánchez, A; Duarte, C M
2009-12-04
This study presents the optimization and application of an analytical method based on the use of stir bar sorptive extraction (SBSE) gas chromatography coupled to mass spectrometry (GC-MS) for the ultra-trace analysis of POPs (Persistent Organic Pollutants) in Arctic ice. In a first step, the mass-spectrometry conditions were optimized to quantify 48 compounds (polycyclic aromatic hydrocarbons, brominated diphenyl ethers, chlorinated biphenyls, and organochlorinated pesticides) at the low pg/L level. In a second step, the performance of this analytical method was evaluated to determine POPs in Arctic cores collected during an oceanographic campaign. Using a calibration range from 1 to 1800 pg/L and by adjusting acquisition parameters, limits of detection at the 0.1-99 and 102-891 pg/L for organohalogenated compounds and polycyclic aromatic hydrocarbons, respectively, were obtained by extracting 200 mL of unfiltered ice water. alpha-hexachlorocyclohexane, DDTs, chlorinated biphenyl congeners 28, 101 and 118 and brominated diphenyl ethers congeners 47 and 99 were detected in ice cores at levels between 0.5 to 258 pg/L. We emphasise the advantages and disadvantages of in situ SBSE in comparison with traditional extraction techniques used to analyze POPs in ice.
Baumbach, Günter; Kuch, Bertram; Scheffknecht, Günter
2010-01-01
An important source of polycyclic aromatic hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. The target of this study was to investigate the particle-phase PAH composition of ambient samples in order to assess the influence of wood combustion on air quality in residential areas. PM10 samples (particulate matter <10 μm) were collected during two winter seasons at two rural residential areas near Stuttgart in Germany. Samples were extracted using toluene in an ultrasonic bath and subsequently analysed by gas chromatography–mass spectrometry. Twenty-one PAH compounds were detected and quantified. The PAH fingerprints of different wood combustion emissions were found in significant amounts in ambient samples and high correlations between total PAHs and other wood smoke tracers were found, indicating the dominant influence of wood combustion on air quality in residential areas. Carcinogenic PAHs were detected in high concentrations and contributed 49% of the total PAHs in the ambient air. To assess the health risk, we investigated the exposure profile of individual PAHs. The findings suggest that attention should be focused on using the best combustion technology available to reduce emissions from wood-fired heating during the winter in residential areas. PMID:20495599
Monago-Maraña, Olga; Pérez, Rocío L; Escandar, Graciela M; Muñoz de la Peña, Arsenio; Galeano-Díaz, Teresa
2016-11-02
This work presents a strategy for quantitating polycyclic aromatic hydrocarbons (PAHs) in smoked paprika samples. For this, a liquid chromatographic method with fluorimetric detection (HPLC-FLD) was optimized. To resolve some interference co-eluting with the target analytes, the second-order multivariate curve resolution-alternating least-squares (MCR-ALS) algorithm has been employed combined with this liquid chromatographic method. Among the eight PAHs quantified (fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene) by HPLC-FLD, only in the case of fluorene, pyrene, and benzo[b]fluoranthene was it necessary to apply the second-order algorithm for their resolution. Limits of detection and quantitation were between 0.015 and 0.45 mg/kg and between 0.15 and 1.5 mg/kg, respectively. Good recovery results (>80%) for paprika were obtained via the complete extraction procedure, consisting of an extraction from the matrix and the cleanup of the extract by means of silica cartridges. Higher concentrations of chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene were found in the paprika samples, with respect to the maximal amounts allowed for other spices that are under European Regulation (EU) N° 2015/1933.
Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong
2015-07-01
A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary A.; Vadas, George G.; Unger, Michael A.
2016-01-01
Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68–31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples. PMID:26925369
Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu
2007-10-29
The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.
Mahl, Magnus; Shoyama, Kazutaka; Rühe, Jessica; Grande, Vincenzo; Würthner, Frank
2018-04-24
Herein we report a palladium-catalyzed annulation reaction consisting of a Suzuki-Miyaura cross-coupling and a C-H arylation cascade for the synthesis of tetrachlorinated polycyclic aromatic dicarboximides (PADIs). This convergent synthetic route afforded a broad series of hitherto unknown electron-deficient PADIs under optimized reaction conditions by coupling of a dibromo-tetrachloro-perylene dicarboximide with different polycyclic aromatic hydrocarbon (PAH) boronic acid pinacol esters in up to 89% yields. The new PADI compounds show broad absorption in the visible range and some of them emit in the near-infrared (NIR) region. Cyclic and square wave voltammetric studies revealed that these tetrachlorinated PADIs are more electron-deficient than a non-chlorinated reference compound and they possess lower lying frontier orbitals. Thus, the newly synthesized electron-poor PADIs are potential n-type semiconductors. Moreover, these chlorinated PADIs are interesting building blocks for the construction of large π-extended arrays by metal-mediated coupling reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki
2014-08-30
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.
Petroleum hydrocarbons in the surface water of two estuaries in the Southeastern united states
NASA Astrophysics Data System (ADS)
Bidleman, T. F.; Castleberry, A. A.; Foreman, W. T.; Zaranski, M. T.; Wall, D. W.
1990-01-01
Surface water samples from Charleston Harbor, SC and Winyah Bay, SC were analysed for total hydrocarbons by gas chromatography (GC) and for petroleum residues (expressed as crude oil equivalents) by fluorescence spectrometry. Cleanup by column chromatography and saponification was necessary to reduce the background from extraneous fluorescing materials. Oil concentrations determined by FS ranged from 0·5-25 μg l -1 in Charleston Harbor and <0·23-9·6 μg l -1 in Winyah Bay. Hydrocarbons determined by GC were significantly correlated ( P < 0·01) with crude oil equivalents determined by FS, but the data showed considerable scatter as indicated by r2 = 0·45. Polycyclic aromatic hydrocarbons were determined by gas chromatography—mass spectrometry for one set of Winyah Bay samples. The sum of nonalkylated polycyclic aromatic hydrocarbons having ≥ 3 rings ranged from 7-64 ng l -1 at different stations. Perylene, possibly originating from sediment dredging, was one of the more abundant polycyclic aromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Pogorzelec, Marta; Piekarska, Katarzyna
2017-11-01
The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.
Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun
2014-07-15
Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
NASA Astrophysics Data System (ADS)
Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel
2018-04-01
Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.
Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...
Wang, Huiyong; Campiglia, Andres D
2008-11-01
A novel alternative is presented for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAH) from water samples. The new approachwhich we have named solid-phase nanoextraction (SPNE)takes advantage of the strong affinity that exists between PAH and gold nanoparticles. Carefully optimization of experimental parameters has led to a high-performance liquid chromatography method with excellent analytical figures of merit. Its most striking feature correlates to the small volume of water sample (500 microL) for complete PAH analyses. The limits of detection ranged from 0.9 (anthracene) to 58 ng.L (-1) (fluorene). The relative standard deviations at medium calibration concentrations vary from 3.2 (acenaphthene) to 9.1% (naphthalene). The analytical recoveries from tap water samples of the six regulated PAH varied from 83.3 +/- 2.4 (benzo[ k]fluoranthene) to 95.7 +/- 4.1% (benzo[ g,h,i]perylene). The entire extraction procedure consumes less than 100 microL of organic solvents per sample, which makes it environmentally friendly. The small volume of extracting solution makes SPNE a relatively inexpensive extraction approach.
Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles
NASA Technical Reports Server (NTRS)
Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.
1993-01-01
We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.
Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.
Ewa, Błaszczyk; Danuta, Mielżyńska-Švach
2017-08-01
Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.
Raters, Marion; Matissek, Reinhard
2014-11-05
As a consequence of the PAH4 (sum of four different polycyclic aromatic hydrocarbons, named benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) maximum levels permitted in cocoa beans and derived products as of 2013, an high-performance liquid chromatography with fluorescence detection method (HPLC-FD) was developed and adapted to the complex cocoa butter matrix to enable a simultaneous determination of PAH4. The resulting analysis method was subsequently successfully validated. This method meets the requirements of Regulation (EU) No. 836/2011 regarding analysis methods criteria for determining PAH4 and is hence most suitable for monitoring the observance of the maximum levels applicable under Regulation (EU) No. 835/2011. Within the scope of this work, a total of 218 samples of raw cocoa, cocoa masses, and cocoa butter from several sample years (1999-2012), of various origins and treatments, as well as cocoa and chocolate products were analyzed for the occurrence of PAH4. In summary, it is noted that the current PAH contamination level of cocoa products can be deemed very slight overall.
Sol-gel coated ion sources for liquid chromatography-direct electron ionization mass spectrometry.
Riboni, Nicolò; Magrini, Laura; Bianchi, Federica; Careri, Maria; Cappiello, Achille
2017-07-25
Advances in interfacing liquid chromatography and electron ionization mass spectrometry are presented. New ion source coatings synthesized by sol-gel technology were developed and tested as vaporization surfaces in terms of peak intensity, peak width and peak delay for the liquid chromatography-direct electron ionization mass spectrometry (Direct-EI) determination of environmental pollutants like polycyclic aromatic hydrocarbons and steroids. Silica-, titania-, and zirconia-based coatings were sprayed inside the stainless steel ion source and characterized in terms of thermal stability, film thickness and morphology. Negligible weight losses until 350-400 °C were observed for all the materials, with coating thicknesses in the 6 (±1)-11 (±2) μm range for optimal ionization process. The best performances in terms of both peak intensity and peak width were obtained by using the silica-based coating: the detection of the investigated compounds was feasible at low ng μl -1 levels with a good precision (RSD < 9% for polycyclic aromatic hydrocarbons and <11% for hormones). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2015-07-01
The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.
Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad
2014-12-29
A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.
Lebo, Jon A.; Zajicek, James L.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.
1992-01-01
A method is given for the recovery, cleanup, and analysis of polycyclic aromatic hydrocarbons (PAHs) that have been sequestered in SPMDs (semipermeable membrane devices). SPMDs are polymeric membranes enclosing lipids, and mimic the bioconcentration process of aquatic animals. SPMDs are used as passive, in situ monitors of contamination by organic pollutants of aquatic environments. The method reported here includes dialytic recovery of the PAHs, cleanup of the dialysates using size exclusion, adsorption, and argentation chromatographic modules in tandem, then analysis by gas chromatography with photoionization or mass spectrometric detection. The method is demonstrated to overcome the presence of a variety of environmental co-contaminants and other potential interferents in the dialysates. A field application is also demonstrated in which SPMDs are used to monitor PAH contamination in an urban creek. Approaches to the use of SPMD data to calculate aqueous concentrations of PAHs are discussed. The use of SPMDs in combination with the complementary, PAH-specific cleanup procedure provides a unique approach to the analysis of PAH residues in the aquatic environment.
Silva, Simone Alves da; Sampaio, Geni Rodrigues; Torres, Elizabeth Aparecida Ferraz da Silva
2017-04-15
Among the different food categories, the oils and fats are important sources of exposure to polycyclic aromatic hydrocarbons (PAHs), a group of organic chemical contaminants. The use of a validated method is essential to obtain reliable analytical results since the legislation establishes maximum limits in different foods. The objective of this study was to optimize and validate a method for the quantification of four PAHs [benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene] in vegetable oils. The samples were submitted to liquid-liquid extraction, followed by solid-phase extraction, and analyzed by ultra-high performance liquid chromatography. Under the optimized conditions, the validation parameters were evaluated according to the INMETRO Guidelines: linearity (r2 >0.99), selectivity (no matrix interference), limits of detection (0.08-0.30μgkg -1 ) and quantification (0.25-1.00μgkg -1 ), recovery (80.13-100.04%), repeatability and intermediate precision (<10% RSD). The method was found to be adequate for routine analysis of PAHs in the vegetable oils evaluated. Copyright © 2016. Published by Elsevier Ltd.
De La Torre-Roche, Roberto J.; Lee, Wen-Yee; Campos-Díaz, Sandra I.
2009-01-01
Ultrasonic extraction followed by Stir Bar Sorptive Extraction (SBSE) and thermal desorption inline coupled with Gas Chromatography and Mass Spectrometry (TD/GC/MS)was used to perform a comprehensive determination of soil-borne polycyclic aromatic hydrocarbons (PAHs) in El Paso, Texas. The method provided good sensitivity and faster processing time for the analysis. The total PAHs in El Paso soil ranged from 0.1 to 2225.5 µg kg−1. Although the majority of PAH concentrations did not exceed the soil screening levels regulated by the United States Environmental Protection Agency, the existence of PAHs in this ecosystem is ubiquitous. Naphthalene were found in 100% of the soil samples; while the heavy PAHs (five- and six-ring) were not often detected and mostly remained in closer proximity to industrial areas and major traffic points. The results ruled out the possibility of petroleum refining as the significant source of local soil-borne PAH contamination, but they suggested that the PAHs found in El Paso soil were closely linked to human activities and possible other industrial processes. PMID:18768257
A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China.
Liu, Guoqing; Tong, Yongpeng; Luong, John H T; Zhang, Hong; Sun, Huibin
2010-04-01
Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m( - 3), respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.
Fowler, Patrick W.; Gibson, Christopher M.; Bean, David E.
2014-01-01
Alternating partial hydrogenation of the interior region of a polycyclic aromatic hydrocarbon gives a finite model system representing systems on the pathway from graphene to the graphane modification of the graphene sheet. Calculations at the DFT and coupled Hartree–Fock levels confirm that sp2 cycles of bare carbon centres isolated by selective hydrogenation retain the essentially planar geometry and electron delocalization of the annulene that they mimic. Delocalization is diagnosed by the presence of ring currents, as detected by ipsocentric calculation and visualization of the current density induced in the π system by a perpendicular external magnetic field. These induced ‘ring’ currents have essentially the same sense, strength and orbital origin as in the free hydrocarbon. Subjected to the important experimental proviso of the need for atomic-scale control of hydrogenation, this finding predicts the possibility of writing single, multiple and concentric diatropic and/or paratropic ring currents on the graphene/graphane sheet. The implication is that pathways for free flow of ballistic current can be modelled in the same way. PMID:24611026
Schubert, Patricia; Schantz, Michele M; Sander, Lane C; Wise, Stephen A
2003-01-15
An analytical approach based on gas chromatography/ mass spectrometry (GC/MS) is presented for the measurement of polycyclic aromatic hydrocarbons with molecular weight (MW) 300 and 302 in environmental samples. Three different GC stationary phases [5% and 50% phenyl methylpolysiloxane and dimethyl (50% liquid crystalline) polysiloxane] were compared, and retention indexes (RI) are given for 23 individual MW 302 isomers. Identification of MW 300 and 302 isomers in four environmental-matrix Standard Reference Materials (SRMs) (SRM 1597, coal tar extract; SRM 1648 and SRM 1649a, air particulate matter; and SRM 1941, marine sediment) was based on the comparison of RI data and mass spectra from authentic standards. Dibenzo[a,l]pyrene, which is of considerable interest because of its high carcinogenicity, was identified and quantified in the four environmental-matrix SRMs. A total of 23 isomers of MW 302 and four isomers of MW 300 were quantified in four different environmental-matrix SRMs, and the results are compared to previously reported results based on liquid chromatography with fluorescence detection.
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare
We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproducemore » the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.« less
Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.
2003-01-01
In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000. The concentrations of organochlorine pesticides were low relative to consensus-based sediment-quality guidelines and either decreased or remained constant since 1970. The two likely sources of hydrophobic contaminants to the lake are urban areas around the lake and the drainage area of Meandering Road Creek that contributes runoff to Woods Inlet and includes Air Force facilities.
Accumulation of polycyclic aromatic hydrocarbons by Neocalanus copepods in Port Valdez, Alaska.
Carls, Mark G; Short, Jeffrey W; Payne, James
2006-11-01
Sampling zooplankton is a useful strategy for observing trace hydrocarbon concentrations in water because samples represent an integrated average over a considerable effective sampling volume and are more representative of the sampled environment than discretely collected water samples. We demonstrate this method in Port Valdez, Alaska, an approximately 100 km(2) basin that receives about 0.5-2.4 kg of polynuclear aromatic hydrocarbons (PAH) per day. Total PAH (TPAH) concentrations (0.61-1.31 microg/g dry weight), composition, and spatial distributions in a lipid-rich copepod, Neocalanus were consistent with the discharge as the source of contamination. Although Neocalanus acquire PAH from water or suspended particulate matter, total PAH concentrations in these compartments were at or below method detection limits, demonstrating plankton can amplify trace concentrations to detectable levels useful for study.
Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.
Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier
2004-03-19
Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.
Microwave-assisted extraction of polycyclic aromatic compounds from coal.
Kerst, M; Andersson, J T
2001-08-01
Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.
Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.
Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun
2018-05-03
Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.
Leys, Natalie M. E. J.; Ryngaert, Annemie; Bastiaens, Leen; Verstraete, Willy; Top, Eva M.; Springael, Dirk
2004-01-01
Bacterial strains of the genus Sphingomonas are often isolated from contaminated soils for their ability to use polycyclic aromatic hydrocarbons (PAH) as the sole source of carbon and energy. The direct detection of Sphingomonas strains in contaminated soils, either indigenous or inoculated, is, as such, of interest for bioremediation purposes. In this study, a culture-independent PCR-based detection method using specific primers targeting the Sphingomonas 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) was developed to assess Sphingomonas diversity in PAH-contaminated soils. PCR using the new primer pair on a set of template DNAs of different bacterial genera showed that the method was selective for bacteria belonging to the family Sphingomonadaceae. Single-band DGGE profiles were obtained for most Sphingomonas strains tested. Strains belonging to the same species had identical DGGE fingerprints, and in most cases, these fingerprints were typical for one species. Inoculated strains could be detected at a cell concentration of 104 CFU g of soil−1. The analysis of Sphingomonas population structures of several PAH-contaminated soils by the new PCR-DGGE method revealed that soils containing the highest phenanthrene concentrations showed the lowest Sphingomonas diversity. Sequence analysis of cloned PCR products amplified from soil DNA revealed new 16S rRNA gene Sphingomonas sequences significantly different from sequences from known cultivated isolates (i.e., sequences from environmental clones grouped phylogenetically with other environmental clone sequences available on the web and that possibly originated from several potential new species). In conclusion, the newly designed Sphingomonas-specific PCR-DGGE detection technique successfully analyzed the Sphingomonas communities from polluted soils at the species level and revealed different Sphingomonas members not previously detected by culture-dependent detection techniques. PMID:15066784
Burkhardt, M.R.; Zaugg, S.D.; Burbank, T.L.; Olson, M.C.; Iverson, J.L.
2005-01-01
Polycyclic aromatic hydrocarbons (PAH) are recognized as environmentally relevant for their potential adverse effects on human and ecosystem health. This paper describes a method to determine the distribution of PAH and alkylated homolog groups in sediment samples. Pressurized liquid extraction (PLE), coupled with solid-phase extraction (SPE) cleanup, was developed to decrease sample preparation time, to reduce solvent consumption, and to minimize background interferences for full-scan GC-MS analysis. Recoveries from spiked Ottawa sand, environmental stream sediment, and commercially available topsoil, fortified at 1.5-15 ??g per compound, averaged 94.6 ?? 7.8%, 90.7 ?? 5.8% and 92.8 ?? 12.8%, respectively. Initial method detection limits for single-component compounds ranged from 20 to 302 ??g/kg, based on 25 g samples. Results from 28 environmental sediment samples, excluding homologs, show 35 of 41 compounds (85.4%) were detected in at least one sample with concentrations ranging from 20 to 100,000 ??g/kg. The most frequently detected compound, 2,6-dimethylnaphthalene, was detected in 23 of the 28 (82%) environmental samples with a concentration ranging from 15 to 907 ??g/kg. The results from the 28 environmental sediment samples for the homolog series showed that 27 of 28 (96%) samples had at least one homolog series present at concentrations ranging from 20 to 89,000 ??g/kg. The most frequently detected homolog series, C2-alkylated naphthalene, was detected in 26 of the 28 (93%) environmental samples with a concentration ranging from 25 to 3900 ??g/kg. Results for a standard reference material using dichloromethane Soxhlet-based extraction also are compared. ?? 2005 Elsevier B.V. All rights reserved.
Cho, Sung-Hee; Lee, Sun-Kyung; Kim, Chong Hyeak
2018-05-01
Polycyclic aromatic hydrocarbons (PAHs), organic compounds formed by at least two condensed aromatic rings, are ubiquitous environmental pollutants that are produced by incomplete combustion of organic materials. PAHs have been classified as carcinogenIC to humans by the International Agency for Research on Cancer, because they can bind to DNA, causing mutations. Therefore, the levels of PAHs in human urine can be used as an indicator for potential carcinogenesis and cell mutation. An analytical method was developed for the accurate measurement of PAHs in urine using high-resolution gas chromatography-mass spectrometry. Urine samples were extracted by an Oasis HLB extraction cartridge after enzymatic hydrolysis with a β-glucuronidase/arylsulfatase cocktail. The 18 PAHs were separated using an Agilent DB-5 MS capillary column (30 m × 0.25 mm, 0.25 μm) and monitored by time-of-flight mass spectrometry. Under the optimized method, the linearity of calibration curves was >0.994. The limits of detection at a signal-to-noise ratio of 3 were 10-100 ng/L. The coefficients of variation were in the range of 0.4-9.0%. The present method was highly accurate for simultaneous determination of 18 PAHs in human urine and could be applied to monitoring and biomedical investigations to check exposure of PAHs. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk
2015-02-15
Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less
Carratalá, A; Moreno-González, R; León, V M
2017-01-01
The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m -3 ) and chlorpyrifos (4900 pg m -3 ). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mach, Phillip M; Wright, Kenneth C; Verbeck, Guido F
2015-02-01
Membrane Inlet Mass Spectrometry (MIMS) is a technique that incorporates a semi-permeable membrane selective for differing organic molecules and chemistries. This eliminates the need for time-consuming sample preparation and facilitates near instantaneous analysis. This study will examine how the front end of MIMS incorporates three dual inlet ports, allowing for differing MIMS materials and selectivity for specific environments. Polydimethylsiloxane (PDMS) membranes have proven to be selective of benzene, toluene, and xylene (BTX) as well as aromatic hydrocarbons that are common in petroleum products while remaining selective against the aliphatic chains. PDMS has proven to be a successful choice of membrane with high permeability in atmospheric environments. In addition, polycyclic aromatic hydrocarbons (PAHs) such as acenaphthene, acenapthylene, naphthalene, and fluorene have recently been detected to the 5 ppb level in a nitrogen atmosphere with our current configuration. This preliminary work provides proof of concept using near-infrared laser diodes that act upon the membrane to increase its permeability and provide higher sensitivity of aromatic samples.
Formation of highly oxygenated organic molecules from aromatic compounds
NASA Astrophysics Data System (ADS)
Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs
2018-02-01
Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)
2002-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.
NASA Astrophysics Data System (ADS)
Yan, Xia; Shi, Xiaofeng; Yang, Jie; Zhang, Xu; Jia, Wenjie; Ma, Jun
2017-10-01
A self-assembled surface enhanced Raman scattering (SERS) sensor is reported in this paper. To achieve high sensitivity, a high sensitive SERS substrate and a high efficient self-constructed light path were made. The SERS substrate was composed by gold nanoparticles (AuNPs, pH=13), glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material and syringe filter. The substrate had a good repeatability, and the relative standard deviation (RSD) of the same substrate was less than 5%. The efficiency of the self-constructed light path is about two times better than RPB Y type reflection fiber when the energy density was roughly equal on samples. The size of the SERS sensor is 350×300×180 mm and the weight is 15 kg. Its miniaturization and portable can comply with the requirements of field detection. Besides, it has good sensitivity, stability and selectivity. For lab experiments, strong enhancements of Raman scattering from organic pollutant polycyclic aromatic hydrocarbons (PAHs) molecules were exhibited. The dependences of SERS intensities on concentrations of PAHs were investigated, and the results indicated that they revealed a satisfactory linear relationship in low concentrations. The limits of detection (LODs) of PAHs phenanthrene and fluorene are 8.3×10-10 mol/L and 7.1×10-10 mol/L respectively [signal to noise ratio (S/N) =3]. Based on this SERS sensor, signals of benzo (a) pyrene and pyrene were found in environmental water and the sensor would be an ideal candidate for field detection of PAHs.
Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina
2015-01-01
A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.
Forsey, Steven P; Thomson, Neil R; Barker, James F
2010-04-01
The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene
Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred
2018-03-26
Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.
Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František
2000-01-01
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.
2004-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.
Abstract:
Benzo[a]pyrene (B[a]P) has been the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region diols of PAHs are common metabolic inter...
Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin
2014-02-01
A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2016-03-01
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. A three-dimensional porous coating was formed with carbon nanoparticles. In combination with high-performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor-by-factor optimization method. The established method exhibited good linearity (0.01-10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2-106% and 93.4-108%, respectively. The results indicated that the carbon nanoparticle-coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miège, C; Dugay, J; Hennion, M C
2003-05-02
There is a need for a better characterization of sludges from wastewater treatment plants which are destined to be spread on agricultural lands. Inorganic pollutants are regularly controlled but organic pollutants have received few attention up to now. On this paper, we have been interested on the analysis of the 16 polycyclic aromatic hydrocarbons (PAHs) listed in the US Environmental Protection Agency (US EPA) priority list and more particularly of the six PAHs listed in the European community list (fluoranthene, benzo[b and k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene). The analysis step consists on liquid chromatography with both fluorescence and UV detections as described in the EPA Method 8310. As for the extraction step, several techniques such as supercritical fluid extraction, pressurized liquid extraction, focused microwave extraction in open vessels, Soxhlet and ultrasonic extractions are compared after optimization of the experimental conditions (solvent nature and quantity, temperature, pressure, duration, ... ) and validation with certified sludges. When optimized, these five extraction techniques are as much efficient with similar relative standard deviation. Whatever the extraction techniques used, the whole analysis protocol permits to quantify PAHs in the range of 0.09 to 0.9 mg/kg of dried sludges.
Li, Ning; Wu, Di; Hu, Na; Fan, Guangsen; Li, Xiuting; Sun, Jing; Chen, Xuefeng; Suo, Yourui; Li, Guoliang; Wu, Yongning
2018-04-04
The present study reported a facile, sensitive, and efficient method for enrichment and determination of trace polycyclic aromatic hydrocarbons (PAHs) in food samples by employing new core-shell nanostructure magnetic covalent organic framework hybrid microspheres (Fe 3 O 4 @COF-(TpBD)) as the sorbent followed by HPLC-DAD. Under mild synthetic conditions, the Fe 3 O 4 @COF-(TpBD) were prepared with the retention of colloidal nanosize, larger specific surface area, higher porosity, uniform morphology, and supermagnetism. The as-prepared materials showed an excellent adsorption ability for PAHs, and the enrichment efficiency of the Fe 3 O 4 @COF-(TpBD) could reach 99.95%. The obtained materials also had fast adsorption kinetics and realized adsorption equilibrium within 12 min. The eluent was further analyzed by HPLC-DAD, and good linearity was observed in the range of 1-100 ng/mL with the linear correlation being above 0.9990. The limits of detection (S/N = 3) and limits of quantitation (S/N = 10) for 15 PAHs were in the range of 0.83-11.7 ng/L and 2.76-39.0 ng/L, respectively. For the application, the obtained materials were employed for the enrichment of trace PAHs in food samples and exhibited superior enrichment capacity and excellent applicability.
Gomes, Newton C. Marcial; Borges, Ludmila R.; Paranhos, Rodolfo; Pinto, Fernando N.; Krögerrecklenfort, Ellen; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia
2007-01-01
Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves. PMID:17905873
Liu, Jing L; Zhang, Jing; Liu, Feng; Zhang, Lu L
2014-05-01
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic and mutagenic characteristics have been detected in many estuaries and bays around the world. To detect the contaminated level in typical estuaries in Haihe river basin, China, a comprehensive survey of 16 PAHs in surface sediment has been conducted and an ecological risk assessment has been taken. It showed that Haihe river estuary had the highest concentration, ranging from 92.91 to 15886.00 ng g(-1). And Luan river estuary has the lowest polluted level, ranging from 39.55 to 328.10 ng g(-1). PAHs in sediment were dominated by low and mid molecular weight PAHs in all the sampling sites. Most of the sampling sites in all sampling seasons indicated a rarely happened ecological risk of ΣPAHs, while the S6 in Haihe river estuary was in an occasionally anticipated risk. To illustrate the spatial distribution pattern of PAHs in surface sediment in Haihe river basin, the results were compared with previous research of the research team. Based on data of the comparison, it had been revealed that Haihe river had the most serious PAHs pollution, with an average concentration of 5884.86 ng g(-1), and showed the highest contamination level in all four ecological units. The ΣPAHs concentration showed in a rank of reservoir > estuary > rural area > city.
Ekere, Nwachukwu; Yakubu, Newman; Ihedioha, Janefrances
2017-08-01
The concentrations of six heavy metals (HMs) and 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples of the confluence of rivers Niger and Benue were investigated. The ecological risk assessment of the contaminants was carried out. The results showed that the sediment samples were heavily polluted with iron and moderately polluted with Cd while other metals posed no pollution problem when compared with USEPA sediment quality guidelines. Only six out of the 16 priority PAHs were detected in the samples, and source apportionment of the PAHs indicated that they are of pyrogenic origin. The ∑PAHs in the samples were lower than many of similar studies and were of no pollution risk. The ecological risk assessment result of the heavy metals showed that the sediments were of considerable risk due majorly to Cd levels. The HM concentration results statistically showed significant difference between seasons at probability value (P < .05). Data analysis by PCA classified the metals into three different components according to sources. The levels of HMS and PAHs detected in the sediments were correlated for source identification, and the correlation showed that the majority of the pollutants were mainly from anthropogenic sources. There is increasing level of anthropogenic activities at the vicinity of the confluence due to urbanization which may call for periodic monitoring of the sediment quality.
A search for polycyclic aromatic hydrocarbons over the Martian South Polar Residual Cap
NASA Astrophysics Data System (ADS)
Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.
2018-07-01
We present our research on compositional mapping of the Martian South Polar Residual Cap (SPRC), especially the detection of organic signatures within the dust content of the ice, based on hyperspectral data analysis. The SPRC is the main region of interest for this investigation, because of the unique CO2 ice sublimation features that cover the surface. These flat floored, circular depressions are highly dynamic, and we infer frequently expose dust particles previously trapped within the ice during the wintertime. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions assumed to be composed mainly of dust particles to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to look for signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 ice. Whilst no conclusive evidence for PAHs has been found within the detectability limits of the CRISM instrument, depression rims are shown to have higher water content than regions of featureless ice, and there are possible indications of magnesium carbonate within the dark, dusty regions.
Alarcón, Francis; Báez, María E; Bravo, Manuel; Richter, Pablo; Escandar, Graciela M; Olivieri, Alejandro C; Fuentes, Edwar
2013-01-15
The possibility of simultaneously determining seven concerned heavy polycyclic aromatic hydrocarbons (PAHs) of the US-EPA priority pollutant list, in extra virgin olive and sunflower oils was examined using unfolded partial least-squares with residual bilinearization (U-PLS/RBL) and parallel factor analysis (PARAFAC). Both of these methods were applied to fluorescence excitation emission matrices. The compounds studied were benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]-pyrene. The analysis was performed using fluorescence spectroscopy after a microwave assisted liquid-liquid extraction and solid-phase extraction on silica. The U-PLS/RBL algorithm exhibited the best performance for resolving the heavy PAH mixture in the presence of both the highly complex oil matrix and other unpredicted PAHs of the US-EPA list. The obtained limit of detection for the proposed method ranged from 0.07 to 2 μg kg(-1). The predicted U-PLS/RBL concentrations were satisfactorily compared with those obtained using high-performance liquid chromatography with fluorescence detection. A simple analysis with a considerable reduction in time and solvent consumption in comparison with chromatography are the principal advantages of the proposed method. Copyright © 2012 Elsevier B.V. All rights reserved.
Miles, A.K.; Roster, N.
1999-01-01
Accumulation of polycyclic aromatic hydrocarbons (PAHs) was determined in blue mussels (Mytilus spp.) and shore crabs (Hemigrapsus sp.) at a recently closed military fuel depot in central San Francisco Bay, California. In April 1996, during a period of above average precipitation, specimens were collected at the depot, near the depot, and at sites 10 and 20 km south of the depot. Four weeks after the rains ended, blue mussels were again collected at the depot, and at two additional sites in the central Bay region. In April, total PAHs in mussels from the depot were significantly higher only than that in mussels collected 20 km from the depot; however, seven specific, substituted PAHs were higher at the depot than at all other sites. In June, only two of the 38 PAHs common in mussels in April were detected at the depot; these concentrations were comparable to ambient concentrations in mussels at the Bay. It seemed that bioavailability of PAHs at the depot was enhanced by rainfall, probably due to the mobilization of PAHs via groundwater into the Bay. Concentrations in mussels from chronically contaminated sites were about five times higher than mussels collected from the depot. Low PAH concentrations were detected in shore crabs near the depot, and the highest levels were not associated with the depot. Observed PAH concentrations are discussed in relation to upper trophic organisms.
Siddiqi, Hina A; Ansari, Fayyaz A; Munshi, Alia B
2009-01-01
On 27 July 2003, Tasman Spirit spilled 31,000 tonnes of crude oil into the sea at the Karachi coast. This disaster badly affected the marine life (Flora and Fauna.) Present research has been proposed to ascertain the level of Polycyclic Aromatic hydrocarbons (PAHs) contamination in different fisheries including Fishes, Crustaceans; Crabs and Shrimps, Mollusks and Echinoderms along with passing time. Heavier components of crude oil such as Polycyclic Aromatic Hydrocarbons (PAHs) appear to cause most damages as these are relatively unreactive and persist in water. High concentrations of toxic PAHs were observed in all the fisheries and shellfishes caught form oil-impacted area. In this study fishes were found most contaminated than shellfishes i.e. summation operator 16 PAH = 1821.24 microg/g and summation operator 1164.34 microg/g, respectively. Naphthalene was found in the range of 0.042-602.23 microg/g. Acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene were detected in the range 0.008-80.03 microg/g, fluoranthene, pyrene, benzo(a)anthracene and chrysene 0.0008-221.32 microg/g, benzo(b) fluoranthene, benzo(k)fluoranthene and benzo(a) pyrene 0.0005-7.71 microg/g, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene 0.02-503.7 microg/g. Dibenzo(a,h)anthracenre was not detected in any specie.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.C.; Gallagher, J.E.; Lewtas, J.
The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less
Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T
2012-01-01
To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-24
The ALCOA (Point Comfort)/Lavaco Bay National Priorities List (NPL) site is in Calhoun County, Texas, approximately 1.5 miles south of Point Comfort and four miles northeast of Port Lavaca. Fish sampling data indicate that levels of mercury in fish are elevated. Mercury has been detected throughout the site in surface soil, shallow groundwater, air, bay sediments, fish and crabs. Other contaminants, including volatile organic compounds (VOCs) and lead, have been detected in shallow groundwater. Polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have been detected in a limited number of sediment, fish, and oyster samples.
Moreno-Paz, Mercedes; Gómez-Cifuentes, Ana; Ruiz-Bermejo, Marta; Hofstetter, Oliver; Maquieira, Ángel; Manchado, Juan M; Morais, Sergi; Sephton, Mark A; Niessner, Reinhard; Knopp, Dietmar; Parro, Victor
2018-04-11
Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth. Key Words: Planetary exploration-Molecular biomarkers-D- and L- aromatic amino acids-Life detection-Multiplex inhibitory/competitive immunoassay-Kerogen type IV. Astrobiology 18, xxx-xxx.
Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.
Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo
2017-03-01
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, S.; Li, K.; Xia, X.J.
2009-02-15
This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the Nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites.
Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L
2002-04-01
The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.
NASA Technical Reports Server (NTRS)
Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.
2003-01-01
Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.
Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M
1999-03-01
Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.
Polycyclic aromatic hydrocarbons in stellar medium
NASA Astrophysics Data System (ADS)
Rastogi, Shantanu
2005-06-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.
Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan
2015-12-01
Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of dehydrogenases was dependent on a greater extent by the type of hydrocarbon (54.56%) rather than by the dose (10.64%), while for the activity of urease, it was the opposite. The greater extent was dependent on dose (95.42%) rather than by type (0.21%). Dehydrogenases are characterised by greater resistance to the action of PAHs than urease. Based on seed germination and root growth, it has shown that S. alba is best suited, being the most vulnerable plant, while S. saccharatum is the least suited. Subjecting a soil to strong pressure of PAHs leads to disturbances to the biological parameters of the soil, seed germination, and root growth L. sativum, S. saccharatum, and S. alba.
Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...
Limited data exist on exposures of young children to polycyclic aromatic hydrocarbons (PAHs) in the United States (US). The urinary metabolite of pyrene, 1-hydroxypyrene (1-OHPyr), is widely used as a biomarker of total PAH exposure. Our objectives were to quantify urinary 1-OHPy...
NASA Astrophysics Data System (ADS)
Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian
2017-11-01
A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.
Mutagenicity of aerosols from the oxidative thermal decomposition of rigid polyurethane foam.
Zitting, A; Falck, K; Skyttä, E
1980-01-01
The aerosol fraction of the oxidative thermal decomposition products (700 degrees C) of rigid polyurethane foam was collected on glass fiber filters and fractionated into either-soluble neutral, acidic, and basic fractions and water-soluble compounds. The fractions showed mutagenic activity in a bacterial fluctuation test with Salmonella typhimurium TA98 or Escherichia coli CM891 as the tester strains. All the fractions induced mutations in both strains after metabolic activation with rat liver S-9 mix. The basic and the water-soluble fractions were mutagenic for S. typhimurium TA 98 even without activation. Thin-layer chromatography showed the presence of several primary aromatic amines in the aerosol. Polycyclic aromatic hydrocarbons were not detected by glass capillary gas chromatogaphy.
Side Group Addition to the PAH Coronene by UV Photolysis in Cosmic Ice Analogs
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Elsila, Jamie E.; Dworkin, Jason P.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Ultraviolet photolysis of various ice mixtures at low temperature and pressure caused the addition of amino (-NH2), methyl (-CH3), methoxy (-OCH3), and cyano (-CN) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C22H12). The implications of these results for interstellar and meteoritic chemistry are discussed. Previously only simple PAH photo-oxidation had been reported. This work represents the first experimental evidence that ice photochemistry may have contributed to aromatics bearing carbon and nitrogen containing side groups that are detected in primitive meteorites and interplanetary dust particles. Furthermore, these results suggest a wider range of modified PAHs should be expected in interstellar lees and materials predating solar system formation.
Cai, Ying; Yan, Zhihong; NguyenVan, Manh; Wang, Lijia; Cai, Qingyun
2015-08-07
Fluorenyl functionalized superparamagnetic core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@Flu) were prepared and characterized by transmission electron microscope, X-ray diffraction and infrared spectroscopy. The MNPs having an average diameter of 200nm were then used as solid-phase extraction sorbent for the determination of 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in water samples designated by United States Environmental Protection Agency (U.S. EPA). The main influencing parameters, including sorbent amount, desorption solvent, sample volume and extraction time were optimized. Analyses were performed on gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) mode. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels. Limit of detection ranging from 0.5 to 4.0ng/L were obtained. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 13.1%. Finally, the proposed method was successfully applied for the determination of PAHs in water samples with the recoveries in the range of 96.0-106.7%. Copyright © 2015 Elsevier B.V. All rights reserved.
Polycyclic aromatic hydrocarbons in frying oils and snacks.
Purcaro, Giorgia; Navas, José A; Guardiola, Francesc; Conte, Lanfranco S; Moret, Sabrina
2006-01-01
The high incidence of lung cancer observed among Chinese women has been associated with exposure to fumes from cooking oil. Polycyclic aromatic hydrocarbons (PAHs) are a class of potentially mutagenic substances emitted from cooking oils heated at high temperatures. The objective of this study was to investigate whether deep frying with different oils under different conditions leads to the development of PAHs either in the oil or in the fried product (snacks). PAH analysis was carried out with solid-phase extraction followed by reverse-phase high-performance liquid chromatography and spectrofluorometric detection. Different oils were used to fry chips and extruded snacks in different industrial plants (continuous frying) at temperatures between 170 and 205 degrees C, and peanut oil was used to fry French fries and fish (discontinuous frying) at temperatures between 160 and 185 degrees C. No appreciable differences in PAH load was observed in the same oil before and after frying. Both before and after frying, the benzo[a]pyrene concentration in oils ranged from trace to 0.7 ppb. All the analyzed samples, including oils from fried snacks, had benzo[a]pyrene concentrations well below the 2 ppb limit recently proposed by the European Community.
Ionization of Polycyclic Aromatic Hydrocarbon Molecules around the Herbig Ae/be ENVIRONMENT*
NASA Astrophysics Data System (ADS)
Sakon, Itsuki; Onaka, Takashi; Okamoto, Yoshiko K.; Kataza, Hirokazu; Kaneda, Hidehiro; Honda, Mitsuhiko
We present the results of mid-infrared N-band spectroscopy of the Herbig Ae/Be system MWC1080 using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on board the 8 m Subaru Telescope. The MWC1080 has a geometry such that the diffuse nebulous structures surround the central Herbig B0 type star. We focus on the properties of polycyclic aromatic hydrocarbons (PAHs) and PAH-like species, which are thought to be the carriers of the unidentified infrared (UIR) bands in such environments. A series of UIR bands at 8.6, 11.0, 11.2, and 12.7 μm is detected throughout the system and we find a clear increase in the UIR 11.0 μm/11.2 μm ratio in the vicinity of the central star. Since the UIR 11.0 μm feature is attributed to a solo-CH out-of-plane wagging mode of cationic PAHs while the UIR 11.2 μm feature to a solo-CH out-of-plane bending mode of neutral PAHs, the large 11.0 μm/11.2 μm ratio directly indicates a promotion of the ionization of PAHs near the central star.
Polycyclic aromatic hydrocarbons in Bangladeshi vegetables and fruits.
Hossain, M Amzad; Hoque, Mohammad Zahirul
2011-01-01
Polycyclic aromatic hydrocarbons (PAHs) occur as contaminants in different types of food predominantly from environmental pollution, food packaging and food processing and the levels found depend on the source of the contamination. PAHs emissions from automobile traffic and industry activities were shown to influence the PAHs levels and profiles in vegetables and fruits grown nearby. The present study was carried out to determine the levels of PAHs in samples of tomato, cabbage and apple, collected from six different places of urban and rural areas of plantation in Dhaka city. Eight PAHs listed in the priority pollutant of US Environment Protection Agency and regarded as carcinogens were analyzed in this study. The analytical method involved saponification with methanolic KOH, liquid-liquid extraction with cyclohexane, clean-up on silica gel column and determination by Gas chromatography and mass spectrometry. The mean levels of total PAHs were 9.50 μg/kg in tomato, 8.86 μg/kg in cabbage and 4.05 μg/kg in apple. Of the carcinogenic PAHs, benzo(a)anthracene was the most representative, being found in 89% of all samples analysed. Chrysene was not detected in any sample. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ofomatah, Anthony C; Okoye, Chukwuma O B
2017-11-09
Polycyclic aromatic hydrocarbon (PAH) concentrations in Nnewi and its environs were determined. Soil samples were extracted by sonication using hexane:dichloromethane (3:1) mixture and determined by gas chromatography-flame ionization detection. The total PAHs concentrations (μg/kg) were 16.681 to 46.815, being three orders of magnitude lower than the maximum permissible level recommended by the Agency for Toxic Substances and Disease Registry (ATSDR). These concentrations followed this order: industrial ˃ farmlands ˃ commercial ˃ residential. Industrialized areas showed higher concentrations (p ˂ 0.05) than the other areas. Diagnostic ratios show that the major source of PAHs was the open burning of industrial and agricultural wastes, as shown by the occurrence of highest concentrations in the industrial areas, followed by agricultural areas. Benzo[a]pyrene equivalent values showed non-pollution and very low toxicity. Nevertheless, it was clear that industrialization has had some impact on the PAHs levels in soils and the total environment in this area and could be problematic with time, except with proper environmental management.
Cai, Ying; Yan, Zhihong; Wang, Lijia; NguyenVan, Manh; Cai, Qingyun
2016-01-15
A magnetic solid phase extraction (MSPE) protocol combining a static headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) method has been developed for extraction, and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in drinking water samples. Magnetic nanoparticles (MNPs) were coated with 3-aminopropyltriethoxysilane and modified by cholesterol chloroformate. Transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were used to characterize the cholesterol-functionalized sorbents, and the main parameters affecting the extraction as well as HS sampling, such as sorbent amount, extraction time, oven temperature and equilibration time have been investigated and established. Combination with HS sampling, the MSPE procedure was simple, fast and environmentally friendly, without need of any organic solvent. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels obtaining the limit of detection (S/N=3) ranging from 0.20 to 7.8 ng/L. Good values for intra and inter-day precision were obtained (RSDs ≤ 9.9%). The proposed method was successfully applied to drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M
2015-08-01
The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rumney, Heather S; Laruelle, Franck; Potter, Kerry; Mellor, Philip K; Law, Robin J
2011-12-01
Concentrations of polycyclic aromatic hydrocarbons were determined in species of commercial fish and lobsters following an oil-spill just off the protected Madagascan coastline. Samples were collected along the coastline within and outside the affected area. Summed PAH concentrations ranged from 1.9 μg kg(-1) to 63 μg kg(-1) wet weight, but with no higher molecular weight PAHs (>202 Da) being detected. All concentrations of benzo[a]pyrene, benz[a]anthracene and dibenz[a,h]anthracene were <0.1 μg kg(-1) wet weight, well within the EU and UK set limits for the protection of human health. Additionally, samples were calculated as the benzo[a]pyrene toxic equivalency quotient (TEQ) and found to be well below the level of concern in relation to health of human consumers. Evaluation of the biota PAH data indicated the origin of PAH was predominantly petrogenic with >80% arising from oil sources. Profile studies indicate a low-level multisource petrogenic contamination probably representing a pre-spill background for the area. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Binghua; Liu, Licai; Han, Li; Yang, Yong
2017-03-01
The surface flow wetland (SFW) system was located on Shunyi district, Beijing. It was built to treat industrial wastewater and domestic sewage, which were looked as its influent. Here sixteen polycyclic aromatic hydrocarbons (PAHs) and six phthalate esters (PAEs) were detected by gas chromatography-mass spectrometry (GC-MS).To determine treatment effect of SFW system, concentrations of targeted compounds in the influent were compared with those in the effluent. Results showed typical compounds of industrial wastewater were naphthalene (NAP), phenanthrene (PHE), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and their concentrations were ranged from 122.6 ng.L-1 to 760.6 ng.L-1. However typical compounds of domestic sewage were NAP, anthracene (ANT), PHE, DBP, diethyl phthalate (DEP), DEHP, and their concentrations were ranged from 280 ng.L-1 to 7998.1 ng.L-1. Typical compounds of effluent were NAP, PHE, DBP, DEHP, and their concentrations changed between 4.2 ng.L-1 and 1430.74 ng.L-1. The removal rate of those compounds were 10% ~ 99%, and nineteen compounds removal rate reached above 70%.Therefore, it can be concluded that SFW system had a strong effect on the removal of these compounds.
NASA Astrophysics Data System (ADS)
Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.
2013-12-01
We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.
Zhang, Di; Cao, Shan-Ping; Sun, Jian-Lin; Zeng, Hui
2014-02-01
188 surface soil samples were collected in Shenzhen of China to determine the occurrence and spatial differentiation of polycyclic aromatic hydrocarbons (PAHs), based on which we studied the correlation between PAHs concentrations and urbanization levels, as well as the PAHs ecological risk. The total concentrations of 28 PAHs (sigma28 PAHs), 16 EPA PAHs (sigma 16 PAHs) and 7 carcinogenic PAHs (sigma7 CarPAHs) ranged from 5 to 7939 ng x g(-1), 2 to 6745 ng x g(-1) and not detected to 3786 ng x g(-1), respectively. 8 kinds of land use types according to sigma16 PAHs average levels in descending order were: transportation lands, commercial lands, industrial lands, agricultural lands, residential lands, urban green space, orchards and woodland. And sigma16 PAHs of construction and non-construction lands samples were mainly derived from combustion of various fossil fuels with contribution of 75.1% and 68.2%, respectively. Significant positive correlation was also found between PAHs concentrations of high molecular weight and urbanization levels. And PAHs pollution in the top soils of Shenzhen was at a low-end level of the world.
Guatemala-Morales, Guadalupe María; Beltrán-Medina, Elisa Alejandra; Murillo-Tovar, Mario Alfonso; Ruiz-Palomino, Priscilla; Corona-González, Rosa Isela; Arriola-Guevara, Enrique
2016-04-15
Polycyclic aromatic hydrocarbons (PAHs) are of significant interest due to their genotoxicity in humans. PAHs quantification in coffee is complex since some of its compounds interfere in the chromatographic analysis, which hinders the reliable determination of the PAHs. Analytical conditions for the ultrasound extraction, purification and quantification of 16 PAHs in roasted coffee were studied. The better extraction efficiency of benzo[a]pyrene (68%) from ground-roasted coffee was achieved with a solvent ratio of Hex:MC (9:1 v/v) and three extraction periods of 20 min, followed by alkaline saponification and purification of the extracts. The detection limits were 0.85-39.32 ng mL(-1), and the quantification limits from 2.84 to 131.05 ng mL(-1), obtained for fluoranthene and chrysene, respectively. The extraction was effective for most of the analytes, with recoveries of 39.8% dibenzo[ah]anthracene and 69.0% benzo[b]fluoranthene. For coffee roasted in a spouted bed reactor, the summation of the 16 PAHs ranged from 3.5 to 16.4 μg kg(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee
2016-03-18
An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Jiang; Yang, Yajing; Zhang, Lugang; Luo, Yushuang; Liu, Fei; Yang, Pinhong
2018-04-01
In this paper, 18 and 12 surface sediment samples were collected from Datong Lake and Shanpo Lake, respectively, and the 16 USEPA priority Polycyclic aromatic hydrocarbons (PAHs) in these samples were detected. The result indicated that the Σ16PAHs ranged from 206.56 to 1058.98 ng.g-1 with an average concentration of 667.22 ng.g-1 in sediments from Datong Lake, whereas it ranged from 90.62 to 900.70 ng.g-1 with an average concentration of 364.97 ng.g-1 in sediments from Shanpo Lake. The concentrations of individual PAHs in sediments ranged from 5.50 to 85.23 and from 4.39 to 52.74 ng.g-1 in Datong Lake and Shanpo Lake, respectively. According to the indexes such as HMW/LMW, Ant/(Ant+Phe), Flua/(Flua+Pyr), IcdP/(IcdP+BghiP), and BaA/(BaA+Chr), the PAHs in sediments from both lakes are mainly of pyrogenic origin. The total BaP equivalent in the surface sediment samples from Datong Lake and Shanpo Lake is 42.77 and 33.35 ng.g-1, respectively.
Adekunle, Abolanle Saheed; Oyekunle, John Adekunle Oyedele; Ojo, Oluwaseyi Samson; Maxakato, Nobanathi W; Olutona, Godwin Oladele; Obisesan, Olaoluwa Ruth
2017-01-01
This study determined the presence and levels of Polycyclic Aromatic Hydrocarbons (PAHs) of groundwater in Moro, Edun-Abon, Yakoyo and Ipetumodu communities in Ife-North Local Government Area of Osun State. This was with a view to create public awareness about the safety of groundwater as a source for domestic purposes (e.g., drinking, cooking etc.) in non-industrial area. Water samples were collected on seasonal basis, comprising of three months (August-October) in the wet season and three months (December-February) in the dry season. The PAHs in the water samples were extracted with n -hexane using liquid-liquid extraction method, while their qualitative identifications and quantitative estimations were carried out with the use of gas chromatography. Levels of PAHs detected showed predominance of light PAHs (less than four fused rings) for both wet and the dry seasons. Higher concentrations of PAHs were recorded during the wet season than the dry season. The study concluded that the groundwater in the communities was contaminated with light PAHs and the total PAHs in this area exceeded the maximum permissible limit of 10 μg L -1 recommended by World Health Organization (WHO) for safety of groundwater.
Nzila, Alexis
2018-05-07
The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Madeen, Erin P.; Ognibene, Ted J.; Corley, Richard A.; McQuistan, Tammie J.; Baird, William M.; Bench, Graham; Turteltaub, Ken W.; Williams, David E.
2017-01-01
Metabolism is a key health risk factor for exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in non-smokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a micro-dose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel “moving wire” interface between ultra-performance liquid chromatography (UPLC) and the AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself, (Cmax= 18.5 ± 15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/−)-DBC-11,12-diol (Cmax= 2.5 ± 1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Deconjugated and conjugated metabolites were detected in urine with [14C]-(+/−)-DBC-tetraol identified as the major metabolite, 88.7% of which was detected upon enzymatic deconjugation (Cmax= 35.8 ± 23.0 pg/pool, Tmax= 6–12 h pool). [14C]-DBC-11,12-diol, of which 94.4% was conjugated and identified in urine (Cmax= 29.4 ± 11.6 pg/pool, Tmax= 6–12 h pool). Parent [14C]-DBC was not detected in the urine. This is the first dataset to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose laboratory animal models to human translation for environmental health risk assessment. PMID:27494294
Behera, Bijay Kumar; Das, Abhishek; Sarkar, Dhruba Jyoti; Weerathunge, Pabudi; Parida, Pranaya Kumar; Das, Basanta Kumar; Thavamani, Palanisami; Ramanathan, Rajesh; Bansal, Vipul
2018-05-25
Polycyclic Aromatic Hydrocarbons (PAHs) are among the most ubiquitous environmental pollutants of high global concern. PAHs belong to a diverse family of hydrocarbons with over one hundred compounds known, each containing at least two aromatic rings in their structure. Due to hydrophobic nature, PAHs tend to accumulate in the aquatic sediments, leading to bioaccumulation and elevated concentrations over time. In addition to their well-manifested mutagenic and carcinogenic effects in humans, they pose severe detrimental effects to aquatic life. The high eco-toxicity of PAHs has attracted a number of reviews, each dealing specifically with individual aspects of this global pollutant. However, efficient management of PAHs warrants a holistic approach that combines a thorough understanding of their physico-chemical properties, modes of environmental distribution and bioaccumulation, efficient detection, and bioremediation strategies. Currently, there is a lack of a comprehensive study that amalgamates all these aspects together. The current review, for the first time, overcomes this constraint, through providing a high level comprehensive understanding of the complexities faced during PAH management, while also recommending future directions through potentially viable solutions. Importantly, effective management of PAHs strongly relies upon reliable detection tools, which are currently non-existent, or at the very best inefficient, and therefore have a strong prospect of future development. Notably, the currently available biosensor technologies for PAH monitoring have not so far been compiled together, and therefore a significant focus of this article is on biosensor technologies that are critical for timely detection and efficient management of PAHs. This review is focussed on inland aquatic ecosystems with an emphasis on fish biodiversity, as fish remains a major source of food and livelihood for a large proportion of the global population. This thought provoking study is likely to instigate new collaborative approaches for protecting aquatic biodiversity from PAHs-induced eco-toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.
2013-01-01
A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.
Avagyan, Rozanna; Åberg, Magnus; Westerholm, Roger
2016-11-01
Wood combustion has been shown to contribute significantly to emissions of polycyclic aromatic hydrocarbons and hydroxylated polycyclic aromatic hydrocarbons, compounds with toxic and carcinogenic properties. However, only a small number of hydroxylated polycyclic aromatic hydrocarbons have been determined in particles from wood combustion, usually compounds with available reference standards. In this present study, suspect and non-target screening strategies were applied to characterize the wood smoke particles from four different wood types and two combustion conditions with respect to hydroxylated polycyclic aromatic hydrocarbons and other organic compounds. In the suspect screening, 32 peaks corresponding to 12 monohydroxylated masses were tentatively identified by elemental composition assignments and matching of isotopic pattern and fragments. More than one structure was suggested for most of the measured masses. Statistical analysis was performed on the non-target screening data in order to single out significant peaks having intensities that depend on the wood type and/or combustion condition. Significant peaks were found in both negative and positive ionization modes, with unique peaks for each wood type and combustion condition, as well as a combination of both factors. Furthermore, structural elucidation of some peaks was done by comparing the spectra in the samples with spectra found in the spectral databases. Six compounds were tentatively identified in positive ionization mode, and 19 in negative ionization mode. The results in this present study demonstrate that there are significant overall differences in the chemistry of wood smoke particles that depends on both the wood type and the combustion condition used. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio
2012-11-01
The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.
NASA Astrophysics Data System (ADS)
Chen, Fei; Hu, Wei; Zhong, Qin
2013-04-01
Real-world vehicle emission factors for PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and particle-phase polycyclic aromatic hydrocarbons (PAHs) from mixed vehicles were quantified in the Fu Gui-shan Tunnel of Nanjing during summer and winter of 2010. Concentrations of PM10 and sixteen particle phase polycyclic aromatic hydrocarbons (PAHs) in the entrance and exit of the tunnel were studied. The results showed that the four most abundant particular phase polycyclic aromatic hydrocarbons (PAHs) of motor vehicle were benzo[ghi]perylene, benzo[k]fluoranthene, benz[a]anthracene and benzo[a]pyrene. The emission factors for PM10 and particle-phase PAHs were 687 mg veh- 1 km- 1 and 18.853 mg veh- 1 km- 1 in summer, 714 mg veh- 1 km- 1 and 20.374 mg veh- 1 km- 1 in winter. Higher particle-phase PAH emission factors were found to be associated with a high proportion of diesel-fueled vehicles (DV). The estimated PM10 emission factor of gasoline-fueled vehicles (GV) was 513 mg veh- 1 km- 1 and the value for DV was 914 mg veh- 1 km- 1, while EFDV of particulate PAH (31.290 mg veh- 1 km- 1) was nearly 4 times higher than EFGV (9.310 mg veh- 1 km- 1). The five highest emission factors of diesel-fueled vehicles (DV) were benzo[ghi]perylene, benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, benz[a]anthracene and benzo[a]pyrene, which was similarly found in the gasoline-fueled vehicles (GV). The sum of these five emission factors accounted for ~ 69% of the total particle-phase PAH of DV and ~ 67% of GV.
Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.
Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic Hydrocarbon (PAH)/aromatic-DNA adducts were assayed. • Brain Derived Neurotrophic Factor (BDNF) concentration was measured concurrently. • Associations between biomarkers and neurodevelopment at age 2 years were assessed. • Adduct level was inversely associated with BDNF concentration and neurodevelopment. • BDNF level was positively associated with neurodevelopment scores at age 2 years.« less
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.
One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization.
Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro
2015-02-16
The optoelectronic nature of two-dimensional sheets of sp(2)-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a 'growth from template' synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.
One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization
NASA Astrophysics Data System (ADS)
Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro
2015-02-01
The optoelectronic nature of two-dimensional sheets of sp2-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a ‘growth from template’ synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
Mutagenicity of an aged gasworks soil during bioslurry treatment
Lemieux, Christine L; Lynes, Krista D; White, Paul A; Lundstedt, Staffan; Öberg, Lars; Lambert, Iain B
2009-01-01
This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot-scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S-heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4-oxapyrene-5-one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. PMID:19274766
Liao, Weisheng; Liu, Hsin-Wang; Chen, Hsing-Jung; Chang, Wen-Yen; Chiu, Kong-Hwa; Wai, Chien M
2011-01-01
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO₂ containing 1 MPa of H₂ at 40-50°C. Kinetic studies based on in situ UV/Vis spectra of the CO₂ phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.
Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.
2013-01-01
Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731
Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin
2014-08-22
In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, Hui-Wen; Zhang, Shan-Hui; Wu, Bai-Chun; Chen, Wu; Wang, Jing-Bo; Liu, Yang
2018-07-01
Oil-field wastewaters contain high level of polycyclic aromatic hydrocarbons (PAHs), which have to be analyzed to assess the environmental effects before discharge. In this work, a green fluorimetric detection method that combines excitation-emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC) algorithm was firstly developed to achieve the direct and simultaneous determination of six U.S. EPA PAHs in two different kinds of complex oil-field wastewaters. Due to the distinctive "second-order advantage", neither time-consuming sample pretreatments nor toxic organic reagents were involved in the determination. By using the environment-friendly "mathematical separation" of PARAFAC, satisfactory quantitative results and reasonable spectral profiles for six PAHs were successfully extracted from the total EEM signals of oil-field wastewaters without need of chromatographic separation. The limits of detection of six PAHs were in the range of 0.09-0.72 ng mL-1, and the average spiked recoveries were between (89.4 ± 4.8)% and (109.1 ± 5.8)%, with average relative predictive errors <2.93%. In order to further confirm the accuracy of the proposed method, the same batch oil-field wastewater samples were analyzed by the recognized GC-MS method. t-test demonstrated that no significant differences exist between the quantitative results of the two methods. Given the advantages of green, fast, low-cost and high-sensitivity, the proposed method is expected to be broadened as an appealing alternative method for multi-residue analysis of overlapped PAHs in complex wastewater samples.
Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore
NASA Astrophysics Data System (ADS)
Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.
2015-02-01
The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.
Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui
2016-04-15
Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.
Kumari, Rupender; Chaturvedi, Prashant; Ansari, Nasreen G; Murthy, Ramesh C; Patel, Devendra K
2012-01-01
Chocolate is a key ingredient in many foods such as milk shakes, candies, bars, cookies, and cereals. Chocolate candies are often consumed by mankind of all age groups. The presence of polycyclic aromatic hydrocarbons (PAHs) in chocolate candies may result in health risk to people. A rapid, precise, and economic extraction method was optimized and validated for the simultaneous determination of polycyclic aromatic hydrocarbons in chocolate candy by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GS-MS) as a confirmatory technique. The method was optimized by using different solvents for liquid-liquid extraction, varying volume of de-emulsifying agent, and quantity of silica gel used for purification. The HPLC separation of 16 PAHs was carried out by C-18 column with mobile phase composed of acetonitrile : water (70 : 30) in isocratic mode with runtime of 20 min. Limit of detection, limit of quantification (LOQ), and correlation coefficients were found in the range of 0.3 to 4 ng g⁻¹, 0.9 to 12 ng g⁻¹, and 0.9109 to 0.9952, respectively. The exploration of 25 local chocolate candy samples for the presence of PAHs showed the mean content of benzo[a]pyrene as 1.62 ng g⁻¹, which representing the need to evaluate effective measures to prevent more severe PAHs contamination in chocolate candies in future. Chocolate is one of the most favorite food items among people, especially children. Chocolate candies are often consumed by mankind of all age groups. Chocolate candies are often consumed by children in large quantities. The presence PAHs in chocolate candies may result in health risk to people. In the present study, a precise and cost effective rapid method was employed for the determination of PAHs, which can be employed for daily routine analysis of PAHs in chocolate products. © 2011 Institute of Food Technologists®
Polycyclic aromatic hydrocarbons in Cambodian smoked fish.
Slámová, Tereza; Fraňková, Adéla; Hubáčková, Anna; Banout, Jan
2017-12-01
More than 85% of the population in Cambodia is strongly dependent on agriculture, of which freshwater aquaculture is one of the most important sources of food production. The smoked fish represents an important source of nutrients for Cambodian population; however, it can also lead to excessive intake of polycyclic aromatic hydrocarbons (PAHs). A field survey was conducted among selected smoked fish producers near to Tonle Sap river in Kampong Chhnang province, Cambodia. The study revealed that maximal limits for benzo[a]pyrene and the sum of four PAHs given by EC 1881/2006 were exceeded 2-50 times. Such burden can lead to increased risk of development of carcinogenic diseases.
A further study of air pollution in diesel bus garages.
Waller, R E; Hampton, L; Lawther, P J
1985-01-01
The concentrations of smoke, polycyclic aromatic hydrocarbons (PAHs), and some gaseous air pollutants have been measured in two London Transport diesel bus garages and compared with observations made in the same garages over 20 years earlier. The main feature of the results was a large reduction in the background concentrations of smoke and polycyclic aromatic hydrocarbons from sources such as coal fires, attributable to the implementation of the Clean Air Act. Contributions from the buses to the benzo(a) pyrene content of the air inside the garages were of the same magnitude as before, being small in relation to former coal smoke contributions. PMID:4074654
Gjeltema, Jenessa; Stoskopf, Michael; Shea, Damian; De Voe, Ryan
2012-01-01
Habitat preservation and management may play an important role in the conservation of the Puerto Rican crested toad, Peltophryne lemur, due to this species' small geographic range and declining native wild population. Bioavailable water concentrations of Polycyclic Aromatic Hydrocarbon (PAH) contaminants within breeding pools at 3 sites were established using Passive Sampling Devices (PSDs) and gas chromatography-mass spectrometry (GC/MS). A more diverse population of PAH analytes were found in higher concentrations at the breeding site that allowed direct vehicular access, but calculated risk quotients indicated low risk to toad reproduction associated with the current PAH analyte levels. PMID:23762634
Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils
Lau, E. V.; Gan, S.; Ng, H. K.
2010-01-01
This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670
Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi
2016-11-01
Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pogorzelec, Marta; Piekarska, Katarzyna
2018-08-01
The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.C.
1999-04-01
Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in theirmore » original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...
Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...
Nagle, Doug D.
2013-01-01
Samples from sites SWR11–3, SWR11–4, and SWR11–5 were analyzed for 83 volatile and semivolatile organic compounds. Eight polycyclic aromatic hydrocarbon compounds, benzo[a]pyrene, benzo[b]fluoranthene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene, were detected at all three sites. Of the 86 volatile and semivolatile organic compounds that were analyzed in stormwater samples from heating and cooling sites, 15 (18 percent) were detected at site SWR11–3, 12 (14 percent) were detected at site SWR11–4, and 17 (20 percent) were detected at site SWR11–5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madeen, Erin P.; Ognibene, Ted J.; Corley, Richard A.
Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in non-smokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a micro-dose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novelmore » “moving wire” interface between ultra-performance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself, (Cmax= 18.5 ± 15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ± 1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax= 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax= 29.4 ± 11.6 pg/pool, Tmax= 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first dataset to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.« less
Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...
Ghiasvand, Ali Reza; Yazdankhah, Fatemeh
2017-03-03
A polyaniline/multi-wall carbon nanotubes (PANI/MWCNT) composite was electrodeposited on the interior surface of a platinized stainless steel capillary needle and used to prepare an inside needle capillary adsorption trap (INCAT) device. The platinization expanded the interior adsorbing surface of the needle and made it more porous and cohesive for nanocomposite film. The nanocomposite was characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The fabricated INCAT was fixed into a cooling capsule to fabricate a cooling-assisted INCAT (CA-INCAT) system. The CA-INCAT device was used to extract polycyclic aromatic hydrocarbons (PAHs) from solid samples followed by gas chromatography-flame ionization detection (GC-FID) determination. To obtain the best extraction efficiency, the important experimental variables were studied and optimized. Under the optimal conditions, the limits of detection (LODs) for the studied PAHs were in the range of 0.002-0.02ngg -1 . Linear dynamic ranges (LDRs) for the calibration curves were found to be 0.1-30,000ngg -1 . Relative standard deviations (RSDs%) for six replicated analysis of 1ngg -1 PAHs were obtained 7.7-11%. The CA-INCAT-GC-FID method was successfully applied for the extraction and determination of PAHs in contaminated soil samples. The results were in agreement with those obtained by a validated ultrasound-assisted solvent extraction (UA-SE) method. Copyright © 2017 Elsevier B.V. All rights reserved.
Pisupati; Wasco; Scaroni
2000-05-29
Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.
Contamination of Tea and Tea Infusion with Polycyclic Aromatic Hydrocarbons
Zachara, Alicja; Gałkowska, Dorota; Juszczak, Lesław
2017-01-01
The aim of this work was to validate the method of determination of polycyclic aromatic hydrocarbons (PAHs), i.e., benzo(a)pyrene and sum of benzo(a)pyrene, benz(a)anthracene, benzo(b)fluoranthene and chrysene in different types of tea, as well as to assess the transfer of these contaminants from tea to tea infusion. The research materials were popular types of black, green, red and white tea. Quantitative and qualitative determination of PAHs was performed by High Performance Liquid Chromatography with fluorimetric detection (HPLC-FLD). The samples were prepared by QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) technique followed by cleaning-up by dispersion solid-phase extraction (d-SPE). Values of limit of detection and limit of quantification obtained in the validation of the method were lower than the respective maximum values given in Commission Regulation (EU) No. 836/2011. The level of contamination of popular teas commercially available on the Polish market with PAHs is similar to that of teas available in other countries, with a very large variation in the concentration of each of the compounds. The highest benzo(a)pyrene and Σ4PAHs contents (209 ± 42 μg/kg and 756 ± 151 μg/kg, respectively) were found for black tea leaves. The transfer of Σ4PAHs from black tea to tea infusions was 0.48%, while it was 1.55–1.72% for red, white and green teas. PMID:29283369
Germán-Hernández, Mónica; Crespo-Llabrés, Pilar; Pino, Verónica; Ayala, Juan H; Afonso, Ana M
2013-08-01
An ionic liquid (IL) in situ preconcentration method was optimized and applied to the monitoring of the 15 + 1 European Union polycyclic aromatic hydrocarbons in water and fruit-tea infusions. The optimized method utilizes 10 mL of water (or infusion) containing 38 μL of the IL 1-butyl-3-methylimidazolium chloride and a content of 36.1 g/L NaCl, which are mixed with Li-NTf2 (340 μL, 0.2 g/mL), followed by vortex (4 min) and centrifugation (5 min). The obtained microdroplet containing hydrocarbons is diluted with acetonitrile and injected into an HPLC with UV/Vis and fluorescence detection. The method presented average enrichment factors of 127 for water (tap water and bottled water) and 27 for two fruit-tea infusions; with average relative recoveries of 86.7 and 106% for water and fruit-tea infusions, respectively. The method was sensitive, with detection limits ranging from 0.001 to 0.050 ng/mL in water, and from 0.010 to 0.600 ng/mL in fruit-tea infusions, for the fluorescent hydrocarbons. Real extraction efficiencies ranged from 12.7 to 58.7% for water, and from 20.2 to 117% for the infusions. The method was also fast (~12 min) and free of organic solvents in the extraction step. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands
NASA Astrophysics Data System (ADS)
Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Wada, T.; Armus, L.; Baes, M.; Charmandaris, V.; Czerny, B.; Efstathiou, A.; Fernández-Ontiveros, J. A.; Ferrara, A.; González-Alfonso, E.; Griffin, M.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Kohno, K.; Kwon, J.; Nakagawa, T.; Onaka, T.; Pozzi, F.; Scott, D.; Smith, J.-D. T.; Spinoglio, L.; Suzuki, T.; van der Tak, F.; Vaccari, M.; Vignali, C.; Wang, L.
2017-11-01
The mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.
Merdivan, Melek; Pino, Verónica; Anderson, Jared L
2017-08-01
A benzyl-functionalized crosslinked polymeric ionic liquid (PIL), produced through the co-polymerization of the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (VBHDIM-NTf 2 ) ionic liquid (IL) monomer and 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide ((DVBIM) 2 C 12- 2NTf 2 ) IL crosslinker, was successfully used as a sorbent coating in headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with flame-ionization detection (FID) to determine seven volatile polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Optimum extraction conditions for the PAHs when using the novel sorbent include an extraction temperature of 50°C, an ionic strength content adjusted with 30% (w/v) NaCl in the aqueous sample, and an extraction time of 60 min. The extraction performance of the crosslinked PIL fiber was compared to the SPME commercial coating polydimethylsiloxane fiber. The calibration ranges of the studied PAHs were linear in the range of 0.02-20 µg L -1 for the crosslinked PIL fiber. The accuracy of the proposed method was demonstrated by examining the spiked recoveries of seven PAHs which produced values ranging from 67.2% to 130% (for river- and seawater samples), and precision values lower than 9.4% for a spiked level of 1 µg L -1 , and detection limits between 0.01 and 0.04 µg L -1 , which supports the sensitivity of the method using GC-FID.
Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds
Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi
2016-01-01
Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250
NASA Astrophysics Data System (ADS)
Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.
2013-05-01
We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture.
NASA Technical Reports Server (NTRS)
Wagner, D. R.; Kim, H. S.; Saykally, R. J.
2000-01-01
Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)
Hoffman, D.J.
1979-01-01
Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.
Johnson, Paul V; Hodyss, Robert; Beauchamp, J L
2014-11-01
Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.
Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma
Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.
2014-01-01
Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221
Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation
NASA Astrophysics Data System (ADS)
Gatchell, M.; Stockett, M. H.; de Ruette, N.; Chen, T.; Giacomozzi, L.; Nascimento, R. F.; Wolf, M.; Anderson, E. K.; Delaunay, R.; Vizcaino, V.; Rousseau, P.; Adoui, L.; Huber, B. A.; Schmidt, H. T.; Zettergren, H.; Cederquist, H.
2015-11-01
A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C24H12+m +m =0 -7 , led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014), 10.1103/PhysRevLett.113.053002]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16H10+m + , m =0 , 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
Chen, Edward S; Chen, Edward C M
2018-02-15
The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.
Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo
2013-04-15
A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80°C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L(-1), respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n=3). The linear range was 0.1-10 μg L(-1) with r≥0.96 and the fiber-to-fiber reproducibility showed RSD≤18.6% (n=5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Meng; Cheng, Chunsheng; Liu, Chunbo; Yang, Yaling
2018-01-01
A rapid, simple, reliable and efficient hollow fiber supported ionic liquids liquid-phase micro-extraction method (IL-HF-LPME) followed by high-performance liquid chromatography was successfully applied to the determination of four kinds of polycyclic aromatic hydrocarbons (PAHs) in milk samples. In the IL-HF-LPME method, a mixture of [OMIM]PF6 and lauric acid, in a ratio of 3:1, was immobilized in the pores of a polypropylene hollow fiber used as extraction solvent. A series of essential parameters influencing the extraction efficiency were investigated and optimized. Under the optimal conditions, the extraction equilibrium is achieved within 3 min, the good linearity was >0.9990, the limits of detection varied from 0.14 to 0.71 ng/mL, the limit of quantification values were between 0.4 and 1.8 ng/mL, and the relative standard deviations were in the range of 1.24-3.27% (n = 5). The proposed method was applied to analyze four PAHs in milk samples and recoveries were between 93.6 and 102.8%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mooibroek, D; Hoogerbrugge, R; Stoffelsen, B H G; Dijkman, E; Berkhoff, C J; Hogendoorn, E A
2002-10-25
Two less laborious extraction methods, viz. (i) a simplified liquid extraction using light petroleum or (ii) microwave-assisted solvent extraction (MASE), for the analysis of polycyclic aromatic hydrocarbons (PAHs) in samples of the compost worm Eisenia andrei, were compared with a reference method. After extraction and concentration, analytical methodology consisted of a cleanup of (part) of the extract with high-performance gel permeation chromatography (HPGPC) and instrumental analysis of 15 PAHs with reversed-phase liquid chromatography with fluorescence detection (RPLC-FLD). Comparison of the methods was done by analysing samples with incurred residues (n=15, each method) originating from an experiment in which worms were exposed to a soil contaminated with PAHs. Simultaneously, the performance of the total lipid determination of each method was established. Evaluation of the data by means of principal component analysis (PCA) and analysis of variance (ANOVA) revealed that the performance of the light petroleum method for both the extraction of PAHs (concentration range 1-30 ng/g) and lipid content corresponds very well with the reference method. Compared to the reference method, the MASE method yielded somewhat lower concentrations for the less volatile PAHs, e.g., dibenzo[ah]anthracene and benzo[ghi]perylene and provided a significant higher amount of co-extracted material.
Zha, Yan; Zhang, Yinlong; Ma, Zilong; Tang, Jie; Sun, Kai
2018-04-01
Polycyclic aromatic hydrocarbons (PAHs) are of concern for both ecosystem and human health due to their potential teratogenic, carcinogenic, and mutagenic properties. The concentration of ∑ 16 PAHs in foliar dust ranged from 49.4 to 19,018.1 µg kg -1 , with a mean value of 7074.5 µg kg -1 . There were significant seasonal variations in the concentration of ∑ 16 PAHs, with the concentration in winter being almost twice as high as in summer. Similarly, the differences between PAH profiles in different seasons indicated that they had common sources, which were attributed to the combined effect of regional transport and local emissions. The diagnostic ratios of indicator compounds indicated that PAHs detected in foliar dust originated from a mixture of gasoline vehicle emissions, biomass, and coal combustion in Nanjing. According to the ecological risk classification of ∑ 16 PAHs, the ecological risk caused by PAHs was high since the value of RQ ∑16PAHs(MPCs) was ≥ 1 and RQ ∑16PAHs(NCs) were ≥ 800. The mean values for RQ∑ 16 PAHs (MPCs) and RQ∑ 16 PAHs (NCs) were 14.8 and 2368.9, which indicated a relatively high ecological risks of PAHs in foliar dust in Nanjing.
Zhu, Gangbing; Yi, Yinhui; Han, Zhixiang; Wang, Kun; Wu, Xiangyang
2014-10-03
Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core-shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3'-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0-500.0 nM with a detection limit of 1.5 nM towards 1-AP. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.
Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I
2015-10-15
Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body. Copyright © 2015 Elsevier B.V. All rights reserved.
Jeng, Hueiwang Anna; Pan, Chih-Hong; Lin, Wen-Yi; Wu, Ming-Tsang; Taylor, Steven; Chang-Chien, Guo-Ping; Zhou, Guodong; Diawara, Norou
2013-01-15
The objective of the cross-sectional study was to assess whether exposure to polycyclic aromatic hydrocarbons (PAHs) from coke oven emissions contributed to alteration of semen quality and sperm DNA integrity in nonsmoking workers. Nonsmoking coke oven workers from a steel plant in Taiwan served as the exposure groups (topside-oven workers for the high exposure group and side-oven workers for the low exposure group), and administrators and security personnel in the plant served as the control. An exposure assessment was conducted to determine both particulate and gaseous phase of PAH levels and urinary 1-hydroxypyrene (1-OHP) levels. Semen quality was analyzed according to WHO guidelines. DNA fragmentation and bulky DNA adducts were measured to assess sperm DNA integrity. There was no significant difference in sperm concentrations, vitality, and DNA fragmentation between the exposed group and the control. The high exposure group experienced significantly lower percentages of normal morphology as compared with the control (p=0.0001). Bulky DNA adducts were detected in the exposed group that were significant higher than the control (p=0.04). Exposure to PAHs from coke-oven emissions could contribute to increased levels of bulky DNA adducts in sperm. Copyright © 2012 Elsevier B.V. All rights reserved.
Thuy, Hoang Thi Thanh; Loan, Tu Thi Cam; Phuong, Trinh Hong
2018-05-12
Polycyclic aromatic hydrocarbons (PAHs) are one of the most important classes of anthropogenic persistent organic contaminants in the marine environment. This review discusses a whole range of findings that address various aspects of the bioaccumulation of PAHs in two common marine biota (phytoplankton and bivalves) globally and especially for Can Gio coastal wetland, Vietnam. The published information and collected data on the bioconcentration and accumulation mechanisms of PAHs as well as implications for Can Gio coastal wetland are compiled for phytoplankton and bivalves. PAHs are still released to Can Gio coastal environments from various sources and then transported to coastal environments through various physical processes; they may enter marine food chains and be highly accumulated in phytoplankton and bivalves. Thus, PAHs' bioaccumulation should be considered as one important criterion to assess the water's quality, directly linked to human health due to seafood consumption. Ecologically, Can Gio coastal wetland plays an important role to the South Vietnam key economic zone. However, it is also an area of potential PAHs inputs. With the abundant phytoplankton and bivalves in Can Gio coastal wetland, the PAHs bioaccumulation in these biota is inevitably detected. Thus, further study on the bioavailability of these contaminants is urgently needed in order to mitigate their negative effects and protect the ecosystems.
Hu, Xingru; Liu, Chao; Li, Jiansheng; Luo, Rui; Jiang, Hui; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun
2017-10-20
In this study, a novel hollow mesoporous carbon spheres-based fiber (HMCSs-F) was fabricated to immobilize HMCSs onto a stainless steel wire for solid-phase microextraction (SPME). Characterization results showed that the HMCSs-F possessed a large specific surface area, high porosity and uniform pore size. To demonstrate the extraction performance, a series of polycyclic aromatic hydrocarbons (PAHs) was chosen as target analytes. The experimental parameters including extraction and desorption conditions were optimized. Compared to commercial fibers, the HMCSs-F exhibited better extraction efficiency for PAHs. More interestingly, a good extraction selectivity for PAHs from the complex matrix was observed in these HMCSs-F. The enhanced SPME performance was attributed to the unique pore structure and special surface properties of the HMCSs. Furthermore, under the optimum conditions, the limits of detection (LODs) for the HMCSs-F were in the range of 0.20-1.15ngL -1 with a corresponding relative standard deviation that was below 8.6%. The method was successfully applied for the analysis of PAHs in actual environmental water samples with recoveries ranging from 85.9% to 112.2%. These results imply that the novel HMCSs-F have potential application in environmental water analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography–mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose–response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs. PMID:25488567
Howerton, Samuel B; McGuffin, Victoria L
2003-07-15
The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.
Zheng, Xueyun; Dupuis, Kevin T.; Aly, Noor A.; ...
2018-03-02
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making theirmore » studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). In conclusion, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.« less
Zhang, Guijiang; Zang, Xiaohuan; Li, Zhi; Wang, Chun; Wang, Zhi
2014-11-01
In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Dupuis, Kevin T.; Aly, Noor A.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making theirmore » studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). In conclusion, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.« less
POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tappe, A.; Rho, J.; Boersma, C.
2012-08-01
We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edgemore » of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.« less
Chan, J T K; Leung, H M; Yue, P Y K; Au, C K; Wong, Y K; Cheung, K C; Li, W C; Yung, K K L
2017-01-15
The up-to-date concentration of polycyclic aromatic hydrocarbons (PAHs) in sediment materials of Victoria Harbour was investigated so as to evaluate the pollution potential associated with the reclamation projects in Hong Kong. A total of 100 sediment samples were collected at 20 locations. Except the control point in reservoir, the PAHs concentrations were detectable levels all sites (131-628.3ng/g, dw) and such values were higher than Dutch Target and Intervention Values (the New Dutch standard in 2016). The PAHs concentration indicating that construction waste and wastewater discharges were the main pollutant sources. Results of correlation in single cell gel electrophoresis assay (comet assay) studies also revealed that the PAHs concentration was highly correlated (<0.01) with DNA migration (i.e. the length of tail moment of fish cells) in 5mg/ml of PAHs. The above observation indicates that the PAHs present in the sediment may substantially effect the marine ecosystem. Although the dredged sediment can be a useful sea-filling material for land reclamation; however, the continuing leaching of PAHs and its impact on the aquatic environment need to be studied further. Copyright © 2016 Elsevier Ltd. All rights reserved.
Song, Xingliang; Li, Jinhua; Xu, Shoufang; Ying, Rongjian; Ma, Jiping; Liao, Chunyang; Liu, Dongyan; Yu, Junbao; Chen, Lingxin
2012-09-15
A method of solid-phase extraction (SPE) using molecularly imprinted polymers (MIPs) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 16 types of polycyclic aromatic hydrocarbons (PAHs) in seawater samples. The MIPs were prepared through non-covalent polymerization by using the 16 PAHs mixture as a template based on sol-gel surface imprinting. Compared with the non-imprinted polymers (NIPs), the MIPs exhibited excellent affinity towards 16 PAHs with binding capacity of 111.0-195.0 μg g(-1), and imprinting factor of 1.50-3.12. The significant binding specificity towards PAHs even in the presence of environmental parameters such as dissolved organic matter and various metal ions, suggested that this new imprinting material was capable of removing 93.2% PAHs in natural seawater. High sensitivity was attained, with the low limits of detection for 16 PAHs in natural seawater ranging from 5.2-12.6 ng L(-1). The application of MIPs with high affinity and excellent stereo-selectivity toward PAHs in SPE might offer a more attractive alternative to conventional sorbents for extraction and abatement of PAH-contaminated seawater. Copyright © 2012 Elsevier B.V. All rights reserved.
Zheng, Xueyun; Dupuis, Kevin T.; Aly, Noor A.; ...
2018-03-02
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making theirmore » studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Finally, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.« less
2014-01-01
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012
Shi, Rui; Yan, Lihong; Xu, Tongguang; Liu, Dongye; Zhu, Yongfa; Zhou, Jun
2015-01-02
Polycyclic aromatic hydrocarbons (PAHs) were considered as a source of carcinogenicity in mainstream cigarette smoke (MSS). Accurate quantification of these components was necessary for assessing public health risk. In our study, a solid-phase extraction (SPE) method using graphene oxide (GO) bound silica as adsorbent for purification of 14 PAHs in MSS was developed. During SPE process, large matrices interferences of MSS were adsorbed on SPE column. The result of FTIR spectra demonstrated that these matrices interferences were adsorbed on GO mainly through OH and CO groups. The concentrations of PAHs in MSS extract were determined by gas chromatography-mass spectrometry (GC-MS). The limit of detection (LOD) and limit of quantification (LOQ) of the developed method for 14 PAHs ranged from 0.05 to 0.36 ng/cig and 0.17 to 1.19 ng/cig, respectively. The accuracy of the measurement of 14 PAHs was from 73 to 116%. The relative standard deviations of intra- and inter-day analysis were less than 7.8% and 13.9%, respectively. Moreover, the developed method was successfully applied for analysis of real cigarette containing 1R5F reference cigarette and 12 top-selling commercial cigarettes in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Ke-Jing; Li, Jing; Liu, Yan-Ming; Wang, Lan
2013-02-01
The graphene functionalized with (3-aminopropyl) triethoxysilane was synthesized by a simple hydrothermal reaction and applied as SPE sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. These sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large specific surface area of nanoparticles, and only 10 mg of sorbents are required to extract PAHs from 100 mL water samples. Several condition parameters, such as eluent and its volume, adsorbent amount, sample volume, sample pH, and sample flow rate, were optimized to achieve good sensitivity and precision. Under the optimized extraction conditions, the method showed good linearity in the range of 1-100 μg/L, repeatability of the extraction (the RSDs were between 1.8 and 2.9%, n = 6), and satisfactory detection limits of 0.029-0.1 μg/L. The recoveries of PAHs spiked in environmental water samples ranged from 84.6 to 109.5%. All these results demonstrated that this new SPE technique was a viable alternative to conventional enrichment techniques for the extraction and analysis of PAHs in complex samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dos Santos Fogaça, Fabíola Helena; Soares, Cristina; Oliveira, Marta; Alves, Ricardo N; Maulvault, Ana L; Barbosa, Vera L; Anacleto, Patrícia; Magalhães, João Avelar; Bandarra, Narcisa M; Ramalhosa, Maria João; Morais, Simone; Marques, António
2018-07-01
This work aimed to determine the effect of culinary practices on the contamination level and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in seafood. The selected farmed seafood species (marine shrimp, clams and seaweed) were commercially available in Portugal. The mean concentrations of PAHs varied between 0.23 and 51.8 µg kg -1 , with the lowest value being observed in raw shrimp and the highest in dried seaweed. The number of compounds detected in seaweed and clams (naphthalene, acenaphthene, fluorene, phenanthrene, benzo(b)fluoranthene and benzo(j)fluoranthene) were higher than in shrimp (fluorene and pyrene). Among the PAHs measured, fluorene was the predominant one. There was a significant interaction effect between species and culinary treatment (p < 0.05), thus boiled and dried seaweed samples presented the lowest and the highest levels of fluorene (0.13 and 1.8 µg kg -1 ), respectively. The daily intake of PAHs decreased with bioaccessibility, varying from 22% for benzo(k)fluoranthene (in raw clam) to 84% for phenanthrene (in steamed clam). According to the potency equivalent concentrations, screening values and bioaccessibility of PAHs, the consumption of marine shrimp, clam and seaweed is considered as safe for consumers. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, E.Y.; Vista, C.L.
1997-02-01
Samples collected in January and June 1994 from the Point Loma Wastewater Treatment Plant (PLWTP) effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the PLWTP outfall, mouth of the Tijuana River, and San Diego Bay were analyzed in an attempt to identify and assess the sources of hydrocarbon inputs into the coastal marine environment off San Diego. Several compositional indices of polycyclic aromatic hydrocarbons (PAHs), for example, alkyl homologue distributions, parent compound distributions, and other individual PAH ratios, were used to identify the sources of PAHs. Partially due to the decline ofmore » PAH emission from the PLWTP outfall, PAHs found in the sea surface microlayer, sediments, and water column particulates near the PLWTP outfall were predominantly derived from nonpoint sources. The sea microlayer near the mouth of the Tijuana River appeared to accumulate enhanced amounts of PAHs and total organic carbon and total nitrogen, probably discharged from the river, although they were in extremely low abundance in the sediments at the same location. Surprisingly, PAHs detected in the microlayer and sediments in San Diego Bay were mainly derived from combustion sources rather than oil spills, despite the heavy shipping activities in the area.« less
van Drooge, Barend L; Prats, Raimon M; Reche, Cristina; Minguillón, MariCruz; Querol, Xavier; Grimalt, Joan O; Moreno, Teresa
2018-06-09
Underground subways transport large numbers of citizens in big cities, which must breathe air with limited ventilation. These atmospheric conditions may enhance the concentration of air pollutants from both outdoor and indoor air. The influence of ventilation conditions and maintenance activities on the concentrations of air pollutants have been studied. Particulate matter with aerodynamic diameter smaller than 2.5 μm (PM 2.5 ) in indoor air was sampled in ten platforms of nine subway stations of the metropolitan area of Barcelona in 2015 and 2016. These particles were analyzed for polycyclic aromatic hydrocarbons (PAH) and organic tracer compounds. The concentrations of PAH were in the range of the street air levels with higher PAH values in the colder period. No influence of nighttime maintenance activities was observed on the platform air quality during daytime. Source apportionment analysis using the concentrations of hopanes, nicotine and levoglucosan as molecular tracer compounds showed that 75% of the detected PAH at the platforms have an outdoor PM origin. The modern subway stations, with advanced ventilation and platform screen doors that separate the subway system from the platform, showed lowest PAH and PM concentrations. Copyright © 2018. Published by Elsevier B.V.
2006-05-01
Polycyclic Aromatic Hydrocarbons and Petroleum to Marine Invertebrate Larvae and Juveniles,” Environ. Toxicol. Chem., vol. 16, pp. 2190–2199...aromatic hydrocarbons , polychlorinated biphenyls, and chlorinated pesticides. Seventeen plume mapping surveys, including an on-site floating bioassay...Non-point Source NS&T National Status and Trends PAH Polynuclear Aromatic Hydrocarbon PCB Polychlorinated Biphenyl PMSD Percent
Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.
Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira
2014-09-01
This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Abuhelou, Fayez; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Catteloin, Delphine; Collin, Valéry; Bauer, Allan; Kanbar, Hussein Jaafar; Gley, Renaud; Manceau, Luc; Thomas, Fabien; Montargès-Pelletier, Emmanuelle
2017-10-01
In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.
Muratova, Anna; Dubrovskaya, Ekaterina; Golubev, Sergey; Grinev, Vyacheslav; Chernyshova, Marina; Turkovskaya, Olga
2015-09-01
We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere. Copyright © 2015 Elsevier GmbH. All rights reserved.
Dixon, Holly M; Scott, Richard P; Holmes, Darrell; Calero, Lehyla; Kincl, Laurel D; Waters, Katrina M; Camann, David E; Calafat, Antonia M; Herbstman, Julie B; Anderson, Kim A
2018-05-01
Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (r s = 0.53 and p = 0.01; r s = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (r s = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies. Graphical abstract PAHs detected in samples collected from urban pregnant women.
Jin, Rong; Liu, Guorui; Zheng, Minghui; Fiedler, Heidelore; Jiang, Xiaoxu; Yang, Lili; Wu, Xiaolin; Xu, Yang
2017-08-04
Isotopic dilution gas chromatography combined with high resolution mass spectrometry (GC/HRMS) has overwhelming advantages with respect to the accuracy of congener-specific ultratrace analysis of complex persistent organic pollutants (POPs) in environmental matrices. However, an isotopic dilution GC/HRMS method for analysis of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl-PAHs and Br-PAHs) using 13 C-labelled congeners as internal standards has not been established. In this study, a method for identification and quantification of 38 congeners of Cl-PAHs and Br-PAHs in atmosphere and stack gas samples from waste incinerators was developed using the isotopic dilution GC/HRMS technique. The instrumental detection limits of the GC/HRMS method ranged from 0.2pg to 1.8pg for Cl-PAH congeners, and 0.7pg to 2.7pg for Br-PAH congeners, which were about three orders of magnitude lower than those of the GC/quadrupole MS method. This new method developed was also the first to enable determination of Cl-PAH and Br-PAH homologs comprising congeners with the same molecular skeleton and chlorine or bromine substitution numbers. Among the detected congeners, seven Cl-PAH congeners and thirteen Br-PAH congeners that were abundant in the atmosphere and stack gases released from waste incinerators were firstly detected in real samples and reported using the established isotopic dilution GC/HRMS method. The developed isotopic dilution GC/HRMS is significant and needed for better studying the environmental behavior and health risk of Cl-PAHs and Br-PAHs. Copyright © 2017 Elsevier B.V. All rights reserved.
Gratz, Samuel R; Ciolino, Laura A; Mohrhaus, Angela S; Gamble, Bryan M; Gracie, Jill M; Jackson, David S; Roetting, John P; McCauley, Heather A; Heitkemper, Douglas T; Fricke, Fred L; Krol, Walter J; Arsenault, Terri L; White, Jason C; Flottmeyer, Michele M; Johnson, Yoko S
2011-01-01
A rapid, sensitive, and accurate method for the screening and determination of polycyclic aromatic hydrocarbons (PAHs) in edible seafood is described. The method uses quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based extraction and HPLC with fluorescence detection (FLD). The method was developed and validated in response to the massive Deepwater Horizon oil spill in the Gulf of Mexico. Rapid and highly sensitive PAH screening methods are critical tools needed for oil spill response; they help to assess when seafood is safe for harvesting and consumption. Sample preparation involves SPE of edible seafood portions with acetonitrile, followed by the addition of salts to induce water partitioning. After centrifugation, a portion of the acetonitrile layer is filtered prior to analysis via HPLC-FLD. The chromatographic method uses a polymeric C18 stationary phase designed for PAH analysis with gradient elution, and it resolves 15 U.S. Environmental Protection Agency priority parent PAHs in fewer than 20 min. The procedure was validated in three laboratories for the parent PAHs using spike recovery experiments at PAH fortification levels ranging from 25 to 10 000 microg/kg in oysters, shrimp, crab, and finfish, with recoveries ranging from 78 to 99%. Additional validation was conducted for a series of alkylated homologs of naphthalene, dibenzothiophene, and phenanthrene, with recoveries ranging from 87 to 128%. Method accuracy was further assessed based on analysis of National Institute of Standards and Technology Standard Reference Material 1974b. The method provides method detection limits in the sub to low ppb (microg/kg) range, and practical LOQs in the low ppb (microg/kg) range for most of the PAH compounds studied.
Tillner, Jocelyn; Hollard, Caroline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier
2013-11-08
In this study, an automated method for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and their chlorination by-products in drinking water was developed based on online solid-phase microextraction-gas chromatography-mass spectrometry. The main focus was the optimisation of the solid-phase microextraction step. The influence of the agitation rate, type of fibre, desorption time, extraction time, extraction temperature, desorption temperature, and solvent addition was examined. The method was developed and validated using a mixture of 17 PAHs, 11 potential chlorination by-products (chlorinated and oxidised PAHs) and 6 deuterated standards. The limit of quantification was 10 ng/L for all target compounds. The validated method was used to analyse drinking water samples from three different drinking water distribution networks and the presumably coal tar-based pipe coatings of two pipe sections. A number of PAHs were detected in all three networks although individual compositions varied. Several PAH chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also found, their presence correlating closely with that of their respective parent compounds. Their concentrations were always below 100 ng/L. In the coatings, all PAHs targeted were detected although concentrations varied between the two coatings (76-12,635 mg/kg and 12-6295 mg/kg, respectively). A number of chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also detected (from 40 to 985 mg/kg), suggesting that the reaction of PAHs with disinfectant agents takes place in the coatings and not in the water phase after migration. Copyright © 2013 Elsevier B.V. All rights reserved.
Tai, Chao; Zhang, Kun-Feng; Zhou, Tian-Jian; Zhao, Tong-Qian; Wang, Qing-Qing; He, Xiao-Qi
2011-07-01
The distribution characteristics of polycyclic aromatic hydrocarbons in runoff from the middle line source area of south-to-north water diversion project were studied. Five groups of artificial runoff fields were established to collect runoff based on the different types of land-use, the contents of 16 USEPA priority PAHs in the runoff were determined using GC/MS method. The results showed that the average concentrations of PAHs of the aqueous phase in the collected runoff samples of different land-use types decreased in the order:cultivated land (26.53 ng x L(-1)) > oak forest (20.91 ng x L(-1)) > orchard (17.59 ng x L(-1)), and the average concentrations of PAHs of the particle phase were cultivated land (1 073.72 ng x g(-1)) > orchard (652.29 ng x g(-1)) > oak forest (385.46 ng x g(-1)). The high carcinogenic components Bap were detected in both run off of cultivated land and orchard with a detected rate of 30%. According to National Recommended Water Quality Standards of priority toxic pollutants (2006 USEPA), it was found that Chr exceed standard 40%, with a detected rate of 100%. It was also found that the runoff volume and the total PAHs content in runoff increase with the slope, and PAHs loss and slope were closely related in same land-use types. Based on the Molecular Markers Indicative Law, it can be concluded that the dominant source of PAHs in runoff of study area was combustion of coal, and a small amount came from vehicle exhaust emissions. There is a certain degree of ecological risk about runoff PAHs pollution in the study area, which is worth further attention.
A reduced organic carbon component in martian basalts.
Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T
2012-07-13
The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.
Fullerenes in Allende Meteorite
NASA Technical Reports Server (NTRS)
Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.
1994-01-01
The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in meteorites. Although fullerenes have not previously been detected in the Murchison and Allende meteorites, the Allende meteorite is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende meteorite. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.
Fiber-optic laser-induced fluorescence probe for the detection of environmental pollutants
NASA Astrophysics Data System (ADS)
Bublitz, J.; Dickenhausen, M.; Grätz, M.; Todt, S.; Schade, W.
1995-06-01
Laser-induced fluorescence (LIF) spectroscopy in combination with fiber optics is shown to be a powerful tool for qualitative and quantitative diagnostics of environmental pollutants in water and soil. Time-integrated data accumulation of the LIF signals in early and late time windows with respect to the excitation pulse simplifies the method so that it becomes attractive for practical applications. Results from field measurements are reported, as oil contaminations under a gas station and in an industrial sewer system are investigated. A KrF-excimer laser and a hydrogen Raman shifter can be applied for multiwavelength excitation. This allows a discrimination between benzene, toluene, xylene, and ethylbenzene aromatics and polycyclic aromatic hydrocarbon molecules in the samples under investigation. For a rough theoretical approach, a computer simulation is developed to describe the experimental results.
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.
Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G
2003-01-24
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.
Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.; Sandford, S. A.
1999-01-01
The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.
NASA Astrophysics Data System (ADS)
Zhu, Lin; Tang, Xuexi; Wang, Ying; Sui, Yadong; Xiao, Hui
2016-03-01
The typical organic pollutant polycyclic aromatic hydrocarbon (PAH) anthracene was selected as a contaminant to investigate its effects on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum (visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.
Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, A.; Payne, J.F.; Fancey, L.L.
1997-09-01
The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less
Kästner, Matthias; Breuer-Jammali, Maren; Mahro, Bernd
1998-01-01
Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation. PMID:9435090
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.
Han, D M; Tong, X X; Jin, M G; Hepburn, Emily; Tong, C S; Song, X F
2013-04-01
This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18-30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2-4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.
Abboud, Ayad Sami; Sanagi, Mohd Marsin; Ibrahim, Wan Aini Wan; Keyon, Aemi S Abdul; Aboul-Enein, Hassan Y
2018-02-01
In this study, caged calcium alginate-caged multiwalled carbon nanotubes dispersive microsolid phase extraction was described for the first time for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatographic analysis. Fluorene, phenanthrene and fluoranthene were selected as model compounds. The caged calcium alginate-caged multiwalled carbon nanotubes was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal gravimetry analyses. The effective parameters namely desorption solvent, solvent volume, extraction time, desorption time, the mass of adsorbent and sample volume were optimized. Under the optimum extraction conditions, the developed method showed good linearity in the range of 0.5-50 ng mL-1 (R2 ≥ 0.996), low limits of detection and quantification (0.42-0.22 ng mL-1) (0.73-1.38 ng mL-1) respectively, good relative recoveries (71.2-104.2%) and reproducibility (RSD 1.8-12.4%, n = 3) for the studied PAHs in water sample. With high enrichment factor (1,000), short extraction time (<30 min), low amounts of adsorbent (100 mg) and low amounts of solvent (0.1 mol) have proven that the microsolid phase extraction method based on calcium alginate-caged multiwalled carbon nanotubes are environmentally friendly and convenient extraction method to use as an alternative adsorbent in the simultaneous preconcentration of PAHs from environmental water samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sun, Yujiao; Zhao, Xiaohui; Zhang, Dayi; Ding, Aizhong; Chen, Cheng; Huang, Wei E; Zhang, Huichun
2017-11-01
A new naphthalene bioreporter was designed and constructed in this work. A new vector, pWH1274_Nah, was constructed by the Gibson isothermal assembly fused with a 9 kb naphthalene-degrading gene nahAD (nahAa nahAb nahAc nahAd nahB nahF nahC nahQ nahE nahD) and cloned into Acinetobacter ADPWH_lux as the host, capable of responding to salicylate (the central metabolite of naphthalene). The ADPWH_Nah bioreporter could effectively metabolize naphthalene and evaluate the naphthalene in natural water and soil samples. This whole-cell bioreporter did not respond to other polycyclic aromatic hydrocarbons (PAHs; pyrene, anthracene, and phenanthrene) and demonstrated a positive response in the presence of 0.01 μM naphthalene, showing high specificity and sensitivity. The bioluminescent response was quantitatively measured after a 4 h exposure to naphthalene, and the model simulation further proved the naphthalene metabolism dynamics and the salicylate-activation mechanisms. The ADPWH_Nah bioreporter also achieved a rapid evaluation of the naphthalene in the PAH-contaminated site after chemical spill accidents, showing high consistency with chemical analysis. The engineered Acinetobacter variant had significant advantages in rapid naphthalene detection in the laboratory and potential in situ detection. The state-of-the-art concept of cloning PAHs-degrading pathway in salicylate bioreporter hosts led to the construction and assembly of high-throughput PAH bioreporter array, capable of crude oil contamination assessment and risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akdoğan, Abdullah; Buttinger, Gerhard; Wenzl, Thomas
2016-01-01
An analytical method is reported for the determination of four polycyclic aromatic hydrocarbons (benzo[a]pyrene (BaP), benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and chrysene (CHR)) in edible oils (sesame, maize, sunflower and olive oil) by high-performance liquid chromatography. Sample preparation is based on three steps including saponification, liquid-liquid partitioning and, finally, clean-up by solid phase extraction on 2 g of silica. Guidance on single-laboratory validation of the proposed analysis method was taken from the second edition of the Eurachem guide on method validation. The lower level of the working range of the method was determined by the limits of quantification of the individual analytes, and the upper level was equal to 5.0 µg kg(-1). The limits of detection and quantification of the four PAHs ranged from 0.06 to 0.12 µg kg(-1) and from 0.13 to 0.24 µg kg(-1). Recoveries of more than 84.8% were achieved for all four PAHs at two concentration levels (2.5 and 5.0 µg kg(-1)), and expanded relative measurement uncertainties were below 20%. The performance of the validated method was in all aspects compliant with provisions set in European Union legislation for the performance of analytical methods employed in the official control of food. The applicability of the method to routine samples was evaluated based on a limited number of commercial edible oil samples.
Jiang, Qiong; Liu, Qin; Chen, Qiliang; Zhao, Wenjie; Xiang, Guoqiang; He, Lijun; Jiang, Xiuming; Zhang, Shusheng
2016-08-01
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid-phase extraction. They were obtained through the copolymerization of a 1,8-di(3-vinylimidazolium)octane-based ionic liquid with vinyl-modified SiO2 @Fe3 O4 , and were characterized by FTIR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1-100 μg/L is obtained for all analytes, except for parathion (2-200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2-0.8 μg/L, and intraday and interday relative standard deviations are 1.7-7.4% (n = 5) and 3.8-8.0% (n = 3), respectively. The magnetic solid-phase extraction combined with high-performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boada, Luis D; Henríquez-Hernández, Luis A; Navarro, Patricio; Zumbado, Manuel; Almeida-González, Maira; Camacho, María; Álvarez-León, Eva E; Valencia-Santana, Jorge A; Luzardo, Octavio P
2015-01-01
Background: Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to bladder cancer. Objective: To evaluate the role of PAHs in bladder cancer, PAHs serum levels were measured in patients and controls from a case-control study. Methods: A total of 140 bladder cancer patients and 206 healthy controls were included in the study. Sixteen PAHs were analyzed from the serum of subjects by gas chromatography–mass spectrometry. Results: Serum PAHs did not appear to be related to bladder cancer risk, although the profile of contamination by PAHs was different between patients and controls: pyrene (Pyr) was solely detected in controls and chrysene (Chry) was exclusively detected in the cases. Phenanthrene (Phe) serum levels were inversely associated with bladder cancer (OR = 0·79, 95%CI = 0·64–0·99, P = 0·030), although this effect disappeared when the allelic distribution of glutathione-S-transferase polymorphisms of the population was introduced into the model (multinomial logistic regression test, P = 0·933). Smoking (OR = 3·62, 95%CI = 1·93–6·79, P<0·0001) and coffee consumption (OR = 1·73, 95%CI = 1·04–2·86, P = 0·033) were relevant risk factors for bladder cancer. Conclusions: Specific PAH mixtures may play a relevant role in bladder cancer, although such effect seems to be highly modulated by polymorphisms in genes encoding xenobiotic-metabolizing enzymes. PMID:25291984
Cocci, Paolo; Mosconi, Gilberto; Bracchetti, Luca; Nalocca, John Mark; Frapiccini, Emanuela; Marini, Mauro; Caprioli, Giovanni; Sagratini, Gianni; Palermo, Francesco Alessandro
2018-04-01
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are priority contaminants that bioaccumulate through the food webs and affect the biology of a variety of resident and migratory species, including sea turtles. Few studies have evaluated toxicological biomarkers of exposure to PAHs and PCBs in these animals. The present paper reports the results of an initial field study to quantify the association between plasma concentrations of PAHs/PCBs and whole blood cell expression of gene biomarkers in juvenile loggerhead sea turtles (Caretta caretta) rescued along the Italian coasts of the northern and central areas of the Adriatic Sea. While detectable levels of PAHs were found in all plasma samples examined, only three PCB congeners (PCB52, PCB95, and PCB149) were noted, with detection percentages ranging between 48% and 57%. A significant correlation was found between 3 of the 6 gene biomarkers assessed (HSP60, CYP1A and ERα) and plasma levels of some PAH congeners. In contrast, no significant association between PCB burden and gene expression was observed. The global DNA methylation levels were significantly and positively correlated with the concentrations of most of the PAHs and only one of the PCB congeners (PCB52). The relation between PAH concentration and gene expression in whole blood cells suggests that these genes may respond to environmental contaminant exposure and are promising candidates for the development of biomarkers for monitoring sea turtle exposure to persistent organic pollutants (POPs). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Patel, Manish R.; Storrie-Lombardi, Michael C.; Ward, John M.; Muller, Jan-Peter
2012-05-01
Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence-based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half-lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence-based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.
Tecon, Robin; Binggeli, Olivier; van der Meer, Jan R
2009-09-01
Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).
Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael
2016-06-01
Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.
[Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas].
Ciemniak, Artur
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) of which benzo[a]pyrene is the most commonly studied and measured, are fused - ring aromatic compounds formed in both natural and man made processes and are found widely distributed throughout the human environment. PAHs occur as contaminants in different food categories and beverages including water, vegetables, fruit, cereals, oils and fats, barbecued and smoked meat. The sources of PAHs in food are predominantly from environmental pollution and food processing. PAHs emissions from automobile traffic and industry activities were show to influence the PAHs levels in vegetables and fruits. The present study was carried out to determine levels of 16 basic PAHs in herbs and fruit teas. The method was based on the hexane extraction and cleaned up by florisil cartridge. The extracts were analysed by GC-MS. The levels of total PAHs varied from 48,27 microg/kg (hibiscus tea) to 1703 microg/kg (green tea). The highest level of BaP was found in lime tea (74,2 microg/kg).
Devi, Parmila; Saroha, Anil K
2015-09-01
The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Birds and polycyclic aromatic hydrocarbons
Albers, P.H.
2006-01-01
Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.
Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.
Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L
2006-01-01
We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.
Studabaker, William B; Puckett, Keith J; Percy, Kevin E; Landis, Matthew S
2017-04-07
Development of the Athabasca Oil Sands Region in northeastern Alberta, Canada has contributed polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic compounds (PACs), which include alkyl PAHs and dibenzothiophenes, to the regional environment. A new analytical method was developed for quantification of PAHs and PACs in the epiphytic lichen bioindicator species Hypogymnia physodes for use in the development of receptor models for attribution of PAH and PAC concentrations to anthropogenic and natural emission sources. Milled lichens were extracted with cyclohexane, and extracts were cleaned on silica gel using automated solid phase extraction techniques. Quantitative analysis was performed by gas chromatography with selected ion monitoring (GC-SIM-MS) for PAHs, and by GC with time-of-flight mass spectrometry (GC-TOF-MS) for PACs. PACs were quantitated in groups using representative reference compounds as calibration standards. Analytical detection limits were ≤2.5ngg -1 for all individual compounds. Precision as measured by laboratory duplicates was variable; for individual analytes above 5ngg -1 the mean absolute difference between duplicates was typically <20%. Selection of single-analyte markers for source attribution should include consideration of data quality indicators. Use of TOF-MS to spectrally characterize PAC group constituents identified significant challenges for the accurate quantitation of PACs with more than two carbons in their side chain(s). Total PAH concentrations in lichen samples ranged from 12 to 482ngg -1 . Total PACs in each sample varied from a fraction of total PAHs to more than four times total PAHs. Results of our analyses of H. physodes are compared with other studies using other species of lichens as PAH receptors and with passive monitoring data using polyurethane foam (PUF) samplers in the Athabasca Oil Sands Region (AOSR). This study presents the first analytical methodology developed for the determination of PACs in an epiphytic lichen bioindicator species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.